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A general class of cross-diffusion systems for two population species in a bounded 
domain with no-flux boundary conditions and Lotka–Volterra-type source terms is 
analyzed. Although the diffusion coefficients are assumed to depend linearly on the 
population densities, the equations are strongly coupled. Generally, the diffusion 
matrix is neither symmetric nor positive definite. Three main results are proved: 
the existence of global uniformly bounded weak solutions, their convergence to 
the constant steady state in the weak competition case, and the uniqueness of 
weak solutions. The results hold under appropriate conditions on the diffusion 
parameters which are made explicit and which contain simplified Shigesada–
Kawasaki–Teramoto population models as a special case. The proofs are based 
on entropy methods, which rely on convexity properties of suitable Lyapunov 
functionals.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Many multi-species systems in biology, chemistry, and physics can be described by reaction–diffusion 
systems with cross-diffusion effects. The analysis of such problems is challenging since generally neither 
maximum principles nor regularity theory can be applied. Moreover, many systems have diffusion matrices 
that are neither symmetric nor positive definite such that even the local-in-time existence of solutions is a 
nontrivial task. In this paper, we apply and extend the boundedness-by-entropy method of [12] to a class 
of cross-diffusion systems for two species, which are motivated from population dynamics. Compared to 
our previous work [12], we are here interested in the qualitative behavior of weak solutions, namely their 
uniform boundedness, positivity, large-time asymptotics, and uniqueness.
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1.1. Setting

We consider reaction–diffusion systems of the form

∂tu− div(A(u)∇u) = f(u) in Ω, t > 0, (1)

subject to the homogeneous Neumann boundary and initial conditions

(A(u)∇u) · ν = 0 on ∂Ω, u(0) = u0 in Ω, (2)

where u = (u1, u2)� represents the vector of the densities of the species, A(u) = (Aij(u)) ∈ R
2×2 is the 

diffusion matrix, and the birth–death processes are modeled by the function f = (f1, f2). Furthermore, 
Ω ⊂ R

d (d ≥ 1) is a bounded domain with Lipschitz boundary and ν is the exterior unit normal vector to 
∂Ω. Our main assumption is that the diffusivities depend linearly on the densities,

Aij(u) = αij + βiju1 + γiju2, i, j = 1, 2, (3)

where αij , βij , γij are real numbers.
Such models can be formally derived from a master equation for a random walk on a lattice in the 

diffusion limit with transition rates which depend linearly on the species’ densities [12, Appendix B]. They 
can be also deduced as the limit equations of an interacting particle system modeled by stochastic differential 
equations with interaction forces which depend linearly on the corresponding stochastic processes [10,17].

The most prominent example of (3) is probably the population model of Shigesada, Kawasaki, and 
Teramoto [18] (abbreviated SKT model):

A(u) =
(
a10 + 2a11u1 + a12u2 a12u1

a21u2 a20 + a21u1 + 2a22u2

)
, (4)

where the coefficients aij are nonnegative, and the source terms in (1) are given by

fi(u) = (bi0 − bi1u1 − bi2u2)ui, i = 1, 2, (5)

and the coefficients bij are nonnegative. The existence of global weak solutions without any restriction 
on the diffusivities (except positivity) was achieved in [9] in one space dimension and in [4,5] in several 
space dimensions. Global classical solutions for constant Aij were shown to exist in [15]. Galiano [8] proved 
the uniqueness of bounded weak solutions to the SKT model with either diagonal diffusion matrix or the 
regularity assumption ∇ui ∈ L∞. Uniqueness of strong solutions was shown by Amann [1] in the triangular 
case (a21 = 0 in (4)).

There are much less results in the literature concerning L∞ bounds and large-time asymptotics. In one 
space dimension and with coefficients a10 = a20, Shim [19] proved uniform upper bounds. Moreover, if 
cross-diffusion is weaker than self-diffusion (i.e. a12 < a22, a21 < a11), weak solutions are bounded and 
Hölder continuous [14]. The existence of global bounded solutions in the triangular case (i.e. a21 = 0) was 
shown in [6]. In the triangular case, Le [13] proved the existence of a global attractor. With vanishing 
birth–death terms, it was shown in [5] that the solution to the SKT model converges exponentially fast to 
the constant steady state.

It cannot be expected that such results hold for any choice of the parameters appearing in (3) and (5). 
For instance, system (1) with

A(u) =
(

1 −u1
)
, f(u) =

(
0

)

0 1 u1 − u2
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corresponds to the parabolic–parabolic Keller–Segel model which exhibits the phenomenon of cell aggrega-
tion. If the cell density is sufficiently large initially, finite-time L∞ blow-up of solutions in two and three 
space dimensions occurs (see, e.g., [11]), and bounded weak solutions cannot be generally expected.

We wish to determine conditions on the parameters in (3) for which the weak solutions to (1)–(2)
are uniformly bounded, positive, converge to the steady state, and are unique. The key idea is to apply 
and refine entropy methods. Here, an entropy is a convex Lyapunov functional which provides additional 
gradient estimates. Special entropies may also allow for uniform L∞ bounds, see below. The advantage of 
these methods is a separation of the analytical and algebraic properties of the parabolic system. Often, 
it is sufficient to analyze the algebraic structure of the diffusion matrix, which simplifies the proofs, while 
achieving new results.

1.2. Main results

We introduce the triangle

D = {(u1, u2) ∈ R
2 : u1 > 0, u2 > 0, u1 + u2 < 1}. (6)

First, we prove the existence of global bounded weak solutions to (1)–(3) for diffusion matrices of the form

A(u) =
(
α11 + β11u1 + γ11u2 β12u1

γ21u2 α22 + β22u1 + γ22u2

)
.

