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1. Introduction

We consider the numerical differentiation problem, where the derivatives of a function are approximated 
by using values of the function and eventually other knowledge about the function itself.

The direct use of numerical differentiation methods can support applications where functions are known 
only on discrete sets, such as in the context of sampling processes, or applications where the derivatives 
computation involves too complex formulas. A usual situation where such applications require the compu-
tation of numerical differentiation is the solution of optimization problems by derivative-free methods, see 
[4] for details.

A problem of slightly different nature is the solution of differential equations giving a relation between the 
unknown function and its derivatives. For such problems the approximation of derivatives plays a central 
role and allows the definition of algebraic equations for the corresponding numerical solution [6].

The simplest method for the numerical differentiation is given by the finite difference approximations. 
Despite their popularity, finite difference methods for the evaluation of the derivative have low accuracy and 
stability properties [7], [13]. Nevertheless, if the function is analytic on a neighborhood of the derivation 
point and it can be evaluated for each point of this neighborhood, the problem is well-conditioned [11] and it 
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can be efficiently solved by numerical methods. So, in scientific literature, several numerical differentiation 
algorithms of arbitrary analytic function are present.

For example, methods to approximate derivatives of real functions using complex variables have been 
studied in [1], [2], [7], [15], [18]. In particular, the method proposed in [1] is based on numerical inversion of 
a complex Laplace transform; the one proposed in [7] uses the Fast Fourier Transform.

Differential quadrature [22] is another well-known method where derivatives are approximated by 
weighted sums of function values, and it has been applied extensively in various engineering problems 
[17]. The weighting coefficients of the polynomial based, Fourier expansion based and exponential based 
differential quadrature methods can be computed explicitly.

Numerical differentiation algorithms based on polynomial interpolation approximate the function deriva-
tive by the derivative of the interpolation polynomials. Some versions of this strategy have obtained good 
results in terms of accuracy and stability; for example, [3] uses low-order Chebyshev interpolation polyno-
mials to compute the derivative of noisy functions, [10] and [12] use Neville algorithm for computing the 
interpolating polynomial in order to compute stable approximation of function derivative. We note that 
this algorithm is used in the routine D04AAF of the NAG Library [14] to approximate the derivatives up 
to order 14.

From standard arguments on Taylor series, the differentiation problem with one-side boundary conditions 
can be reformulated as a Volterra integral equation of the first kind. Several authors have discussed the 
use of such an integral equation for the numerical differentiation problem. For example, in [9] it is used to 
compute the stepsize in the finite-difference methods, in [21] has been proposed a sparse discretization of 
this integral equation, in [20] a fast multiscale solver has been proposed for the numerical solution of the 
Tikhonov regularization equation.

In this paper we consider the problem of numerical differentiation reformulated as this Volterra integral 
equation of the first kind. We present a method for the construction of the singular value expansion of the 
kernel of such an integral equation; so that, it allows the definition of simple algorithms to solve this integral 
equation and, in turn, to compute the numerical derivatives of a given function. A numerical experiment 
is used to test the proposed method by comparing the corresponding results with the ones obtained by a 
well-established scientific software.

In Section 2 the problem of numerical differentiation is described together with the corresponding Volterra 
integral equation of the first kind, as well as its solution obtained by using the singular value expansion of 
the corresponding integral kernel K. In Section 3, the characteristic equation for the singular values of K is 
given together with the analytic expressions of the corresponding left-singular functions and right-singular 
functions. In Section 4 some numerical examples are given. Section 5 describes some conclusions and future 
developments.

2. The integral equation for the derivation problem

Let ν ≥ 1 be a given integer number, and let f : [0, 1] → R be a continuously differentiable function up to 
order ν, and suppose that f (j)(0), j = 0, 1, . . . , ν−1, are known or already calculated, where f (j) denotes the 
jth derivative of f . Hence, from standard arguments on Taylor formula, we have that the integral equation 
with unknown function v : [0, 1] → R

Kv(t) = f(t) −
ν−1∑
j=0

f (j)(0)
j! tj , t ∈ [0, 1],

where K is the integral operator having kernel K : [0, 1] × [0, 1] → R defined by
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K(t, s) =
{

(t−s)ν−1

(ν−1)! , 0 ≤ s < t ≤ 1,
0, 0 ≤ t ≤ s ≤ 1,

(1)

has unique solution v = f (ν) (see [21] for details).
Therefore v = f (ν) is the unique solution of the following Volterra integral equation of the first kind:

t∫
0

(t− s)ν−1

(ν − 1)! v(s)ds = g(t), (2)

where t ∈ [0, 1], and the known function

g(t) = f(t) −
ν−1∑
j=0

f (j)(0)
j! tj , t ∈ [0, 1], (3)

has the properties that g(j)(0) = 0, j = 0, 1, . . . , ν − 1 and g(ν)(t) = f (ν)(t), t ∈ [0, 1]. In particular, when g
is a continuously differentiable function up to order ν such that g(j)(0) = 0, j = 0, 1, . . . , ν−1, then v = g(ν)

is the solution of

1∫
0

K(t, s)v(s)ds = g(t), t ∈ [0, 1]. (4)

