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A Unified Class of Integral Transforms Related to the

Dunkl Transform

Sami Ghazouani ∗ El Amine Soltani †and Ahmed Fitouhi ‡

Abstract

In the present paper, a new family of integral transforms depending on two parameters and related
to the Dunkl transform is introduced. Well-known transforms, such as the fractional Dunkl transform,
Dunkl transform, linear canonical transform, canonical Hankel transform, Fresnel transform etc, can be
seen to be special cases of this general transform. Some useful properties of the considered transform such
as Riemann-Lebesgue lemma, reversibility property, additivity property, operational formula, Plancherel
formula, Bochner type identity and master formula are derived. The intimate connection that exists between
this transformation and the quantum harmonic oscillator is developed.

Keywords: Canonical commutation relation, Dunkl transform, fractional Dunkl transform, Generalized Hermite
polynomials and functions, semigroups of operators.

1 Intorduction

Integral transforms provide effective ways to solve a variety of problems arising in pure and applied mathematics.
One example is the linear canonical transform (LCT) which represents a class of integral transforms indexed by a
matrix parameter M ∈ SL(2,R) [4]. Many well-known transforms such as Fourier transform, fractional Fourier
transform, Weierstrass transform and Fresnel transform can be considred as special cases of this transformation
(see [4, 32, 33]). While the theory of classical Fourier transform has a long and rich history, the growin interest
in the theory of Dunkl transform, associated to a finite reflection groups and a multiplicity function k, is
comparably recent. The Dunkl transform, which is a generalization of the Fourier and Hankel transforms, was
introduced by C. F. Dunkl [9] and further studied by several authors (see [5, 9, 24]).

The primary aim of this article is to investigate a new integral transform that can unify all integral transforms
stated in the previous paragraph. It seems desirable to have a more unified approach to all these integral
transforms. According to literature M. Moshinsky and C. Quesne tackled this issue and considered that LCT
is the group of unitary integral transforms that preserves the basic Heisenberg uncertainty relation of quantum
mechanics in one or higher dimensions [22]. Furthermore, LCTs can be seen as the group of actions generated
by the Lie algebra of quadratic Hamiltonian operators [32]. We briefly survey this mathematical framework.
Let H be a Hilbert space. For a linear operator T on H, we denote by D(T ) the domain of T . We say that a

set {Qj , Pj}Nj=1 of self-adjoint operators on H is a representation of the canonical commutation relations (CCR)

with N degrees of freedom [13], if there exists a dense subspace D of H such that
• D ⊂ ∩N

j,k=1 [D(QjPk) ∩D(PkQj) ∩D(QjQk) ∩D(PjPk)]
• Qj and Pj satisfy on D the CCR

[Qj , Qk] = 0, [Pj , Pk] = 0, [Qj , Pk] = δjk, j, k = 1, . . . , N,

where δjk is the Kronecker symbol.

It is well known that a standard representation of the CCR is the Schrödinger representation
{
qξj , pξj

}N
j=1

which is given as follows: {ξj}Nj=1 is an orthonormal basis of RN with respect to the standard inner product

〈.〉, H = L2(RN , dx), qξj = 〈., ξj〉 (the multiplication operator by the jth coordinate 〈x, ξj〉), pξj = 1
i

∂
∂ξj
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the directional derivative in the direction of ξj), D = S(RN ) ( the Schwartz space of rapidly decreasing C∞

functions on R
N ).

In relation to the Schrödinger representation, consider the set
{
q̃ξj , p̃ξj

}N
j=1

of self-adjoint operators on

L2(RN , dx) of the following type [32, 33]:

q̃ξj = d qξj − b pξj , p̃ξj = −c qξj + a pξj , j = 1, . . . , N,

where a, d, c and d are real numbers such that ad − bc = 1. It is easy to see that the operators q̃ξj and p̃ξj are
related to qξj and pξj through a canonical transform as follows:[

q̃ξj
p̃ξj

]
= M−1

[
qξj
pξj

]
,

where M−1 is the inverse of the unimodular matrix M =

[
a b
c d

]
. Note that since qξj and pξj are self-adjoint,

the family
{
q̃ξj , p̃ξj

}N
j=1

is a representation of the CCR unitarily equivalent to the Schrödinger representation

on L2(RN , dx). More precisely, for each M ∈ SL(2,R), the N -dimensional linear canonical transform

FM : L2(RN , dx) −→ L2(RN , dx),

which is defined by [4] :

FMf(x) =

⎧⎪⎨
⎪⎩

1
(2iπb)N/2

∫
RN

e
i
2 (

d
b |x|2+ a

b |y|2)− i
b 〈x,y〉f(y) dy, b �= 0

e
i
2

c
a

|x|2

|a|N/2 f(x/a), b = 0,
(1.1)

is a unitary operator leaving invariant the Schwartz space S(RN ) and we have for j = 1, . . . , N the following
identities:

FM ◦ qξj ◦
(FM

)−1
= q̃ξj = d qξj − b pξj ,

FM ◦ pξj ◦
(FM

)−1
= p̃ξj = −c qξj + a pξj .

We note that FM is reduced to the classical Fourier transform if M =

[
0 −1
1 0

]
; to the fractional Fourier

transform Fα which is defined by [21]:

Fαf(x) =

⎧⎪⎪⎨
⎪⎪⎩

ei(N/2)((α−2nπ)−α̂π/2)

(2π| sin(α)|)N/2

∫
RN

e
i
2 (|x|2+|y|2) cot(α)− i

sin(α)
〈x,y〉f(y) dy, (2n− 1)π < α < (2n+ 1)π,

f(x), α = 2nπ,
f(−x), α = (2n+ 1)π,

where n ∈ Z and α̂ = sgn(sin(α)) if M =

[
cos(α) − sin(α)
sin(α) cos(α)

]
.

In this paper, we adopt the same approach described above. We consider the set
{
Qξj , Pξj

}N
j=1

of self-adjoint

operators on L2(RN , ωk(x)dx) where {ξj}Nj=1 is an orthonormal basis of RN with respect to the standard inner

product 〈.〉, ωk is a family of weight functions invariant under a finite reflection group, Qξj is the multiplication
operator by the function x 
→ 〈x, ξj〉 and iPξj = Tξj , j = 1, . . . , N, are the Dunkl operators which were
introduced by C.F. Dunkl in [7] as a differential-difference operators associated with a finite reflection group
acting on some Euclidian space and can be regarded as a generalization of the directional derivative. We obtain
the following commutation relations

[Qξj , Qξk ] = 0, [Pξj , Pξk ] = 0, [Qξj , Pξk ] = iEξj ,ξk , j, k = 1, . . . , N, (1.2)

where Eξj ,ξk is the bounded linear operator on L2(RN , ωk(x)dx) defined by

Eξj ,ξkf(x) =< ξj , ξk > f(x) +
∑

η∈R+

k(η) < η, ξj >< η, ξk > f(σηx).
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It is important to note that the above commutation relations are:
• a realization of the Heisenberg-Weyl algebra if k ≡ 0 [13],
• a realization of the deformed Heisenberg-Weyl algebra with reflection if N = 1 [25].

Next we consider the set
{
Q̃ξj , P̃ξj

}N

j=1
of self-adjoint operators on L2(RN , ωk(x)dx) defined by

Q̃ξj = d Qξj − b Pξj , P̃ξj = −c Qξj + a Pξj , j = 1, . . . , N,

where a, b, c and d are real numbers such that ad − bc = 1. We prove that these operators satisfy the same
commutation relations as in (1.2). We introduce a new family

{
DM

k

}
of integral transforms depending on two

parameters; one is a matrix M ∈ SL(2,R) and the other is a multiplicity function k on root system, and
preserving the commutation relations (1.2). More precisely, we prove the following identities:

DM
k ◦Qξj ◦

(
DM

k

)−1
= Q̃ξj = d Qξj − b Pξj ,

DM
k ◦ Pξj ◦

(
DM

k

)−1
= P̃ξj = −c Qξj − a Pξj .

This new family of integral transforms is interesting for several reasons such as when considering only the
parameter k, DM

k generalizes many operations such as canonical Hankel transform, linear canonical transform
etc. Moreover, various choices of the matrix M yield different integral transforms such as:
• The Dunkl transform which was introduced and studied by Dunkl [9]. Dunkl’s results were completed and
extended later by de Jeu [5]. The Dunkl transform which is a generalization of the classical Fourier transform
and Hankel transform, is defined, for f ∈ L1(RN , ωk(x)dx), by [9]:

Dkf(x) =
ck

2γ+N/2

∫
RN

f(y)Ek(−ix, y)ωk(y)dy,

where Ek is the Dunkl kernel (see[8, 23]) and c−1
k =

∫
RN

e−|x|2wk(x)dx.

• The fractional Dunkl transform which is defined by [14, 15]

Dα
k f(x) =

⎧⎪⎪⎨
⎪⎪⎩

cke
i(γ+N/2)((α−2nπ)−α̂π/2)

(2| sinα|)γ+N/2

∫
RN

e
i
2 (|x|2+|y|2) cotαEk(−ix/ sin(α), y)f(y) dy, (2n− 1)π < α < (2n+ 1)π,

f(x), α = 2nπ,
f(−x), α = (2n+ 1)π,

(1.3)

where n ∈ Z and α̂ = sgn(sinα).
• A Dunkl-type analogues of the classical Fresnel transform which was investigated by Rösler [29] in the study

of the semi-group
(
eitΔk

)
t≥0

(Δk is the Dunkl Laplacian operator) as follows:

eitΔkf(x) =

⎧⎨
⎩

ck
(2it)γ+(N/2)

∫
RN

e
i
2t (|x|2+|y|2)Ek(−ix/t, y)f(y)ωk(y) dy, t > 0

f(x), t = 0.

Also, DM
k provides a unified framework for studying:

• Riemann-Lebesgue lemma.
• Reversibility property.
• Additivity property: Under certain conditions imposed on the functions f , we establish the following theorem:

DM1

k DM2

k f = eiψ DM1M2

k f,

where M1 and M2 are an arbitrary matrix of SL(2,R) and ψ a constant phase.
• Operational formula: we prove that DM

k leaves invariant the Schwartz space S(RN ) and satisfies on S(RN )
the following identities:

DM
k ◦Qξj ◦

(
DM

k

)−1
= Q̃ξj = d Qξj − b Pξj ,

DM
k ◦ Pξj ◦

(
DM

k

)−1
= P̃ξj = −c Qξj − a Pξj ,

where j = 1, . . . , N.
• Bochner type identity: by application of the Dunkl type Funk-Hecke formula for k-spherical harmonics which
was established by Y. Xu [34], we derive the following identity

DM
k f(x) = p(x)HM

n+γ+(N/2)−1ψ(|x|), (1.4)
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where f is of the form f(x) = p(x)ψ(|x|) (p is a homogeneous polynomial of degree n and satisfies the Dunkl-
Laplace equation Δkp(x) = 0 and ψ is a one-dimensional function on R+) and where HM

n+γ+(N/2)−1 is the

canonical Hankel transform of order n+ γ + (N/2)− 1.
We note that the Bochner type identity (1.4) reduces to the Bochner identity for the Dunkl transform; which

was proved by Dunkl in [9] and later in [1] using a representation theory approach, if M =

[
0 −1
1 0

]
.

As application we obtain the following results:

DM
k ψm,n,j(x) = λm,n,a,b e

i(ac+bd)

2(a2+b2)
|x|2

ψm,n,j

(
x√

a2 + b2

)
,

where ψm,n,j(x) is the generalized Laguerre functions and λm,n,a,b is an appropriate constant.
• Master formula: we prove the following identity. Let P be a homogeneous polynomial of degree n. Then

DM
k fn(x) = λn,a,b e

i(ac+bd)

2(a2+b2)
|x|2

fn

(
x√

a2 + b2

)
,

where fn is of the form fn(x) = e−
|x|2
2 e−

Δk
4 p(x) and λn,a,b is an appropriate constant.

• Plancherel formula: we prove that the generalized Dunkl transform DM
k initially defined on L1(RN , ωk(x)dx)

has a unique extension to a unitary operator of L2(RN , ωk(x)dx).

• A generalized Dunkl-Schrödinger operator: we prove the following result. Let

{
M(τ) =

[
a(τ) b(τ)
c(τ) d(τ)

]}
τ∈R

be a one-parameter subgroup of SL(2,R). Then the family
{
D

M(τ)
k

}
τ∈R

is a C0-group of unitary operators on

L2(RN , ωk(x)dx) and we derive its generator L which is the self-adjoint extension of

L|S(RN ) = −a
′
(0)H+ c

′
(0)E+ b

′
(0)F,

where

E = i
|x|2
2

, F = i
Δk

2
, H = (γ +N/2) +

N∑
j=1

xj
∂

∂xj
,

are the sl(2) triple which was first introduced by Heckman in [18] and later in [1, 2, 3] where the authors showed
that there exists an infinitesimal representation of the Lie algebra sl(2,R) on the Schwartz space S(RN ) that
can be used as a crucial (and surprising) tool to treat various problems related to the theory of Dunkl operators.
As application we solve the following generalized Dunkl-Schrödinger equation⎧⎪⎪⎨

⎪⎪⎩
i
∂

∂t
u(t, x) = −ia

′
(0)

⎛
⎝(γ +N/2) +

N∑
j=1

xj
∂

∂xj

⎞
⎠u(t, x)−

(
c
′
(0)

|x|2
2

+ b
′
(0)

Δk

2

)
u(t, x),

u(0, x) = f(x) ∈ L2(RN , ωk(x)dx).

This paper is organized as follows. Section 2 is devoted to an overview of the Dunkl theory. In section 3 we in-
troduce the generalized Dunkl transform DM

k on R
N with parameter M ∈ SL(2,R). Riemann-Lebesgue lemma,

reversibility property, additivity property, operational formula, Bochner type identity and master formula are
derived in section 4. Section 5 and 6 are devoted to the extension of the generalized Dunkl transform DM

k as an
isometry from L2

k(R
N ) to itself and the intimate relationship between the generalized Dunkl transform and the

quantum harmonic oscillator. In section 7 we present some interesting one-parameter subgroups of SL(2,R)
with the associated integral transform, its basic properties and the related Dunkl-Schrödinger operator and
equation.

2 Background: Dunkl theory

In this section, we recall some notations and results on Dunkl operators, Dunkl transform, and generalized
Hermite functions (see, [5, 6, 7, 8, 23, 27]).
Notation:
• We denote by Z+ the set of non-negative integers. For a multi-index ν = (ν1, . . . , νN ) ∈ Z

N
+ , we write

|ν| = ν1 + · · · + νN . The C-algebra of polynomial functions on R
N is denoted by P = C[RN ]. It has a natural

grading

P =
⊕
n≥0

Pn,
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where Pn is the subspace of homogenous polynomials of (total) degree n. S(RN ) is the Schwartz space of rapidly
decreasing functions on R

N and C0(RN ) is the space of continuous functions on R
N vanishing at infinity.

• For z = x+ iy
(
(x, y) ∈ R

2\{(x, 0);x ≤ 0}
)
, we denote by za = ea ln(z) where

ln(z) = ln
√
x2 + y2 + 2i arctan

(
y

x+
√

x2 + y2

)

is the principal branch of the complex logarithmic function. Then we can write:(
eiα
)γ+N

2 = ei(γ+
N
2 )(α−2kπ) with (2k − 1)π < α < (2k − 1)π and k ∈ Z.

2.1 Dunkl operators and Dunkl Kernel

In R
N , we consider the standard inner product

〈x, y〉 =
N∑

k=1

xkyk.

We shall use the same notation for its bilinear extension to C
N × C

N . For x ∈ R
N , denote |x| =√〈x, x〉.

For u ∈ R
N\{0}, let σu be the reflection in the hyperplane (Ru)⊥ orthogonal to u

σu(x) = x− 2
〈u, x〉
|u|2 u, x ∈ R

N . (2.1)

A root system is a finite spanning set R ⊂ R
N of nonzero vectors such that, for every u ∈ R, σu preserves R.

We shall always assume that R is reduced, i.e. R ∩ Ru = ±u, for all u ∈ R. Each root system can be written
as a disjoint union R = R+ ∪ (−R+), where R+ and (−R+) are separated by a hyperplane through the origin.
The subgroup G ⊂ O(N) generated by the reflections {σu; u ∈ R} is called the finite reflection group associated
with R. Henceforth, we shall normalize R so that 〈u, u〉 = 2 for all u ∈ R. This simplifies formulas, without
loss of generality for our purposes. We refer to [19] for more details on the theory of root systems and reflection
groups.
A multiplicity function on R is a G-invariant function k : R → C, i.e. k(σu) = k(u), for fall u ∈ R and σ ∈ G.
The C-vector space of multiplicity functions on R is denoted by K. The dimension of K is equal to the number
of G-orbits in R. We set K+ to be the set of multiplicity functions k such that k(u) ≥ 0 for all u ∈ R.

