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A Unified Class of Integral Transforms Related to the
Dunkl Transform

Sami Ghazouani * El Amine Soltani fand Ahmed Fitouhi

Abstract

In the present paper, a new family of integral transforms depending on two parameters and related
to the Dunkl transform is introduced. Well-known transforms, such as the fractional Dunkl transform,
Dunkl transform, linear canonical transform, canonical Hankel transform, Fresnel transform etc, can be
seen to be special cases of this general transform. Some useful properties of the considered transform such
as Riemann-Lebesgue lemma, reversibility property, additivity property, operational formula, Plancherel
formula, Bochner type identity and master formula are derived. The intimate connection that exists between
this transformation and the quantum harmonic oscillator is developed.

Keywords: Canonical commutation relation, Dunkl transform, fractional Dunkl transform, Generalized Hermite
polynomials and functions, semigroups of operators.

1 Intorduction

Integral transforms provide effective ways to solve a variety of problems arising in pure and applied mathematics.
One example is the linear canonical transform (LCT) which represents a class of integral transforms indexed by a
matrix parameter M € SL(2,R) [4]. Many well-known transforms such as Fourier transform, fractional Fourier
transform, Weierstrass transform and Fresnel transform can be considred as special cases of this transformation
(see [4, 32, 33]). While the theory of classical Fourier transform has a long and rich history, the growin interest
in the theory of Dunkl transform, associated to a finite reflection groups and a multiplicity function k, is
comparably recent. The Dunkl transform, which is a generalization of the Fourier and Hankel transforms, was
introduced by C. F. Dunkl [9] and further studied by several authors (see [5, 9, 24]).

The primary aim of this article is to investigate a new integral transform that can unify all integral transforms
stated in the previous paragraph. It seems desirable to have a more unified approach to all these integral
transforms. According to literature M. Moshinsky and C. Quesne tackled this issue and considered that LCT
is the group of unitary integral transforms that preserves the basic Heisenberg uncertainty relation of quantum
mechanics in one or higher dimensions [22]. Furthermore, LCTs can be seen as the group of actions generated
by the Lie algebra of quadratic Hamiltonian operators [32]. We briefly survey this mathematical framework.
Let H be a Hilbert space. For a linear operator 7" on ‘H, we denote by D(T) the domain of 7. We say that a
set {Q;, P]};V:1 of self-adjoint operators on H is a representation of the canonical commutation relations (CCR)
with N degrees of freedom [13], if there exists a dense subspace D of H such that
o D C N1 [D(Q;Pi) N D(PQ;) N D(Q;Qk) N D(P;Py)]

e 0; and P; satisfy on D the CCR

[Q;,Qr] =0, [P, P]=0, [Q;,P]=0d], Jjk=1,...,N,

where 6% is the Kronecker symbol.

It is well known that a standard representation of the CCR is the Schrédinger representation {qgg,pgj }N

j=1
which is given as follows: {¢; }j.vzl is an orthonormal basis of RY with respect to the standard inner product

(), H = L*(RY dz), q¢, = (.,&) (the multiplication operator by the jth coordinate (z,&;)), pe, = %% (
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the directional derivative in the direction of ¢;), D = S(RY) ( the Schwartz space of rapidly decreasing C>°
functions on RY).

In relation to the Schrédinger representation, consider the set {(jgj,ﬁgj };VZI of self-adjoint operators on
L2(RY,dz) of the following type [32, 33]:
Q§]:dqu_bpfj7 ﬁfj:_CQ§j+apfj7 j:17"'7N7

where a,d, ¢ and d are real numbers such that ad —bc = 1. It is easy to see that the operators g¢, and pg; are
related to e, and pe; through a canonical transform as follows:

{(jgj }:Mfl[qéj]
Pg; DPe; '

where M~ is the inverse of the unimodular matrix M = [ CCL Z

the family {cj5j7]5,5j }j,\;l is a representation of the CCR unitarily equivalent to the Schrodinger representation

} . Note that since g¢; and pe; are self-adjoint,

on L?(RN,dx). More precisely, for each M € SL(2,R), the N-dimensional linear canonical transform
FM . L2RY dx) — L2(RY, dx),

which is defined by [4] :

G(d) 20 ay|2)_ i (g
W/Ne"’("‘ PHER SV fy) dy, b #£0
R

My ={ O (L)
2 a
GMT/Q f(z/a), b=0,
is a unitary operator leaving invariant the Schwartz space S(R™) and we have for j = 1,..., N the following
identities:
-1 \
Ffoge, o (FM) " = g =dgg, —bpe,
-1 9
]:Mopéjo(]:M> — pEJZ_CQEJ+ap§J-

0

We note that FM is reduced to the classical Fourier transform if M = { 1

_01 } ; to the fractional Fourier
transform F* which is defined by [21]:

(i (N/2)((a—2nm)—am/2)

S|z +yl?) cot(e) — gty (@) _
(27| sin(a)|)N/2 /]RN e? Y sine) f(y) dy7 (271 1)7T <a< (2n + 1)777

f(x)v o = 27’L7T,
f(==), a=2n+ ),

cos(a) —sin(a)

where n € Z and & = sgn(sin(a)) if M = { sin(a)  cos(a)

In this paper, we adopt the same approach described above. We consider the set {ng s Pe, }j.vzl of self-adjoint

operators on L?(RY, wy,(z)dz) where {¢; }j.vzl
product (.), wy is a family of weight functions invariant under a finite reflection group, Q¢; is the multiplication
operator by the function x ~ (x,§;) and iP;, = T¢;, j = 1,...,N, are the Dunkl operators which were
introduced by C.F. Dunkl in [7] as a differential-difference operators associated with a finite reflection group
acting on some Euclidian space and can be regarded as a generalization of the directional derivative. We obtain

the following commutation relations

is an orthonormal basis of RN with respect to the standard inner

[ijvQEk]:Ov [Pfjvpék]zov [Qﬁjvpfk]:iEij,fkv Jk=1,...,N, (1'2)

where E, ¢, is the bounded linear operator on L*(RY, wy(x)dx) defined by

E&jvfgkf(x) =<&;, &k > flz)+ Z k(n) < n,& ><n, &k > f(a,,]fﬂ).

neR*



It is important to note that the above commutation relations are:

e a realization of the Heisenberg-Weyl algebra if k£ = 0 [13],

e a realization of the deformed Heisenberg-Weyl algebra with reflection if N = 1 [25].
. . 3N

Next we consider the set {ng , ng}

of self-adjoint operators on L2(RY,wy(z)dz) defined by
j=1

ng:ngj—bpfj, Isgj:—CQEj-l—anj, j=1,...,N,

where a,b,c and d are real numbers such that ad — bc = 1. We prove that these operators satisfy the same
commutation relations as in (1.2). We introduce a new family { DM } of integral transforms depending on two
parameters; one is a matrix M € SL(2,R) and the other is a multiplicity function k£ on root system, and
preserving the commutation relations (1.2). More precisely, we prove the following identities:
M My 1 2
Dy, OQ&jO(Dk) = Q¢ =d Qg —b P,
M My 1 o
DY oPg o (Dy') " = Py =—-cQ —a P,
This new family of integral transforms is interesting for several reasons such as when considering only the
parameter k, D,JC” generalizes many operations such as canonical Hankel transform, linear canonical transform
etc. Moreover, various choices of the matrix M yield different integral transforms such as:
e The Dunkl transform which was introduced and studied by Dunkl [9]. Dunkl’s results were completed and
extended later by de Jeu [5]. The Dunkl transform which is a generalization of the classical Fourier transform
and Hankel transform, is defined, for f € LY(RY,wy(x)dz), by [9]:

Duf(w) = 5575 [ T Bl g)enta)ds

where Ej, is the Dunkl kernel (see[8, 23]) and ¢, ' = / e_‘z‘zwk(m)da:.
RN
e The fractional Dunkl transform which is defined by [14, 15]

i(y+N/2)((a—2nm)—&n/2)

. o e [ e g (i sin(a). ) f () dy. (2 - D7 <a < 20+ D,
Dif(z) = f(z), . o = 2nm, (1.3)
f(=m), o= (2n+ 1)x,

where n € Z and & = sgn(sin «).
e A Dunkl-type analogues of the classical Fresnel transform which was investigated by Roésler [29] in the study

of the semi-group (eitr’“) (A is the Dunkl Laplacian operator) as follows:
>0

(]2 2 X
S~ | s [ OB i) fn) i, >0
Also, D} provides a unified framework for studying:
e Riemann-Lebesgue lemma.

e Reversibility property.
e Additivity property: Under certain conditions imposed on the functions f, we establish the following theorem:

DYDY f = e DM,

where M; and M are an arbitrary matrix of SL(2,R) and ¢ a constant phase.
e Operational formula: we prove that DM leaves invariant the Schwartz space S(RY) and satisfies on S(RY)
the following identities:

—1 ~

Qg =d Qg —b Py,
Pe; = —c Q¢; —a Py,

DyOQfJ‘ °© (Dljcv[)
Dljcuopfjo(Dljcw)il

where j =1,...,N.
e Bochner type identity: by application of the Dunkl type Funk-Hecke formula for k-spherical harmonics which
was established by Y. Xu [34], we derive the following identity

Dy f(2) = p)Hy' e (vj2) -1 (|2, (1.4)



where f is of the form f(z) = p(z)¥(]z|) (p is a homogeneous polynomial of degree n and satisfies the Dunkl-
Laplace equation Agp(z) = 0 and v is a one-dimensional function on R, ) and where Hﬁ{r”/Jr(N/Q)*l is the
canonical Hankel transform of order n + v + (N/2) — 1.

We note that the Bochner type identity (1.4) reduces to the Bochner identity for the Dunkl transform; which
was proved by Dunkl in [9] and later in [1] using a representation theory approach, if M = { (1) _01 } .

As application we obtain the following results:

M sacttd jel? x
Dy mn () = Amnap €27 Uy | s |

where ¢, ;(x) is the generalized Laguerre functions and Ay, 5 is an appropriate constant.
e Master formula: we prove the following identity. Let P be a homogeneous polynomial of degree n. Then

M serry el x
D' fu(@) = Anap €33 In \/a?i-i-b? ;

z|?

where f, is of the form f,(z) =e™ 2 e*%p(x) and A, 4 is an appropriate constant.
e Plancherel formula: we prove that the generalized Dunkl transform D} initially defined on L*(RY,wy(z)dz)
has a unique extension to a unitary operator of L2(RY, wy,(x)dz).

e A generalized Dunkl-Schrodinger operator: we prove the following result. Let {M (1) = { ZE:; Z((:_)) } }
TER

be a one-parameter subgroup of SL(2,R). Then the family {DQ/I(T)} . is a Cp-group of unitary operators on
TE

L?(RY | w(x)dr) and we derive its generator £ which is the self-adjoint extension of
Lis@~y = —a (0)H + ¢ (0)E + b (0)F,

where

N
: 0

E=i—, F=i—, H= N/2 —

? ? ) ('Y"‘ / )+;$]8Ij7
are the sl(2) triple which was first introduced by Heckman in [18] and later in [1, 2, 3] where the authors showed
that there exists an infinitesimal representation of the Lie algebra s/(2,R) on the Schwartz space S(RY) that
can be used as a crucial (and surprising) tool to treat various problems related to the theory of Dunkl operators.
As application we solve the following generalized Dunkl-Schrédinger equation

=,

z'%u(t,x):—m'(o) (v+N/2)+;xjai u(t,$)7<c/(0) 5 b0 %) ult, z),
u(0,x) = f(z) € L*(RY, wg(z)dx).

This paper is organized as follows. Section 2 is devoted to an overview of the Dunkl theory. In section 3 we in-
troduce the generalized Dunkl transform D,JC” on RY with parameter M € SL(2,R). Riemann-Lebesgue lemma,
reversibility property, additivity property, operational formula, Bochner type identity and master formula are
derived in section 4. Section 5 and 6 are devoted to the extension of the generalized Dunkl transform D as an
isometry from L?(RY) to itself and the intimate relationship between the generalized Dunkl transform and the
quantum harmonic oscillator. In section 7 we present some interesting one-parameter subgroups of SL(2,R)
with the associated integral transform, its basic properties and the related Dunkl-Schrodinger operator and
equation.