Theorem 1 (Bounded weak solutions to (1)). Let u0 = (u0
1, u

0
2) ∈ L1(Ω; R2) be such that u0(x) ∈ D for 

x ∈ Ω, let A(u) be given by (3) with coefficients satisfying

α12 = α21 = β21 = γ12 = 0, (7)

β22 = β11 − γ21, γ11 = γ22 − β12, γ21 = α22 − α11 + β12, (8)

α11 > 0, α22 > 0, β12 < α11 + min{β11, γ22}, α11 + β11 ≥ 0, α22 + γ22 ≥ 0, (9)

and let fi(u) = uigi(u), where gi(u) is continuous in D and nonpositive in {1 − ε < u1 + u2 < 1} for some 
ε > 0 (i = 1, 2). Then there exists a bounded nonnegative weak solution u = (u1, u2) to (1)–(2) satisfying 
u(x, t) ∈ D for x ∈ Ω, t > 0,

u ∈ L2
loc(0,∞;H1(Ω;R2)), ∂tu ∈ L2

loc(0,∞;H1(Ω;R2)′), (10)

and the initial datum is satisfied in the sense of L2.

Note that the L∞ bound on u is uniform in time. We show in the appendix that (7) (and two further 
conditions) are necessary to apply the entropy method. Thus, in the framework of such techniques, conditions 
(7) cannot be improved. The theorem also holds true if α11 = α22 = 0 but β11 > 0 and γ22 > 0; see Remark 7. 
The condition u0

1 + u0
2 < 1 can be satisfied after a suitable scaling of the positive function u0 ∈ L∞(Ω; R2)

and is therefore not a restriction. The assumption on f(u) guarantees that the triangle D is an invariant 
region under the action of the reaction terms. Theorem 1 generalizes the global existence result in [10], where 
the positive definiteness of A was needed. To the best of our knowledge, this is the first general existence 
result for uniformly bounded weak solutions to cross-diffusion systems with linear diffusivities.

The proof is based on the boundedness-by-entropy method, first used in [3] for a ion-transport model 
and later extended in [12]. The key idea is to formulate conditions under which the functional
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H[u] =
∫
Ω

h(u)dx, where h(u) =
3∑

i=1
ui(log ui − 1), u3 := 1 − u1 − u2,

is an entropy for (1). More precisely, assume that the derivative of the entropy density h : D → R is invertible 
and the matrix h′′(u)A(u) is positive semidefinite, where h′′(u) is the Hessian of h(u). We introduce the 
entropy variable w = h′(u). Then (1) is equivalent to

∂tu− div(B(w)∇w) = f(u(w)),

where B(w) = A(u)h′′(u)−1 and u(w) = (h′)−1(w). Now, if f(u) · w ≤ 0,

d

dt
H[u] ≤ −

∫
Ω

∇w : B(w)∇wdx = −
∫
Ω

∇u : h′′(u)A(u)∇udx ≤ 0,

where “:” denotes summation over both matrix indices. This shows that H[u] is a Lyapunov functional for (1). 
There is a second consequence: Since the triangle D in (6) is bounded, the original variable u = (h′)−1(w)
maps into D which is bounded. Therefore, u(x, t) ∈ D and the solutions to (1) are bounded. This result 
holds without the use of a maximum principle.

Theorem 1 can be applied to the SKT model (4) to determine conditions under which this model possesses 
bounded weak solutions; see Section 2.3. The novelty is not the global existence (which has been proven 
in [4]) but the uniform boundedness of weak solutions.

The second main result is concerned with the large-time behavior of the solutions to (1). The steady state 
of (1)–(2) is defined as the only constant solution U = (U1, U2) to (1)–(2). (There may be also non-constant 
steady states [16] but we are interested only in constant solutions.) The steady state is a solution to the 
algebraic equation f(U) = 0. If f is given by (5) and (bij)i,j=1,2 is positive definite, equation f(U) = 0
admits the unique solution

U1 = b10b22 − b20b12
b11b22 − b12b21

, U2 = b20b11 − b10b21
b11b22 − b12b21

. (11)

Theorem 2 (Convergence to the steady state). Let the hypotheses of Theorem 1 hold and let f(u) be given 
by (5). Let the matrix (bij)i,j=1,2 be positive definite and assume that

b10 = b12 < b11, b20 = b21 < b22, (12)

as well as

(α11 + β11)(α11 + β11 − β12) − 4γ2
21
U2

U1
> 0,

(α22 + γ22)(α22 + γ22 − γ21) − 4β2
12
U1

U2
> 0. (13)

Then the solution to (1)–(3) constructed in Theorem 1 satisfies ui(x, t) > 0 a.e. in Ω × (0, ∞), ui − Ui, 
∇ log ui ∈ L2(Ω × (0, ∞)), and

ui(t) → Ui strongly in L2(Ω) as t → ∞, i = 1, 2.

Assumption (12) is a special case of the weak competition case,

b11
>

b10
>

b12
, (14)
b21 b20 b22
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which allows for coexistence of species in the Lotka–Volterra differential equations [2]. This condition guar-
antees that U ∈ D, i.e., U1, U2 > 0 and U1 +U2 < 1. The idea of the proof is to show that under the stated 
conditions on the parameters, the functional

Φ(u|U) =
2∑

i=1

∫
Ω

(
ui − Ui + Ui log ui

Ui

)
dx

is a Lyapunov functional and satisfies

d

dt
Φ(u(t)|U) + cb

t∫
0

‖u(s) − U‖2
L2(Ω)ds + c

2∑
i=1

t∫
0

∫
Ω

|∇ log ui|2dxds ≤ 0, (15)

where cb > 0 is the smallest (positive) eigenvalue of (bij)i,j=1,2 and c > 0 is another constant. For this 
property, we need condition (13). Clearly, (15) is only formal as ui may vanish, and we need to regularize 
to make this inequality rigorous (see Section 3). Inequality (15) is the key step to deduce the properties 
mentioned in the theorem.