For ξ ∈ C
N and k ∈ K, C. Dunkl [7] defined a family of first order differential-difference operators Tξ(k) that

play the role of the usual partial differentiation. Dunkl’s operators are defined by

Tξ(k)f(x) := ∂ξf(x) +
∑

η∈R+

k(η) < η, ξ >
f(x)− f(σηx)

〈η, x〉 , f ∈ C1(RN ). (2.2)

Here ∂ξ denotes the derivative in the direction of ξ. Thanks to the G-invariance of the function k, this definition
is independent of the choice of the positive subsystem R+. The operators Tξ(k) are homogeneous of degree
(−1). Moreover, by the G-invariance of the multiplicity function k, the Dunkl operators satisfy

h ◦ Tξ(k) ◦ h−1 = Thξ(k), ∀ h ∈ G,

where h.f(x) = f(h−1x). The most striking property of Dunkl operators Tξ(k), which is the foundation for rich
analytic structures with them, is the following

Theorem 2.1 For fixed k, Tξ(k) ◦ Tη(k) = Tη(k) ◦ Tξ(k), ∀ξ, η ∈ R
N .

This result was obtained in [7] by a clever direct argumentation. An alternative proof, relying on Koszul complex
ideas, is given in [10].
The Dunkl operators Tξ have the following regularity properties:

Theorem 2.2
(1) If f ∈ Cm(RN ) with m ≥ 1, then Tξf ∈ Cm−1(RN ).
(2) Tξ leaves C∞

c (RN ) and S(RN ) invariant.
(3) (Cf. [9].) Let k ≥ 0. For every f ∈ S(RN ) and g ∈ C1

b (R
N ),∫

RN

Tξf(x)g(x)wk(x)dx = −
∫
RN

f(x)Tξg(x)wk(x)dx. (2.3)
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For k ∈ K+, there exists a generalization of the usual exponential kernel e〈.,.〉 by means of the Dunkl system of
differential equations.

Theorem 2.3 Assume that k ∈ K+.
(i) (Cf. [8, 23].) There exists a unique holomorphic function Ek on C

N × C
N characterized by{

Tξ(k)Ek(z, w) = 〈ξ, w〉Ek(z, w), ∀ ξ ∈ C
N ,

Ek(0, w) = 1,
(2.4)

Further, the Dunkl kernel Ek is symmetric in its arguments and satisfies

Ek(λz, w) = Ek(z, λw), Ek(z, w) = Ek(z, w) and Ek(gz, gw) = Ek(z, w) (2.5)

for all z, w ∈ C
N , λ ∈ C and g ∈ G.

(ii) (Cf. [26].) For all x ∈ R
N , y ∈ C

N and all multi-indices ν ∈ Z
N
+ ,

|∂ν
yEk(x, y)| ≤ |x||ν| max

g∈G
eRe〈gx,y〉.

In particular,

|∂ν
yEk(x, y)| ≤ |x||ν|e|x||Rey|, (2.6)

and for all x, y ∈ R
N :

|Ek(ix, y)| ≤ 1. (2.7)

Remark 2.1
• When k = 0, we have E0(z, w) = e〈z,w〉 for z, w ∈ C

N .
• For complex-valued k, there is a detailed investigation of (2.4) by Opdam [23]. Theorem 2.3 (i) is a weak
version of Opdam’s result.
• M. de Jeu had already an estimate on Ek with slightly weaker bounds in [5], differing by an additional factor√|G|.

The counterpart of the usual Laplacian is the Dunkl-Laplacian operator defined by Δk :=
N∑
i=0

Tξi(k)
2, where

{ξj}Nj=1 is an arbitrary orthonormal basis of (RN , 〈., , 〉). It is homogeneous of degree −2. By the normalization
〈u, u〉 = 2, we can rewrite Δk as

Δkf(x) = Δf(x) + 2
∑

η∈R+

k(η)

[ 〈∇f(x), η〉
〈η, x〉 − f(x)− f(σηx)

〈η, x〉2
]
, (2.8)

where Δ and ∇ denote the usual Laplacian and gradient operators, respectively (cf.[7]).

2.2 Dunkl transform

For fixed k ∈ K+, let ωk be the weight function on R
N defined by

ωk(x) =
∏

η∈R+

|〈η, x〉|2k(η).

It is G-invariant and homogeneous of degree 2γ, with the index

γ = γ(k) =
∑

η∈R+

k(η).

Let dx be the Lebesgue measure corresponding to 〈., .〉 and set Lp
k(R

N ) the space of measurable functions on
R

N such that

‖f‖k,p =

(∫
RN

|f(x)|pωk(x) dx

) 1
p

< +∞, if 1 ≤ p < +∞.
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Following Dunkl [9], we define the Dunkl transform on the space L1
k(R

N ) by

Dkf(x) =
ck

2γ+N/2

∫
RN

f(y)Ek(−ix, y)ωk(y)dy,

where ck denotes the Mehta-type constant ck =

(∫
RN

e−|x|2wk(x)dx

)−1

. Many properties of the Euclidean

Fourier transform carry over to the Dunkl transform. In particular:

Theorem 2.4 (Cf. [5, 9].)
a) (Riemann-Lebesgue lemma) For all f ∈ L1

k(R
N ), the Dunkl transform Dkf belongs to C0(R

N ).
b) (L1-inversion) For all f ∈ L1

k(R
N ) with Dkf ∈ L1

k(R
N ),

D2
kf = f̌ , a.e, where f̌(x) = f(−x). (2.9)

c) The Dunkl transform f → Dkf is an automorphism of S(RN ).
d) For all f ∈ S(RN ), the Dunkl transform satisfies the following identities:

DkTξf(x) = i〈ξ, x〉Dkf(x), TξDkf(x) = −iDk [〈ξ, y〉f(y)] (x) (2.10)

e) (Plancherel Theorem)
i) If f ∈ L1

k(R
N ) ∩ L2

k(R
N ), then Dkf ∈ L2

k(R
N ) and ‖Dkf‖k,2 = ‖f‖k,2.

ii) The Dunkl transform has a unique extension to an isometric isomorphism of L2
k(R

N ). The extension is also
denoted by f → Dkf.

We conclude this subsection with two important reproducing properties for the Dunkl kernel due to [9].

Theorem 2.5 (Cf. [9].) For all p ∈ P and y, z ∈ C
N ,

(1) ck
2γ+N/2

∫
RN

e−Δk/2p(x) Ek(x, y) ωk(x) e
−|x|2/2dx = el(y)/2p(y).

(2) ck
2γ+N/2

∫
RN

Ek(x, y)Ek(x, z) ωk(x) e
−|x|2/2dx = e(l(y)+l(z))/2Ek(y, z).

2.3 Generalized Hermite functions

For an arbitrary finite reflection group G and for any non-negative multiplicity function k, Rösler [24] intro-

duced a complete systems of orthogonal polynomials with respect to the weight function ωk(x) e
−|x|2dx, called

generalised Hermite polynomials. The key to their definition is the following bilinear form on P, which was
introduced in [8]:

[p, q]k := (p(T )q)(0) for p, q ∈ P.

The homogeneity of the Dunkl operators implies that Pn ⊥ Pm for n �= m. Moreover, if p, q ∈ Pn, then

[p, q]k = 2nck

∫
RN

e−Δk/4p(x) e−Δk/4q(x) ωk(x) e
−|x|2dx.

This is obtained from Theorem 3.10 of [8] by rescaling, see lemma (2.1) in [24]. So in particular, [., .]k is a scalar
product on the vector space PR = R[x1, . . . , xN ].

Now let {ϕν , ν ∈ Z
N
+} be an (arbitrary) orthonormal basis of PR with respect to [., .]k such that ϕν ∈ P|ν| (For

details concerning the construction and canonical choices of such a basis, we refer to [24]). Then the generalised
Hermite polynomials {Hν , ν ∈ Z

N
+} and the (normalised) generalised Hermite functions {hν , ν ∈ Z

N
+} associated

with G, k and {ϕν} are defined by

Hν(x) := 2|ν|e−Δk/4ϕν(x) and hν(x) :=

√
ck

2|ν|/2
e−|x|2/2Hν(x) (x ∈ R

N ). (2.11)

We list some standard properties of generalised Hermite functions that we shall use in this article.

Theorem 2.6 (Cf. [24].) Let {Hν} and {hν} be the Hermite polynomials and Hermite functions associated
with the basis {ϕν} on R

N and let x, y ∈ R
N . Then

(1) The hν satisfy hν(−x) = (−1)|ν|hν(x).
(2) {hν , ν ∈ Z

N
+} is an orthonormal basis of L2

k(R
N ).
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(3) The hν are eigenfunctions of the Dunkl transform on L2
k(R

N ), with Dkhν = (−i)|ν|hν .
(4) (Mehler formula) For r ∈ C with |r| < 1,

∑
ν∈Z

N
+

Hν(x)Hν(y)

2|ν|
r|ν| =

e
− r2(|x|2+|y|2)

1−r2

(1− r2)γ+(N/2)
Ek

(
2zx

1− z2
, y

)
.

Throughout this paper, R denotes a root system in R
N , R+ a fixed positive subsystem of R and k a nonnegative

multiplicity function defined on R.

3 A generalized Dunkl transform.

3.1 Some remarks on Dunkl operators

Consider the Hilbert space L2
k(R

N ) equipped with the inner product 〈., .〉k given by

〈f, g〉k =

∫
RN

f(x)g(x)wk(x)dx.

For each ξ ∈ R
N , we denote by Qξ the multiplication operator

Qξf(x) = 〈ξ, x〉f(x)

acting in L2
k(R

N ) with domain D(Qξ) =
{
f ∈ L2

k(R
N ); Qξf ∈ L2

k(R
N )
}
and Pξ the operator defined on S(RN )

by

Pξf(x) = −iTξf(x).

3.1.1 Commutation relations for the Dunkl and multiplication operators

Let ξ and ξ
′ ∈ R

N . We denote by Eξ,ξ′ the bounded linear operator on L2
k(R

N ) defined by

Eξ,ξ′ f(x) =< ξ, ξ
′
> f(x) +

∑
η∈R+

k(η) < η, ξ >< η, ξ
′
> f(σηx).

Remark 3.1
(i) The operator Eξ,ξ′ is symmetric with respect to ξ and ξ

′
. In other words, for all ξ and ξ

′ ∈ R
N , Eξ,ξ′ = Eξ′ ,ξ.

(ii) When the multiplicity function k = 0, the operator Eξ,ξ′ reduces to < ξ, ξ
′
> I (I is the identity operator).

The following lemma will be useful to our study of the commutator relations between the Dunkl and multipli-
cation operators.

Lemma 3.1 Let ξ and ξ
′ ∈ R

N . The following equality hold in S(RN ) :

[Tξ, Qξ′ ] = Eξ,ξ′ . (3.1)

Proof. Let ξ, ξ
′ ∈ R

N . Since S(RN ) is an invariant subspace for Tξ and for Qξ′ (see [5]), then

S(RN ) ⊂ D(TξQξ′ ) ∩D(Qξ′Tξ).

Let f ∈ S(RN ). Obviously,

PξQξ′ f(x) = −iTξ(〈ξ′
, x〉f(x)).

Applying the Dunkl operator Tξ to 〈ξ′
, .〉f, we obtain

Tξ(〈ξ′
, x〉f(x)) = ∂ξ(〈ξ′

, x〉f(x))

+
∑
η∈R+

k(η)〈η, ξ〉 〈ξ
′
, x〉f(x)− 〈ξ′

, σηx〉f(σηx)

〈η, x〉 . (3.2)
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The product rule for the directional derivative of 〈ξ′
, .〉f, gives

∂ξ(〈ξ′
, .〉f) = 〈ξ′

, ξ〉f + 〈ξ′
, .〉∂ξf. (3.3)

Now substituting (3.3) into (3.2) and replacing ση on the left-hand side (3.2) by their expression giving in (2.1),
we find that

Tξ(〈ξ′
, x〉f(x)) = 〈ξ′

, ξ〉f(x) + 〈ξ′
, x〉

⎡
⎣∂ξf(x) + ∑

η∈R+

k(η)〈η, ξ〉f(x)− f(σηx)

〈x, η〉

⎤
⎦

+
∑
η∈R+

k(η)〈η, ξ〉〈η, ξ′〉f(σηx),

= 〈ξ′
, ξ〉f(x) + 〈ξ′

x〉Tξf(x) +
∑
η∈R+

k(η)〈η, ξ〉〈η, ξ′〉f(σηx).

Hence,
[Tξ, Qξ′ ] = Eξ,ξ′ .

To each orthonormal basis {ξj}Nj=1 from R
N we associate the following family

{
Qξj , Pξj

}N
j=1

of operators. Then

Corollary 3.1 The operators Qξj and Pξj , j = 1, . . . , N satisfy on S(RN ) the commutation relations:

[Qξj , Qξk ] = 0, [Pξj , Pξk ] = 0, [Qξj , Pξk ] = iEξj ,ξk , j, k = 1, . . . , N. (3.4)

Proof. The first equality is clear, the second by Theorem 2.1, the third by (3.1).

Let M =

[
a b
c d

]
be any reel unimodular matrix. Let Q

′
ξ and P

′
ξ be the two operators defined on S(RN ) by

Q
′
ξ = d Qξ − b Pξ, P

′
ξ = −c Qξ + a Pξ. (3.5)

It is easily to see that these two operators can be written in matrix form as follows:(
Q

′
ξ

P
′
ξ

)
= M−1

(
Qξ

Pξ

)
.

By means of direct calculation one can verify that these operators satisfy the following commutation relations.

Proposition 3.1 Let {ξj}Nj=1 be any orthonormal basis of RN . The operators Q
′
ξj

and P
′
ξj
, j = 1, . . . , N satisfy

on S(RN ) the commutation relations:

[Q
′
ξj , Q

′
ξk
] = 0, [P

′
ξj , P

′
ξk
] = 0, [Q

′
ξj , P

′
ξk
] = iEξj ,ξk , j, k = 1, . . . , N.

Proof. Let ξ and ξ
′ ∈ R

N . The commutator of Q
′
ξ and Q

′

ξ′ is

[Q
′
ξ, Q

′

ξ′ ] = [dQξ − bPξ, dQξ′ − bPξ′ ]

= d2[Qξ, Qξ′ ] + b2[Pξ, Pξ′ ] + bd[Pξ′ , Qξ]− bd[Pξ, Qξ′ ].

Since [Qξ, Qξ′ ] = 0 = [Pξ, Pξ′ ] and [Pξ′ , Qξ] = Eξ,ξ′ = [Pξ, Qξ′ ], we conclude

[Q
′
ξ, Q

′

ξ′ ] = 0.

In a similar way, the commutator of P
′
ξ and P

′

ξ′ is

[P
′
ξ , P

′

ξ′ ] = [−cQξ + aPξ,−cQξ′ + aPξ′ ]

= c2[Qξ, Qξ′ ] + a2[Pξ, Pξ′ ] + ac[Pξ′ , Qξ]− ac[Pξ, Qξ′ ]

= 0.