2 Background: Dunkl theory

In this section, we recall some notations and results on Dunkl operators, Dunkl transform, and generalized
Hermite functions (see, [5, 6, 7, 8, 23, 27]).

Notation:

e We denote by Z, the set of non-negative integers. For a multi-index v = (v1,...,vy) € Z¥, we write
|v] = v1 + - 4+ vn. The C-algebra of polynomial functions on R¥ is denoted by P = C[R™]. It has a natural

grading
P == @Pn7

n>0



where P, is the subspace of homogenous polynomials of (total) degree n. S(RY) is the Schwartz space of rapidly
decreasing functions on R and Co(R™) is the space of continuous functions on RV vanishing at infinity.

o For z =z + 1y ((:c, y) € R:\{(z,0);2 < O}), we denote by 2% = e®!"(*) where
In(z) = In /22 + y2 4 2i arctan S
T+ /2?42

is the principal branch of the complex logarithmic function. Then we can write:

, N ,
(em)w_ T = i )(a=2km) Wiy 2k —1)m <a < (2k—1)m and k € Z.

2.1 Dunkl operators and Dunkl Kernel

In RN, we consider the standard inner product

N
(@, y) = wryr-
k=1

We shall use the same notation for its bilinear extension to C¥ x CV. For z € RY, denote |z| = /(z, z).
For u € RM\{0}, let o, be the reflection in the hyperplane (Ru)+ orthogonal to u

(u, z)

N
WE u, x€R". (2.1)

ou(z) =2 —2

A root system is a finite spanning set R C RY of nonzero vectors such that, for every v € R, o, preserves R.
We shall always assume that R is reduced, i.e. R NRu = $u, for all u € R. Each root system can be written
as a disjoint union R = RT U (—R7"), where RT and (—R™) are separated by a hyperplane through the origin.
The subgroup G C O(N) generated by the reflections {o,; u € R} is called the finite reflection group associated
with R. Henceforth, we shall normalize R so that (u,u) = 2 for all w € R. This simplifies formulas, without
loss of generality for our purposes. We refer to [19] for more details on the theory of root systems and reflection
groups.

A multiplicity function on R is a G-invariant function k : R — C, i.e. k(ou) = k(u), for fall w € R and o € G.
The C-vector space of multiplicity functions on R is denoted by K. The dimension of R is equal to the number
of G-orbits in R. We set &' to be the set of multiplicity functions k such that k(u) > 0 for all u € R.

For ¢ € CN and k € &, C. Dunkl [7] defined a family of first order differential-difference operators T¢(k) that
play the role of the usual partial differentiation. Dunkl’s operators are defined by

T f(x) = 0cf(@) + 3 ko) < > TE=Int) = p oy (2.2)

. A (n, =)

Here O¢ denotes the derivative in the direction of £. Thanks to the G-invariance of the function k, this definition
is independent of the choice of the positive subsystem R.. The operators T¢(k) are homogeneous of degree
(—1). Moreover, by the G-invariance of the multiplicity function k, the Dunkl operators satisfy

h OTg(k‘) ohl= Thg(k)7 vV heq,

where h.f(z) = f(h~'x). The most striking property of Dunkl operators T¢(k), which is the foundation for rich
analytic structures with them, is the following

Theorem 2.1 For fized k, T¢(k) o T, (k) = T, (k) o T¢(k), V&,ne RN,

This result was obtained in [7] by a clever direct argumentation. An alternative proof, relying on Koszul complex
ideas, is given in [10].
The Dunkl operators T¢ have the following regularity properties:

Theorem 2.2

(1) If f € C™(RN) with m > 1, then Tef € C™1(RN).

(2) T¢ leaves C°(RN) and S(RY) invariant.

(3) (Cf. [9].) Let k > 0. For every f € S(RY) and g € C}(RY),

[ Tet@a@nde == [ j@ @) (23



For k € &7, there exists a generalization of the usual exponential kernel e{+) by means of the Dunkl system of
differential equations.

Theorem 2.3 Assume that k € 8.
(i) (Cf. [8, 23].) There exists a unique holomorphic function Ej, on CN x CN characterized by

{ Te (k) Eg(z,w) = (£, w)Ex(2,w), VYV Ee€CV, (2.4)
Er(0,w) =1,
Further, the Dunkl kernel Ej is symmetric in its arguments and satisfies
Er(\z,w) = Ex(z, ), Ep(z,w) = EL(Z,W) and Ei(gz,gw) = Ex(z,w) (2.5)
for all z,w e CN, A€ C and g € G.
(ii) (Cf. [26].) For allz € RN, y € CV and all multi-indices v € ZY,
0 Bl 0)| < Jol s eelom),
In particular,
10 B ()| < |o|elolRev]] (2.6)
and for all x,y € RN :
|Ex(iz,y)| < 1. (2.7)

Remark 2.1

o When k = 0, we have Ey(z,w) = e*™) for z,w € CN.

e For complex-valued k, there is a detailed investigation of (2.4) by Opdam [23]. Theorem 2.3 (i) is a weak
version of Opdam’s result.

e M. de Jeu had already an estimate on Ej, with slightly weaker bounds in [5], differing by an additional factor

JIG.

N
The counterpart of the usual Laplacian is the Dunkl-Laplacian operator defined by Ay := ZT& (k)z, where
i=0
{&}71, is an arbitrary orthonormal basis of (RY, (.,,)). It is homogeneous of degree —2. By the normalization
(u,u) = 2, we can rewrite Ay as

f).m) _ fl@) = f(gn'r)} ’ (2.8)

(v
Auf() = Af(x) +2 " kn) - :
‘ 2 ”{ () (,)

where A and V denote the usual Laplacian and gradient operators, respectively (cf.[7]).

2.2  Dunkl transform
For fixed k € 8T, let wy, be the weight function on RY defined by

we(z) = T [n ).
nerR+
It is G-invariant and homogeneous of degree 2, with the index

y=k) =Y k).

neR+

Let dz be the Lebesgue measure corresponding to (.,.) and set L¥ (R™) the space of measurable functions on
RY such that

s = ([, @) do)” < b, if1 <0< o



Following Dunkl [9], we define the Dunkl transform on the space Li(RY) by

Duf(w) = 5575 [ T y)ent)ds

—1
where ¢, denotes the Mehta-type constant ¢, = < / eilm|2wk (:E)dac) . Many properties of the Euclidean
]RN
Fourier transform carry over to the Dunkl transform. In particular:
Theorem 2.4 (Cf. [5, 9].)
a) (Riemann-Lebesgue lemma) For all f € Li(RY), the Dunkl transform Dy f belongs to Co(RY).
b) (L'-inversion) For all f € L:(RN) with Dy f € LL(RY),
Dif = f, a.e, where f(x) = f(—z). (2.9)

¢) The Dunkl transform f — Dy f is an automorphism of S(RV).
d) For all f € S(RY), the Dunkl transform satisfies the following identitics:

DiTef(x) = i€, 2) Dif (), TeDif(x) = —iDx [(§,9)f ()] () (2.10)

e) (Plancherel Theorem)

i) If f € LLRN)YN LE(RN), then Dy f € L3(RY) and || Difllk.2 = || fllk,2-

1) The Dunkl transform has a unique extension to an isometric isomorphism of Li (RN). The extension is also
denoted by f — Dy f.

We conclude this subsection with two important reproducing properties for the Dunkl kernel due to [9].

Theorem 2.5 (Cf. [9].) For allp € P andy,z € CN,
1) 57 / e 8 2p(x) Bi(x,y) wi(x) e e = L O2p(y).
RN

@) i [ | Bulo)Bu(o,2) wn(o) e 2dn = OORUDI2E ),
R

2.3 Generalized Hermite functions

For an arbitrary finite reflection group G and for any non-negative multiplicity function k, Rosler [24] intro-
duced a complete systems of orthogonal polynomials with respect to the weight function wg(x) e*|””|2d:c, called
generalised Hermite polynomials. The key to their definition is the following bilinear form on P, which was
introduced in [8]:

[P, alx := (p(T)q)(0) for p,q € P.

The homogeneity of the Dunkl operators implies that P,, L P,, for n # m. Moreover, if p,q € P,,, then

e =2 [ e (o) e () wnla) ¢ da,
]RN

This is obtained from Theorem 3.10 of [8] by rescaling, see lemma (2.1) in [24]. So in particular, [.,.]; is a scalar
product on the vector space Pr = R[z1,...,2n].

Now let {¢,, v € Z} be an (arbitrary) orthonormal basis of Pr with respect to [, .]; such that ¢, € P, (For
details concerning the construction and canonical choices of such a basis, we refer to [24]). Then the generalised
Hermite polynomials {H,,v € ZY'} and the (normalised) generalised Hermite functions {h,,v € Z}} associated
with G, k and {¢,} are defined by

H,(z) :=2WMe=2%/4p (2) and h,(z) := 2\5’; e P2 (2)  (x € RN). (2.11)

We list some standard properties of generalised Hermite functions that we shall use in this article.

Theorem 2.6 (Cf. [2/].) Let {H,} and {h,} be the Hermite polynomials and Hermite functions associated
with the basis {p,} on RN and let z,y € RN. Then

(1) The hy, satisfy h,(—z) = (=1)¥Ih, (z).

(2) {hy,v € Z¥} is an orthonormal basis of L3 (RY).



(3) The h, are eigenfunctions of the Dunkl transform on L3 (RN), with Dyh,, = (—i)"Ih,,.
(4) (Mehler formula) For r € C with |r| < 1,

_ 2?41yl
1 'ri

Hy(2)Hy(y) 1, _ € - 2zx
D S oo P\ 1Y)

N
VELY

Throughout this paper, R denotes a root system in RY, R* a fixed positive subsystem of R and k a nonnegative
multiplicity function defined on R.

3 A generalized Dunkl transform.

3.1 Some remarks on Dunkl operators

Consider the Hilbert space LZ(RY) equipped with the inner product (.,.); given by
(o = [ | s
R

For each ¢ € RV, we denote by Q¢ the multiplication operator

Qef(x) = (& ) f(x)

acting in L3 (RY) with domain D(Q¢) = {f € LZ(RY); Q¢f € L(RY)} and P the operator defined on S(R™)
by

ng(x) = 7’L'T5f(1').

3.1.1 Commutation relations for the Dunkl and multiplication operators

Let € and ¢ € RY. We denote by E ¢ the bounded linear operator on LZ(RY) defined by

Beo f(2) =< &€ > fx)+ Y k(n) <n,&><n€ > f(ogz).

neR+

Remark 3.1
(1) The operator Eg_f/ is symmetric with respect to & and € . In other words, for all € and & € RV, ce = Es’,s'

(i4) When the multiplicity function k = 0, the operator E; o+ reduces to <&, £€>1 (1 is the identity operator).

The following lemma will be useful to our study of the commutator relations between the Dunkl and multipli-
cation operators.

Lemma 3.1 Let & and & € RY. The following equality hold in S(RN) :
[Te, Qe] = Ee 1 (3.1)
Proof. Let &, ¢ € RY. Since S(RY) is an invariant subspace for T and for Q¢ (see [5]), then
S(RY) € D(TeQ¢) N D(Qer Te).
Let f € S(RY). Obviously,
PeQg f(z) = ~iTe((€,2)f ().
Applying the Dunkl operator T¢ to (€',.)f, we obtain

Te((€,2)f(x) = 0:((€ . 2)f(x))

5 kot & 0on(On2) (32)

_|_
neRry



The product rule for the directional derivative of ({l, ) f, gives

(€, )1) = (€. )F + ()0 T (33)
Now substituting (3.3) into (3.2) and replacing o, on the left-hand side (3.2) by their expression giving in (2.1),
we find that

<§/a§>f($) + (§I,I> e f(x) + Z k(n)(n, £>L

neRry

Te((€ ) f(x))

+ S k)& (. ) floya),

neRy

= (£.0f@) +EDTef(@) + D k)0 )€ ) flogz).

neRy
Hence,
[Te, Q] = Ep ¢
To each orthonormal basis {¢; }j.\;l from R we associate the following family {ng ) P, };Vzl of operators. Then

Corollary 3.1 The operators Q¢, and Pe,, j =1,..., N satisfy on S(RY) the commutation relations:
[Qfngfk]:Ov [P£J7P§k]:07 [QEJ’P&C] :Z.Efjwfk7 Jyk=1,...,N. (3'4)

Proof. The first equality is clear, the second by Theorem 2.1, the third by (3.1).