Our final result is the uniqueness of weak solutions to (1).

Theorem 3 (Uniqueness of weak solutions). Let the assumptions of Theorem 1 hold. Furthermore, let f = 0
and

α22 = α11, γ21 = β12, γ22 = β11. (16)

Then the weak solution to (1)–(3) is unique.

Summarizing the assumptions on the parameters, the uniqueness result holds for diffusion matrices of 
the form

A(u) =
(
α11 + β11u1 + (β11 − β12)u2 β12u1

β12u2 α11 + (β11 − β12)u1 + β11u2

)
.

For the proof of Theorem 3, we first observe that under the conditions imposed on the parameters in (3), 
the sum ρ := u1 + u2 satisfies the diffusion equation ∂tρ = ΔF (ρ) for a certain nondecreasing function F . 
By the H−1 method, this equation is uniquely solvable. Furthermore, the difference σ := u1 − u2 solves the 
drift–diffusion equation ∂tσ = div(d(ρ)∇σ + σ∇V (ρ)) for certain functions d(ρ) > 0 and V (ρ). To prove 
the uniqueness of weak solutions to this equation, we employ the method of Gajewski [7]. We stress the fact 
that we require only the regularity V (ρ) ∈ L2(0, T ; H1(Ω)), which excludes many uniqueness techniques. 
The idea of Gajewski is to differentiate the semimetric

Ξ[σ1, σ2] = S[ρ1] + S[ρ2] − 2S
[
σ1 + σ2

2

]
, where S[σ] =

∫
Ω

σ log σdx,

for two solutions σ1 and σ2 with respect to time and to show that ∂tΞ[σ1(t), σ2(t)] ≤ 0 for t > 0. Since 
Ξ[σ1(0), σ2(0)] = 0, we infer from the nonnegativity of Ξ that Ξ[σ1(t), σ2(t)] = 0 for all t ≥ 0, and the 
convexity of σ log σ shows that σ1(t) = σ2(t) = 0 for t ≥ 0.

This paper is organized as follows. Theorems 1, 2, 3 are proved in, respectively, Sections 2, 3, 4. In the 
Appendix, we derive some necessary conditions on the parameters in (3) to apply the entropy method.
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2. Proof of Theorem 1

We apply the following theorem from [12, Theorem 2], here in a formulation which is adapted to our 
situation.

Theorem 4. (See [12].) Let D ⊂ (0, 1)2 be a bounded domain, u0 ∈ L1(Ω; R2) with u0(x) ∈ D for x ∈ Ω and 
assume that

H1: There exists a convex function h ∈ C2(D; [0, ∞)) such that its derivative h′ : D → R
n is invertible.

H2: Let α∗ > 0, 0 ≤ mi ≤ 1 (i = 1, 2) be such that for all z = (z1, z2)� ∈ R
2 and u = (u1, u2)� ∈ D,

z�h′′(u)A(u)z ≥ α∗
2∑

i=1
u

2(mi−1)
i z2

i .

H3: It holds A ∈ C0(D; R2×2), f ∈ C0(D; R2), and there exists cf > 0 such that for all u ∈ D, f(u) ·h′(u) ≤
cf (1 + h(u)).

Then there exists a weak solution u to (1)–(2) satisfying u(x, t) ∈ D for x ∈ Ω, t > 0 and

u ∈ L2
loc(0,∞;H1(Ω;R2)), ∂tu ∈ L2

loc(0,∞;H1(Ω;R2)′).

The initial datum is satisfied in the sense of L2. Moreover, if h ∈ C0(D) and f(u) ·h′(u) ≤ 0 for all u ∈ D, 
the entropy H[u(·, t)] =

∫
Ω h(u(x, t))dx is nonincreasing in time.

The last statement is a consequence of the proof of the theorem in [12].
Now, choose the entropy density

h(u|u) =
3∑

i=1
ui

(
ui

ui
log ui

ui
− ui

ui
+ 1

)
, u3 = 1 − u1 − u2, u3 = 1 − u1 − u2, (17)

defined on D (see (6)). This function fulfills Hypothesis H1. It remains to verify Hypotheses H2 and H3.

2.1. Verification of Hypothesis H2

Let H(u) = h′′(u). We require that the matrix H(u)A(u) is symmetric. This leads to conditions (7)–(8), 
and we are left with the five parameters α11, α22, β11, β12, and γ22. We prove that H(u)A(u) is positive 
definite under additional assumptions.

Lemma 5. Let conditions (7)–(9) hold. Then there exists ε > 0 such that for all z ∈ R
2 and all u ∈ D,

z�H(u)A(u)z ≥ ε

(
z2
1
u1

+ z2
2
u2

)
. (18)

The lemma shows that Hypothesis H2 is fulfilled with mi = 1
2 . First, we verify the following result.

Lemma 6. The matrix H(u)A(u) is positive semidefinite for all u ∈ D if and only if

α11 ≥ 0, α22 ≥ 0, β12 ≤ α11 + min{β11, γ22}, α11 + β11 ≥ 0, α22 + γ22 ≥ 0. (19)
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Proof. Step 1: equations (19) are necessary. We first prove that the positive semidefiniteness of H(u)A(u)
implies (19) by studying H(u)A(u) close to the vertices of D. To this end, we define the matrix-valued 
functions

F1(s) = sH(s, s)A(s, s), F2(s) = sH(1 − 2s, s)A(1 − 2s, s),

F3(s) = sH(s, 1 − 2s)A(s, 1 − 2s) for s ∈ (0, 1
2 ).