We note that the differentiation problem can be formulate by other different integral equations. The 
theory of Green’s functions for ordinary differential equations [19] gives a very standard approach; for 
example, in the case ν = 2, the operator Lg = g(2) with boundary conditions g(0) = 0 and g(1) = 0, has 
the following Green’s function:

G(t, s) =
{

t(s− 1), 0 ≤ t < s ≤ 1,
s(t− 1), 0 ≤ s ≤ t ≤ 1,

so, the following Fredholm integral equation of first kind:

1∫
0

G(t, s)v(s)ds = g(t), t ∈ [0, 1]

has solution v = g(2), see [5] and the references therein for details of such an integral formulation and its 
numerical approach. We note that for the same derivation order ν = 2, but with initial conditions g(0) = 0
and g′(0) = 0 we have that v = g(2) is the solution of the Volterra integral equation (2), or specifically:

t∫
0

(t− s)v(s)ds = g(t).

In Section 2.1 we recall some general properties of the singular value expansion of compact operators; in 
Section 2.2 we introduce some notations; in Section 2.3 we give some preliminar results.
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2.1. The singular value expansion

From standard arguments on integral operators with square integrable kernels, we have that there exists 
a Singular Value Expansion (SVE) of the kernel (1), that is

K(t, s) =
∞∑
l=1

μlul(t)vl(s), t, s ∈ [0, 1],

where μ1 ≥ μ2 ≥ . . . are the singular values of K, for l = 1, 2, . . . , μl > 0, moreover ul and vl are the 
corresponding left-singular function and right-singular function, respectively, see [8] for details.

Let K∗ be the adjoint integral operator of K, then its kernel is

K∗(s, t) = K(t, s), t, s ∈ [0, 1],

and

Kvl = μlul, K∗ul = μlvl, l = 1, 2, . . . . (5)

Moreover the solution of (4) is

g(ν)(t) =
∞∑
l=1

〈g, ul〉
μl

vl(t), (6)

where 〈·, ·〉 denotes the inner product on the space of real square integrable functions on [0, 1].
In the distribution sense, we have

dν

dtν
K(t, s) = δ(t− s),

dν

dsν
K∗(s, t) = (−1)νδ(t− s),

where δ denotes the Dirac’s delta, and so for l = 1, 2, . . . we have

vl = dν

dtν
(Kvl) = μl

dν

dtν
ul, (7)

ul = (−1)ν dν

dtν
(K∗ul) = (−1)νμl

dν

dtν
vl. (8)

2.2. Notations and properties

Let Rn be the n-dimensional real Euclidean space, ι ∈ C be the imaginary unit and Cn be the 
n-dimensional complex Hilbert space. Let x ∈ C, we denote with x ∈ C the conjugate complex of x, 
and with |x| its modulus. Let x = (x1, x2, . . . , xn)T ∈ C

n be a column vector, where T denotes the transpo-
sition operator, we define: x = (x1, x2, . . . , xn)T ∈ C

n, xm = (xm
1 , xm

2 , . . . , xm
n )T ∈ C

n, m ∈ N. In particular 
0n ∈ C

n is the null vector; 1n ∈ C
n is the vector having all the components equal to 1. We denote with Cn×n

the space of complex matrices having order n, On ∈ C
n×n denotes the null matrix, In ∈ C

n×n denotes the 
identity matrix, Jn ∈ C

n×n denotes the anti-diagonal matrix having the anti-diagonal entries equal to 1.

Remark 1. Let Q ∈ C
n×n, n ∈ N, n ≥ 3, be a matrix having non null entries only on the diagonal and on 

the anti-diagonal, that is Qi,j = 0 when i �= j and i �= n − j + 1. Let R ∈ C
(n−2)×(n−2) be the submatrix of 
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Q obtained by deleting the rows 1 and n and the columns 1 and n, then it is easy to prove the following 
formula for the determinant of Q:

det (Q) = (Q1,1Qn,n −Q1,nQn,1) det (R) . (9)

Let ρ2 : Z → {0, 1} be the modulo operation with divisor 2, so that ρ2(k) gives the reminder after the 
division of k by 2, and let ρ−2 (k) = 1 − ρ2(k), k ∈ Z. For k, q, j ∈ Z, γ ∈ R, we define