Proceeding as before, the commutator of Q
′
ξ and P

′

ξ′ is

[Q
′
ξ, P

′

ξ′ ] = [dQξ − bPξ,−cQξ′ + aPξ′ ]

= −dc[Qξ, Qξ′ ]− ab[Pξ, Pξ′ ]− ad[Pξ′ , Qξ] + bc[Pξ, Qξ′ ]

= i(ad− bc)Eξ,ξ′

= iEξ,ξ′ .
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3.2 The generalized Dunkl kernel

In this subsection, we construct a family of a unitary operator J : L2
k(R

N ) −→ L2
k(R

N ) which preserves the
commutation relations (3.4). More precisely, we look for a unitary operator J from L2

k(R
N ) onto L2

k(R
N ) such

that:

J ◦Qξ ◦ J−1 = Q
′
ξ = d Qξ − b Pξ, (3.6)

J ◦ Pξ ◦ J−1 = P
′
ξ = −c Qξ + a Pξ. (3.7)

We shall denote the transform operator as JM by the unimodular matrix M =

[
a b
c d

]
, detM = 1. We

proceed as in the proof of Theorem 5.7 in [3]. By the Schwartz kernel theorem, the operator JM can be expressed
by means of a distribution kernel KM (x, y). If we adopt Gelfand’s notation on a generalized functions, we may
write the operator JM on L2

k(R
N ) as an ’integral transform’ against the measure ωk(y)dy :

JM (f)(x) =

∫
RN

f(y)KM (x, y)ωk(y)dy. (3.8)

According to (3.6) and (3.7), the JM transform of (Qξf)(y) will be

JM (Qξf)(x) = (JMQξJ−1
M )(JM (f))(x) = (d Qξ − b Pξ)JM (f)(x)

= d Qξ(JM (f))(x)− b Pξ(JM (f))(x). (3.9)

Similarly, the JM transform of (Pξf)(y) is

JM (Pξf)(x) = (JMPξJ−1
M )(JM (f))(x) = (−c Qξ + a Pξ)(JM (f))(x)

= −c Qξ(JM (f))(x) + a Pξ(JM (f))(x). (3.10)

Rewriting the conditions (3.9) and (3.10) by means of the ’integral transform’ (3.8):∫
RN

(Qξf)(y)KM (x, y)ωk(y)dy =

∫
RN

f(y)Qy
ξKM (x, y)ωk(y)dy

= (d Qx
ξ − b P x

ξ )

∫
RN

f(y)KM (x, y)ωk(y)dy,

=

∫
RN

f(y)(d Qx
ξ − b P x

ξ )KM (x, y)ωk(y)dy (3.11)

and ∫
RN

P y
ξ f(y)KM (x, y)ωk(y)dy = −

∫
RN

f(y)P y
ξ KM (x, y)ωk(y)dy

= (−c Qx
ξ + a P x

ξ )

∫
RN

f(y)KM (x, y)ωk(y)dy.

=

∫
RN

f(y)(−c Qx
ξ + a P x

ξ )KM (x, y)ωk(y)dy, (3.12)

where f is any test function (i.e. f(x)ωk(x)
1
2 ∈ S(Rn)).

A sufficient condition for (3.11) and (3.12) to hold is that KM (x, y) satisfy the following differential-difference
equations: {

Qy
ξKM (x, y) = (d Qx

ξ − b P x
ξ )KM (x, y),

−P y
ξ KM (x, y) = (−c Qx

ξ + a P x
ξ )KM (x, y),

(3.13)

where Qx
ξ and P x

ξ act in the x variable.

Remark 3.2

• In the case M =

[
0 −1
1 0

]
the system (3.13) reduces to

{
Qy

ξKM (x, y) = P x
ξ KM (x, y),

P y
ξ KM (x, y) = Qx

ξKM (x, y).
(3.14)
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The Dunkl kernel Ek(ix, y) is a solution of (3.14).
• In the case b = 0, KM (x, y) is a distribution kernel satisfies the differential equations{

Qy
ξKM (x, y) = 1

a Qx
ξKM (x, y),

−P y
ξ KM (x, y) = (−c Qx

ξ + a P x
ξ )KM (x, y).

In this case we prove that the operator J1 : L2
k(R

N ) −→ L2
k(R

N ) defined by

J1f(x) =
ei

c
2a |x|2

|a|γ+(N/2)
f(x/a)

is unitary and we have on S(RN ) the following identities:

J1 ◦Qξ ◦ J−1
1 =

1

a
Qξ,

J1 ◦ Pξ ◦ J−1
1 = −c Qξ + a Pξ.

Throughout this paper, we denote by M =

[
a b
c d

]
an arbitrary matrix in SL(2,R).

Theorem 3.1 Let M ∈ SL(2,R) such that b �= 0. Then the function

EM
k (x, y) = e

i
2 (

d
b |x|2+ a

b |y|2)Ek(−ix/b, y) (3.15)

is a solution of {
Qy

ξE
M
k (x, y) = (d Qx

ξ − b P x
ξ )E

M
k (x, y),

−P y
ξ E

M
k (x, y) = (−c Qx

ξ + a P x
ξ )E

M
k (x, y).

(3.16)

Proof. Clearly,

P x
ξ E

M
k (x, y) = −ie

i
2

a
b |y|2Tξ(e

i
2

d
b |x|2Ek(−ix/b, y)). (3.17)

The product rule of the Dunkl operators Tξ gives

Tξ(e
i
2

d
b |x|2Ek(−ix/b, y)) = Tξ(e

i
2

d
b |x|2)Ek(−ix/b, y) + Tξ(Ek(−ix/b, y))e

i
2

d
b |x|2

=
id

b
〈x, ξ〉e i

2
d
b |x|2Ek(−ix/b, y)− i

b
〈y, ξ〉e i

2
d
b |x|2Ek(−ix/b, y). (3.18)

Hence by (3.17) and (3.18), we deduce

Qy
ξE

M
k (x, y) = (d Qx

ξ − b P x
ξ )E

M
k (x, y).

Similarly, we can show that

−P y
ξ E

M
k (x, y) = (−c Qx

ξ + a P x
ξ )E

M
k (x, y). (3.19)

We list some important properties of the kernel EM
k (x, y) in the following proposition.

Proposition 3.2 Let M ∈ SL(2,R) such that b �= 0, g ∈ G and x, y ∈ R
N . Then

1) EM
k (x, y) = EM−1

k (y, x),
2) EM

k (gx, gy) = EM
k (x, y),

3) |EM
k (x, y)| ≤ 1.

Proof. These statements are a direct consequence of Theorem 2.3.

3.3 The generalized Dunkl transfrom

Definition 3.1 Let M ∈ SL(2,R) such that b �= 0. We define the generalized Dunkl transform DM
k for f ∈

L1
k(R

N ) by

DM
k f(x) =

ck
(2ib)γ+(N/2)

∫
RN

f(y)EM
k (x, y)ωk(y)dy. (3.20)
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3.3.1 Case b = 0

In order to extend the Definition 3.1 for b = 0, we need another integral representation for DM
k . We begin by

the following lemma.

Lemma 3.2 For z ∈ C
N , let l(z) =

N∑
i=1

z2i . Then for all z, ω ∈ C
N ,

ck

∫
RN

Ek(2z, x)Ek(2ω, x)e
−A|x|2ωk(x) dx =

e
l(z)+l(ω)

A

Aγ+N/2
Ek(2z/A, ω), (3.21)

where A is a complex number such that �(A) > 0.

Proof. First compute this integral when A > 0.∫
RN

Ek(2z, x)Ek(2ω, x)e
−A|x|2ωk(x) dx =

∫
RN

Ek(2z, x)Ek(2ω, x)e
−|√Ax|2ωk(x) dx.

By the change of variables u =
√
Ax and the homogeneity of ωk, it follows that∫

RN

Ek(2z, x)Ek(2ω, x)e
−A|x|2ωk(x) dx =

1

Aγ+N/2

∫
RN

Ek(2z/
√
A, x)Ek(2ω/

√
A, x)e−|x|2ωk(x) dx.

Using Theorem 2.5 2), we find the equality (3.21) for A > 0. By analytic continuation, this holds for {A ∈ C :
�(A) > 0}.
Theorem 3.2 Let M ∈ SL(2,R) such that a �= 0 and b �= 0. Let f ∈ L1

k(R
N ) ∩ L2

k(R
N ) such that Dkf ∈

L1
k(R

N ). Then
1)

DM
k f(x) =

ck eiϕ

|2a|γ+N/2

∫
RN

e
i
2 (

c
a |x|2− b

a |y|2) Ek(ix/a, y)Dkf(y)ωk(y) dy, (3.22)

where ϕ = π
2

(
γ + N

2

)
(sgn(ab )− sgn(b)).

2) If a > 0, then

lim
b→0+

DM
k f(x) = lim

b→0−
DM

k f(x) =
ei

c
2a |x|2

aγ+(N/2)
f(x/a), a.e.

3) If a < 0, then

lim
b→0+

DM
k f(x) = e−iπ(γ+(N/2)) ei

c
2a |x|2

|a|γ+(N/2)
f(x/a), a.e.

lim
b→0−

DM
k f(x) = eiπ(γ+(N/2)) ei

c
2a |x|2

|a|γ+(N/2)
f(x/a), a.e.

Definition 3.2 We define the generalized Dunkl transform DM
k f for b = 0 by

DM
k f(x) =

ei
c
2a |x|2

|a|γ+(N/2)
f(x/a). (3.23)

Proof of Theorem 3.2:
1) For any ε > 0, define

Fε(x) =

∫
RN

f(y)gε(y)ωk(y) dy,

where gε(y) = e−(ε− i
2

a
b )|y|2Ek(−ix/b, y).

From (2.7), we deduce that |gε(y)| ≤ 1. Then |f(y)gε(y)| ≤ |f(y)|, so we can apply the dominated convergence
theorem to get

lim
ε→0

Fε(x) = c−1
k e−

i
2

d
b |x|2DM

k f(x). (3.24)
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Using Lemma 3.2, we can show

(2ε− i(a/b))γ+N/2 Dkgε(ξ) = e
− |x|2

4εb2−2iab e
− |ξ|2

4ε−2i a
b Ek(−x/(2εb− ia), ξ). (3.25)

Now applying the Parseval formula for the Dunkl transform (see Theorem 2.4, e)) and using (3.25), we obtain

(2ε− i(a/b))γ+N/2 Fε(x) = e
− |x|2

4εb2−2iab

∫
RN

e
− |ξ|2

4ε−2i a
b Ek(−x/(2εb− ia), ξ)Dkf(−ξ)ωk(ξ) dξ.

(2.6) gives the following majorization:

|Ek(−x/(2εb− ia), ξ)| ≤ e
2|b|ε|x||ξ|
4ε2b2+a2 ,

Hence, ∣∣∣∣ e− |ξ|2
4ε−2i a

b Ek(−x/(2εb− ia), ξ)

∣∣∣∣ ≤ e−r1(ε)|ξ|2+r2(ε)|ξ|, (3.26)

where

r1(ε) =
εb2

4ε2b2 + a2
and r2(ε) =

2|b|ε|x|
4ε2b2 + a2

.

As r1(ε) > 0, we deduce that

sup
s≥0

(−r1(ε)s
2 + r2(ε)s) = − r22(ε)

4r1(ε)
. (3.27)

Applying (3.26) and (3.27), we obtain∣∣∣∣ e− |ξ|2
4ε−2i a

b Ek(−x/(2εb− ia), ξ)Dkf(−ξ)

∣∣∣∣ ≤ Bx|Dkf(−ξ)|.

where Bx = sup
ε∈]0,1]

e
ε |x|2

4ε2b2+a2 . The function ξ 
→ Dkf(−ξ) is in L1
k(R

N ), then the dominated convergence theorem

implies

∣∣∣ a
2b

∣∣∣γ+N/2

e−iπ
2 (γ+N/2)sgn( a

b ) lim
ε→0

Fε(x) = e
−i|x|2

2ab

∫
RN

e−
ib
2a |ξ|2 Ek(−ix/a, ξ)Dkf(−ξ)ωk(ξ) dξ. (3.28)

Hence, (3.24) and (3.28) gives after simplification

DM
k f(x) =

ck eiϕ

|2a|γ+N/2

∫
RN

e
i
2 (

c
a |x|2− b

a |y|2) Ek(−ix/a, y)Dkf(−y)ωk(y) dy. (3.29)

Finally, if we make the change of variables u = −y in (3.29), then we find (3.22).
2) and 3) follow from (3.22) together with the dominated convergence theorem and Theorem 2.4, b).

3.3.2 The generalized Dunkl transform in the rank-one case.

Let M =

[
a b
c d

]
∈ SL(2,R). We first observe that when the multiplicity function k = 0, the generalized

Dunkl transform DM
k coincides with the N -dimensional linear canonical transform FM which is defined by

(1.1). In the one-dimensional case (N = 1), the corresponding reflection group W is Z2 and the multiplicity
function k is equal to μ+ 1/2 ≥ 0. The kernel EM

k (x, y) defined by (3.15) becomes

EM
μ (x, y) = e

i
2 (

d
b x

2+ a
b y

2)Eμ (−ix/b, y) , (3.30)

where Eμ(x, y) is the Dunkl kernel of type A2 given by (see [27])

Eμ(ix, y) = jμ(xy) +
ixy

2(μ+ 1)
jμ+1(xy),
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and jμ denotes the normalized spherical Bessel function

jμ(x) := 2νΓ(μ+ 1)
Jμ(x)

xμ
= Γ(μ+ 1)

+∞∑
n=0

(−1)n(x/2)2n

n!Γ(n+ μ+ 1)
.

Here Jμ is the classical Bessel function (see, Watson [30]). The related generalized Dunkl transform DM
μ in

rank-one case takes the form

DM
μ f(x) =

⎧⎪⎨
⎪⎩

1

Γ(μ+ 1)(2ib)μ+1

∫ +∞

−∞
EM

μ (x, y)f(y)|y|2μ+1 dy, b �= 0

e
i
2

c
a

x2

|a|μ+1 f(x/a), b = 0.

(3.31)

Remark 3.3
• The even part of the one-dimensional generalized Dunkl transform (3.31) coincides with the canonical Hankel
transform which is defined by [32]:

HM
μ f(x) =

⎧⎪⎨
⎪⎩

2

Γ(μ+ 1)(2ib)μ+1

∫ +∞

0

e
i
2 (

d
b x

2+ a
b y

2) jμ

(xy
b

)
f(y)y2μ+1 dy, b �= 0,

e
i
2

c
a

x2

|a|μ+1 f(x/a), b = 0.

• In the case where M =

[
cos(α) − sin(α)
sin(α) cos(α)

]
, α ∈ R, the one-dimensional generalized Dunkl transform (3.31)

becomes the fractional Hankel transform multiplied by the constant phase
(
eiα
)μ+1

[20]

Hα
μf(x) =

⎧⎪⎪⎨
⎪⎪⎩

2ei(μ+1)((α−2nπ)−α̂π/2)

Γ(μ+ 1)(2| sin(α)|)μ+1

∫ +∞

0

e−
i
2 cot(α)(x2+y2) jμ

(
xy

sin(α)

)
f(y)y2μ+1 dy, (2n− 1)π < α < (2n+ 1)π,

f(x), α = 2nπ,
f(−x), α = (2n+ 1)π.

4 Properties of generalized Dunkl transform.

In this section, we discuss basic properties of DM
k for general M and k.

4.1 The reversibility property.

Theorem 4.1 Let M ∈ SL(2,R).
1) Suppose that b �= 0. Then for all f ∈ L1

k(R
N ), DM

k f belongs to C0(RN ) and verifies

‖DM
k f‖∞ ≤ ck

(2|b|)γ+(N/2)
‖f‖k,1. (4.1)

2) For all f ∈ L1
k(R

N ) with DM
k f ∈ L1

k(R
N ),

(DM−1

k ◦DM
k )f = f, a.e, and (DM

k ◦DM−1

k )f = f, a.e.

2) The generalized Dunkl transform DM
k is a one-to-one and onto mapping from S(RN ) into S(RN ). Moreover,

(DM
k )−1f = DM−1

k f, f ∈ S(RN ). (4.2)

Proof.
1) The first statement follows immediately from (3.15) and Riemann-Lebesgue lemma for the Dunkl transform
(see Theorem 2.4, a)).

2) It is clear when M =

[
a b
c d

]
∈ SL(2,R) then M−1 =

[
d −b
−c a

]
.

Assume b = 0. In view of (3.23) and ad = 1, a simple computation shows

DM
k ◦DM−1

k f(x) =
ei

c
2a |x|2

|a|γ+(N/2)
DM−1

k f(x/a)

=
ei

c
2a |x|2e−i c

2da2 |x|2

|ad|γ+(N/2)
f(x/(ad))

= f(x).
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When b �= 0, we have

DM
k ◦DM−1

k f(x) =
c2k

(2ib)γ+
N
2 (−2ib)γ+

N
2

ei
d
2b |x|2

∫
RN

Ek(−ix/b, y)

×
(∫

RN

e−i d
2b |z|2f(z)Ek(iy/b, z)ωk(z) dz

)
ωk(y) dy.

By the change of variables u = y/b and the homogeneity of ωk, we obtain

DM
k ◦DM−1

k f(x) = ei
d
2b |x|2 c2k

4γ+N/2

∫
RN

Ek(−ix, u)

×
(∫

RN

e−i d
2b |z|2f(z)Ek(iu, z)ωk(z) dz

)
ωk(u)du

= ei
d
2b |x|2Dk

(
Dk

[
e−i d

2b |z|2f(−z)
])

(x),

= f(x), a.e.

3) That DM
k : S(RN ) −→ S(RN ) is an homeomorphism follows from Theorem 2.4 and the fact that the mapping

Mλ defined by

(Mλf)(x) = e
i
2λ|x|2 , f ∈ S(RN )

is an automorphism on S(RN ) for each λ ∈ R. The statement (DM
k )−1 = DM−1

k follows from part 2).