A straightforward computation shows that

lim
s→0+

F1(s) =
(
α11 0
0 α22

)
, lim

s→0+
F2(s) =

(
α11 + β11 α11 + β11
α11 + β11 2(α11 + β11) − β12

)
,

lim
s→0+

F3(s) =
(
α11 + α22 + 2γ22 − β12 α22 + γ22

α22 + γ22 α22 + γ22

)
.

Since H(u)A(u) is assumed to be positive semidefinite on D, also lims→0+ Fi(s) must be positive semidefinite 
for i = 1, 2, 3. Sylvester’s criterion applied to these matrices yields (19) since

det
(

lim
s→0+

F2(s)
)

= (α11 + β11)(α11 + β11 − β12) ≥ 0,

det
(

lim
s→0+

F3(s)
)

= (α22 + γ22)(α11 + γ22 − β12) ≥ 0.

Step 2: sign of the diagonal elements of HA. Let conditions (19) hold. We claim that either HA :=
H(u)A(u) is positive semidefinite or one of the two coefficients (HA)11 or (HA)22 is positive in D. For this, 
we introduce the functions

f1(u2, u3) = (1 − u2 − u3)u3(HA)11(1 − u2 − u3, u2), (u2, u3) ∈ D,

f2(u1, u3) = (1 − u1 − u3)u3(HA)22(u1, 1 − u1 − u3), (u1, u3) ∈ D.

We wish to apply the strong maximum principle to f1 and f2. In fact, f1 and f2 are nonnegative on ∂D
since (19) implies that

f1|u3=1−u2 = (1 − u2)
(
α11 + (γ22 − β12)u2

)
≥ α11(1 − u2)2 ≥ 0, (20)

f1|u2=0 = α11 + β11(1 − u3) ≥ α11u3 ≥ 0, (21)

f1|u3=0 = (1 − u2)
(
(α11 + β11)(1 − u2) + α22 + γ22

)
≥ 0, (22)

f2|u1=0 = α22 + γ22(1 − u2) ≥ α22u2 ≥ 0, (23)

f2|u3=1−u1 = (1 − u1)
(
α22(1 − u1) + (α11 + β11 − β12)u1

)
≥ α22(1 − u1)2 ≥ 0, (24)

f2|u3=0 = (1 − u1)
(
(α22 + γ22)(1 − u1) + (α11 + β11)u1

)
≥ 0. (25)

Furthermore, a straightforward computation gives

Δ(u2,u3)f1 = −Δ(u1,u3)f2 = 2(α11 − α22 + β11 − γ22) in D.

Consequently, either Δ(u2,u3)f1 ≤ 0 or Δ(u1,u3)f2 ≤ 0 in D. By the strong maximum principle, there exists 
i ∈ {1, 2} such that fi > 0 in D unless fi ≡ 0 in D. This means that (HA)ii > 0 in D unless (HA)ii ≡ 0
in D.

To complete the claim, we show that if one of the coefficients (HA)11 or (HA)22 is identically zero in D, 
then HA is positive semidefinite in D. Consider first the case (HA)11 ≡ 0 in D, i.e. f1 ≡ 0 in D. Then also 
f1 ≡ 0 on ∂D. We deduce from (20)–(22) the relations α11 = β11 = 0, α22 = −γ22, and γ22 = β12 and so,
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HA = α22

(
0 0
0 1/u2

)
.

Since α22 ≥ 0, HA is positive semidefinite. In the remaining case (HA)22 ≡ 0 in D, (23)–(25) lead to

HA = α11

(
1/u1 0

0 0

)
,

and because of α11 ≥ 0, this matrix is positive semidefinite. This shows the claim.
Step 3: sign of the determinant of HA. By Step 2, we can assume that one of the two coefficients (HA)11

or (HA)22 is positive in D. We show that detA ≥ 0 in D. Then det(HA) = detH detA ≥ 0 in D, and by 
Sylvester’s criterion, these properties give the positive semidefiniteness of HA. This proves that conditions 
(19) are sufficient for the positive semidefiniteness of HA.

We consider detA on ∂D. Taking into account conditions (19), we find that

detA(0, u2) = (α22 + γ22u2)
(
α11 + (γ22 − β12)u2

)
≥ α22(1 − u2)α11(1 − u2) ≥ 0,

detA(u1, 0) = (α11 + β11u1)
(
α22(1 − u1) + (α11 + β11 − β12)u1

)
≥ α22(1 − u1)α11(1 − u1) ≥ 0,

detA(u1, 1 − u1) =
(
(α22 + γ22)(1 − u1) + α11 + β11

)
×
(
α11 − β12 + γ22 + (β11 − γ22)u1

)
≥ (α11 + β11)

(
− min{β11 − γ22, 0} + (β11 − γ22)u1

)
≥ 0.

We conclude that detA ≥ 0 on ∂D.
Next, we consider the Hessian C := (detA)′′(u) with respect to u. Since detA is a (multivariate) quadratic 

polynomial in u, C is a symmetric constant matrix satisfying

detC = −
(
β11β12 + γ22(α11 − α22 − β12)

)2 ≤ 0.