Let M = { Z b } be any reel unimodular matrix. Let Q; and Pé be the two operators defined on S(RY) by

d
Qe=dQe¢—bP, P. = —cQ¢+alPe. (3.5)

It is easily to see that these two operators can be written in matrix form as follows:

(7)) (%)

By means of direct calculation one can verify that these operators satisfy the following commutation relations.

Proposition 3.1 Let {fj};v:l be any orthonormal basis of RN . The operators Qéj and P/j7 j=1,...,N satisfy
on S(RN) the commutation relations:

[Q§]7Q§k]207 [P{j7P§k]:O7 [QQ?P{J:Z’EQ,@M Jak:177N
Proof. Let & and ¢ € RY. The commutator of Q'5 and QI&, is
Qe Q] = [dQe — bP,dQ, — bPy]
&*[Q¢, Q'] + b [Pe, Per] + bd[Pyr, Q¢] — bd[Pe, Q).
Since [Q¢, ng] =0= [P&Pgr] and [Péz,Qg] =FE o = [Pgan’]v we conclude
[Qg, Qf/] = O.

In a similar way, the commutator of Pfl and Pgl, is

Il

[P;, P;,] = [~cQ¢ +aPe, Qg + aPy]
= CQ[Q& Qg'] + az[P£’ Pg’] + aC[Pg’ ) Qd - aC[va Qg’]
= 0.

Proceeding as before, the commutator of Qé and PE/’ is

Qe PE’,} = [dQ¢ — bPe, —cQy + aPy]

= —dc[Qg, Qg’] — ab[ P, Pg’] - ad[Pg’ , Qe + be[ P, Qg'}
i(ad — be)Eg o
= B,



3.2 The generalized Dunkl kernel

In this subsection, we construct a family of a unitary operator J : L2(RY) — LZ(RY) which preserves the
commutation relations (3.4). More precisely, we look for a unitary operator J from LZ(RY) onto L% (RY) such
that:

ToQeoJ ™' = Qe=dQ¢—b P, (3.6)
jonoj_l = Pé:—CQg-i-aPE. (37)

We shall denote the transform operator as Jjs by the unimodular matrix M = { Z Z

proceed as in the proof of Theorem 5.7 in [3]. By the Schwartz kernel theorem, the operator Jas can be expressed
by means of a distribution kernel K, (z,y). If we adopt Gelfand’s notation on a generalized functions, we may
write the operator Jys on L7 (RY) as an ’integral transform’ against the measure wy(y)dy :

], det M = 1. We

JulH@) = [ Fu) K@, yory)dy. (3.8)
According to (3.6) and (3.7), the J transform of (Q¢f)(y) will be

Iu(Qef)(x) = (TnQeTar )(ITm(£)) (@) = (d Qe — b Pe)In(f) ()
d Qe(Im(f))(x) = b Pe(Tm (f))(). (3.9)

Similarly, the Jas transform of (P f)(y) is

I (Pef)(x) = (TnuPeTy ) (Tu(h)) (@) = (= Qe + a Pe)(Tm(f))(x)
= —cQe(Im(f))(@) +a Pe(Tm(f))(@). (3.10)

Rewriting the conditions (3.9) and (3.10) by means of the ’integral transform’ (3.8):

/ (QeNW)Kn(z.y)or()dy = / F@)QLE v (2, y)n(v)dy
RN RN

= @QE=b P [ 1) Ku(e o)y,

- f(y)(d Qf — b PE)Kn(w,y)wk(y)dy (3.11)
and

| PGt = = [ 0P K)oy

= (e QEaP) [ f0) Koy

. F@)(—c Q¢ +a PS)Kn(w,y)wi(y)dy, (3.12)
R

where f is any test function (i.e. f(z)w(z)? € S(R™)).

A sufficient condition for (3.11) and (3.12) to hold is that Ky (z,y) satisfy the following differential-difference
equations:

where Qg and P¢ act in the x variable.
Remark 3.2
e In the case M = { (1) 701 } the system (3.13) reduces to
P{Km(z,y) = QfKum(z,y). '
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The Dunkl kernel Ey(ix,y) is a solution of (8.14).
e In the case b= 0, Ky (x,y) is a distribution kernel satisfies the differential equations

{ Q:gKJ\/I(may) = % QgKM(ZL'/I/),
In this case we prove that the operator Jy : Li(RYN) — L2(RYN) defined by
‘2

Jif(@) = [+ v72) flz/a)
is unitary and we have on S(RN) the following identities:

1
JioQeoJy ' = 2 Qe
leP§OJ1_1 = *CQ&‘FGP&

Throughout this paper, we denote by M = { Z Z ] an arbitrary matrix in SL(2,R).

Theorem 3.1 Let M € SL(2,R) such that b # 0. Then the function
B! (wy) = 21T VO By (i /b, y)
is a solution of

{ QUEM(x.y) = (d Q¢ —b PHE (x.).
~PYEY(r,y) = (~¢ Q¢ +a PEEY (r.y).

Proof. Clearly,

2l
b

PgE,JCM(:L‘,y) = 7ie%%|y\2T§(e% mPEk(*m/l% y))-

The product rule of the Dunkl operators T¢ gives

Te(e 8177 By (—ix/b,y)) = Te(e? 211" By (~iax/b,y) + Te(Ey(—iz/b,y))es b1

i 2 . 1 id|gp2 .
= z(m, >€§%\Z\ E(—ix/b,y) — E(y,é)eﬁzl | Ex(—ix/b,y).

Hence by (3.17) and (3.18), we deduce
QLEY (z,y) = (d QF — b P)EY (z,y).
Similarly, we can show that
—PLEY (2,y) = (—c Qf +a PE)EY (2,y).
We list some important properties of the kernel E,ﬁ”(w, y) in the following proposition.

Proposition 3.2 Let M € SL(2,R) such that b# 0, g € G and z, y € RN. Then
—F —1

1) Eff(z,y) = BY (y,),

2) B (g7, 9y) = EYf (2,y),

3) [EY (z,y)] < L.

Proof. These statements are a direct consequence of Theorem 2.3.

3.3 The generalized Dunkl transfrom

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

Definition 3.1 Let M € SL(2,R) such that b # 0. We define the generalized Dunkl transform Dﬁ/l for f €

Li(RY) by

DY 1(0) = greas [, TOVEY )y

11

(3.20)



3.3.1 Caseb=0

In order to extend the Definition 3.1 for b = 0, we need another integral representation for D} . We begin by
the following lemma.

Lemma 3.2 For z € CN | let I(z) = sz Then for all z,w € CN,

i=1

U(2)+i(w)
—Alz|? _ A
c [ Er(2z,2)Ep (2w, z)e A wy () da = —pinyz Be(22/A,w), (3.21)
where A is a complex number such that R(A) > 0.
Proof. First compute this integral when A > 0.
/ Ek(2z,r)Ek(2w,x)efA|x|2wk(m) dx = Ek(ZZ,m)Ek(2w,w)eflﬁx|2wk(a§) dz.
RN RN

By the change of variables u = v/ Az and the homogeneity of wy, it follows that

1

RN

/]RN Er(22/VA, x)Ek(2w/\/Z,x)e_‘x‘2wk(x) dz.

Using Theorem 2.5 2), we find the equality (3.21) for A > 0. By analytic continuation, this holds for {A € C:
R(A) > 0}.

Theorem 3.2 Let M € SL(2,R) such that a # 0 and b # 0. Let f € L}L.(RY) N L2(RY) such that Dyf €
Li(RN). Then
1)

cp €% i |p2 b2 .
Dil@) = ey / | G By(in/a,y) Dif (y)wr(y) dy, (3.22)

where o = 5 (v + &) (sgn(%) — sgn(b)).
2) If a > 0, then
ezﬁ‘z‘z

. M Y M _
b1—1>I(I)1+ Dk f(i) y 4 bl_l)I(l;l_ Dk f(x) - a”Y+(N/2) f(l'/(l)7 a.e.

3) If a <0, then

; M _ mimlyk(N/2) €%
Jim Dg(0) = e e Jela, e
lim DM in(re vy €3
i Dy f(z) = e aprarm {0, ae

Definition 3.2 We define the generalized Dunkl transform D,]C”f forb =10 by

cigslal?

DY f(z) = TRaE) f(z/a). (3.23)

Proof of Theorem 3.2:
1) For any € > 0, define

Fe(z) = | f(y)ge(y)wr(y) dy,
RN
where g.(y) = e (=20 By (—iz/b,y).
From (2.7), we deduce that |g.(y)| < 1. Then |f(y)ge(y)| < |f(y)|, so we can apply the dominated convergence
theorem to get
lim F.(z) = ;' e~ 5817 DM f (). (3.24)

e—0
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Using Lemma 3.2, we can show

=2 1£12

(26 —i(a/b))"TN/2 Dyge (&) = e Tt -zave 2T ) (—x/(2eb — ia), £). (3.25)
Now applying the Parseval formula for the Dunkl transform (see Theorem 2.4, e)) and using (3.25), we obtain
w2 __le? _
(2¢ —i(a/b))" TN Fi(2) = ¢ T -ian / e " Ep(—x/(2eb —ia), ) Dy f(=Ewr(§) d¢.
RN
(2.6) gives the following majorization:

2b|e|]|¢]

|Ex(—x/(2€b — ia), §)| < ea®isa?,

Hence,
T By )(26b — ia).6)| < e-mOlErs@ie (3.26)
where
r1(e€) 462;21)1 5 and 7€) = %.
As r1(€) > 0, we deduce that
2
sup (11 ()5 + 1a(e)s) = A (3.27)

Applying (3.26) and (3.27), we obtain

1£12

¢ T By (—a/(26b — ia), £>Dkf(—§>] < BuDuf(-9))

< lz|?
where B, = sup e4®?+e% . The function & — Dy, f(—¢€) is in L}(RY), then the dominated convergence theorem
€€]0,1]
implies
y+N/2 o a —ilz|? i
g e RS g ) = [ I By(infa, O D (~€un(€) de.(3:25)
E— RN

Hence, (3.24) and (3.28) gives after simplification

Ck eitp ic|gl2—byl? .
DY) = poSs [ BETE By (cinfa) Dy () (s) dy (329)

Finally, if we make the change of variables v = —y in (3.29), then we find (3.22).
2) and 3) follow from (3.22) together with the dominated convergence theorem and Theorem 2.4, b).

3.3.2 The generalized Dunkl transform in the rank-one case.

a b
Let M = { ¢ d
Dunkl transform D,]y coincides with the N-dimensional linear canonical transform FM which is defined by
(1.1). In the one-dimensional case (N = 1), the corresponding reflection group W is Zs and the multiplicity
function k is equal to yu + 1/2 > 0. The kernel EM (z,y) defined by (3.15) becomes

} € SL(2,R). We first observe that when the multiplicity function k& = 0, the generalized

EM(z,y) = e2GTH8OE, (—iz/by), (3.30)

where E,(z,y) is the Dunkl kernel of type A, given by (see [27])

T .
s (zy),

Eu(iz,y) = ju(ry) + m
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and j, denotes the normalized spherical Bessel function

o Julw) = (D) (/2)*
Ju(w) = 2T (u+ 1) _F(““);nzrmwﬂ)'

Here J,, is the classical Bessel function (see, Watson [30]). The related generalized Dunkl transform D) in
rank-one case takes the form

1 +o0 M 201
Dt = | T | B o (3.31)
B o) b0

Remark 3.3
e The even part of the one-dimensional generalized Dunkl transform (3.31) coincides with the canonical Hankel
transform which is defined by [32]:

2 Foo i(d 2, a,2 ij
- s(ga’+¢y%) 5 2l g
HM f(z) = { T(u+1)(2ib)r+ /0 1 ( b ) fwy y, b#0,

i

Taﬁ;%f(‘r/a)v b=0.

cos(a) —sin(a)

e In the case where M = .
sin(a)  cos(a)

} ,a € R, the one-dimensional generalized Dunkl transform (3.31)

becomes the fractional Hankel transform multiplied by the constant phase (eia)u+1 [20]

2¢et(nt1) ((a—2nm)—am/2) 400 i ot . zy
—3 cot()(@+y7) 4 W+l gy 2n—1Dr<a< (2n+1
2 () — | TOF D)o o in (e F0 " .= m <<
# x), a = 2nm,
f(—=), a=(2n+1)r.