4.2 An additivity property.

Throughout this subsection, we denote by Mi =

[
ai bi
ci di

]
(i = 1, 2) an arbitrary matrix in SL(2,R). We begin

by following lemmas

Lemma 4.1 Let ε > 0, bi �= 0 (i = 1, 2) and (x, z) ∈ R
N × R

N . Then

ck

∫
RN

e−ε|y|2EM1

k (x, y)EM2

k (y, z)ωk(y) dy =
1

c(ε)
exp

(
i

2

(
d1
b1

|x|2 + a2
b2

|z|2
))

× exp
(−(r1(ε)|x|2 + r2(ε)|z|2)

)
Eμ (−r3(ε)x, z) ,

where

r1(ε) =
b2

4εb2b21 − 2ib1(a1b2 + b1d2)
, r2(ε) =

b1
4εb1b22 − 2ib2(a1b2 + b1d2)

,

r3(ε) =
1

2εb1b2 − i(a1b2 + b1d2)
and c(ε) =

(
ε− i(a1b2 + b1d2)

2b1b2

)γ+(N/2)

.

Proof. Replacing EM1

k (x, y) and EM2

k (y, z) by their definitions, we get∫
RN

e−ε|y|2EM1

k (x, y)EM2

k (y, z)ωk(y) dy = exp

(
i

2

(
d1
b1

|x|2 + a2
b2

|z|2
))

×
∫
RN

e
−
(
ε− i(a1b2+b1d2)

2b1b2

)
|y|2

Ek(−ix/b1, y)Ek(−iy/b2, z)ωk(y) dy.

The desired result follows from Lemma 3.2

Lemma 4.2 Suppose that bi �= 0 (i = 1, 2) and a1b2 + b1d2 �= 0. Let f in L1
k(R

N ) with DM2

k f ∈ L1
k(R

N ). Then

ck

∫
RN

EM1

k (x, y)

(∫
RN

f(z)EM2

k (y, z)ωk(z)dz

)
ωk(y)dy = eiϕ1

∣∣∣∣ 2b1b2
a1b2 + b1d2

∣∣∣∣
γ+(N/2)

×
∫
RN

f(z) EM1M2

k (x, z)ωk(z) dz,

where

ϕ1 =
π

2
(γ + (N/2)) sgn

(
a1b2 + b1d2

b1b2

)
.
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Proof. For any positive number ε, we define the function Iε on R by

Iε(x) = ck

∫
RN

e−ε|y|2EM1

k (x, y)

(∫
RN

f(z)EM2

k (y, z)ωk(z)dz

)
ωk(y)dy.

Since DM2

k f ∈ L1
k(R

N ), it follows from the dominated convergence theorem that

lim
ε→0

Iε(x) = ck

∫
RN

EM1

k (x, y)

(∫
RN

f(z)EM2

k (y, z)ωk(z)dz

)
ωk(y)dy.

Using Fubini’s Theorem and Lemma 4.1, we obtain

Iε(x) =
e

(
i
2

d1
b1

−r1(ε)
)
|x|2

c(ε)

∫
RN

e

(
i
2

a2
b2

−r2(ε)
)
|z|2

f(z)Ek (−r3(ε)x, z)ωk(z)dz.

Using the fact that a1d1 − b1c1 = 1 and a2d2 − b2c2 = 1, we can show

lim
ε→0

c(ε) = e−iϕ1

∣∣∣∣a1b2 + b1d2
2b1b2

∣∣∣∣
γ+(N/2)

,

lim
ε→0

e

(
i
2

d1
b1

−r1(ε)
)
|x|2

= e
i
2

b2c1+d1d2
a1b2+b1d2

|x|2 ,

lim
ε→0

e

(
i
2

a2
b2

−r2(ε)
)
|z|2

f(z)Ek (−r3(ε)x, z) = e
i
2

a1a2+b1c2
a1b2+b1d2

|z|2f(z)Ek(−ix/(a1b2 + b1d2), z).

From (2.6), the following majorization holds:∣∣∣e( ia2
2b2

−r2(ε))|z|2Ek(−r3(ε)x, z)
∣∣∣ = |e−r2(ε))|z|2Ek(−r3(ε)x, z)| ≤ e−
(r2(ε))|z|2+|
(r3(ε))||x||z|, (4.3)

where

�(r2(ε)) = εb21
(2εb1b2)2 + (a1b2 + b1d2)2

, �(r3(ε)) = 2εb1b2
(2εb1b2)2 + (a1b2 + b1d2)2

.

As �(r2(ε)) > 0, we obtain

e−
(r2(ε))|z|2+|
(r3(ε))||x||z| ≤ e
−�2(r3(ε))|x|2

4�(r2(ε))

= e
εb22

(2εb1b2)2+(a1b2+b1d2)2
|x|2

. (4.4)

By means of (4.3) and (4.4), we can write∣∣∣ e−r2(ε)|z|2Ek(−r3(ε)x, z)f(z)
∣∣∣ ≤ rx|f(z)|,

where rx = sup
ε∈]0,1]

e
εb22

(2εb1b2)2+(a1b2+b1d2)2
|x|2

. Thus, the dominated convergence theorem leads to

lim
ε→0

Iε(x) = eiϕ1

∣∣∣∣ 2b1b2
a1b2 + b1d2

∣∣∣∣
γ+(N/2) ∫

RN

f(z) EM1M2

k (x, z)ωk(z) dz.

This completes the proof.

Theorem 4.2 Let f ∈ L1
k(R

N ) with DM2

k f ∈ L1
k(R

N ). Then

DM1

k DM2

k f = eiψ DM1M2

k f,

where the constant phase ψ is given by

ψ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, b1 = 0, b2 = 0,
π
2 (γ + (N/2))(sgn(a1b2)− sgn(b2)), b1 = 0, b2 �= 0,
π
2 (γ + (N/2))(sgn(a2b1)− sgn(b1)), b1 �= 0, b2 = 0,
−π

2 (γ + (N/2))(sgn(b1) + sgn(b2)), b1 �= 0, b2 �= 0, a1b2 + b1d2 = 0,
π
2 (γ + (N/2))

(
sgn(a1b2 + b1d2) + sgn

(
a1b2+b1d2

b1b2

)
− sgn(b1)− sgn(b2)

)
, b1 �= 0, b2 �= 0, a1b2 + b1d2 �= 0,

with equality a. e when b1 �= 0, b2 �= 0 and a1b2 + b1d2 = 0.
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Proof. We shall divide the proof into five steps.
Step I. Suppose that b1 = 0 and b2 = 0. By virtue of (3.23), we have

DM1

k DM2

k f(x) =
ei

c1
2a1

|x|2

|a1|γ+(N/2)
DM2

k f(x/a1)

=
ei

c1
2a1

|x|2

|a1|γ+(N/2)

ei
c2
2a2

| x
a1

|2

|a2|γ+(N/2)
f(x/(a1a2))

=
e

i
2

c1a2+c2d1
a1a2

|x|2

|a1a2|γ+(N/2)
f(x/(a1a2))

= DM1M2

k f(x).

Step II. Suppose that b1 = 0 and b2 �= 0. It is clear that

ck
|a1|γ+(N/2)(2ib2)γ+(N/2)

=
cke

iψ2

(2ia1b2)γ+(N/2)
,

where ψ2 = π
2 (γ + (N/2))(sgn(a1b2)− sgn(b2)). By virtue of (3.23) and (3.20), we have

DM1

k DM2

k f(x) =
ei

c1
2a1

|x|2

|a1|γ+(N/2)
DM2

k f(x/a1)

=
cke

iψ2

(2ia1b2)γ+(N/2)
ei

c1
2a1

|x|2
∫
RN

f(y)e
i
2 (

d2
b2

| x
a1

|2+ a2
b2

|y|2)Ek(−ix/(a1b2), y)ωk(y) dy

= eiψ2 DM1M2

k f(x).

Step III. Suppose that b1 �= 0 and b2 = 0. By (4.2) and step II,

D
M−1

2

k D
M−1

1

k = D
M−1

2 M−1
1

k = D
(M1M2)

−1

k .

The desired result follows upon taking inverses.
Step IV. Suppose b1 �= 0, b2 �= 0 and a1b2 + b1d2 = 0. We have

ck
(2ib1)γ+(N/2)

ck
(2ib2)γ+(N/2)

=
c2ke

iψ4

22γ+N (|b1b2|)γ+(N/2)
,

where ψ4 = −π
2 (γ + (N/2))(sgn(b1) + sgn(b2)). By (3.20), we have

2γ+(N/2)DM1

k DM2

k f(x) =
c2ke

iψ4

(2|b1b2|)γ+(N/2)
ei

d1
2b1

|x|2
∫
RN

DM2

k f(y)e
i
2

a1
b1

|y|2Ek(−ix/b1, y)ωk(y) dy

=
c2ke

iψ4

(2|b1b2|)γ+(N/2)
ei

d1
2b1

|x|2
∫
RN

e
i
2

a1b2+b1d2
b1b2

|y|2
(∫

RN

f(z)e
i
2

a2
b2

|z|2Ek(−iy/b2, z)ωk(z) dz

)
× Ek(−ix/b1, y)ωk(y) dy

=
c2ke

iψ4

(2|b1b2|)γ+(N/2)
ei

d1
2b1

|x|2
∫
RN

(∫
RN

f(z)e
i
2

a2
b2

|z|2Ek(−iy/b2, z)ωk(z) dz

)
Ek(−ix/b1, y)ωk(y) dy.

By using the change of variables u = y
b1
, v = b1

b2
z together with homogeneity of ωk, one gets

DM1

k DM2

k f(x) =
|2b2|2γ+N

c2k

c2ke
iψ4

22γ+N (|b1b2|)γ+(N/2)
ei

d1
2b1

|x|2 D2
k

[
f((b2/b1)z)e

i
a2b2
2b21

|z|2
]
(x)

=
eiψ4

|b1/b2|γ+(N/2)
e

i
2 (

d1
b1

+
a2b2
b21

)|x|2
f((−b2/b1)x), a. e.

Since a1b2 + b1d2 = 0 and a2d2 − b2c2 = 1, it follows that − b1
b2

= a1a2 + b1c2 and using a1d1 − b1c1 = 1, we
obtain

b1d1 + a2b2
b21

=
a2c1 + d1c2
a1a2 + b1c2

.
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Hence

DM1

k DM2

k f(x) = eiψ4DM1M2

k f(x), a. e.

Step V. Suppose b1 �= 0, b2 �= 0 and a1b2 + b1d2 �= 0. By lemma 4.2, we have

DM1

k DM2

k f(x) =
c2ke

iψ4

22γ+N (|b1b2|)γ+(N/2)

∫
RN

EM1

k (x, y)

(∫
RN

f(z)EM2

k (y, z)ωk(z)dz

)
ωk(y)dy

=
cke

i(ψ4+ϕ1)

22γ+N (|b1b2|)γ+(N/2)

∣∣∣∣ 2b1b2
a1b2 + b1d2

∣∣∣∣
γ+(N/2) ∫

RN

f(z) EM1M2

k (x, z)ωk(z) dz

= eiψ5DM1M2

k f(x),

where ψ5 = π
2 (γ + (N/2))

(
sgn(a1b2 + b1d2) + sgn

(
a1b2+b1d2

b1b2

)
− sgn(b1)− sgn(b2)

)
.

4.3 Operational Formula.

Proposition 4.1 Let M ∈ SL(2,R). Then the following properties hold on S(RN ) .
(1) DM

k ◦Qξ = [d Qξ − b Pξ] ◦DM
k ,

(2) DM
k ◦ Pξ = [−c Qξ + a Pξ] ◦DM

k ,
(3) DM

k ◦ Eξ,ξ′ = Eξ,ξ′ ◦DM
k .

Proof.
Case b = 0. From (3.23), we have

(DM
k Mξf)(x) =

ei
c
2a |x|2

aγ+(N/2)
Mξf(x/a)

=
1

a
〈ξ, x〉DM

k f(x)

= d(MξD
M
k f)(x).

To prove (2), using the product rule of the Dunkl operators Tξ to get

Pξ(D
M
k f)(x) = − i

|a|γ+N
2

Tξ(e
i c
2a |x|2f(x/a))

=
c

a
〈x, ξ〉DM

k f(x)− iei
c
2a |x|2

|a|γ+N
2

Tξ(x 
−→ f(x/a)).

In view of (2.2), a simple computation schows

Tξ(x 
−→ f(x/a)) =
1

a
(Tξf)(x/a).

Then

aPξ(D
M
k f)(x) = cMξ(D

M
k f)(x) +DM

k (Pξf)(x).

Case b �= 0. Let f ∈ S(RN ). Using the anti-symmetry of the Dunkl operators Tξ, we obtain

DM
k [Pξf(y)] (x) =

ck
(2ib)γ+(N/2)

∫
RN

EM
k (x, y)Pξf(y)ωk(y)dy

=
ck

(2ib)γ+(N/2)

∫
RN

−P y
ξ E

M
k (x, y)Pξf(y)ωk(y)dy. (4.5)

Substituting (3.19) in (4.5), we get

DM
k [Pξf(y)] (x) = −a

b
DM

k [〈y, ξ〉f(y)] (x) + 1

b
〈x, ξ〉DM

k f(x). (4.6)

To compute Pξ(D
M
k f), write DM

k f = f1f2, where f1(x) = e
i
2

d
b |x|2 and f2(x) = 1

(ib)γ+N
2
Dk

[
e

i
2

a
b |y|2f(y)

]
(xb ).

The product rule of the Dunkl operators Tξ shows that

Pξ(D
M
k f) = Pξ(f1)f1 + f1Pξ(f2).
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By (2.10), it follows that

Pξ(f2)(x) = − 1

(ib)γ+
N
2

1

b
Dk

[
e

i
2

a
b |y|2〈y, ξ〉f(y)

] (x
b

)
.

Hence,

Pξ(D
M
k f)(x) =

d

b
〈x, ξ〉DM

k f(x)− 1

b
DM

k [〈y, ξ〉f(y)](x). (4.7)

Finally, (4.6) and (4.7) together with the relation ad− bc = 1, gives (1) and (2).
(3) Let f ∈ S(RN ) and η ∈ R+. We denote by Sη the N -dimensional symmetry operator defined by

Sηf(y) := f(σηy).

By the change of variables u = σηy, the G-invariance of ωk and according to (2.5), we obtain

DM
k (Sηf)(x) =

ck
(2ib)γ+N/2

∫
RN

e
i
2 (

d
b |x|2+ a

b |y|2)Eμ (−ix/b, y) f(σηy)ωk(y)dy

=
ck

(2ib)γ+N/2

∫
RN

e
i
2 (

d
b |x|2+ a

b |y|2)Eμ (−iσηx/b, y) f(y)ωk(y)dy,

= Sη(D
M
k f)(x).

Hence DM
k Sη = DM

k Sη. As Eξ,ξ′ is a finite linear combination of Sη (η ∈ R+), we deduce the desired result.

Remark 4.1
• The two properties (1) and (2) can be written as

DM
k

[
Qξ

Pξ

]
=

[
Q

′
ξ

P
′
ξ

]
DM

k where

[
Q

′
ξ

P
′
ξ

]
=

[
d −b
−c a

] [
Qξ

Pξ

]
.

• One can give an alternative proof of (3):

DM
k Eξ,ξ′D

M−1

k = iDM
k [Pξ, Qξ′ ]D

M−1

k

= i
[
P

′
ξ , Q

′

ξ′

]
= i(−i)Eξ,ξ′

= Eξ,ξ′ .

4.4 Bochner type identity for the generalized Dunkl transform.

In this section, we begin with a brief summary on the theory of k-spherical harmonics. A introduction to this
subject can be found in the monograph [11]. The space of k-spherical harmonics of degree n ≥ 0 is defined by

Hk
n = KerΔk ∩ Pn.

Let SN−1 =
{
x ∈ R

N ; |x| = 1
}
be the unit sphere in R

N with normalized Lebesgue surface mesure dσ and
L2(SN−1, ωk(x) dσ(x)) be the Hilbert space with the following inner product given by

〈〈f, g〉〉k =

∫
SN−1

f(ω)g(ω)ωk(ω) dσ(ω).

As in the theory of ordinary spherical harmonics, the space L2(SN−1, ωk(x) dσ(x)) decomposes as an orthogonal
Hilbert space sum

L2(SN−1, ωk(x) dσ(x)) =
∞⊕

n=0

Hk
n.