Thus, one of the two eigenvalues of C is nonpositive, say λ ≤ 0. Let v ∈ R
2\{0} be a corresponding 

eigenvector, i.e. Cv = λv. Furthermore, let u ∈ D be arbitrary and let Iu ⊂ R be the (unique) bounded 
open interval containing zero with the property that the segment u + Iuv is contained in D and its extreme 
points belong to ∂D. Define φ(r) = detA(u + rv) for r ∈ Iu. Then φ′′(r) = v�Cv = λ|v|2 ≤ 0 for all r ∈ Iu. 
We infer that φ is concave and attains its minimum at the border of Iu. Since detA ≥ 0 on ∂D, this implies 
that detA(u + rv) ≥ 0 for all r ∈ Iu. By choosing r = 0 ∈ Iu, we conclude that detA(u) ≥ 0. As u ∈ D was 
arbitrary, this finishes the proof. �
Proof of Lemma 5. The claim (18) is equivalent to the positive semidefiniteness of the matrix HA − εΛ for 
a suitable ε > 0, where

Λ =
(

1/u1 0
0 1/u2

)
.

Since Λ = HP , where

P =
(

1 − u1 −u1
−u2 1 − u2

)
,

we can write HA − εΛ = HAε with Aε = A − εP . We observe that Aε has the same structure as A with 
the parameters
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αε
11 = α11 − ε, αε

22 = α22 − ε, βε
11 = β11 + ε, βε

12 = β12 + ε, γε
22 = γ22 + ε.

From Lemma 5 we conclude that HAε is positive semidefinite if and only if (19) holds for the parameters 
(αε

11, α
ε
22, β

ε
11, β

ε
12, γ

ε
22) instead of (α11, α22, β11, β12, γ22). This means that HA − εΛ is positive semidefinite 

for a suitable ε > 0 if and only if (9) holds. �
Remark 7. Let α11 = α22 = 0 but β11 > 0 and γ22 > 0. We claim that there exists ε > 0 such that for all 
z ∈ R

2 and u ∈ D,

z�H(u)A(u)z ≥ ε|z|2

holds, i.e., Hypothesis H2 is satisfied for mi = 1, and the conclusion of Theorem 1 holds. We show that 
HA − εI is positive semidefinite, where I is the identity matrix in R2×2. The matrix can be written as

HA− εI = (HA)ε + ε

1 − u1 − u2

(
1 1
1 1

)
,

where (HA)ε has the same structure as HA but with β11, β12, γ22 replaced by βε
11 = β11 − ε, βε

12 = β12 − ε, 
γε
22 = γ22 − ε. Choosing 0 < ε ≤ min{β11, γ22}, conditions (19) are satisfied for these parameters. Thus, 

Lemma 5 shows that (HA)ε is positive semidefinite and we conclude that also HA −εI is positive semidefinite, 
proving the claim. �
2.2. Verification of H3

By definition of fi, we write

fi(u)∂ui
h(u) = uigi(u) log ui − uigi(u) log(1 − u1 − u2) − uigi(u) log(ui/u3).

Since gi(u) and ui log ui are bounded in D, the first term on the right-hand side is bounded. The second 
term is bounded in {0 < u1 +u2 ≤ 1 −ε} by a constant which depends on ε. Moreover, we have gi(u) ≤ 0 in 
{1 −ε < u1+u2 < 1} by assumption, which implies that −uigi(u) log(1 −u1−u2) ≤ 0 in {1 −ε < u1+u2 < 1}. 
Finally, the third term is trivially bounded. Thus, fi(u)∂ui

(u) ≤ c for a suitable constant c > 0.

2.3. Bounded weak solutions to the SKT model

Applying Theorem 1 to (1)–(2) with diffusion matrix (4), we infer the following corollary.

Corollary 8 (Bounded weak solutions to (4)). Let the assumptions of Theorem 1 hold except that the coeffi-
cients of A, defined in (4), are nonnegative and satisfy a10 > 0, a20 > 0 as well as

a21 = a11, a22 = a12, a20 − a10 = a11 − a22 ≥ 0. (26)

Furthermore, let f(u) be given by the Lotka–Volterra terms (5) satisfying

b10 ≤ min{b11, b12}, b20 ≤ min{b21, b22}. (27)

Then there exists a bounded weak solution u = (u1, u2) to (1)–(2) satisfying u1, u2 ≥ 0, u1 + u2 ≤ 1 in 
Ω × (0, ∞), and (10).
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Proof. The corollary follows from Theorem 4 and Theorem 1 by specifying the diffusivities according to (4). 
The requirement of the symmetry of H(u)A(u) leads to the conditions a11 = a21, a22 = a12, and a20−a10 =
a11 − a22, whereas (9) becomes a10 > 0, a20 > 0, and −a12 < a10 + 2 min{a20 − a10, 0}. Taking into account 
that a10 ≤ a20, the last condition is equivalent to −a12 < a10, and this inequality holds since a10 is positive. 
Finally, Hypothesis H3 follows from the inequality gi(u) = bi0−bi1u1−bi2u2 ≤ bi0−min{bi1, bi2}(u1+u2) ≤ 0
for 1 − ε < u1 + u2 < 1, where ε = min{ε1, ε2} and εi = 1 − bi0/ min{bi1, bi2} ∈ (0, 1). �
3. Proof of Theorem 2

First, we observe that condition (12) is a special case of the weak competition condition (14) which 
implies that U1 > 0 and U2 > 0. It holds that U1 + U2 < 1 since otherwise, the assumption U1 + U2 ≥ 1
leads in view of condition (12) to

0 = f1(U) = (b10 − b11U1 − b12U2)U1 < (b10 − b12U1 − b12U2)U1 ≤ b10 − b12 = 0,

which is a contradiction. Thus, U ∈ D. Furthermore, the identity bi0 = bi1U1 + bi2U2 allows us to rewrite
fi(u) as

fi(u) = −ui

2∑
j=1

bij(uj − Uj), i = 1, 2, (28)

and the additional condition (12) leads to

fi(u) = −bi0uiU3

(
ui

Ui
− u3

U3

)
, where U3 := 1 − U1 − U2.