4 Properties of generalized Dunkl transform.

In this section, we discuss basic properties of D,]c\/l for general M and k.

4.1 The reversibility property.

Theorem 4.1 Let M € SL(2,R).
1) Suppose that b 0. Then for all f € LL(RY), DM f belongs to Co(RY) and verifies
c

k
1D flloo < W I £1lk1-

2) For all f € LE(RYN) with DM f € Li(RY),
(Dﬁ/r1 oDMYf =Ff, ae, and (DM OD,]CWfl)f =f, ae
2) The generalized Dunkl transform DM is a one-to-one and onto mapping from S(RY) into S(RY). Moreover,

(DM f =DM 'f, feSERY). (4.2)

Proof.
1) The first statement follows immediately from (3.15) and Riemann-Lebesgue lemma for the Dunkl transform
(see Theorem 2.4, a)).

a b

2) It is clear when M = } € SL(2,R) then M~! = [ d —b ] ’

d —c a
Assume b = 0. In view of (3.23) and ad = 1, a simple computation shows
M Mt eisalel” M1
Dif oDy f(x) = WDk f(z/a)

. - 2
ezi\wﬁe—lﬁkd

= Wf(m/(ad))
f(z).
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When b # 0, we have
i

(2ib)7 2 (—2ib

x ( [, e rB b)) dz) wr(y) dy.

DY o DY f(x) e [ B(inpy)
)FY 2 RN

By the change of variables u = y/b and the homogeneity of wy, we obtain

2
M Mt _ id|z|? ‘K .
Dy oDy f(x) = €'z N2 /RN Ey(—ix,u)

X

(/ e_i%‘z‘zf(z)Ek (tu, 2)wk(2) dz> wi(uw)du
RN

e's5lel" py, (Dk [ 67%&‘2]‘1(—2)}) (),

= f(z), ae.

3) That DM : S(RY) — S(RY) is an homeomorphism follows from Theorem 2.4 and the fact that the mapping
M, defined by

(Myf)(z) = e2° | f e SRY)

is an automorphism on S(RY) for each A € R. The statement (DM)~! = DM " follows from part 2).

4.2 An additivity property.

Throughout this subsection, we denote by M; = [ ZZ Zﬁ } (¢ = 1,2) an arbitrary matrix in SL(2,R). We begin
(] (]

by following lemmas

Lemma 4.1 Let e >0, b; #0 (i = 1,2) and (v,2) € RY x RN. Then

—ely|? M Mo 1 7 d1 as
Ck /RN e Wl E (‘r:y)Ek (y, 2)wr(y) dy = @CXP 3 E|$|2+ EMQ
X exp (—(r1(6)|x|2 + rg(e)\z|2)) E,(—r3(e)z, z),
where
" (©) 2 ra(e) n
€) = €) =
! 4€b2b% — 2iby (albg + bldg) ’ 2 4€b1b% — Qibg((llbg + bldg) ’
1 i(albg + bldg) THN/2)
= d c = - =7 .
"3(€) = by Sttty T hidy) "4 ) <6 2b1bs

Proof. Replacing El]yl (z,y) and E,ivj? (y, z) by their definitions, we get
—elyl” pM EM: duy — ifdiy o G2 0
e k(2 y) B (y, 2)wr(y) dy = exp |z + —=12|
RN 2\ by ba

_(671(a1b2+b1d2))|y|2 ) .
X / e itz Ey(—iz /b1, y) By (—iy/bz, z)wi(y) dy.
RN

The desired result follows from Lemma 3.2
Lemma 4.2 Suppose that b; # 0 (i = 1,2) and aiby + byds # 0. Let f in LL(RN) with D} f € L}(RN). Then

2b1b2 Y+(N/2)

o [ B o) ([ SOB opmno)ts ) sty = et |20

X (2) E,iVIle (z, 2)wi(z) dz,
IRN

where

o= 50 (/2) sgn (222,

b1by
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Proof. For any positive number €, we define the function I, on R by
i) = o[ BN e ([ OB )
RN RN
Since D,jcw2 f € Li(RY), it follows from the dominated convergence theorem that

i 1) = [ B ) ([ TGE b ) (i

e—0

Using Fubini’s Theorem and Lemma 4.1, we obtain

id
L(EE—1(9) 2l

192 _po(e))|z]?
I(z) = —/ 6(5 2 =ra(e)) 4 F(2)Er (—r3(e)z, z) wg(2)dz.
C(E) RN
Using the fact that a;dy — bic; = 1 and asds — baco = 1, we can show
Y+(N/2)
. _—ipy ai1by + bidsy
fyele) = ¢ 2b1by ’
lim e(%%iﬁ(s))mz - e% Zi};iﬁigi ||
e—0
ia2 € 2 i ajag+tbye . )
lim 3(2 brj ra2( ))\Z| f(z)Ek (77“3(6)&872) = 62_uib_22+—b11d§| ‘Qf(Z)Ek(*Zw/(ale+b1d2),z).

e—0
From (2.6), the following majorization holds:
‘6(;%77'2(5))|z|2Ek(_,r,B(E)z,7 Z)‘ _ |6—r2(e))|z\2Ek(_,’,3(6)$’ Z)‘ < e—?R('rz(e))\z|2+|§R(T3(5))||I|‘Z‘7 (43)
where

26b1b2
(26b1b2)2 + (a1b2 -+ b1d2)2 ’

eb?
§R(T2(6)) B (2€b1b2)2 + (albz + bldg)Q’

As R(ra(e)) > 0, we obtain

R(rs(€)) =

—R(ra ()2 +HR(rs () lell=] - Bzl
e 2 3 < e T ER(ra(e)

e jaf?
= e @eb1ba)2+(arbotbrdn)? . (4.4)

By means of (4.3) and (4.4), we can write

| O B (—ry(a, )1 (2)] < S,

2
b3

2
where r, = sup e @e1b2)?+(arba+brda)? =] . Thus, the dominated convergence theorem leads to
€€]0,1]
. 2b1b2 ’Y+(N/2) M M
lim I (z) = ¥ | —————— z) BV () 2)wi(2) dz.
lim 1, () [ ) B ()

This completes the proof.
Theorem 4.2 Let f € LL(RY) with D) f € LL(RN). Then

DYDY f = e DM,

where the constant phase v is given by

0, b1 =0, by=0,
5 (v + (N/2))(sgn(arbz) — sgn(bs)), b1 =0, by #0,
=14 5+ (N/2))(sgn(azby) — sgn(b1)), by £0, by=0,
=5 (v + (N/2)) (sgn(b1) + sgn(b2)), b1 #0, by #0, aiby+bidz =0,
5+ (N/2)) (sgn(a1b2 + b1da) + sgn (%) — sgn(b1) — 59”(52)) s b1 #0, by #0, aiby + bidy # 0,

with equality a. e when by # 0, ba # 0 and a1by + bydy = 0.
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Proof. We shall divide the proof into five steps.
Step I. Suppose that by = 0 and by = 0. By virtue of (3.23), we have

DYDY f(z) =

a7

. 2
ik lal

Dy f(x/ax)

X . co 2
e 2@1‘ I e'2az arl

62

P gy (¢ (@a2))
iclepteady o

laag |7 +(N/2) f(z/(a1a2))

D,QWIMQf(x).

Step II. Suppose that by = 0 and by # 0. It is clear that

Ck

ckew2

a1 PN (20, )+ ND ~ (2ia1by) 1+ /2D

where ¥y = Z(v + (IN/2))(sgn(aibz) — sgn(bz)). By virtue of (3.23) and (3.20), we have

ik lel?

Dy"Di"f(e) = D (/)

a1 P+ 72)

Cke’iwz

.oy
— e'2a1

(2iay by )7+ (N/2)
= e DM M f(g).

da

ol [ ply)er B ISR B iz (a1ba), y)wi(y) dy

RN

Step III. Suppose that by # 0 and by = 0. By (4.2) and step II,

My

p" pit

The desired result follows upon taking inverses.

,DlC

MytM D](CMIMQ)*l

Step IV. Suppose by # 0, by # 0 and a1bs + byds = 0. We have

Ck

Ck c%e“p“

(2iby )7+ (N72) (2ibp) 1+ V72 ~ 227N ([byby|)7 TN/

where 94 = =5 (v 4 (IN/2))(sgn(b1) + sgn(b2)). By (3.20), we have

2 ita
cke

M M.
2’Y+(N/2)Dk le Qf(l-) — W

dy

S [ D () B B i o, )enty) dy
R

i ajbytbydy

= —cke“/“ 6.2’1‘ al’ o2 g Il f(z)e%%MQE (—iy/ba, 2)wi(2) dz
(2[b1by [+ (N/2) RN RN ’ B

X

ckeiw4
(2]b1b2]) 7+(N/2)

i

By using the change of variables u = %, v =

Ej(=ix /b1, y)wr(y) dy

l
b1

La|? /}RN ( . F(2)e? 5 20 By (—iy by, 2)un(2) dz> By (—iz/by, y)wr(y) dy.

2—;2' together with homogeneity of wy, one gets

My M _ ‘2b2|2’y+N Ck ie'vt 1—1\1\2 2 a22bb22| I
DD = =g g Dk [ f(Ga/b))e (@)
e’ S al?
W f((*bg/bl)l’), a. €.
Since ai1bs 4+ bids = 0 and asds — baco = 1, it follows that fb—l = ajas + bycy and using aid; — bicy = 1, we

obtain

bidy + a2bs ascy + dico

b

ajaz + bica
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Hence
DY DM f(z) = aDMM2f(3) e

Step V. Suppose by # 0, bs # 0 and a1by + bidy # 0. By lemma 4.2, we have

) ) i, 2 pitha
DYDY f(x) = 229N ([by by 7+(N/2)/ By (a,y) </ FREY (y, 2)wi (2 )dz> wi(y)dy
i(Yatep1) 2b.b Y+(N/2) .
Ccre 102 My M-
— E 1 2 . d
2N (oo T | arbs + bida /RN J(=) B2 @, 2)nl2) d=
_ e ()

where s = (7 + (N/2)) (sgn(aaby + budz) + sgn (225142 ) — sgn(br) — sgn(ba) ) -

4.3 Operational Formula.

Proposition 4.1 Let M € SL(2,R). Then the following properties hold on S(RN) .
(1) Dpf o Qe = [d Q¢ — b Pe] o Dy,

(2) DIICVI o Pg = [—C Q5 +a pg] o D]]Cu,

(3) DM 0 E; o+ = E ¢ 0 D'

Proof.
Case b = 0. From (3.23), we have

e 2;‘1‘

oo Mef(@/a)

= e oD ()
= d(MDY f) ().

(DR Mef) ()

To prove (2), using the product rule of the Dunkl operators T to get

Pe(Dy f)(z) = |a\“/+N Te(e %17 f(2/a))
jeisalel®
= (90 DY f(z) — WTAIH f(z/a)).

In view of (2.2), a simple computation schows
1
Te(z — f(z/a)) = —(Tef)(x/a).
Then
aPe(Dy! f)(z) = cMe(Dy! f)(@) + Dy (Pef) ().

Case b # 0. Let f € S(RY). Using the anti-symmetry of the Dunkl operators T, we obtain

Ck

DY [Pef(y)] () = W/Rl" Ep! (2, y)Pef (y)wr (y)dy
Ck p M
2iby D /RN —P{E (2, y) Pe f (y)wr (y)dy. (4.5)

Substituting (3.19) in (4.5), we get

DY P (@) = ~ 5D [y, & f )] (1) + (. DY f(x). (46)

2

To compute Pg(DM f), write DM f = fi f2, where fi(z) = e ilel
The product rule of the Dunkl operators T shows that

Pe(DY f) = Pe(fi) f1 + f1Pe(fo).

and fo(z) =

Dy [e581 1) (3).

(ib)+ %
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By (2.10), it follows that

L 1p [esshl® z
Pelfa)(@) =~ o g D [ 01 W) (5)
Hence,
PDY F)(r) = . DY () — £ DM (13, €) 7 ) ). (@)

Finally, (4.6) and (4.7) together with the relation ad — be = 1, gives (1) and (2).
(3) Let f € S(RY) and n € Ry. We denote by S, the N-dimensional symmetry operator defined by

Syf(y) := floyy).