In [34], Y. Xu gives an analogue of the Funk-Hecke formula for k-spherical harmonics. The well-known special
case of the Dunkl-type Funk-Hecke formula is the following (see [26]):
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Proposition 4.2 Let N ≥ 2 and put λ = γ + (N/2)− 1. Then for all Y ∈ Hk
n and x ∈ R

N ,

1

dk

∫
SN−1

Ek(ix, y)Y (y)ωk(y) dσ(y) =
Γ(λ+ 1)

2nΓ(n+ λ+ 1)
jn+λ(|x|)Y (ix), (4.8)

where

dk =

∫
SN−1

ωk(y) dσ(y).

In particular

1

dk

∫
SN−1

Ek(ix, y)ωk(y) dσ(y) = jλ(|x|). (4.9)

An application of the Dunkl-type Funk-Hecke formula is the following:

Theorem 4.3 (Bochner type identity) Let M ∈ SL(2,R) such that b �= 0. If f ∈ L1
k(R

N ) ∩ L2
k(R

N ) is of the
form f(x) = p(x)ψ(|x|) for some p ∈ Hk

n and a one-variable ψ on R+, then

DM
k f(x) = p(x)HM

n+γ+(N/2)−1ψ(|x|). (4.10)

In particular, if f is radial, then
DM

k f(x) = HM
γ+(N/2)−1ψ(|x|).

Proof. By spherical polar coordinates, we have

DM
k f(x) =

ck

(2ib)γ+
N
2

∫
RN

f(y)EM
k (x, y)ωk(y)dy

=
ck

(2ib)γ+
N
2

∫ +∞

0

rN−1F (r, x) dr, (4.11)

where

F (r, x) =
2πN/2

Γ(N/2)

∫
SN−1

EM
k (x, ry)p(ry)ψ(r|y|)ωk(ry) dσ(y).

From (3.15) and the homogeneity of ωk and p, we obtain

F (r, x) =
2πN/2

Γ(N/2)
e

i
2 (

d
b |x|2+ a

b r
2)ψ(r)r2γ+n

∫
SN−1

p(y)Ek(−irx/b, y)ωk(y) dσ(y).

Using (4.8), we get

F (r, x) =
2πN/2dk
Γ(N/2)

Γ(λ+ 1)

2nΓ(λ+ n+ 1)

× e
i
2 (

d
b |x|2+ a

b r
2)ψ(r)r2γ+np

(
− irx

b

)
jλ+n

(
r|x|
b

)
,

where

λ = γ + (N/2)− 1.

Using again the homogeneity of p, we get

F (r, x) =
2πN/2dk
Γ(N/2)

Γ(λ+ 1)

2nΓ(λ+ n+ 1)

(
− i

b

)n

× e
i
2 (

d
b |x|2+ a

b r
2)ψ(r)r2γ+2np(x)jλ+n

(
r|x|
b

)
.
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Now we can express a relationship between dk and ck. In fact

c−1
k =

∫
RN

e−|y|2ωk(y) dy

=
2πN/2

Γ(N/2)

∫ +∞

0

rN−1e−r2
∫
SN−1

ωk(ry) dσ(y) dr

=
2πN/2

Γ(N/2)

∫ +∞

0

r2γ+N−1e−r2
∫
SN−1

ωk(y) dσ(y) dr

=
πN/2Γ(λ+ 1)dk

Γ(N/2)
. (4.12)

By the use of (4.12), we obtain

ck

(2ib)γ+
N
2

2πN/2dk
Γ(N/2)

Γ(λ+ 1)

2nΓ(λ+ n+ 1)

(
− i

b

)n

=
2

Γ(λ+ n+ 1)(2ib)λ+n+1
.

Hence

F (r, x) =
2e

i
2 (

d
b |x|2+ a

b r
2)r2γ+2n

Γ(λ+ n+ 1)(2ib)λ+n+1
ψ(r)p(x)jλ+n

(
r|x|
b

)
. (4.13)

Substituting (4.13) in (4.11) to get

DM
k f(x) =

2

Γ(λ+ n+ 1)(2ib)λ+n+1
p(x)

×
∫ +∞

0

e
i
2 (

d
b |x|2+ a

b r
2)ψ(r)r2(λ+n)+1jλ+n

(
r|x|
b

)
dr

= p(x)HM
n+λψ(|x|)

= p(x)HM
n+γ+(N/2)−1ψ(|x|).

Now, we give the material needed for an application of Bochner type identity. Let {pn,j}1≤j≤ak
n
be an orthonor-

mal basis of Hk
n (akn = dim(Hk

n)). Let m, n be non-negative integers and 1 ≤ j ≤ akn. Define

cm,n =

[
m! Γ(N/2)

πN/2Γ(γ + n+m+ (N/2))

]1/2

and

ψm,n,j(x) = cm,n pn,j(x) L
(n+γ+N/2−1)
m (|x|2) e−|x|2/2, (4.14)

where L
(a)
m denote the Laguerre polynomial in the standard notation. It follows from Proposition 2.4 and

Theorem 2.5 of Dunkl [9] that {
ψm,n,j : m, n = 0, 1, 2, . . . , j = 1, . . . , akn

}
forms an orthonormal basis of L2

k(R
N ).

Theorem 4.4 Let M ∈ SL(2,R) such that b �= 0. The generalized Dunkl transform of the generalized Laguerre
functions are

DM
k ψm,n,j(x) = λm,n,a,b e

i(ac+bd)

2(a2+b2)
|x|2

ψm,n,j

(
x√

a2 + b2

)
,

where

λm,n,a,b =

(
a− ib

a+ ib

)m
(a− ib)

n
2

(a+ ib)
n
2

eiθ

(a+ ib)γ+(N/2)

and

θ = 2(γ + (N/2) + n− 1)

{
sgn(b) arctan

(
a

|b|+√
a2 + b2

)
− π

4
sgn(b) + arctan

(
b

a+
√
a2 + b2

)}
. (4.15)
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Proof. Applying Theorem 4.3 with p replaced by pn,j and with ψ(r) = L
(n+γ+N/2−1)
m (r2) e−r2/2, we obtain

DM
k ψm,n,j(x) = cm,npn,j(x)HM

ν ψ(|x|),
where

ν = n+ γ + (N/2)− 1,

and

HM
ν ψ(|x|) =

2

Γ(ν + 1)(2ib)ν+1

∫ +∞

0

e
i
2 (

d
b |x|2+ a

b r
2)jν

(
r|x|
b

)
L(ν)
m (r2)e−

r2

2 r2ν+1 dr.

Observe that

HM
ν ψ(|x|) =

2

Γ(ν + 1)(2ib)ν+1
e

i
2

d
b |x|2Iν(x),

where

Iν(x) =

∫ +∞

0

r2ν+1L(ν)
m (r2)e−( 1

2− i
2

a
b )r

2

jν

(
r|x|
b

)
dr

= 2νΓ(ν + 1)

(
b

|x|
)ν ∫ +∞

0

rν+1L(ν)
m (r2)e−( 1

2− i
2

a
b )r

2

Jν

(
r|x|
b

)
dr.

To compute Iν(x), we need the following formulas (see 7.4.21 (4) in [17])∫ +∞

0

yν+1e−βy2

Lν
m(ay2)Jν(zy) dy = dmzνe−z2/(4β)Lν

m

[
az2

4β(a− β)

]

where dm = ((β − a)m/(2ν+1βν+m+1)), a, �β > 0, �ν > −1.

Let us take β = 1
2 − i

2
a
b = b−ia

2b , a = 1 and z = |x|
b , then

dm =

(
ia+ b

ia− b

)m(
b

b− ia

)ν+1

,

az2

4β(a− β)
=

|x|2
a2 + b2

,

− z2

4β
= − |x|2

2(a2 + b2)
− i

2

a

b

|x|2
(a2 + b2)

.

Hence ∫ +∞

0

rν+1L(ν)
m (r2)e−( 1

2− i
2

a
b )r

2

Jν

(
r|x|
b

)
dr =

(
ia+ b

ia− b

)m(
b

b− ia

)ν+1( |x|
b

)ν

× e
− |x|2

2(a2+b2) e
− i

2
a
b

|x|2
(a2+b2)L(ν)

m

( |x|2
a2 + b2

)
and therefore

HM
ν ψ(|x|) =

(
ia+ b

ia− b

)m(
2ib

a+ ib

)ν+1
1

(2ib)ν+1

× e
i(ac+bd)

2(a2+b2)
|x|2

e
− |x|2

2(a2+b2)L(ν)
m

( |x|2
a2 + b2

)
.

Since (
ib

a+ ib

)ν+1

= eiθ
(ib)ν+1

(a+ ib)ν+1
,

(√
a2 + b2

)n
= (a+ ib)(n/2)(a− ib)(n/2)

and pn,j is homogeneous of degree n, then

DM
k ψm,n,j(x) =

e
i
2

(ac+bd)

(a2+b2)
|x|2

(a+ ib)n+γ+(N/2)

(
a− ib

a+ ib

)m

pn,j(x)L
(ν)
m

( |x|2
a2 + b2

)

=

(
a− ib

a+ ib

)m
(a− ib)

n
2

(a+ ib)
n
2

eiθ

(a+ ib)γ+(N/2)

× e
i(ac+bd)

2(a2+b2)
|x|2

ψm,n,j

(
x√

a2 + b2

)
.
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4.5 Master formula for the generalized Dunkl transform.

In this section, we shall derive a Master formula for the generalized Dunkl transform. For this we need the
following lemma.

Lemma 4.3 Let p ∈ Pn and x ∈ C
N . Then for ω ∈ C and �(ω) > 0,

ck

∫
RN

p(y)Ek(x, 2y)e
−ω|y|2ωk(y) dy =

e
l(x)
ω

ωγ+n+(N/2)
e

ω
4 Δkp(x). (4.16)

Proof. First compute this integral when ω > 0.

ck

∫
RN

p(y)Ek(x, 2y)e
−ω|y|2ωk(y) dy = ck

∫
RN

p(y)Ek(x, 2y)e
−|√ωy|2ωk(y) dy.

By the change of variables u =
√
ωy and the homogeneity of ωk and p, we obtain

ck

∫
RN

p(y)Ek(x, 2y)e
−ω|y|2ωk(y) dy =

ck
ωγ+(n+N)/2

∫
RN

p(y)Ek(x/
√
ω, 2y)e−|y|2ωk(y) dy. (4.17)

Using Theorem 2.5,1) we deduce an equivalent identity:

ck

∫
RN

p(y)Ek(x, 2y)e
−|y|2ωk(y) dy = el(x)e

Δk
4 p(x). (4.18)

Combine (4.17) and (4.18) to get

ck

∫
RN

p(y)Ek(x, 2y)e
−ω|y|2ωk(y) dy =

e
l(x)
ω

ωγ+(n+N)/2
e

Δk
4 p

(
x√
ω

)
.

Now use Lemma 2.1 from [24] to obtain

e
Δk
4 p

(
x√
ω

)
=

1

ωn/2
e

ω
4 Δkp(x).

Hence, we find the equality (4.16) for ω > 0. By analytic continuation, this holds for {ω ∈ C : �(ω) > 0}.
We are now in a position to give the Master formula.

Theorem 4.5 Let M ∈ SL(2,R) such that b �= 0. Let fn is of the form fn(x) = e−
|x|2
2 e−

Δk
4 p(x) for some

p ∈ Pn, Then

DM
k fn(x) = λn,a,b e

i(ac+bd)

2(a2+b2)
|x|2

fn

(
x√

a2 + b2

)
, (4.19)

where

λn,a,b =
(a− ib)

n
2

(a+ ib)
n
2

eiθ

(a+ ib)γ+(N/2)

and θ as in (4.15).

Proof. It follows easily from (3.20) that

DM
k

[
e−

|y|2
2 e−

Δk
4 p(y)

]
(x) =

ck
(2ib)γ+(N/2)

e
i
2

d
b |x|2

∫
RN

e−
Δk
4 p(y)Ek(−ix/b, y)e−ω|y|2ωk(y) dy,

where

ω =
1

2
− i

2

a

b
. (4.20)

Since

e−
Δk
4 p(y) =

[n2 ]∑
s=0

(−1)s

s!4s
Δs

kp(y),

23



we conclude that∫
RN

e−
Δk
4 p(y)Ek(−ix/b, y)e−ω|y|2ωk(y) dy =

[n2 ]∑
s=0

(−1)s

s!4s

∫
RN

Δs
kp(y)Ek(−ix/b, y)e−ω|y|2ωk(y) dy.

(4.21)

For s ∈ Z+ with 2s ≤ n, the polynomial Δs
kp is homogeneous of degree n− 2s. Hence by the previous Lemma,

we obtain

ck

∫
RN

Δs
kp(y)Ek(−ix/b, y)e−ω|y|2ωk(y) dy =

e
l(Xb)

ω

ωγ+n+(N/2)
e

ω
4 Δk

[
ω2sΔs

kp
]
(Xb), (4.22)

where

Xb = − ix

2b
. (4.23)

Substitute (4.22) in (4.21) to get

ck

∫
RN

e−
Δk
4 p(y)Ek(−ix/b, y)e−ω|y|2ωk(y) dy =

e
l(Xb)

ω

ωγ+n+(N/2)
e

ω
4 Δk

[n2 ]∑
s=0

(−1)sω2s

s!4s
Δs

kp(Xb)

=
e

l(Xb)

ω

ωγ+n+(N/2)
e

ω
4 Δke−

ω2

4 Δkp(Xb)

=
e

l(Xb)

ω

ωγ+n+(N/2)
e

ω−ω2

4 Δkp(Xb).

Replace ω and Xb by their values given in (4.20) and (4.23) and use Lemma 2.1 in [24], we obtain

e
ω−ω2

4 Δkp(Xb) =

(
− i

2b

)n

e−b2(ω−ω2)Δkp(x)

=

(
− i

2b

)n

e−
a2+b2

4 Δkp(x).

Also,

ωn+γ+(N/2) =

(
b− ia

2b

)n+γ+(N/2)

e
l(Xb)

ω = e−
|x|2

2b(b−ia) .

Then

ck
(2ib)γ+(N/2)

∫
RN

e−
Δk
4 p(y)Ek(−ix/b, y)e−ω|y|2ωk(y) dy = eiθ

e−
|x|2

2b(b−ia)

(a+ ib)n+γ+(N/2)
e−

a2+b2

4 Δkp(x). (4.24)

Now, if we multiply equation (4.24) by e
id
2b |x|2 , we obtain:

DM
k

[
e−

|y|2
2 e−

Δk
4 p(y)

]
(x) = eiθ

e−
d−ic

2b(b−ia)
|x|2

(a+ ib)n+γ+(N/2)
e−

a2+b2

4 Δkp(x)

= eiθ
e
i db+ac

2(a2+b2)
|x|2

(a+ ib)n+γ+(N/2)
e
− |x|2

2(a2+b2) e−
a2+b2

4 Δkp(x).

Use again Lemma 2.1 in [24], we deduce

e−
a2+b2

4 Δkp(x) = (a2 + b2)n/2 e−
Δk
4 p

(
x√

a2 + b2

)
.

Therefore

DM
k

[
e−

|y|2
2 e−

Δk
4 p(y)

]
(x) =

eiθ

(a+ ib)γ+(N/2)

(a− ib)(n/2)

(a+ ib)(n/2)

× e
i
2

ac+bd

(a2+b2)
|x|2

e
− |x|2

2(a2+b2)

(
e−

Δk
4 p

)( x√
a2 + b2

)
.

As an immediate consequence of the Master formula (4.19), we have
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Corollary 4.1 (Hecke type identity)If in addition to the assumption in Theorem 4.5, the polynomial p ∈ Hk
n,

then (4.19) becomes

DM
k

[
e−

|.|2
2 p

]
(x) = λn,a,b e

i(ac+bd)

2(a2+b2)
|x|2

e
− |x|2

2(a2+b2) p

(
x√

a2 + b2

)
(4.25)

where

λn,a,b =
(a− ib)

n
2

(a+ ib)
n
2

eiθ

(a+ ib)γ+(N/2)

and

θ = 2(γ + (N/2) + n− 1)

{
sgn(b) arctan

(
a

|b|+√
a2 + b2

)
− π

4
sgn(b) + arctan

(
b

a+
√
a2 + b2

)}

5 Plancherel Theorem.

We begin with the following Proposition.

Proposition 5.1 Let f and g be in L1
k(R

N ) and M ∈ SL(2,R) such that b �= 0. Then∫
RN

DM
k f(x)g(x)ωk(x) dx =

∫
RN

f(x)DM−1

k g(x)ωk(x) dx. (5.1)

Proof. Let f and g ∈ L1
k(R

N ). Using Fubini’s theorem we write∫
RN

DM
k f(x)g(x)ωk(x) dx =

ck
(2ib)γ+(N/2)

∫
RN

(∫
RN

Ek(x, y)f(y)ωk(y) dy

)
g(x)ωk(x) dx,

=

∫
RN

f(y)
ck

(−2ib)γ+(N/2)

∫
RN

g(x)EM−1

k (y, x)ωk(x) dxωk(y) dy,

=

∫
RN

f(y)DM−1

k g(y)ωk(y) dy.