For later use, we observe that the entropy density (17) satisfies

f(u) · h′(u|U) = −
2∑

i=1
bi0uiU3

(
ui

Ui
− u3

U3

)(
log ui

Ui
− log u3

U3

)
≤ 0 (29)

for all u ∈ D, and we conclude from Theorem 4 that t �→ H[u(t)|U ] :=
∫
Ω h(u(x, t)|U)dx is nonincreasing.

For the positivity and large-time behavior, we need another functional. Define

Φε(u|U) =
∫
Ω

φε(u|U)dx, where

φε(u|U) =
2∑

i=1

(
ui − Ui − (Ui + ε) log ui + ε

Ui + ε

)
, u ∈ D.

We will show that Φε(u|U) is an entropy for (1)–(2). For this, let K = φ′′
ε (u|U) be the Hessian of φε with 

respect to u. Because of the ε-regularization, φ′
ε(u|U) is an admissible test function for (1):

Φε(u(t)|U) +
t∫

0

∫
Ω

∇u : KA(u)∇udxds = Φε(u0|U) +
t∫

0

∫
Ω

f(u) · φ′
ε(u|U)dxds. (30)

First, we estimate the last term on the right-hand side. We infer from (28) and ∂ui
φε(u|U) = (ui−Ui)/(ui+ε)

that
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t∫
0

∫
Ω

f(u) · φ′
ε(u|U)dxds = −

2∑
i,j=1

t∫
0

∫
Ω

bij(ui − Ui)(uj − Uj)dxds

+ ε
2∑

i,j=1

t∫
0

∫
Ω

bij
ui + ε

(ui − Ui)(uj − Uj)dxds.

Since (bij) is positive definite and ui is bounded, there are constants cb > 0 and C > 0 such that

t∫
0

∫
Ω

f(u) · φ′
ε(u|U)dxds ≤ −cb

t∫
0

‖u− U‖2
L2(Ω)ds + εC

2∑
i=1

t∫
0

∫
Ω

dxds

ui + ε
. (31)

Next, the second term on the left-hand side of (30) is estimated with the help of the following lemma.

Lemma 9. There exists ε0 > 0 and cKA > 0 such that for all 0 < ε < ε0 and all u ∈ D, z = (z1, z2) ∈ R
2,

z�KA(u)z ≥ cKA

2∑
i=1

z2
i

(ui + ε)2 .

Proof. The matrix coefficients of K are explicitly given by Kij = (Ui + ε)δij/(ui + ε)2. In order to estimate 
the product z�KA(u)z, we rewrite the coefficients of the diffusion matrix as Aij(u) =

∑3
k=1 a

(k)
ij uk, where

a
(1)
ij = αij + βij , a

(2)
ij = αij + γij , a

(3)
ij = αij , i, j = 1, 2.

Then we need to treat the quadratic form

z�KA(u)z =
3∑

k=1

uk

2∑
i,j=1

Ui + ε

(ui + ε)2 a
(k)
ij zizj

=
3∑

k=1

uk

(
a
(k)
11 w2

1 +
(
a
(k)
12

√
U1 + ε

U2 + ε

u2 + ε

u1 + ε
+ a

(k)
21

√
U2 + ε

U1 + ε

u1 + ε

u2 + ε

)
w1w2 + a

(k)
22 w2

2

)
,

where wi = zi
√
Ui + ε/(ui + ε), i = 1, 2. Because of condition (7), a(2)

12 = a
(3)
12 = a

(1)
21 = a

(3)
21 = 0, and so, the 

quadratic form simplifies to

z�KA(u)z =
3∑

k=1

uk

(
a
(k)
11 w2

1 + a
(k)
22 w2

2
)

+
(
a
(1)
12

√
U1 + ε

U2 + ε

u1(u2 + ε)
u1 + ε

+ a
(2)
21

√
U2 + ε

U1 + ε

u2(u1 + ε)
u2 + ε

)
w1w2

≥
3∑

k=1

uk

(
a
(k)
11 w2

1 + a
(k)
22 w2

2
)

−
(
|a(1)

12 |
√

U1 + ε

U2 + ε
(u2 + ε) + |a(2)

21 |
√

U2 + ε

U1 + ε
(u1 + ε)

)
|w1||w2|

=
3∑

ukIk − ε

(
|a(1)

12 |
√

U1 + ε

U2 + ε
+ |a(2)

21 |
√

U2 + ε

U1 + ε

)
|w1||w2|, (32)
k=1
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where

I1 = a
(1)
11 w

2
1 + a

(1)
22 w

2
2 − |a(2)

21 |
√

U2 + ε

U1 + ε
|w1||w2|,

I2 = a
(2)
11 w

2
1 + a

(2)
22 w

2
2 − |a(1)

12 |
√

U1 + ε

U2 + ε
|w1||w2|,

I2 = a
(3)
11 w

2
1 + a

(3)
22 w

2
2.