By the change of variables u = o,y, the G-invariance of wj, and according to (2.5), we obtain

y Ck i(d|p2paly|? .
DY (Syf)(x) = W/RNW(”‘ WO E, (—iz/b,y) f(ogy)wi(y)dy

Ck i(d) 24 aly)2 .
INCTARRYE /]RN 2GRN B, (—ioya/b,y) f(y)wr(y)dy,
= S,(Dy"f)(@).

Hence DMS, = DMS,,. As By ¢ is a finite linear combination of S, (n € R4), we deduce the desired result.

Remark 4.1
e The two properties (1) and (2) can be written as
. , . d -b]1[Q
DM{Qg]: Q§ DM where Q§ :[ ]{ 5}.
kol P Pe k B - a Py
e One can give an alternative proof of (3):
) —1 . , -1
DY'E; o DY = iDYM [P, QoD
= i(~i)Be ¢
= Ege

4.4 Bochner type identity for the generalized Dunkl transform.

In this section, we begin with a brief summary on the theory of k-spherical harmonics. A introduction to this
subject can be found in the monograph [11]. The space of k-spherical harmonics of degree n > 0 is defined by

H’,fb = KerAp NP,.

Let SV-! = {z eERY; |z| = 1} be the unit sphere in RY with normalized Lebesgue surface mesure do and
L2(SN=1 wi(z) do(z)) be the Hilbert space with the following inner product given by

(o= [ o) dow)

As in the theory of ordinary spherical harmonics, the space L2(SN~1, wy,(2) do(z)) decomposes as an orthogonal
Hilbert space sum

LA(SN7Y wi(x) do(z)) = éHﬁ
n=0

In [34], Y. Xu gives an analogue of the Funk-Hecke formula for k-spherical harmonics. The well-known special
case of the Dunkl-type Funk-Hecke formula is the following (see [26]):
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Proposition 4.2 Let N > 2 and put A =~ + (N/2) — 1. Then for all Y € H* and x € RY,

1 '(A+1)

Ey(iz,y)Y (y)wi(y) do(y) = mﬁwxﬂﬂ)y(m)a

dk SN-1

where

d, = /SN_lwk(z/) do(y).

In particular

1

o Ey(iz, y)wi(y) do(y) = jr(|z|).
kJgN-1

An application of the Dunkl-type Funk-Hecke formula is the following:

(4.9)

Theorem 4.3 (Bochner type identity) Let M € SL(2,R) such that b # 0. If f € L}.(RY) N LE(RY) is of the

form f(z) = p(x)y(|z]) for some p € HF and a one-variable » on R, then

Dljcwf(x) = p(x)H%-~/+(N/2)—1¢(|$D-

In particular, if f is radial, then
DY f(x) = HI (v j2)— 19 (I])-

Proof. By spherical polar coordinates, we have

DYfw) = Gty L T E

Ck N
= —N/ rNTYE (e, ) dr,
(2ib)"*t2 Jo

where
27TN/2 M
Fia) = fo [ B @ridp)otrlubintry) doty)
From (3.15) and the homogeneity of wy and p, we obtain
27TN/2
['(N/2)

F(r,x)
SN—l

Using (4.8), we get

2eN2d,  T(A+1)
I[(N/2) 2°T(A+n+ 1)

i(d g2 a2 " T\ | rir
s () ()

where
A=v+(N/2) -1

Using again the homogeneity of p, we get

Flra) — 2eN2d,  T(A+1) A
’  T(N/2) 2'T(A+n+1) \ b
x eIy ()22 p () (%) '

20
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Now we can express a relationship between dj, and c. In fact

el = / e*\y\ka(y) dy

RN
271_N/2 /+OO N1 )2/

= — rY e wi(ry) do(y) dr
TN2) o - k(ry) do(y)
27'I'N/2 +o0 ) 5

_ ~Y+N—-1_—r
7I‘(N/2) /0 r e /A;Nil wi(y) do(y) dr

WN/QF()\ + l)dk

TIN/2) (4.12)
By the use of (4.12), we obtain
e 27N2d, T(A+1) (_1)” - 2
(2ib)7+% T(N/2) 2"T(A+n+1) \ b DA+ n+1)(2ip) Mttt
Hence
(g2 a2 n
Flra) = (i (1) (@13)

Substituting (4.13) in (4.11) to get

2
IO+ D@

+oo |
< é@”*ﬂwmmﬂmhmcm>”
0

p(a)H ()
= P(x)H%»yHN/z)fﬂ/)”ﬂ)

DY fa) =

Now, we give the material needed for an application of Bochner type identity. Let {py ;}1<;j<.x be an orthonor-

mal basis of HF (a® = dim(HY)). Let m, n be non-negative integers and 1 < j < a®. Define

m! T(N/2) 12
Cmn =
"= [Ty + n+m+ (N/2))
and
G (2) = Conm P g () LEHVEN2D ((12) o=1a*/2, (4.14)

where ng) denote the Laguerre polynomial in the standard notation. It follows from Proposition 2.4 and
Theorem 2.5 of Dunkl [9] that

Vmmi:m, n=0,1 2 ..., j= 1,...,a"
ELEV) n
forms an orthonormal basis of L3 (R™Y).

Theorem 4.4 Let M € SL(2,R) such that b # 0. The generalized Dunkl transform of the generalized Laguerre
functions are

D@ = s S g ()
" - w\Vare)
where
) - (a—z’b)m (@ —ib)* e'?
ot a+ib) (a+ib)7 (a+ib)r+N/2)
and

0 =2+ (N/2)+n—1) {sgn(b) arctan (W‘im) — Tsgn(b) + arctan <W%W) } (4.15)
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Proof. Applying Theorem 4.3 with p replaced by p,, ; and with ¢(r) = L%L+7+N/271>(r2) e~*/2, we obtain
D i, () = emnpn, () H Y (|]),

where

v=n+~vy+(N/2)-1,

and

My w(al) =

Observe that

2 +oo id)g2 a2y . ’f‘|.17| _r2
W/O 62(b‘x| +5T )JD ( L%)(T’Q)e 2 7’2V+1 d?”.

HMY(|z) = et BT (),

+o0 )
/ LY (r%)em (TR, (%) o
0
b Y +ee ia
0

||

where

&
s
8
&
Il

To compute I,,(x), we need the following formulas (see 7.4.21 (4) in [17])
+00 2
v+l _—By’ v 2 _ v 722/(4[3) v az
y' e Ly (ay”)Ju(zy) dy = dp2"e Ly, {7
/0 (9"} (2y) 4p(a = p)
where d,, = ((8 —a)™/(2V 187 +m+)) a, RB >0, Rv > —1.
a
b

Let us takeﬁz%— :bgga, azlandz:%,then

4 (iatb\™ (b v
"o ia—b b—1ia ’

i
2

az? B |z|?
4B8(a—p) a2 +0b?’
22 B \x\z ia |x|2
48 2@+ 20D (a2 +b2)

Hence

+o00 . m v+1 v
V+1L(V) 2 _(%_%%)7,2 M d _ Za+b b m
/0 L (e J”( b ) ia—b) \b—ia b

|z

= ia | 2
X e 2@+ e 2t (a24b2) L(V) ( |'T|
m

a? + b?
. m . v+1
M - ta+b 2tb * 1
(el = <m—b> <a+ib (2ib)r+1

iCactbd) (2 __ |e|? 2
X e2(aZ4b?) |z e 2(a2+b?) L(V) |‘T‘ )
m a2 + b2

and therefore

Since

. v+1 ) EAVAS| n
< i > :el"((L (Var+12)" = (a+ i)/ (a— ib) /2

a+ib a + ib)v+1’

and py, ; is homogeneous of degree n, then

5(('15:23”) || b\ ™ |z|2
M ‘ - e~ (e a—1 ) (v) T
Dy, wm,vw (.I') - (CL + Z’b)n+v+(N/2) (a + Zb) Pn,j (E)Lm (ag + b2>

a—ib\" (a—ib)2 et
~ \a+ib) (a+ib) (a+ib)t(N/2)

i(actbd) | |2 T
2((1§+b§)‘1‘ Y
€ Vm,n,j 5 5 ) -
va?+b

X
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4.5 Master formula for the generalized Dunkl transform.

In this section, we shall derive a Master formula for the generalized Dunkl transform. For this we need the
following lemma.

Lemma 4.3 Let p € P, and x € CN. Then for w € C and R(w) > 0,

i(x)

—wlyl? € w w
o /R p) a2 (y) dy = —E et Bp(a). (4.16)

Proof. First compute this integral when w > 0.
2 2
Ck /N p(y)Er(w, 2y)e " wp(y) dy = cx /N p(y)Er(e, 2y)e” Vel wi(y) dy.
R R

By the change of variables u = \/wy and the homogeneity of wy and p, we obtain

—wlyl? c 2
Cr /RN p(y)Ek(z,2y)e Il wi(y) dy = WT{CHV)/? /]RN p(y)Ey(z/vw,2y)e ] wi(y) dy. (4.17)

Using Theorem 2.5,1) we deduce an equivalent identity:
~|yl? — @)
Cr Np(y)Ek(x,Qy)e wr(y) dy = e We™= p(x). (4.18)
R

Combine (4.17) and (4.18) to get

Ei(z, 2y)evI’ oo (@
Ck RNP(?J) r(,2y)e wi(y) y—me p ﬁ .

Now use Lemma 2.1 from [24] to obtain

Ap x N 2
. ”(ﬁ) = et ().

Hence, we find the equality (4.16) for w > 0. By analytic continuation, this holds for {w € C: R(w) > 0}.
We are now in a position to give the Master formula.

2
|| A

Theorem 4.5 Let M € SL(2,R) such that b # 0. Let f, is of the form f,(x) = e~ "2 e~ p(x) for some
p € Py, Then

DY =" A ser el _r 4.19
k fn(x) - n,ab € fn \/m ) ( . )

where )
629
(a +ib)v+(N/2)

(a —1ib)
(a + ib)

n
2
n
2

)\n,a,b =

and 0 as in (4.15).

Proof. It follows easily from (3.20) that

y|?

vt Ak Ck id|p2 _ Ak . —wlyl?
Dy {6 et p(y)] (z) = W“”‘ | /RN e” % p(y) Ex(—iz/b,y)e M wi(y) dy,
where
(4.20)

Since
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we conclude that

7A7 . —w 2
/ ™ ply) Er(—iz/b,y)e ™ wi(y) dy = 145
RN —o S! RN

A3 p(y) Ex(—iz /b, y)e W wi(y) dy.

(4.21)

For s € Zy with 2s < n, the polynomial Ajp is homogeneous of degree n — 2s. Hence by the previous Lemma,

we obtain
Asp(y)Er(—iz/b,y) —wlyl? (y) d 7& %Ak[ 2 A3p] (X,)
Ck BN LP\Y k r/0,Yy)e WY Yy = w,y+n+(N/2)e w kP b)s
where
T
Xp=——.
T
Substitute (4.22) in (4.21) to get
10xy) 3] 0
_ Bk . _ 2 e w w (_1)sw s
_ wly| - - A s
ck/RNe 1 p(y)Ex(—iz/by)e wr(y) dy = w’Y+"+(N/2)e4 K D e Aip(Xp)
eM )
o d w _wi A
= @t e T
e .
_ “e A VS
= e )

Replace w and X}, by their values given in (4.20) and (4.23) and use Lemma 2.1 in [24], we obtain

w—w? i\" b2 (w—w?
) = (-g) e E0)
i _tz2+b2
- () o
Also,
WHTH(N/2) b—ia) "/
2b
1(Xy) _ 1=
e @ = ¢ 20(b—ia),
Then

|z|?
Ck e 2b(b—ia)

Ay 2 ;
_r -2 _q —wly| —e0 = = k
(QZb),YJr(N/Q) AN e 4 p(y)Ek( Zl‘/b, y)@ Wk(y) dy =e€ (a + ib)nJr,er(N/Q) e 4 p(fL‘)

Now, if we multiply equation (4.24) by e3t1e” we obtain:

d—ic 2
yl2 Ay 0 e 20(b—ia) || FEFEEIN
DM6_2€74 T = v — T 1 Ep(x
k p(y) ( ) (a+ib)"+7+(N/2) p( )
. _dbtac 2
g |z| 2
. e 2(a?+b2) _ =l a2402
= W e 2z e 1 Ak=p(x).