This complete the proof.

Corollary 5.1 Let f ∈ S(RN ) and M ∈ SL(2,R). Then∥∥DM
k f

∥∥
k,2

= ‖f‖k,2 .

Proof. It is easy to check that Corollary 5.1 holds for b = 0. Now suppose b �= 0. By Proposition 5.1 and
Theorem 4.1, 3), we have

∥∥DM
k f

∥∥2
k,2

=

∫
RN

DM
k f(x)DM

k f(x)ωk(x) dx,

=

∫
RN

f(x)DM−1

k DM
k f(x)ωk(x) dx,

= ‖f‖2k,2 .
Theorem 5.1 Let M ∈ SL(2,R).
1) If f ∈ L1

k(R
N ) ∩ L2

k(R
N ), then DM

k f ∈ L2
k(R

N ) and
∥∥DM

k f
∥∥
k,2

= ‖f‖k,2 .
2) There exists a unique unitary operator on L2

k(R
N ) that coincides with DM

k on L1
k(R

N ) ∩ L2
k(R

N ). The
extension is also denoted by f −→ DM

k f.

Proof. It suffices to assume that b �= 0. From Corollary 5.1 and the density of S(RN ) in L2
k(R

N ), we deduce the

existence of a unique continuous operator D̂M
k on L2

k(R
N ) that coincides with DM

k on S(RN ). If f, g ∈ S(RN )
then ∫

RN

D̂M
k f(x)g(x)ωk(x) dx =

∫
RN

DM
k f(x)g(x)ωk(x) dx

=

∫
RN

f(x)DM−1

k g(x)ωk(x) dx

=

∫
RN

f(x)D̂M−1

k g(x)ωk(x) dx.
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Let f, g ∈ L2
k(R

N ). By the density of S(RN ) in L2
k(R

N ), we conclude that∫
RN

D̂M
k f(x)g(x)ωk(x) dx =

∫
RN

f(x)D̂M−1

k g(x)ωk(x) dx.

Now, if f ∈ L1
k(R

N ) ∩ L2
k(R

N ) and g ∈ S(RN ), then∫
RN

DM
k f(x)g(x)ωk(x) dx =

∫
RN

f(x)DM−1

k g(x)ωk(x) dx

=

∫
RN

f(x)D̂M−1

k g(x)ωk(x) dx

=

∫
RN

D̂M
k f(x)g(x)ωk(x) dx.

Hence DM
k f = D̂M

k f, a.e, which proves the first statement in part 1). The second statement of part 1) follows
from Corollary 5.1. Part 2) follows from part 1), Corollary 5.1 and Theorem 2.6, 2).

Corollary 5.2 For each f ∈ L2
k(R

N ) and M1, M2 ∈ SL(2,R), we have

DM1

k ◦DM2

k (f) = eiψDM1M2

k (f), (5.2)

with ψ as in Theorem 4.2

6 A generalized Dunkl-Schrödinger operator

Let

{
M(τ) =

[
a(τ) b(τ)
c(τ) d(τ)

]
; τ ∈ R

}
be a continuous one-parameter subgroup of SL(2,R) such that the eiψ

which appears in D
M(τ1)
k ◦DM(τ2)

k = eiψD
M(τ1+τ2)
k is equal to 1.

6.1 The C0-group
{
D

M(τ)
k

}
τ∈R

We begin with the following lemma:

Lemma 6.1 Let f ∈ L2
k(R

N ). Then

lim
a→1

‖f(ay)− f(y)‖k,2 = 0. (6.1)

Proof. First we prove the lemma in the case f ∈ C∞
c (RN ). Choose r > 0 such that supp(f) ⊂ B(0, r). Here

B(0, r) denote the closed ball centered at 0 with radius r. It is clear that if a > 1, then supp(f(a.)) ⊂ B(0, r).
Applying the dominated convergence theorem one gets:

lim
a↓1

‖f(ay)− f(y)‖k,2 = 0.

By the change of variable u = ay and the homogeneity of ωk, we have:

‖f(ay)− f(y)‖k,2 =
1

|a|γ+(N/2)
‖f(y)− f(y/a)‖k,2 .

Then
lim
a↑1

‖f(ay)− f(y)‖k,2 = 0.

A more general result can be obtained by the density of C∞
c (RN ) in L2

k(R
N ).

Theorem 6.1 Let f ∈ L2
k(R

N ). Then

lim
τ→0

∥∥∥DM(τ)
k f − f

∥∥∥
k,2

= 0. (6.2)
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Proof. First we prove the theorem in the case f ∈ S(RN ). By the change of variable u = y
a(τ) and the

homogeneity of ωk, equation (3.22) becomes

D
M(τ)
K f(x) = a(τ)γ+N/2 ck

2γ+N/2

∫
RN

e
i
2 (

c(τ)
a(τ)

|x|2−a(τ)b(τ)|y|2) Ek(ix, y)Dkf(a(τ)y)ωk(y) dy.

Using this and the inverse formula for the Dunkl transform (2.9)

f(x) =
ck

2γ+N/2

∫
RN

Ek(ix, y)Dkf(y)ωk(y) dy, (6.3)

we obtain

D
M(τ)
K f(x)− f(x) =

ck
2γ+N/2

∫
RN

Ek(ix, y)
[
a(τ)γ+N/2e

i
2 (

c(τ)
a(τ)

|x|2−a(τ)b(τ)|y|2)Dkf(a(τ)y)−Dkf(y)
]
ωk(y) dy

= F1(x) + F2(x),

where

F1(x) = a(τ)γ+N/2 ck
2γ+N/2

∫
RN

Ek(ix, y)
[
e

i
2 (

c(τ)
a(τ)

|x|2−a(τ)b(τ)|y|2)Dkf(a(τ)y)−Dkf(y)
]
ωk(y) dy

F2(x) =
[
a(τ)γ+N/2 − 1

] ck
2γ+N/2

∫
RN

Ek(ix, y)Dkf(y)ωk(y) dy

=
[
a(τ)γ+N/2 − 1

]
f(x).

Clearly
lim
τ→0

‖F2‖k,2 = 0.

From the relation

e
i
2 (

c(τ)
a(τ)

|x|2−a(τ)b(τ)|y|2)Dkf(a(τ)y)−Dkf(y) = e
i
2

c(τ)
a(τ)

|x|2
[
e−

i
2a(τ)b(τ)|y|2Dkf(a(τ)y)

− Dkf(y)] +
[
e

i
2

c(τ)
a(τ)

|x|2 − 1
]
Dkf(y),

we can write

F1(x) =
[
e

i
2

c(τ)
a(τ)

|x|2 − 1
]
a(τ)γ+N/2 ck

2γ+N/2

∫
RN

Ek(ix, y)Dkf(y)ωk(y) d+ F3(x)

=
[
e

i
2

c(τ)
a(τ)

|x|2 − 1
]
a(τ)γ+N/2f(x) + F3(x),

where

F3(x) = a(τ)γ+N/2 ck
2γ+N/2

∫
RN

Ek(ix, y) e
i
2

c(τ)
a(τ)

|x|2
[
e−

i
2a(τ)b(τ)|y|2Dkf(a(τ)y)−Dkf(y)

]
ωk(y) dy.

Using the dominated convergence theorem, we get

lim
τ→0

∥∥∥(e i
2

c(τ)
a(τ)

|x|2 − 1
)
f(x)

∥∥∥2
2

= lim
τ→0

∫
RN

∣∣∣e i
2

c(τ)
a(τ)

|x|2 − 1
∣∣∣2 |f(x)|2ωk(x) dx

= 0.

As Dk is an isometric isomorphism of L2
k(R

N ) we deduce

‖F3‖2 = a(τ)γ+N/2
∥∥∥e− i

2a(τ)b(τ)|y|2Dkf(a(τ)y)−Dkf(y)
∥∥∥
k,2

.

The triangle inequality shows that:

‖F3‖k,2 = a(τ)γ+N/2
∥∥∥e− i

2a(τ)b(τ)|y|2 (Dkf(a(τ)y)−Dkf(y)) + (e−
i
2a(τ)b(τ)|y|2 − 1)Dkf(y)

∥∥∥
k,2

≤ a(τ)γ+N/2
∥∥∥e− i

2a(τ)b(τ)|y|2 (Dkf(a(τ)y)−Dkf(y))
∥∥∥
k,2

+ a(τ)γ+N/2
∥∥∥(e− i

2a(τ)b(τ)|y|2 − 1
)
Dkf(y)

∥∥∥
k,2

= a(τ)γ+N/2 ‖Dkf(a(τ)y)−Dkf(y)‖k,2 + a(τ)γ+N/2
∥∥∥(e− i

2a(τ)b(τ)|y|2 − 1
)
Dkf(y)

∥∥∥
k,2

.
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By the dominated convergence theorem,

lim
τ→0

∥∥∥(e− i
2a(τ)b(τ)|y|2 − 1

)
Dkf

∥∥∥2
k,2

= lim
τ→0

∫
RN

∣∣∣e− i
2a(τ)b(τ)|y|2 − 1

∣∣∣2 |Dkf(y)|2ωk(y) dy

= 0.

By Lemma 6.1,

lim
τ→0

‖Dkf(a(τ)y)−Dkf(y)‖k,2 = 0.

Hence

lim
τ→0

‖F3‖k,2 = 0

and therefore (6.2) holds for each f ∈ S(RN ).
Next, in the case f ∈ L2

k(R
N ). Let ε > 0 be arbitrary. Since S(RN ) is dense in L2

k(R
N ), there exists ψ ∈ S(RN )

such that ‖f − ψ‖k,2 ≤ ε
2 . Then∥∥∥DM(τ)
k f −D

M(τ)
k ψ

∥∥∥
k,2

=
∥∥∥DM(τ)

k (f − ψ)
∥∥∥
k,2

= ‖f − ψ‖k,2 ≤ ε

2
.

From this, we can deduce that∥∥∥DM(τ)
k f − f

∥∥∥
k,2

≤
∥∥∥DM(τ)

k f −D
M(τ)
k ψ

∥∥∥
k,2

+
∥∥∥DM(τ)

k ψ − ψ
∥∥∥
k,2

+ ‖ψ − f‖k,2
≤

∥∥∥DM(τ)
k ψ − ψ

∥∥∥
k,2

+ ε,

so that, since ε was arbitrary and ψ ∈ S(RN ),

lim
τ→0

∥∥∥DM(τ)
k f − f

∥∥∥
k,2

= 0.

Corollary 6.1 The family of operators
{
D

M(τ)
k

}
τ∈R

is a C0-group of unitary operators on L2
k(R

N ).

Proof. It is clear that the family
{
D

M(τ)
k

}
τ∈R

satisfies the algebraic properties of a group:

D
M(0)
k = I, D

M(τ1)
k ◦DM(τ2)

k = D
M(τ1+τ2)
k = D

M(τ2)
k ◦DM(τ1)

k ; τ1, τ2 ∈ R.

For the strong continuity, we use theorem 6.1.

6.2 The generator of the C0-group {DM(τ)
k }τ∈R.

The infinitesimal generator L of
{
D

M(τ)
k

}
τ∈R

is defined by

L : D(L) −→ L2
k(R

N ),
f 
−→ Lf

where

D(L) =
{
f ∈ L2

k(R
N ) : lim

τ→0
(1/τ)[D

M(τ)
k f − f ] ∈ L2

k(R
N )
}
,

Lf = lim
τ→0

(1/τ)[D
M(τ)
k f − f ], f ∈ D(L).

From the Hille-Yosida Theorem (see[[16], p. 15]), the operator L is closed and densely defined and since{
D

M(τ)
k

}
τ∈R

is unitary, it follows from Stone’s Theorem [[16], p. 32] that L is skew-adjoint (L∗ = −L) and

therefore iL is self-adjoint. Since it is often difficult to determine D(L), it is important to know a core of L
(any dense subspace with respect to the graph-norm ‖f‖L := ‖f‖k,2 + ‖Lf‖k,2 on D(L)). For this purpose, we
need some Lemmas.
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Lemma 6.2 Let f be a function in C1(RN ) such that f and ρ(f) in L2
k(R

N ). Then

lim
τ→0

∥∥∥∥1τ [f(x/a(τ))− f(x)] + a
′
(0)ρ(f)(x)

∥∥∥∥
k,2

= 0, (6.4)

where ρ(f)(x) =

N∑
j=1

xj
∂

∂xj
f(x) is the Euler operator.

Proof. Applying Taylor’s formula to the function t 
−→ f(x/a(t)), we obtain

f(x/a(τ)) = f(x) + τ

∫ 1

0

gx(sτ) ds, where gx(sτ) = − a
′
(sτ)

a2(sτ)

N∑
j=1

xj
∂

∂xj
f(x/a(sτ)).

Hence

1

τ
[f(x/a(τ))− f(x)] + a

′
(0)ρ(f)(x) =

∫ 1

0

(gx(sτ)− gx(0)) ds.

Minkowski’s inequality for integrals implies that∥∥∥∥1τ [f(x/a(τ))− f(x)] + a
′
(0)ρ(f)(x)

∥∥∥∥
k,2

=

∥∥∥∥
∫ 1

0

(gx(sτ)− gx(0)) ds

∥∥∥∥
k,2

≤
∫ 1

0

‖gx(sτ)− gx(0)‖k,2 ds.

By Lemma 6.1,

lim
τ→0

‖gx(sτ)− gx(0)‖k,2 = 0.

Under this condition, the dominated convergence theorem implies

lim
τ→0

∫ 1

0

‖gx(sτ)− gx(0)‖k,2 ds = 0.

Lemma 6.3 Let f be a function such that f and |x|2f in L2
k(R

N ). Then

lim
τ→0

∥∥∥∥1τ
[
e

i
2

c(τ)
a(τ)

|x|2 − 1
]
f(x/a(τ))− i

2
c
′
(0)|x|2f(x)

∥∥∥∥
k,2

= 0.

Proof. Let Gτ
1 the function defined by

Gτ
1(x) =

1

τ

[
e

i
2

c(τ)
a(τ)

|x|2 − 1
]
f(x/a(τ)).

Clearly, the change of variable u = x/a(τ) gives

‖Gτ
1(x)−

i

2
c
′
(0)|x|2f(x/a(τ))‖2k,2 =

∫
RN

∣∣∣∣1τ
[
e

i
2

c(τ)
a(τ)

|x|2 − 1
]
− i

2
c
′
(0)|x|2

∣∣∣∣
2

|f(x/a(τ))|2ωk(x) dx

= (a(τ))2γ+N

∫
RN

∣∣∣∣1τ
[
e

i
2a(τ)c(τ)|x|2 − 1

]
− i

2
c
′
(0)a2(τ)|x|2

∣∣∣∣
2

|f(x)|2ωk(x) dx.

Using the Taylor’s formula, we can show

1

τ

[
e

i
2a(τ)c(τ)|x|2 − 1

]
=

i

2
|x|2

∫ 1

0

(ac)
′
(sτ)e

i
2a(sτ)c(sτ)|x|2 ds

and therefore, there is a constant M1 ≥ 0 and τ0 ≥ 0 such that∣∣∣∣1τ
[
e

i
2a(τ)c(τ)|x|2 − 1

]∣∣∣∣ ≤ M |x|2
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for all τ ∈ [0, τ0]. Hence, for all τ ∈ [0, τ0], we have

∣∣∣∣1τ
[
e

i
2a(τ)c(τ)|x|2 − 1

]
− i

2
c
′
(0)a2(τ)|x|2

∣∣∣∣
2

|f(x)|2 ≤ M2

∣∣|x|2f(x)∣∣2 ,
where M2 ≥ 0. As x 
−→ |x|2f(x) ∈ L2

k(R
N ), the dominated convergence theorem gives

lim
τ→0

∫
RN

∣∣∣∣1τ
[
e

i
2a(τ)c(τ)|x|2 − 1

]
− i

2
c
′
(0)a2(τ)|x|2

∣∣∣∣
2

|f(x)|2ωk(x) dx = 0.

Therefore

lim
τ→0

∥∥∥∥Gτ
1(x)−

i

2
c
′
(0)|x|2f(x/a(τ))

∥∥∥∥
k,2

= 0. (6.5)

Now, using lemma 4.1, we get

lim
τ→0

∥∥∥∥ |x|2
a2(τ)

f(x/a(τ))− |x|2f(x)
∥∥∥∥
k,2

= 0. (6.6)

Hence, the desired result is an immediate consequence of (6.5) and (6.6).