Condition (9) shows that a(3)
ii > 0, a(i)

ii ≥ 0 for i = 1, 2, and conditions (7) and (8) lead to

a
(1)
11 a

(1)
22 − 4U2

U1
|a(2)

21 |2 = (α11 + β11)(α22 + β22) − 4U2

U1
(α21 + γ21)2

= (α11 + β11)(α11 + β11 − β12) − 4U2

U1
γ2
21 > 0,

a
(2)
11 a

(2)
22 − 4U1

U2
|a(1)

12 |2 = (α11 + γ11)(α22 + γ22) − 4U1

U2
(α12 + β12)2

= (α22 + γ22 − γ21)(α22 + γ22) − 4U1

U2
β2

12 > 0,

and the positivity of the discriminants follows from assumption (13). As 
√

(Ui + ε/(Uj + ε) is an 
ε-perturbation of 

√
Ui/Uj , there exist δ > 0 and C > 0 such that, for sufficiently small ε > 0,

Ik ≥ 2δ(w2
1 + w2

2) − εC|w1||w2| ≥ δ(w2
1 + w2

2).

Therefore, still for sufficiently small ε > 0, (32) yields

z�KA(u)z ≥ δ

2(w2
1 + w2

2) = δ

2

(
U1 + ε

(u1 + ε)2 z
2
1 + U2 + ε

(u2 + ε)2 z
2
2

)
.

Since U1 > 0, U2 > 0, the conclusion follows with cKA = δmin{U1, U2}/2. �
We proceed with the proof of Theorem 2. Employing Lemma 9 and estimate (31) in the entropy inequality 

(30), it follows that

Φε(u(t)|U) + cb

t∫
0

‖u(s) − U‖L2(Ω)ds + cKA

2∑
i=1

t∫
0

∫
Ω

|∇ui|2
(ui + ε)2 dxds

≤ Φε(u0|U) + εC

2∑
i=1

t∫
0

∫
Ω

dxds

ui + ε
. (33)

We wish to pass to the limit ε → 0. First, we focus on the integral on the right-hand side of (33):

ε

2∑
i=1

t∫
0

∫
Ω

dxds

ui + ε
=

2∑
i=1

t∫
0

∫
{ui>0}

ε

ui + ε
dxds +

2∑
i=1

t∫
0

meas({x : ui(x, s) = 0})ds.

By dominated convergence, we have
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lim
ε→0

2∑
i=1

t∫
0

∫
{ui>0}

ε

ui + ε
dxds = 0.

Thus, performing the limit inferior ε → 0 in (33) and applying Fatou’s lemma, we obtain

Φ(u(t)|U) + cb

t∫
0

‖u(s) − U‖L2(Ω)ds + cKA

2∑
i=1

t∫
0

∫
Ω

|∇ui|2
u2
i

dxds

≤ Φ(u0|U) + C

2∑
i=1

t∫
0

meas({x : ui(x, s) = 0})ds, (34)

where

Φ(u|U) = lim
ε→0

Φε(u|U) =
2∑

i=1

∫
Ω

Ui

(
ui

Ui
− 1 − log ui

Ui

)
dx.

If meas({x : ui(x, t) = 0}) > 0 for some t > 0 and some i ∈ {1, 2} then Φ(u(t)|U) = +∞, which 
contradicts (34). Thus, meas({x : ui(x, t) = 0}) = 0 for all t > 0 and i = 1, 2. This means that ui(x, t) > 0
for a.e. x ∈ Ω, t > 0, which shows the first property stated in the theorem. It follows from (34) that ui−Ui, 
∇ log ui ∈ L2(0, ∞; L2(Ω)). In particular, (34) implies that

∞∫
0

‖u(s) − U‖2
L2(Ω)ds < ∞.

Hence, there exists a sequence tn → ∞ such that u(tn) → U strongly in L2(Ω) as n → ∞. In view of 
(29) and Theorem 4, the mapping t �→ H[u(t)|U ] is nonincreasing. Since h(u(tn)|U) → 0 as n → ∞, the 
dominated convergence theorem and the continuity of h in D (see (17)), we infer that H[u(tn)|U ] → 0 as 
n → ∞. Then the monotonicity of t �→ H[u(t)|U ] implies that this convergence holds for any sequence and 
H[u(t)|U ] → 0 as t → ∞. This finishes the proof of Theorem 2.

4. Proof of Theorem 3

Set ρ = u1 + u2 and σ = u1 − u2. A straightforward computation shows that, thanks to assumptions 
(7)–(8) and (16), ρ and σ solve

∂tρ = ΔF (ρ), t > 0, ∇ρ · ν = 0 on ∂Ω, ρ(0) = u0
1 + u0

2 in Ω, (35)

∂tσ = div
(
d(ρ)∇σ + σ∇V (ρ)

)
, t > 0, ∇σ · ν = 0 on ∂Ω, σ(0) = u0

1 − u0
2 in Ω, (36)

where

F (ρ) =
{

(α11 + β11ρ)2/(2β11) if β11 
= 0,
α11ρ if β11 = 0,

d(ρ) = α11 + (β11 − β12)ρ,

and V (ρ) = β12ρ. Observe that, by assumption (9), α11 + β11 − β12 > 0 and hence, together with ρ =
u1 + u2 ≤ 1, it holds that d(ρ) > 0. Clearly, the bounded weak solution u = (u1, u2) to (1)–(2) is unique if 
and only if the weak solution (ρ, σ) to (35)–(36) is unique. First, we prove that (35) possesses at most one 
weak solution. Then the uniqueness result is shown for (36).
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The function F is nondecreasing since β11 > 0. Thus, by the H−1 method, the solution to (35) is unique. 
Indeed, if ρ1, ρ2 are two weak solutions to (35), their difference satisfies

∂t(ρ1 − ρ2) = Δ(F (ρ1) − F (ρ2)) in Ω. (37)

Let w(t) be the weak solution to the dual problem

−Δw(t) = ρ1(t) − ρ2(t) in Ω, ∇w(t) · ν = 0 on ∂Ω, t > 0.