(a + Z’b)n+’y+(N/2)

Use again Lemma 2.1 in [24], we deduce

eiﬁAkp(l’) _ (a2 JrbZ)n/Z ef%p ( T > .

va? +b?

Therefore
M| Wl A _ et (afib)("/Q)
Dk {e 2 e 4 p(y)} (x) (a+ib)7+(N/2) (a+ib)(n/2)
fstdap -l A < x )
X g2 (a?+d e 2@+ (efT) . I
PI\Vare

As an immediate consequence of the Master formula (4.19), we have
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Corollary 4.1 (Hecke type identity)If in addition to the assumption in Theorem 4.5, the polynomial p € HE,
then (4.19) becomes

DM [6_¥P} (@) = Auap crEEIT mEm <71 ) (4.25)
k n,a,b p \/m .
where )
A _ (a —ib)2 e'?
P (a4 ib) 3 (a + ib) N/
and

0 =20+ (V/2) + = 1) { st aetan (- ) = Famit) + avcton (2 )}

5 Plancherel Theorem.
We begin with the following Proposition.

Proposition 5.1 Let f and g be in LL(RY) and M € SL(2,R) such that b # 0. Then

DM f(x)g(z)wp(z) dx = () DM~ g(x)wy(z) dz. (5.1)
RN RN
Proof. Let f and g € Li(RY). Using Fubini’s theorem we write

Ck

[ D @) a0 = Gt [ ([ B fa) @) s a.

L0 s [, 9@ B (o) daa(y) .

. Fy) DM g(y)wi(y) dy.

This complete the proof.
Corollary 5.1 Let f € S(RY) and M € SL(2,R). Then

DR f Il = 1F 1l -

Proof. It is easy to check that Corollary 5.1 holds for b = 0. Now suppose b # 0. By Proposition 5.1 and
Theorem 4.1, 3), we have

1D S, = [, DY S@DE fle)en(a) do,

f@) DY DY f(w)wi () de,
RN

2
= ||f||k2 :

Theorem 5.1 Let M € SL(2,R).

1) If f € Ly(RY) N Li(RY), then D} f € LE(RY) and || DY f|, 5 = Iflly2 -

2) There exists a unique unitary operator on LE(RMN) that coincides with DY on LL(RN) N L2(RYN). The
extension is also denoted by f — D,i”f.

Proof. It suffices to assume that b # 0. From Corollary 5.1 and the density of S(RY) in L7 (RY), we deduce the
existence of a unique continuous operator ﬁﬁ/f on LZ(RY) that coincides with D} on S(RM). If f,g € S(RY)
then

Dy f(a)g(@)wi(z) da
RN RN

Dy! f(x)g(x)wi(x) dx

(@) DY g(2)wp(z) d
JRN

= (@) DM g(2)wi () da.
]RN
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Let f,g € L2(RY). By the density of S(RY) in LZ(R"), we conclude that

DM f () g@wn() dex = / @) DY g()n(z) de.
RN RN
Now, if f € LL(RY)N LZ(RY) and g € S(RY), then

Dy f(a)g()wi(z) dx
RN

[ @D () (a) d

/ F(@) DM g(wywn(a) da
RN

D,ivjf(w)mwk(x) dz.
RN

Hence D,]C” f= E,]C” f, a.e, which proves the first statement in part 1). The second statement of part 1) follows
from Corollary 5.1. Part 2) follows from part 1), Corollary 5.1 and Theorem 2.6, 2).

Corollary 5.2 For each f € L(RN) and My, My € SL(2,R), we have
DY o DY(f) = e DY ), (52)

with ¢ as in Theorem 4.2

6 A generalized Dunkl-Schrodinger operator

Let {M(T) = [ ZE:? ZEZ; } ; 7 € R ¢ be a continuous one-parameter subgroup of SL(2,R) such that the e*

M(71) ° D}iVI(Tg) _ eilei\/I(T1+T2)

which appears in D), is equal to 1.

6.1 The Cy-group {D,JY(T)}
TER

We begin with the following lemma:

Lemma 6.1 Let f € L2(RY). Then

Tin [|£(ay) £ (). = 0. (6.1)

Proof. First we prove the lemma in the case f € C°(R™). Choose r > 0 such that supp(f) € B(0,7). Here
B(0,7) denote the closed ball centered at 0 with radius 7. It is clear that if @ > 1, then supp(f(a.)) C B(0,7).
Applying the dominated convergence theorem one gets:

Eﬂl Il f(ay) — f(l/)“k,2 =0.

By the change of variable u = ay and the homogeneity of wy, we have:

I$0) = 1)l = (o7 110~ Fw/)ls

Then
5?11 If(ay) = f(W)llyo = O

A more general result can be obtained by the density of C°(RY) in LZ(RY).

Theorem 6.1 Let f € L2(RY). Then

M) _
Thi%HDk ! fHk,Q_O' (6.2)
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Proof. First we prove the theorem in the case f € S(R™). By the change of variable u = % and the
homogeneity of wy, equation (3.22) becomes

Ck e(r) 2_a(r)b(r 2 .
DY f(a) = a(r) N2 s / et Gl B (i, ) Dy f(alr)y)wny) dy.

Using this and the inverse formula for the Dunkl transform (2.9)

10) = 7z [ Bulio ) Dufw)nty) . (6.3)
we obtain
D%(T)f(x) — f(z) = 27+N/2 / Ey(iz,y) [a(T)v-&-N/Zez(i((:i|x|2fa(r)b(r)\y\z)Dkf(a(T)y) —Dkf(y)} we(y) dy
= Fi(z)+ Fy(z),
where
Fi@) = et [ By [ OO0 D fa(r)) D )] nty) dy
Rae) = (a2 =] 2 [ Bl Drnts) dy
= Ja(r) ™2~ 1] f(@).
Clearly

i F = 0.
i [[Fzflg2 =0

From the relation

—al(P)b() |2 22 [ _ig(r)b(r
(T)b()]y] )Dkf(a(T)y) — Dipfly) = ez aclel [e 3a()b( )‘y‘szf(a(T)y)

e (G lal’

i<

= Dif()]+ [H55 —1] D),

we can write

Fi(z) = [6%;<T>\z _1} a(r )’Y+N/227+N/2/ Ei(iz,y)Dif(y)wr(y) d+ F3(x)

= [e% el 1} a(r) N2 f(z) + Fy(x),

where

i c(r) i
F3(z) = a(T)VJrN/? 2w3\//2 / Ey(iz,y) €2 eoy =l [e*Ea(r)b(T)|y|2Dkf(a(7—)y) _ Dkf(y)} wi(y) dy.
RN

Using the dominated convergence theorem, we get

2

1imH(eéi(<:>‘””‘2 )f(;r)H = lim

T—0 2 70 JpN

= 0

iﬂmZ 2 2
e e 71‘ | (@) 2w () da

As Dy, is an isometric isomorphism of L2 (RY) we deduce

i 2
1Fsll2 = a(r) /2 |[e= 32O Dy f(a(r)y) - Def ()], -

The triangle inequality shows that:

|Fsllk2 = a(r)7 /2

e 5" ONO (D f(a(r)y) = Dif ) + (e 2PV 1Dy fy)|

IN

a(T)"H'N/2

e~ 59O (D, fa(r)y) — Difly H + a(r)7HN/2 H( _"‘(T)b“)'”'z )Dkf(y)H

a2 D falr)) — Duf @)l + alr) (e n 1) Duf), -
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By the dominated convergence theorem,

s 2 i 2
lim H (efga(‘r)b(‘r)\yl2 _ 1) Dka = lim ‘eiia(T}b(T)lylZ -1 |Dkf(y)|2wk(y) dy
7—0 k,2 T—0 RN
= 0.
By Lemma 6.1,
li_% | Drf(a(T)y) — Drf(y)lly 2 = 0.
Hence

li F =
lim [ Fyfl,2 = 0

and therefore (6.2) holds for each f € S(RY).
Next, in the case f € LZ(RY). Let € > 0 be arbitrary. Since S(RY) is dense in L2 (RY), there exists ¢ € S(RY)
such that || f —1[/r2 < §. Then

|2 =D Ou|, = |20 -, =17~ vla < 5

From this, we can deduce that

IA

M(T M(T M(T M(T
R T L R W e W R

IN

o =], +e
k,2
so that, since € was arbitrary and ¢ € S(RY),
. M(T) _ 2
lim o271 - 1], , =0
Corollary 6.1 The family of operators {DQ/[(T)} N 1s a Co-group of unitary operators on Li(RN).
TE

Proof. It is clear that the family {D,]CW(T)} \ satisfies the algebraic properties of a group:

TE

DQ/[(()) =1, D}i\/[(ﬁ) ODI]CM(TQ) _ DQI(TI+T2) _ D}i\/[(Tz) OD]]CV[(Tl) . 1, ™ ER.

For the strong continuity, we use theorem 6.1.

6.2 The generator of the Cj-group {DIJY(T)}TE]R.

The infinitesimal generator £ of {D,]CW(T)} . is defined by
TE

L:D(L) — LiRN),
fo— Lf

where

D(L)

{fez®): 1m/nDY7f - e 2@},

cf = lm1/0D7f—fl, feDW).

T
From the Hille-Yosida Theorem (see[[16], p. 15]), the operator £ is closed and densely defined and since
{D,iu(ﬂ} . is unitary, it follows from Stone’s Theorem [[16], p. 32] that £ is skew-adjoint (£L* = —L) and
TE

therefore iL is self-adjoint. Since it is often difficult to determine D(L), it is important to know a core of L
(any dense subspace with respect to the graph-norm | f||z := || fllx,2 + [|£f]/x,2 on D(L)). For this purpose, we
need some Lemmas.
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Lemma 6.2 Let f be a function in CL(RY) such that f and p(f) in L2(RY). Then

lim
T—0

=0, (6.4)
k2

~[fwfalr)) ~ @)+ 0)p()()

where p(f)(x) = Zazj a%f(r) is the Euler operator.
; J

Proof. Applying Taylor’s formula to the function ¢ — f(z/a(t)), we obtain

/ N

1
f(z/a(T)) = f(sc)JrT/ 9z(s7) ds, where g.(s7)=
0
Hence
1 ) 1
—lf(@/a(r)) = f(2)] + a (0)p(f)(z) = /0 (92(s7) — 92(0)) ds.
Minkowski’s inequality for integrals implies that

| 2re/atn) = )+ d Op(@ | (autsm) = o) s

k.2 ’

/ 192(57) — g2 (O)lln.2 ds.
0

k,2

IN

By Lomma 61,
lim ng(s‘ ) 92(0)||k,2 =0.
T—0

Under this condition, the dominated convergence theorem implies

1
iy [ 92(57) ~ 92(0)2 ds =0,
0

T—0

Lemma 6.3 Let f be a function such that f and |z|?f in LE(RYN). Then

1 i c(r)

- [esamlzﬁ _1} fz/a(r)) — —c( VN2 f(z)

=0.
k2

lim
T—0

Proof. Let G the function defined by

‘ 2

@) = 1 [45310 —1] fo/alr).

Clearly, the change of variable u = x/a(T) gives

L
(@l [ | b ] - 2 0@t af| (@) Pun(a) da

Using the Taylor’s formula, we can show

171 iem P
T [eaaw'z'z) - 1} - %c (0)

T

G () — 2 Ol (x/a(r)R.2 (v /a())Pes(a) d

- 1
1 [e%“(”cm‘w - 1} = 3\:10|2/ (ac) (s7)ezalsmen)ll® gg
T 2 0

and therefore, there is a constant M; > 0 and 79 > 0 such that

T

1 [etareer® _ 1“ < Mlaf?
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for all T € [0, 79]. Hence, for all 7 € [0, 70], we have

1 i ) ’
- [efa<f>c<f)lzl2 - 1} — 5 (0)a*(7)af?

(@) < My |J? £ (@),

where My > 0. As z — |z|?f(x) € LZ(RY), the dominated convergence theorem gives

2

1 i 2 ) ’
lim = [eia(ﬂ”(ﬂlzl - 1} —Lc 0)a?(T)|z?| |f(z)|*wk(z) dz = 0.
=0 JpN | T 2
Therefore
. T Z ’
lim ||GT(x) — =c (0)|z>f(z/a(T)) =0 (6.5)
T—0 2 k.2
Now, using lemma 4.1, we get
im |25 fa/a(r) — o r@)| =0 (6.5
7—0 (12(7') k.2

Hence, the desired result is an immediate consequence of (6.5) and (6.6).