Lemma 6.4 Let f be a function such that f and |x|2Dkf in L1
k(R

N ) ∩ L2
k(R

N ) and put

Gτ
2(x) =

cke
i
2

c(τ)
a(τ)

|x|2

(2a(τ))γ+N/2

∫
RN

1

τ

[
e−

i
2

b(τ)
a(τ)

|y|2 − 1
]
Ek(ix/a(τ), y)Dkf(y)ωk(y) dy,

where x ∈ R
N . Then

lim
τ→0

∥∥∥∥Gτ
2(x) +

i

2
b
′
(0)Dk

[|y|2Dkf(y)
]
(−x)

∥∥∥∥
k,2

= 0.

Proof. Let

Gτ
3(x) =

i

2
b
′
(0)

cke
i
2

c(τ)
a(τ)

|x|2

(2a(τ))γ+N/2

∫
RN

Ek(ix/a(τ), y)|y|2Dkf(y)ωk(y) dy.

Then

Gτ
2(x) +Gτ

3(x) =
cke

i
2

c(τ)
a(τ)

|x|2

(2a(τ))γ+N/2

∫
RN

{
1

τ

[
e−

i
2

b(τ)
a(τ)

|y|2 − 1
]
+

i

2
b
′
(0)|y|2

}
Ek(ix/a(τ), y)Dkf(y)ωk(y) dy

=
e

i
2

c(τ)
a(τ)

|x|2

(a(τ))γ+N/2
Dkh(−x/a(τ)),

where

h(y) =

{
1

τ

[
e−

i
2

b(τ)
a(τ)

|y|2 − 1
]
+

i

2
b
′
(0)|y|2

}
Dkf(y).

According to hypothesis, the function h ∈ L1
k(R

N ) ∩ L2
k(R

N ). Then

Gτ
2 +Gτ

3 ∈ L2
k(R

N )

and

‖Gτ
2 +Gτ

3‖k,2 =
1

(a(τ))γ+N/2
‖Dkh(−x/a(τ))‖k,2 .

Now, using the change of variable u = −x/a(τ) to get

‖Dkh(−x/a(τ))‖k,2 = (a(τ))γ+N/2‖Dkh‖k,2.
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Since Dk is an isometric isomorphism of L2
k(R

N ), we deduce

‖Gτ
2 +Gτ

3‖2k,2 = ‖h‖2k,2 =

∫
RN

∣∣∣∣1τ
[
e−

i
2

b(τ)
a(τ)

|y|2 − 1
]
+

i

2
b
′
(0)|y|2

∣∣∣∣
2

|Dkf(y)|2ωk(y) dy.

By means of a similar technic used in the proof of Lemma 6.3, we have

lim
τ→0

∫
RN

∣∣∣∣1τ
[
e−

i
2

b(τ)
a(τ)

|y|2 − 1
]
+

i

2
b
′
(0)|y|2

∣∣∣∣
2

|Dkf(y)|2ωk(y) dy = 0,

hence

lim
τ→0

‖Gτ
2 +Gτ

3‖k,2 = 0. (6.7)

Clearly

Gτ
3(x) =

i

2
b
′
(0)

e
i
2

c(τ)
a(τ)

|x|2

(a(τ))γ+N/2
G4(x/a(τ)),

where

G4(x/a(τ)) = Dk[|y|2Dkf(y)](−x/a(τ)).

Using again Lemma 6.1, we get

lim
τ→0

‖G4(x/a(τ))−G4(x)‖k,2 = 0.

This establishes

lim
τ→0

∥∥∥∥Gτ
3(x)−

i

2
b
′
(0)Dk[|y|2Dkf(y)](−x)

∥∥∥∥
k,2

= 0. (6.8)

Finally, the desired result is an immediate consequence of (6.7) and (6.8).

Theorem 6.2 Let

W =
{
f ∈ C1(RN ); f, |x|2Dkf ∈ L1

k(R
N ) ∩ L2

k(R
N ) and ρ(f) ∈ L2

k(R
N )
}
.

Then W ⊂ D(L) and for all f ∈ W,

Lf(x) = −a
′
(0) [(γ +N/2) + ρ] f(x) + ic

′
(0)

|x|2f(x)
2

− i

2
b
′
(0)Dk

[|y|2Dkf(y)
]
(−x), (6.9)

where

ρ(f)(x) =
N∑
j=1

xj
∂

∂xj
f(x).

Proof. Let f ∈ W. By (3.22) and (6.3), we get

1

τ

[
D

M(τ)
k f(x)− f(x)

]
=

1

τ

[
(a(τ))−(γ+N

2 ) − 1
]
f(x) +Hτ

1 (x),

where

Hτ
1 (x) =

ck

(2a(τ))γ+
N
2

∫
RN

1

τ

[
e

i
2 (

c(τ)
a(τ)

|x|2− b(τ)
a(τ)

|y|2) Ek(ix/a(τ), y)− Ek(ix, y)
]
Dkf(y)ωk(y) dy.

Now, writing

1

τ

[
e

i
2 (

c(τ)
a(τ)

|x|2− b(τ)
a(τ)

|y|2) Ek(ix/a(τ), y)− Ek(ix, y)
]

= e
i
2

c(τ)
a(τ)

|x|2 1
τ

[
e−

i
2

b(τ)
a(τ)

|y|2 − 1
]
Ek(ix/a(τ), y)

+
1

τ

[
e

i
2

c(τ)
a(τ)

|x|2 − 1
]
Ek(ix/a(τ), y)

+
1

τ
[Ek(ix/a(τ), y)− Ek(ix, y)]

31



and using (2.9), then we have

Hτ
1 (x) =

1

(a(τ))γ+
N
2

[
1

τ
[f(x/a(τ))− f(x)] +

1

τ

[
e

i
2

c(τ)
a(τ)

|x|2 − 1
]
f(x/a(τ))

]
+Gτ

2(x), a. e.

By applying respectively lemmas 6.2, 6.3 and 6.4, we deduce

lim
τ→0

1

τ

[
D

M(τ)
k f(x)− f(x)

]
= −a

′
(0)(γ + (N/2))f(x)− a

′
(0)ρ(f)(x)

+ ic
′
(0)

|x|2
2

f(x) − i

2
b
′
(0)Dk

[|y|2Dkf(y)
]
(−x)

with respect the ‖.‖k,2. This proves that f ∈ D(L) and

Lf(x) = −a
′
(0) [(γ +N/2) + ρ] f(x) + ic

′
(0)

|x|2
2

f(x) − i

2
b
′
(0)Dk

[|y|2Dkf(y)
]
(−x).

In the following theorem we establish the main relations between the C0-group {DM(τ)
k }τ∈R and a generalized

Dunkl-Schrödinger equation.

Theorem 6.3 The following properties holds.

(1) The Schwartz space S(RN ) is a core of the generator L of the C0-group
{
D

M(τ)
k

}
τ∈R

and

L|S(RN )f = −a
′
(0)

⎛
⎝(γ +N/2) +

N∑
j=1

xj
∂

∂xj

⎞
⎠ f + i

(
c
′
(0)

|x|2
2

+ b
′
(0)

Δk

2

)
f. (6.10)

(2) For each f ∈ D(L) the function u(t, x) = D
M(t)
k f(x) is the unique classical solution of the problem{

∂
∂tu(t, x) = Lu(t, x) on R× R

N ,
u(0, .) = f ∈ D(L); (6.11)

here ”classical” means u ∈ C1(R, L2
k(R

N )) with u(t, .) ∈ D(L) for all t ∈ R.
(3) (i) Let f ∈ S(RN ). The function

u(t, x) = D
M(t)
k f(x)

=
ck

(2ib(t))γ+(N/2)

∫
RN

e
i
2 (

d(t)
b(t)

|x|2+ a(t)
b(t)

|y|2)Ek(−ix/b(t), y)f(y)ωk(y)dy

is the unique solution of the generalized Dunkl-Schrödinger equation⎧⎪⎪⎨
⎪⎪⎩

i ∂
∂tu(t, x) = −ia

′
(0)

⎛
⎝(γ +N/2) +

N∑
j=1

xj
∂

∂xj

⎞
⎠u(t, x)−

(
c
′
(0) |x|2

2 + b
′
(0) Δk

2

)
u(t, x) on R× R

N ,

u(0, .) = f ∈ S(RN ).

(6.12)

Moreover, u(t, x) has the following properties:
(ii) u(t, .) ∈ S(RN ) for all t ∈ R.

(iii) u(t+ s, x) = D
M(t)
k (u(s, .)) (x) for all t, s ∈ R and x ∈ R

N .
(iv) For all t ∈ R such that b(t) �= 0,

‖u(t, .)‖∞ ≤ ck
(2|b(t)|)γ+(N/2)

‖u(0, .)‖1,k.

(v) ‖u(t, .)‖k,2 = ‖u(0, .)‖k,2 for all t ∈ R.

Proof.
(1) It is easy to see that S(RN ) ⊂ W ⊂ D(L). To prove (6.10) it suffices to show that

Dk

[|y|2Dk(y)
]
(−x) = −Δkf(x).

Let f ∈ S(RN ). By (2.10), we obtain

−y2jDkf(y) = Dk[T
2
j f ](y); j ∈ {1, 2, . . . , N} .
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As a consequence of this, we deduce

−|y|2Dkf(y) = Dk[Δkf ](y).

Therefore

−Dk

[|y|2Dk(y)
]
(−x) = D2

k[Δkf(y)](−x) = Δkf(x).

The fact that S(RN ) is a core of L can be proved by Proposition 1.7 of [12] since S(RN ) is ‖.‖k,2-dense in

L2
k(R

N ) and invariant under the semigroup
{
D

M(τ)
k

}
τ∈R

.

(2) follows from the Theorem 1.2 of [16] since L generates the C0-group
{
D

M(τ)
k

}
τ∈R

.

(3)(i) is a direct application of (6.11) and the integral representation (3.20) of D
M(t)
k f(x).

(3)(ii) follows immediately from Theorem 4.1, 2).
(3)(iii) follows from Theorem 4.2.
(3)(iv) follows from the estimates (4.1), while (3)(v) is obtained by the Plancheral Theorem 5.1.

Remark 6.1 The first statement of the previous Theorem shows that the so called generalized Dunkl-Schrödinger
operator

−a
′
(0)

⎛
⎝(γ +N/2) +

N∑
j=1

xj
∂

∂xj

⎞
⎠+ i

(
c
′
(0)

|x|2
2

+ b
′
(0)

Δk

2

)

is closable and its closure is the generator of the C0-group
{
D

M(τ)
k

}
τ∈R

.

7 One-parameter subgroups of SL(2,R) and the associated general-
ized Dunkl transform.

We conclude this paper by mentioning some interesting one-parameter subgroups of SL(2,R) with the associated
integral transform, its basic properties and the related Dunkl-Schrödinger operator and equation.

7.1 Basic properties of the generalized Fresnel transform.

In this subsection, the one-parameter subgroup of SL(2,R) is

{
M(τ) =

[
1 τ
0 1

]
; τ ∈ R

}
.

7.1.1 The Fresnel transform associated with the Dunkl transform

The Fresnel transform of a function f ∈ L1(R, dx) is defined by [4]

Eτ (f)(x) = 1√
2iπτ

∫ +∞

−∞
e

i
2τ (x−y)2f(y) dy. (7.1)

It corresponds to the one dimension linear canonical transform parameter matrix M =

[
1 τ
0 1

]
. It is perfectly

reasonable to generalize (7.1) in the Dunkl setting as follows:

Definition 7.1 We define the Fresnel transform in the Dunkl setting Ek,τ on the space L1
k(R

N ) by setting

Ek,τ (f)(x) = D
M(τ)
k (f)(x)

=

⎧⎨
⎩

ck
(2iτ)γ+(N/2)

∫
RN

e
i
2τ (|x|2+|y|2)Ek(−ix/τ, y)f(y)ωk(y) dy, τ �= 0

f(x), τ = 0,
(7.2)

where M(τ) =

[
1 τ
0 1

]
.
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Remark 7.1
1) The integral transform (7.2) is an extension for all τ ∈ R of the one given by Rösler in ([29]).
2) When the multiplicity function k ≡ 0, the Fresnel transform in the Dunkl setting Ek,τ coincides with the
N -dimensional Fresnel transform

Eτ (f)(x) = 1

(2iπτ)N/2

∫
RN

e
i
2τ |x−y|2f(y) dy.

3) Let f ∈ L1
k(R

N ) ∩ L2
k(R

N ) be a radial function and put f(x) = ψ(|x|). According to Theorem 4.3, it follows
that:

Ek,τ (f)(x) = 2

Γ(λ+ 1)(2iτ)λ+1

∫ +∞

0

e
i
2τ (|x|2+r2)ψ(r)jλ

(rx
τ

)
r2λ+1dr,

where λ = γ + (N/2)− 1.

Thanks to Remark 7.1, 3), we can state the following definition:

Definition 7.2 We define the Fresnel transform Wμ,τ associated with the Hankel transform Hμ for suitable
function f on R+ and μ ≥ −1/2 by

Wμ,τ (f)(x) =
2

Γ(μ+ 1)(2iτ)μ+1

∫ +∞

0

e
i
2τ (|x|2+r2)f(r)jμ

(rx
τ

)
r2μ+1dr. (7.3)

7.1.2 Basic properties

Here we list some properties of the generalized Fresnel transform.

Proposition 7.1 (Riemann-Lebesgue lemma): Suppose that τ �= 0. Then for all f ∈ L1
k(R

N ), Ek,τ belongs to
C0(RN ) and verifies

‖Ek,τf‖∞ ≤ ck
(2|τ |)γ+(N/2)

‖f‖k,1.

Proposition 7.2 (The reversibility property:)
1) For all f ∈ L1

k(R
N ) with Ek,τf ∈ L1

k(R
N ),

(Ek,−τ ◦ Ek,τ )f = f, a.e, and (Ek,τ ◦ Ek,−τ )f = f, a.e.

2) The generalized Fresnel transform Ek,τ is a one-to-one and onto mapping from S(RN ) into S(RN ). Moreover,

(Ek,τ )−1f = Ek,−τf, f ∈ S(RN ).

Proposition 7.3 (An additivity property) Let τ1 and τ2 be real numbers and let f ∈ L1
k(R

N ) with Ek,τ2f ∈
L1
k(R

N ). Then

Ek,τ1 Ek,τ2f = eiψ Ek,τ1+τ2f, (7.4)

where the constant phase ψ is given by

ψ =

{
π
2 (γ + (N/2))

(
sgn(τ1 + τ2) + sgn

(
τ1+τ2
τ1τ2

)
− sgn(τ1)− sgn(τ2)

)
, τ1 �= 0, τ2 �= 0, τ1 + τ2 �= 0,

0, if not ,

with equality a. e when τ1 �= 0, τ2 �= 0 and τ1 + τ2 = 0.
In particular if τ1τ2 ≥ 0, then

Ek,τ1 Ek,τ2f = Ek,τ1+τ2f. (7.5)

Proposition 7.4 (Operational formula) Let τ ∈ R. Then the following properties hold on S(RN ).
(1) Ek,τ ◦Qξ = (Qξ − τ Pξ) ◦ Ek,τ .
(2) Ek,τPξ = Pξ ◦ Ek,τ .
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Proposition 7.5 (Bochner type identity) Let τ be a real number such that τ �= 0. If f ∈ L1
k(R

N ) ∩ L2
k(R

N ) is
of the form f(x) = p(x)ψ(|x|) for some p ∈ Hk

n and a one-variable ψ on R+, then

Ek,τf(x) = p(x)Wn+γ+(N/2)−1,τ ψ(|x|). (7.6)

In particular, if f is radial, then
Ek,τf(x) = Wγ+(N/2)−1,τ ψ(|x|).

Proposition 7.6 Let τ ∈ R such that τ �= 0. The generalized Fresenel transform of the generalized Laguerre
functions are

Ek,τψm,n,j(x) = λm,n,τ e
i τ

2(1+τ2)
|x|2

ψm,n,j

(
x√

1 + τ2

)
,

where

λm,n,τ =

(
1− iτ

1 + iτ

)m
(1− iτ)

n
2

(1 + iτ)
n
2

eiθ

(1 + iτ)γ+(N/2)

and

θ = 2(γ + (N/2) + n− 1)

{
sgn(τ) arctan

(
1

|τ |+√
1 + τ2

)
− π

4
sgn(τ) + arctan

(
τ

1 +
√
1 + τ2

)}
.