Then w ∈ L2(0, T ; H1(Ω)) and using this function as a test function in the weak formulation of (37):

0 = 〈∂t(ρ1 − ρ2), w〉 +
∫
Ω

∇(F (ρ1) − F (ρ2)) · ∇wdx

= −〈∂tΔw,w〉 −
∫
Ω

(F (ρ1) − F (ρ2))Δwdx

= 1
2
d

dt

∫
Ω

|∇w|2dx +
∫
Ω

(F (ρ1) − F (ρ2))(ρ1 − ρ2)dx.

By the monotonicity of F , the last integral is nonnegative, so 
∫
Ω |∇w(t)|2dx is nonincreasing in time. But ∫

Ω |∇w(0)|2dx = 0, and therefore w(t) = 0 which implies that ρ1(t) = ρ2(t) for t > 0.
Next, we consider (36) with ρ being a given function. Let σ1, σ2 be two weak solutions to (36). As in [7], 

we introduce the semimetric

Ξ[σ1, σ2] = S[σ1] + S[σ2] − 2S
[
σ1 + σ2

2

]
, S[σ] =

∫
Ω

σ log σdx.

Because of the strict convexity of σ �→ σ log σ, it holds that Ξ[σ1, σ2] ≥ 0 and Ξ[σ1, σ2] = 0 if and only if 
σ1 = σ2. Computing the time derivative of Ξ[σ1, σ2], we see that the drift terms cancel and we end up with

d

dt
Ξ[σ1, σ2] = −4

∫
Ω

d(ρ)
(
|∇√

σ1|2 + |∇√
σ2|2 − |∇

√
σ1 + σ2|2

)
dx.

It was shown in, for instance, [20, Lemma 10] that the integral is nonnegative (since the Fisher information ∫
Ω d(ρ)|∇√

σi|2dx is subadditive). We infer that Ξ[σ1(t), σ2(t)] ≤ Ξ[σ1(0), σ2(0)] for t > 0. As σ1 and σ2
have the same initial data, Ξ[σ1(0), σ2(0)] = 0 and consequently, Ξ[σ1(t), σ2(t)] = 0 for t > 0. Since Ξ is a 
semimetric, we infer that σ1(t) = σ2(t) for t > 0, finishing the proof.

Appendix A. Necessary conditions for positive semidefiniteness

We show that conditions (7) and a part of conditions (8) are necessary to apply the boundedness-by-
entropy method. More precisely, we prove the following result.

Lemma 10 (Necessary conditions). We define h(u) =
∑3

k=1 φk(uk), where u = (u1, u2), u3 = 1 − u1 − u2, 
and φk ∈ C2(0, 1) are convex functions satisfying lims→0+ φ′′

k(s) = ∞ for k = 1, 2, 3. Let H = h′′(u) ∈ R
2×2

be the Hessian of h(u) and let A(u) be given by (3). If HA(u) is positive semidefinite then

α12 = α21 = β21 = γ12 = 0, (38)

β12 = α11 − α22 + β11 − β22, γ21 = α22 − α11 + γ22 − γ11. (39)
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Conditions (38) correspond to (7) needed in Theorem 1. If the coefficients fulfill conditions (8) from 
Theorem 1 then also (39) holds. Functions which satisfy the assumptions stated above are φ(s) = s log s, 
φ(s) = s − log s, and φ(s) = sb with b < 2, b 
= 1.

Proof. We write A(u) =
∑3

k=1 ukA
(k), where A(k) = (a(k)

ij )i,j=1,2 are constant matrices and

a
(1)
ij = αij + βij , a

(2)
ij = αij + γij , a

(3)
ij = αij .

Furthermore, we formulate H =
∑3

k=1 φ
′′
k(uk)H(k), where

H(1) =
(

1 0
0 0

)
, H(2) =

(
0 0
0 1

)
, H(3) =

(
1 1
1 1

)
.

Then

HA(u) =
3∑

k,�=1

φ′′
k(uk)u�H

(k)A(�).

The idea is to study the behavior of HA(u) at the border of the triangle D. We take u1 = (1 − ε)s, 
u2 = (1 − ε)(1 − s), and consequently u3 = ε for some ε, s ∈ (0, 1) in

1
φ′′

3(u3)
HA(u) =

3∑
�=1

u�H
(3)A(�) + 1

φ′′
3(u3)

3∑
�=1

u�

(
φ′′

1(u1)H(1) + φ′′
2(u2)H(2))A(�)

and pass to the limit ε → 0. By assumption, the left-hand side is a positive semidefinite matrix. Moreover, 
since φ′′

3(u3) = φ′′
3(ε) → ∞ as ε → 0, the last sum on the right-hand side vanishes in the limit. We deduce 

that

lim
ε→0

3∑
�=1

u�H
(3)A(�) = H(3)(sA(1) + (1 − s)A(2))

is positive semidefinite for all s ∈ (0, 1), which implies that H(3)A(1) and H(3)A(2) are positive semidefinite. 
By exchanging the rule of u1, u2, u3, a similar argument shows that H(i)A(j) is positive semidefinite for all 
i = 1, 2, 3, j 
= i. For any matrix M = (mij)i,j=1,2, we have

H(1)M =
(
m11 m12
0 0

)
, H(2)M =

(
0 0

m21 m22

)
, H(3)M =

(
m11 + m21 m12 + m12
m11 + m21 m12 + m22

)
.

We verify that H(i)A(j) is positive semidefinite for all i = 1, 2, 3, j 
= i if and only if (38)–(39) hold. �
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