Lemma 6.4 Let f be a function such that f and |z|?Dyf in Li(RY) N L2(RY) and put

e2a(r |] 1 i b(r 2
Gi(r) = G / [ A 1] Buliz/a(r). y)Def (gnly) dy.

where © € RN . Then

= 0.

|30+ 58 O D] (o)

li
T—0

Proof. Let
i cpe 5 171"
T _ k v - 2
$(o) = 5 O i [ Blin/a(r) )y D w)en(y) d.
Then
Ckeég(@lxﬁ L _ism2 b 2 .
Gy(z) + G3(z) = W/RN {; [6 PemT — 1} +35 0 (O)lyl }Ek(lm/a(T)ay)Dkf(y)wk(y) dy
ECIN
= Wth(—x/a(r)),
where

h(y) = {l [e—%ZE:;‘W - 1} + % b/(O)\ylz} Dy f(y).

-
According to hypothesis, the function h € LL(RY) N LZ(RY). Then

G5 + G} € Li(RY)
and

e Db/

Now, using the change of variable u = —x/a(7T) to get

G2 + G52 =

IDkh(=2/a(r))lly, 2 = (a(r))" /2| Dyhllx.2-
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Since Dy, is an isometric isomorphism of L2(R”), we deduce

11 _ibvm i
1G5 + Gl = bl = [ |7 [0 = 1] + 2 ¥'10)

RN |T

By means of a similar technic used in the proof of Lemma 6.3, we have

2

1 i b(r) i
lim [\~ [ 2O 1) 4 2 H )R] D))

70 JpN | T

hence
tim 65 + G5 12 = 0.
Clearly
i $ 5 el
5(2) =5b (0 )W Ga(z/a(T)),
where

Ga(z/a(r)) = Dy[lyl*Drf(y)](~z/a(7)).

Using again Lemma 6.1, we get
lim [[Ga(e/a(r)) — Ga@),., = 0.
This establishes

=0.
k,2

lim
T7—0

G3(x) — 28 O)DellyPDif ()] ()

Finally, the desired result is an immediate consequence of (6.7) and (6.8).

Theorem 6.2 Let

(W) wr

(y) dy.

W ={feC'®"); f |z]*Dpf € LLRY)NLy(RY) and p(f) € Li(RN)}.

Then W C D(L) and for all f € W,

L o o)
Lf(@) = =d' ) [(+ N/2) +pl S () +ic 0) “5

where
Z K E)x J

Proof. Let f € W. By (3.22) and (6.3), we get

5b' (0)Dg [|yl* D f ()] (—=),

1 . 1 e .
[T @) - f@)] = = () 0D < 1] f@) + H (@),
T T
where
T Ch LT (5D jaP- YDy P2) ‘
= - - — 2\a(r a(T FE — F D .
i@ = ooty [ wizfa(r).y) — Biliz.y)] Dif(w)ely) dy
Now, writing
1 [ez(ziim —3B ) By (iz/a(r), )_Ek(m,y)} . eézmzp% [efésiz)ﬂyrz _1} Ex(iz/a().y)
.
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and using (2.9), then we have

Hi) = i |2/ - 1)+ L[] eja(e)| + G, 0o
By applying respectively lemmas 6.2, 6.3 and 6.4, we deduce
i 1[0 f(@) — f@)] = —a 0)r + (N/2)f(@) —a 0)p(1) (@)
+ i) B p@) - LoD (D) (-
with respect the ||| 2. This proves that f € D(L) and
|z|? i

Lf(x) = ~a'(0) [(v + N/2) + p] () + i€ (0) - F(x) — b (0)Dx [[y*Def )] (=)-
In the following theorem we establish the main relations between the Cy-group {D,iwm }rer and a generalized
Dunkl-Schrédinger equation.

Theorem 6.3 The following properties holds.

(1) The Schwartz space S(RY) is a core of the generator L of the Co-group {D,]CM(T)} . and
TE

|z

N
Lisn] = (0 ((7+N/2)+Zl’jaij>f+i<cl(0) 0 5 (6.10)

(2) For each f € D(L) the function u(t,x) = D,]Cw(t)f(:c) is the unique classical solution of the problem

o N
Siu(t,x) = Lu(t,z) on R x RY, 6.11
N (1)
here “classical” means u € C1(R, LZ(RN)) with u(t,.) € D(L) for all t € R.
(3) (i) Let f € SRN). The function
ultx) = DY)
= — % 4 G@ P53 g
- (2ib(t))+(N/2) /}RN et “ By (—iz/b(t), y) f(y)wr(y)dy
is the unique solution of the generalized Dunkl-Schridinger equation
N
.9 _ L (9 ’ ‘L‘z ’ Ay N
igru(t,r) = —ia (0) [ (v + N/2) + Zm]%) u(t,z) — (c (0) 5-+0b(0) T) u(t,z) on R x RY, (6.12)
j=1 J '

u(0,.) = f € S(RV).

Moreover, u(t,z) has the following properties:

(ii) u(t,.) € SRN) for all t € R.

(133) u(t+s,x) = Dﬁl(t) (u(s,.)) (z) for allt,s € R and x € RV,
(tv) For allt € R such that b(t) # 0,

Ck

[[u(t, oo < WHU(OJHM-

(v) [Ju(t, I,z = |w(0, )|k,2 for all t € R.

Proof.
(1) Tt is easy to see that S(RY) ¢ W € D(L). To prove (6.10) it suffices to show that

Dy [[yPDi(y)] () = —Apf(a).
Let f € S(RV). By (2.10), we obtain

*y?Dkf(y):Dk[qﬂfny)v jG{l,Q,...7N}.
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As a consequence of this, we deduce

—[y1*Dif(y) = Di[Axf](y)-

Therefore

=Dy [lyPDr(y)] (=2) = DRARf(y)l(-2) = Apf(x).

The fact that S(RY) is a core of £ can be proved by Proposition 1.7 of [12] since S(RY) is ||.||x,2-dense in
LZ(RY) and invariant under the semigroup {DQI(T)}TER.

2) follows from the Theorem 1.2 of [16] since £ generates the Co—group{D,iM(T)} .
TE

i) is a direct application of (6.11) and the integral representation (3.20) of D,]vu(t)f(m).

i1) follows immediately from Theorem 4.1, 2).
1i1) follows from Theorem 4.2.

(

(3
(3
(3
(3)(iv) follows from the estimates (4.1), while (3)(v) is obtained by the Plancheral Theorem 5.1.

)
)
)
)
Remark 6.1 The first statement of the previous Theorem shows that the so called generalized Dunkl-Schrddinger
operator

N 2
—~a'(0) (7+N/2)+ija% +i(c/(0)%+b(0) %)

is closable and its closure is the generator of the Co—group{Didm} N
€

7 One-parameter subgroups of SL(2,R) and the associated general-
ized Dunkl transform.

We conclude this paper by mentioning some interesting one-parameter subgroups of SL(2,R) with the associated
integral transform, its basic properties and the related Dunkl-Schrédinger operator and equation.

7.1 Basic properties of the generalized Fresnel transform.

In this subsection, the one-parameter subgroup of SL(2,R) is {M(T) = { (1) I ] ;T E R} .

7.1.1  The Fresnel transform associated with the Dunkl transform

The Fresnel transform of a function f € L'(R,dz) is defined by [4]

1 Ty
&, T) = / e2r\ &Y dy. 7.1
(f)(z) Nor=3 fy) dy (7.1)
It corresponds to the one dimension linear canonical transform parameter matrix M = { (1) 71- ] . It is perfectly

reasonable to generalize (7.1) in the Dunkl setting as follows:

Definition 7.1 We define the Fresnel transform in the Dunkl setting . on the space L}.(RY) by setting

Er(f)(z) = DYT(f)(x)

i 2 2 .
W/M ez AW By (—ix/7,y) f(y)wi(y) dy, 7 #0 (72)
f(z), =0,

where M (1) = { (1) I ] .
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Remark 7.1

1) The integral transform (7.2) is an extension for all T € R of the one given by Raosler in ([29]).

2) When the multiplicity function k = 0, the Fresnel transform in the Dunkl setting & . coincides with the
N-dimensional Fresnel transform

£N) = Gy L, 7 W)

3) Let f € LE(RN) N L2(RN) be a radial function and put f(x) = v (|z|). According to Theorem 4.3, it follows
that:

2 Too e o T
_ s (lz|*+r7) . 22+1
Skﬂ‘(f)(x) F()\ 1)(2“_))\_;'_1 /0 € + 1/’(7“)7/\ ( . ) r + dTa

where A =+ (N/2) — 1.

Thanks to Remark 7.1, 3), we can state the following definition:

Definition 7.2 We define the Fresnel transform W, » associated with the Hankel transform M, for suitable
function f on Ry and p > —1/2 by

2 +oo (2|22 . rT
W (f)(z) = W/o e T ()4, (j) L dr. (7.3)

7.1.2 Basic properties

Here we list some properties of the generalized Fresnel transform.
Proposition 7.1 (Riemann-Lebesgue lemma): Suppose that T # 0. Then for all f € LL(RY), &+ belongs to

Co(RN) and verifies

Ck

1€k flloo < Q7D k.1

Proposition 7.2 (The reversibility property:)
1) For all f € LL(RN) with & . f € LL(RYN),

(516,77 © gk:,T)f =f, a.e, and (gk,T © gk,fT)f =f, ae
2) The generalized Fresnel transform ., is a one-to-one and onto mapping from S(RY) into S(RY). Moreover,
(Exr) ' f = Ex—rfs [ ESERY).

Proposition 7.3 (An additivity property) Let 71 and T2 be real numbers and let f € LL(RN) with & ., f €
Li(RYN). Then

Emy Ekmyf = €Y Exmin (7.4)

where the constant phase v is given by

’ :{ 50+ (N/2)) (syn(rs +72) + sgn (Z2) = sgn(r) —sgn(r2)), 71 #0, 7 #0, 71 +7 A0,
0 if not ,

with equality a. e when 7 # 0, 70 #0 and 7 + 7 = 0.
In particular if Ty79 > 0, then

51677'1 gk,‘rzf = gkﬂ'l*‘rTzf' (75)
Proposition 7.4 (Operational formula) Let T € R. Then the following properties hold on S(RY).

(1) gkﬂ— o Qg = (Qg - T P{) o gk,q—.
(2) gky.,-Pg = P§ o} 5k,7'-
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Proposition 7.5 (Bochner type identity) Let T be a real number such that T # 0. If f € L(RY) N L2(RY) s
of the form f(z) = p(x)y(|x|) for some p € HE and a one-variable ) on R, then

Err f(2) = p(@)WVoiyr(vy2)-1,7 Y(|2]). (7.6)

In particular, if f is radial, then
Err [ (@) = Wopvy2) -1, P(|2])-

Proposition 7.6 Let 7 € R such that 7 # 0. The generalized Fresenel transform of the generalized Laguerre
functions are

i77'2|x|2 X
gk,‘rq/)m,n,j (I) - )\m,n,T e20+7%) d}m,n,j T |

V1472
where m . _
) (1 —ir\" (1 —ir)2 et
T \L+ir ) (L4in)E (14 i)t (V/2)
and
0= 2(y+ (N/2) + 1){ (r) arct ( ! ) T sgn(r) + arct ( i )}
= n — sgn(tT)arctan | ————————= | — ——SgN\T arctan | —————— .
K g || +v1+ 72 1% 1+V1+72

Proposition 7.7 (Master formula) Let T be a real number such that T # 0. Let f, is of the form f,(z) =

z|2
e~ 13 e*%p(as) for some p € P, Then
it |2 T
Eerfulx) = A, 2087 ,
where ., )
N Eioki e
T (i) (L4 ar)t(N/2)
and
0 =2(y+ (N/2) + 1){ ()arctan( ! > T ()+arctan< T )}
= n— sgn(T —— ) — —sgn(T T
K / +vitre) a7 Vit

Proposition 7.8

(1) The generalized Fresnel transform &y, have a unique extension to an unitary operator on L2(R™N).