Proposition 7.7 (Master formula) Let τ be a real number such that τ �= 0. Let fn is of the form fn(x) =

e−
|x|2
2 e−

Δk
4 p(x) for some p ∈ Pn, Then

Ek,τfn(x) = λn,τ e
i τ

2(1+τ2)
|x|2

fn

(
x√

1 + τ2

)
,

where

λn,τ =
(1− iτ)

n
2

(1 + iτ)
n
2

eiθ

(1 + iτ)γ+(N/2)

and

θ = 2(γ + (N/2) + n− 1)

{
sgn(τ) arctan

(
1

|τ |+√
1 + τ2

)
− π

4
sgn(τ) + arctan

(
τ

1 +
√
1 + τ2

)}

Proposition 7.8
(1) The generalized Fresnel transform Ek,τ have a unique extension to an unitary operator on L2

k(R
N ).

(2) The family {Ek,τ}τ≥0 is a C0-group of unitary operators on L2
k(R

N ). The Schwartz space S(RN ) is a core
of its generator A and A|S(RN ) = iΔk

(3) For each f ∈ D(A) the function u(t, x) = Ek,tf(x) is the unique classical solution of the problem{
∂
∂tu(t, x) = Au(t, x) on R+ × R

N ,
u(0, .) = f ∈ D(A);

(4) (i) Let f ∈ S(RN ). The function u(t, x) = Ek,tf(x) is the unique solution of the Dunkl-Schrödinger equation{
i ∂
∂tu(t, x) = −Δku(t, x) on R+ × R

N ,
u(0, .) = f ∈ S(RN ).

(7.7)

Moreover, u(t, x) has the following properties:
(ii) u(t, .) ∈ S(RN ) for all t ∈ R+.
(iii) u(t+ s, x) = Ek,t (u(s, .)) (x) for all t, s ∈ R+ and x ∈ R

N .
(iv) For all t > 0,

‖u(t, .)‖∞ ≤ ck
(2t)γ+(N/2)

‖u(0, .)‖k,1.

(v) ‖u(t, .)‖k,2 = ‖u(0, .)‖k,2 for all t ∈ R+.

7.2 Basic properties of the fractional Dunkl transform

In this subsection, the one-parameter subgroup of SL(2,R) is

{
M(α) =

[
cos(α) − sin(α)
sin(α) cos(α)

]
; α ∈ R

}
.
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7.2.1 The fractional Dunkl transform

The fractional Dunkl transform Dα
k of real order α ∈ R which is defined by[14, 15]:

Dα
k f(x) =

⎧⎪⎪⎨
⎪⎪⎩

cke
i(γ+N/2)((α−2nπ)−α̂π/2)

(2| sinα|)γ+N/2

∫
RN

e
i
2 (|x|2+|y|2) cotαEk(−ix/ sin(α), y)f(y) dy, (2n− 1)π < α < (2n+ 1)π,

f(x), α = 2nπ,
f(−x), α = (2n+ 1)π,

can be considered (except for a constant unimodular factor
(
eiα
)γ+N

2 ) a special cases of the generalized Dunkl

transform DM
k with parameter matrix M(α) =

[
cos(α) − sin(α)
sin(α) cos(α)

]
.

7.2.2 Basic properties

Here we list some properties of the fractional Dunkl transform.

Proposition 7.9 (Riemann-Lebesgue lemma): Suppose that α ∈ R\πZ. Then for all f ∈ L1
k(R

N ), Dα
k belongs

to C0(RN ) and verifies

‖Dα
k f‖∞ ≤ ck

(2| sin(α)|)γ+(N/2)
‖f‖k,1.

Proposition 7.10 (The reversibility property:)
1) For all f ∈ L1

k(R
N ) with Dα

k f ∈ L1
k(R

N ),

(D−α
k ◦Dα

k )f = f, a.e, and (Dα
k ◦D−α

k )f = f, a.e.

2) The fractional Dunkl transform Dα
k is a one-to-one and onto mapping from S(RN ) into S(RN ). Moreover,

(Dα
k )

−1f = D−α
k f, f ∈ S(RN ).

Proposition 7.11 (An additivity property) Let α and β be real numbers and let f ∈ L1
k(R

N ) with Dβ
kf ∈

L1
k(R

N ). Then

Dα
kD

β
kf = Dα+β

k f, (7.8)

with equality a. e when α+ β = 0.

Proposition 7.12 (Operational formula)

Let α ∈ R and {ξj}Nj=1 is an orthonormal basis of RN . For j = 1, . . . , N , define Aξj and A∗
ξj

by

Aξj = 2−1/2
[
Qξj − Tξj

]
and A∗

ξj = 2−1/2
[
Qξj + Tξj

]
.

Then the following relations hold on S(RN ):
(1) Dα

k ◦Qξ = (cos(α)Qξ + sin(α)Pξ) ◦Dα
k .

(2) Dα
k ◦ Pξ = (− sin(α)Qξ + cos(α)Pξ) ◦Dα

k .
(3) 〈Aξjf, g〉k = 〈f,A∗

ξj
g〉k; f, g ∈ S(RN ).

(4) Dα
k ◦Aξj = eiα(Aξj ◦Dα

k ).
(5) Dα

k ◦A∗
ξj

= e−iα(A∗
ξj

◦Dα
k ).

(6) Dα
k ◦Hk = Hk ◦Dα

k where Hk is the generalized Hermite operator which is defined by [24]:

Hk =
1

2

N∑
j=1

A∗
ξjAξj +AξjA

∗
ξj =

1

2
(|x|2 −Δk).

Proposition 7.13 (Bochner type identity) Let α be a real number. If f ∈ L1
k(R

N ) ∩ L2
k(R

N ) is of the form
f(x) = p(x)ψ(|x|) for some p ∈ Hk

n and a one-variable ψ on R+, then

Dα
k f(x) = p(x)Hα

n+γ+(N/2)−1ψ(|x|). (7.9)

In particular, if f is radial, then
Dα

k f(x) = Hα
γ+(N/2)−1ψ(|x|).
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Proposition 7.14 Let α ∈ R. The fractional Dunkl transform of the generalized Laguerre functions are

Dα
kψm,n,j(x) = eiα(n+2m)ψm,n,j(x).

Proposition 7.15 (Master formula)

Let α be a real number such that α �= 0. Let fn is of the form fn(x) = e−
|x|2
2 e−

Δk
4 p(x) for some p ∈ Pn, Then:

(1)

Dα
k fn(x) = einαfn(x). (7.10)

(2) In particular,

Dα
k hν(x) = ei|ν|α hν(x), (7.11)

where hν(x) =
√

ck2|ν|e−
|x|2
2 e−

Δk
4 ϕν(x) is the generalized Hermite functions [24].

Proposition 7.16
(1) The fractional Dunkl transform Dα

k have a unique extension to an unitary operator on L2
k(R

N ).
(2) The generalized Hermite functions {hν , ν ∈ Z

N
+} are an orthonormal basis of eigenfunctions of the fractional

Dunkl transform Dα
k on L2

k(R
N ) satisfying Dα

k hν(x) = ei|ν|α hν(x).
(3) The family of operators {Dα

k }α∈R
is a C0-group of unitary operators on L2

k(R
N ). The Schwartz space S(RN )

is a core of its generator T and

T|S(RN ) = −i(γ + (N/2)) +
i

2
(|x|2 −Δk).

(4) For each f ∈ D(T ) the function u(t, x) = Dt
kf(x) is the unique classical solution of the problem{

∂
∂tu(t, x) = Tu(t, x) on R× R

N ,
u(0, .) = f ∈ D(T );

(5) (i) Let f ∈ S(RN ). The function u(t, x) = Dt
kf(x) is the unique solution of the Dunkl-Schrödinger equation{

i ∂
∂tu(t, x) =

(
(γ +N/2)− 1

2 (|x|2 −Δk)
)
u(t, x) on R× R

N ,
u(0, .) = f ∈ S(RN ).

(7.12)

Moreover, u(t, x) has the following properties:
(ii) u(t, .) ∈ S(RN ) for all t ∈ R.
(iii) u(t+ s, x) = Dt

k (u(s, .)) (x) for all t, s ∈ R and x ∈ R
N .

(iv) For all t ∈ R/πZ,

‖u(t, .)‖∞ ≤ ck
(2| sin(t)|)γ+(N/2)

‖u(0, .)‖k,1.

(v) ‖u(t, .)‖k,2 = ‖u(0, .)‖k,2 for all t ∈ R.

We conclude this subsection by an alternative proof of the following result established by Rösler in [24]

Corollary 7.1 (see [14]) For n ∈ N and p ∈ Pn, the function fn(x) = e−
|x|2
2 e−

Δk
4 p(x) satisfies

1

2
(|x|2 −Δk)fn = (n+ γ + (N/2))fn. (7.13)

In particular, for ν ∈ Z
N
+

1

2
(|x|2 −Δk)hν = (|ν|+ γ + (N/2))hν . (7.14)

Proof. Since fn ∈ S(RN ) ⊂ D(T ), then

lim
α→0

Dα
k fn − fn

α
= T (fn)

= −i(γ + (N/2))fn +
i

2
(|x|2 −Δk)fn.
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Using (7.10) we obtain

lim
α→0

Dα
k fn − fn

α
= lim

α→0

einα − 1

α
fn

= inαfn.

Hence

1

2
(|x|2 −Δk)fn = (n+ γ + (N/2))fn.

7.3 Basic properties of the generalized Dunkl transform associated to the hyper-
bolic subgroup of SL(2,R)

In this subsection, the one-parameter subgroup of SL(2,R) is

{
M(α) =

[
cosh(α) sinh(α)
sinh(α) cosh(α)

]
; α ∈ R

}
.

Definition 7.3 For f ∈ L1
k(R

N ) and α ∈ R, we define

Oα
k f(x) = D

M(α)
k f(x) =

⎧⎨
⎩

ck
(2i sinhα)γ+(N/2)

∫
RN

e
i
2 (|x|2+|y|2) cothα Ek

(
− ix

sinhα
, y

)
f(y)ωk(y) dy, α �= 0

f(x), α = 0,

where M(α) =

[
cosh(α) sinh(α)
sinh(α) cosh(α)

]
.

7.3.1 Basic properties

Here we list some properties of Oα
k .

Proposition 7.17 (Riemann-Lebesgue lemma): Suppose that α �= 0. Then for all f ∈ L1
k(R

N ), Oα
k f belongs to

C0(RN ) and verifies

‖Oα
k f‖∞ ≤ ck

(2| sinh(α)|)γ+(N/2)
‖f‖k,1.

Proposition 7.18 (The reversibility property:)
1) For all f ∈ L1

k(R
N ) with Oα

k f ∈ L1
k(R

N ),

(O−α
k ◦Oα

k )f = f, a.e, and (Oα
k ◦O−α

k )f = f, a.e.

2) Oα
k is a one-to-one and onto mapping from S(RN ) into S(RN ). Moreover,

(Oα
k )

−1f = O−α
k f, f ∈ S(RN ).

Proposition 7.19 (An additivity property) Let α and β be real numbers and let f ∈ L1
k(R

N ) with Oβ
kf ∈

L1
k(R

N ). Then

Oα
k Oβ

kf = eiψ Oα+β
k f, (7.15)

where the constant phase ψ is given by

ψ =

{
π
2 (γ + (N/2))

(
sgn(α+ β) + sgn

(
α+β
αβ

)
− sgn(α)− sgn(β)

)
, α �= 0, β �= 0, α �= 0,

0, if not ,

with equality a. e when α �= 0, β �= 0 and α+ β = 0.
In particular if αβ ≥ 0, then

Oα
k Oβ

kf = Oα+β
k f. (7.16)

Proposition 7.20 (Operational formula)

Let α ∈ R and {ξj}Nj=1 is an orthonormal basis of RN . For j = 1, . . . , N , define Bξj and C∗
ξj

by

Bξj = 2−1/2
[
Qξj − Pξj

]
and Cξj = 2−1/2

[
Qξj + Pξj

]
.
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Then the following relations hold on S(RN ):
(1) Oα

k ◦Qξ = (cosh(α)Qξ − sinh(α) Pξ) ◦Oα
k .

(2) Oα
k ◦ Pξ = (− sinh(α)Qξ + cosh(α)Pξ) ◦Oα

k .
(3) Oα

k ◦Bξj = eα(Bξj ◦Oα
k ).

(4) Oα
k ◦ Cξj = e−α(Cξj ◦Oα

k ).
(5) Oα

k ◦ Bk = Bk ◦Oα
k where Bk is the operator defined by:

Bk =
1

2

N∑
j=1

BξjCξj + CξjBξj =
1

2
(|x|2 +Δk).

Proposition 7.21 (Bochner type identity) Let α be a real number. If f ∈ L1
k(R

N ) ∩ L2
k(R

N ) is of the form
f(x) = p(x)ψ(|x|) for some p ∈ Hk

n and a one-variable ψ on R+, then

Oα
k f(x) = p(x)Vα

λ ψ(|x|),

where λ = n+ γ + (N/2)− 1 and

Vα
λψ(|x|) =

2

Γ(λ+ 1)(2ib)λ+1

∫ +∞

0

e
i
2 coth(α)(|x|2+y2) jλ

( |x|y
sinh(α)

)
f(y)y2λ+1 dy.

In particular, if f is radial, then
Oα

k f(x) = Vα
γ+(N/2)−1 ψ(|x|).

Remark 7.2 According to the previous Proposition, we can put:

Vα
μ f(x) =

⎧⎨
⎩

2

Γ(μ+ 1)(2ib)μ+1

∫ +∞

0

e
i
2 coth(α)(|x|2+y2) jμ

( |x|y
sinh(α)

)
f(y)y2μ+1 dy, α �= 0,

f(x), α = 0,

where μ ≥ − 1
2 .

Proposition 7.22 Let α ∈ R such that α �= 0. Then:

Oα
kψm,n,j(x) = λm,n,α e

i
2 coth(2α)|x|2 ψm,n,j

(
x√

cosh(2α)

)
,

where

λm,n,α =

(
cosh(α)− i sinh(α)

cosh(α) + i sinh(α)

)m
(cosh(α)− i sinh(α))

n
2

(cosh(α) + i sinh(α))
n
2

eiθ

(cosh(α) + i sinh(α))γ+(N/2)

and

θ = 2(γ+(N/2)+n−1)

{
sgn(α) arctan

(
cosh(α)

| sinh(α)|+√
cosh(2α)

)
− π

4
sgn(α) + arctan

(
sinh(α)

cosh(α) +
√

cosh(2α)

)}
.

Proposition 7.23 (Master formula) Let α be a real number such that α �= 0. Let fn is of the form fn(x) =

e−
|x|2
2 e−

Δk
4 p(x) for some p ∈ Pn, Then

Oα
k fn(x) = λn,α e

i
2 coth(2α)|x|2 fn(x)

(
x√

cosh(2α)

)
,

where

λn,α =
(cosh(α)− i sinh(α))

n
2

(cosh(α) + i sinh(α))
n
2

eiθ

(cosh(α) + i sinh(α))γ+(N/2)

and

θ = 2(γ+(N/2)+n−1)

{
sgn(α) arctan

(
cosh(α)

| sinh(α)|+√
cosh(2α)

)
− π

4
sgn(α) + arctan

(
sinh(α)

cosh(α) +
√

cosh(2α)

)}
.
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Proposition 7.24
(1) The operator Oα

k have a unique extension to an unitary operator on L2
k(R

N ).
(2) The family of operators {Oα

k }α∈R+
is a C0-group of unitary operators on L2

k(R
N ). The Schwartz space S(RN )

is a core of its generator A and A|S(RN ) =
i
2 (|x|2 +Δk).

(3) For each f ∈ D(A) the function u(t, x) = Ot
kf(x) is the unique classical solution of the problem{

∂
∂tu(t, x) = Au(t, x) on R+ × R

N ,
u(0, .) = f ∈ D(A);

(4) (i) Let f ∈ S(RN ). The function u(t, x) = Ot
kf(x) is the unique solution of the Dunkl-Schrödinger equation{

i ∂
∂tu(t, x) =

1
2 (|x|2 +Δk)u(t, x) on R+ × R

N ,
u(0, .) = f ∈ S(RN ).

(7.17)

Moreover, u(t, x) has the following properties:
(ii) u(t, .) ∈ S(RN ) for all t ∈ R+.
(iii) u(t+ s, x) = Ot

k (u(s, .)) (x) for all t, s ∈ R+ and x ∈ R
N .

(iv) For all t ∈ R,

‖u(t, .)‖∞ ≤ ck
(2| sinh(t)|)γ+(N/2)

‖u(0, .)‖k,1.

(v) ‖u(t, .)‖k,2 = ‖u(0, .)‖k,2 for all t ∈ R+.
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