(2) The family {81677}720 is a Co-group of unitary operators on L2(RN). The Schwartz space S(RY) is a core
of its generator A and A smny = il

(3) For each f € D(A) the function u(t,x) = & f(x) is the unique classical solution of the problem

(g0~ e
u(0,.) = f € D(A);

(4) (i) Let f € S(RN). The function u(t,z) = Ex . f(x) is the unique solution of the Dunkl-Schrédinger equation

{ igu(t,z) = —Apu(t, ) on Ry x RN, (7.7)

u(0,.) = f € S(RV).

Moreover, u(t,z) has the following properties:

(ii) u(t,.) € SRYN) for allt € R,.

(iii) u(t + s,2) = s (u(s,.)) (z) for allt,s € Ry and x € RY.
(iv) For allt > 0,

C
e o < gtz (0. .
(v) [Jut, Ile2 = |w(0, )||k2 for all t € Ry.
7.2 Basic properties of the fractional Dunkl transform

In this subsection, the one-parameter subgroup of SL(2,R) is {M(a) = [ Z?ﬁ((zg —Czlslggo)z) } a€ R} .
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7.2.1 The fractional Dunkl transform
The fractional Dunkl transform Dj of real order a € R which is defined by[14, 15]:

i(v+N/2)((a—2nm)—am/2)

e e [ eIt (i sin(a).)f () dy. (2 - Dr < a < (2n+ D,
a _ R
DiET@ =0 f@), o = 2nr,
f(=m), o= (2n+ 1)x,

. N
can be considered (except for a constant unimodular factor (e“")'er 2 ) a special cases of the generalized Dunkl
transform DM with parameter matrix M (a) = Cst(oc) —sin(a)

sin(a)  cos(a)

7.2.2 Basic properties

Here we list some properties of the fractional Dunkl transform.

Proposition 7.9 (Riemann-Lebesgue lemma): Suppose that o € R\wZ. Then for all f € Li,(RYN), Dg* belongs
to Co(RN) and verifies

Ck
(2] sin(a)|)r+(N/2) 1 f k1

1DF flloo <

Proposition 7.10 (The reversibility property:)
1) For all f € LL(RY) with D f € Li(RY),

(Dy%oD)f=f, ae, and (DioD.%)f=Ff, a.e.
2) The fractional Dunkl transform D$ is a one-to-one and onto mapping from S(RY) into S(RYN). Moreover,
(DY)~ f =Dyf, feSRY).
Proposition 7.11 (An additivity property) Let o and B be real numbers and let f € L:(RN) with fo €
Li(RYN). Then
DEDf =D, (738)
with equality a. e when o+ = 0.

Proposition 7.12 (Operational formula)
Let a € R and {fj};v:l is an orthonormal basis of RN. For j=1,...,N, define Ag, and Agj by

A =212 [Q¢, —Te)]  and Ay =272 [Qg, + T ] -

Then the following relations hold on S(RY):
(1) D o Q¢ = (cos(a)Q¢ +sin(a) Px) o Dy

(2) D¢ o Pe = (—sin(a)Q¢ + cos(a)Pe) o Dg.

(3) <AE_7‘f7 g>k = <f7 Azjg>k; fag € S(RN)

(4) Dy o Ag, = e"*(Ag; o DY).

(5) Dy o Af, = e~"*(Ag, o Dp).

(6) Dy o Hy, = Hj, 0 DY where Hy, is the generalized Hermite operator which is defined by [24]:

N
1 * * 1 2
H; = 5 jzg 1A£jA£j + A@.Agj = §(|.17| — Ak)

Proposition 7.13 (Bochner type identity) Let o be a real number. If f € LL(RN) N Li(RY) is of the form
f(z) = p(x)v(|z|) for some p € HY and a one-variable 1 on Ry, then

(@) = p(:c)Hg+7+(N/2)711/)(|x|). (7.9)

In particular, if f is radial, then

Dy f(x) = 7"%(1\1/2)711/’(@\)-
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Proposition 7.14 Let a € R. The fractional Dunkl transform of the generalized Laguerre functions are
Dg¢m,n,j (.I‘) = eia(n+2m)¢m,n,j ('T)

Proposition 7.15 (Master formula)

Let a be a real number such that o # 0. Let f,, is of the form f,(z) =e~
(1)

2|2 Ay

2 e 2 p(x) for some p € P, Then:

i fa(z) = ™ fu(). (7.10)
(2) In particular,

Dh,(z) = el1® b, (), (7.11)

z|2
where h,(x) = \/ck2|l"e*%e*%<py(x) is the generalized Hermite functions [24].

Proposition 7.16

(1) The fractional Dunkl transform D have a unique extension to an unitary operator on L2(RY).

(2) The generalized Hermite functions {h,,v € ZY} are an orthonormal basis of eigenfunctions of the fractional
Dunkl transform D§ on L2(RYN) satisfying D¢h, (z) = ellV1* h,(z).

(3) The family of operators { Dy} , .y is a Co-group of unitary operators on LZ(RYN). The Schwartz space S(R™)
s a core of its generator T and

Tiseany = =i(y + (N/2)) + 5 (Jal? = Ay,

(4) For each f € D(T) the function u(t,z) = DL f(x) is the unique classical solution of the problem

{gt u(t,z) = Tu(t,x) on R x RN,
(0,.) = f € D(T);

5) (i) Let f € S(RY). The function u(t,z) = DL f(x) is the unique solution of the Dunkl-Schrédinger equation
k
i%u(t,z) = (('y + N/2) — %(\x|2 — Ak)) u(t,z) on R x RY, (7.12)
u(0,.) = f € SRM). '

Moreover, u(t,z) has the following properties:

(ii) u(t,.) € S(RN) for all t € R.

(4i1) u(t + s,7) = D% (u(s,.)) (z) for all t,s € R and x € RY.
(iv) For allt € R/7Z,

S P e LRI
() [Ju(t, M2 = w0, )k2 for all t € R.

We conclude this subsection by an alternative proof of the following result established by Résler in [24]

2
lz]

Corollary 7.1 (see [14]) For n € N and p € P, the function f,(z) = e‘Te_%p(x) satisfies

Sl ~ A fu = (041 + (N/2)fu (713)
In particular, for v € Zf

2 — Ay = (vl +7 -+ (N/2)h, (7.14)

Proof. Since f,, € S(RY) C D(T), then

S

a—0 «
—i(y + (N/2)) fo + 5 (122 = A fo-
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Using (7.10) we obtain

D& _ eina -1
lim —k-n % fn = fn = lim fn
a—0 « a—0 o
= inafy,.

Hence
S = D) fu = (- + (N/2)fo

7.3 Basic properties of the generalized Dunkl transform associated to the hyper-
bolic subgroup of SL(2,R)

In this subsection, the one-parameter subgroup of SL(2,R) is {M(a) = [ (:ITE((S)) ig;};lgz; } ac R} .

Definition 7.3 For f € LL(RY) and o € R, we define
e (2l +Hyl) cotha g (__IT
08 (a) = DY ) = { it [ e Ei ( s oy ) [N ) dy, 20
f(x)a a = Oa

cosh(a) sinh(a)}
sinh(a) cosh(a)

where M (o) =

7.3.1 Basic properties
Here we list some properties of Of.

Proposition 7.17 (Riemann-Lebesque lemma): Suppose that o # 0. Then for all f € Li(RYN), O f belongs to
Co(RN) and verifies

Ck
(2] sinh(a)[)7+(*/2) £ llk1-

0% flloo <

Proposition 7.18 (The reversibility property:)
1) For all f € Li(RY) with O¢ f € LL(RY),

(O, 00N f=1f, ae and (O cO. “)Vf=f, ae
2) O¢ is a one-to-one and onto mapping from S(RY) into S(RY). Moreover,
O f=0."1, | eSRY)

Proposition 7.19 (An additivity property) Let o and 3 be real numbers and let f € L}(RN) with Off €
LE(RN). Then

OF O f = e Oy*P, (7.15)
where the constant phase v is given by

- { 30 ) (sgn(a+ B) + sgn (Z2) — sgn(a) — sgn(8)) y £0, B0, a0,
) if not ,

with equality a. e when o # 0, f# 0 and o+ = 0.
In particular if af > 0, then

OF O f =087y, (7.16)

Proposition 7.20 (Operational formula)
Let a € R and {@};il is an orthonormal basis of RN. For j=1,...,N, define Be, and ng by

B, = 271/ [Qij - ng} and Cg; = 271/? [Qij + ng} :
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Then the following relations hold on S(RN):

(1) Of o Q¢ = (cosh(a)Q¢ — sinh(a) P¢) o OF.

(2) Of o P = (—sinh(a)Q¢ + cosh(a) Pe) 0 OF.

(3) O o Bg; = eO‘(ng o Op).

(1) OF o Ce, = (e, 0 OF).

(5) Of 0By, =By, 0 Of where By, is the operator defined by:

N
1 1 9
By = 3 ;B&Cﬁj + CEJ‘BEJ’ - §(|x| + Ag).

Proposition 7.21 (Bochner type identity) Let o be a real number. If f € Li(RN) N LE(RYN) is of the form
f(z) = p(x)y(|x|) for some p € HF and a one-variable 1 on Ry, then

Op f(x) = p(x)V{ ¥(lz)),

where A =n+v+ (N/2) —1 and

OO 1z 2 2 ) €T
VRY(lz]) = ez coth(a@)(lz"+y”) JA( |zly )f(y)ymﬂ dy.

2 +
L'\ + 1)(2ip)A 1 /0 sinh(a)

In particular, if f is radial, then
k(@) =V vy2)-1 Y(]z]).

Remark 7.2 According to the previous Proposition, we can put:

;/W ot coth(@) (o) (_12lY F dy, a0
Viflx) = D+ 1)(2ib)#+1 J, # \ sinh(a) ’ ’
flx), a=0,

where p > f%.

Proposition 7.22 Let a € R such that o« # 0. Then:

0o o (x _ )\mna e%coth@a)\z\z S L R
k Umn,j (%) i Yrmin.g cosh(2a)

where )
629

(cosh(a) + 4 sinh(a))7+(V/2)

_ (cosh(a) —isinh(a)\"™ (cosh(a) — isinh(a))
Amona = <cosh(a) +i sinh(a)> (cosh(a) + i sinh(a))

w3 w3

and

cosh(a) — Esgn(a) + arctan sinh()
| sinh(a)| + /cosh(2a) 4 cosh(a) + +/cosh(2a) .

Proposition 7.23 (Master formula) Let o be a real number such that o # 0. Let f,, is of the form fn(x) =
|z)?

A
e~ 2 e~ p(x) for some p € P, Then

0 =2(y+(N/2)+n—1) {sgn(a) arctan (

Oa e _ )\noz 6%coth(2o¢)\z\2 (x L ,
@) = 520 g

where
o0

(cosh(a) + 4 sinh(a))7+(V/2)

(cosh(a) — isinh(a))
(cosh(«) 4 i sinh(a))

N3 3

/\n,a =

and

= n— sgn(a) arctan cosh(a) _ ES nla) + arctan sinh(a)
0 = 2(y+(N/2)+ 1){ gn(a) arct <|Sinh(a)|+ W) 7 59n(a) + arct (cosh(a)+ COSh%))}.
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Proposition 7.24

(1) The operator OY have a unique extension to an unitary operator on L3 (RN).

(2) The family of operators {O,?}wg]}h is a Co-group of unitary operators on LE(RN). The Schwartz space S(RY)
is a core of its generator A and Agryy = 5(|z[* + Ag).

(3) For each f € D(A) the function u(t,z) = OL f(z) is the unique classical solution of the problem

{ %U(taw) = Au(t,z) on Ry x RV,
u(Oa) = f S D( );

(4) (i) Let f € S(RN). The function u(t,z) = OL f(z) is the unique solution of the Dunkl-Schrédinger equation

{ iZu(t, ) = H(Jaf? + Au(t,z) on Ry x RY, (7.17)

u(0,.) = f € S(RN).

Moreover, u(t,x) has the following properties:

(ii) u(t,.) € SRYN) for all t € R,.

(iii) u(t + s,x) = O% (u(s,.)) (x) for allt,s € Ry and x € RN,
(tv) For allt € R,

Cl

It Yo < g7 10 e

() [Jult, M2 = [[w(0, )2 for allt € Ry.
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