θq = 2q + ρ2(ν)
2ν π =

{
qπ
ν , if ν is even,
(2q+1)π

2ν , if ν is odd,

cq = cos θq, sq = sin θq, zq = eιθq = cq + ιsq

ck,q = cos ((k + 1)θq) , sk,q = sin ((k + 1)θq) ,

c(γ)
q = cos (γsq) , s(γ)

q = sin (γsq) ,

c
(γ)
k,q = cos ((k + 1)θq − γsq) = ck,qc

(γ)
q + sk,qs

(γ)
q , (10)

s
(γ)
k,q = sin ((k + 1)θq − γsq) = sk,qc

(γ)
q − ck,qs

(γ)
q , (11)

α(γ)
q = (−1)qeγcq ,

η = ν − ρ2(ν)
2 ,

c
(γ)
·,j =

(
c
(γ)
0,j , c

(γ)
1,j , . . . , c

(γ)
ν−1,j

)T

∈ R
ν ,

s
(γ)
·,j =

(
s
(γ)
0,j , s

(γ)
1,j , . . . , s

(γ)
ν−1,j

)T

∈ R
ν ,

c·,j = c
(0)
·,j ∈ R

ν , s·,j = s
(0)
·,j ∈ R

ν .

Remark 2. We have the following relations:

• c0,q = cq, s0,q = sq, eγzq = eγcqeιγsq , s(0)
k,q = sk,q, c(0)k,q = ck,q;

• θν−ρ2(ν)−k = π − θk, θη = π
2 ;

• 0 ≤ θ0 < θ1 < · · · < θη−1 < θη = π
2 < θη+1 < . . . θν−ρ2(ν) ≤ π, where the first and the last inequality 

hold as equalities only when ν is even;
• 1 ≥ c0 > c1 > · · · > cη−1 > cη = 0 > cη+1 > . . . cν−ρ2(ν) ≥ −1, where the first and the last inequality 

hold as equalities only when ν is even.

In particular the following four square matrices of order ν are defined: when ν = 1, T (1) = (s0), T (2) =
(c0), U (1) =

(
s
(γ)
0,0

)
, U (2) =

(
c
(γ)
0,0

)
; when ν = 2, T (1) = (c·,2, s·,1), T (2) = (c·,2, c·,1), U (1) = (s(γ)

·,1 , c
(γ)
·,0 ), 

U (2) = (c(γ)
·,1 , c

(γ)
·,0 ); when ν ≥ 3

T (1) =
(
c·,ν−ρ2(ν), c·,ν−ρ2(ν)−1 . . . , c·,η+1, s·,η, s·,η+1 . . . , s·,ν−1

)
, (12)

T (2) =
(
c·,ν−ρ2(ν), c·,ν−ρ2(ν)−1 . . . , c·,η, s·,η+1, s·,η+2 . . . , s·,ν−1

)
, (13)

U (1) =
(
s
(γ)
·,ρ−

2 (ν), s
(γ)
·,ρ−

2 (ν)+1 . . . , s
(γ)
·,η , c

(γ)
·,η−1, c

(γ)
·,η−2, . . . , c

(γ)
·,0

)
, (14)

U (2) =
(
s
(γ)

− , s
(γ)

− . . . , s
(γ)
·,η−1, c

(γ)
·,η , c

(γ)
·,η−1, . . . , c

(γ)
·,0

)
. (15)
·,ρ2 (ν) ·,ρ2 (ν)+1
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We note that matrix T (1) differs from T (2) only at column η + 1, while matrix U (1) differs from U (2) only 
at column η + ρ2(ν).

2.3. Preliminar results

The following lemma gives some relations between the determinants of matrices T (1) and T (2).

Lemma 1. Let d(1) = det
(
T (1)), and d(2) = det

(
T (2)), the following relations hold

d(2) + ιd(1) = (−1)ηιν−η
(
1 + ρ−2 (ν)ι

)
2ν−η−1d (16)

d(1)d(2) = ρ−2 (ν)(−1)η4η−1d2 (17)(
d(2)

)2
−
(
d(1)

)2
= ρ2(ν)(−1)η+14ηd2, (18)

d =
∏

η+1≤q≤ν−1

(
ρ2(ν) + 2ρ−2 (ν) (1 + cq)

)
sq(−cq) ·

·
∏

η+1≤p<q≤ν−1

(
|zp − zq|2 |zp − zq|2

)
, (19)

where the product 
∏

are equal to 1 when the corresponding set of indices is empty.

Proof. See Appendix A. �
We note that d is a positive real number, in fact, from Remark 2, it is the product of positive factors. 

Moreover, when ν is odd we have d(1)d(2) = 0, 
(
d(2))2 − (

d(1))2 = (−1)η+14ηd2 and its sign depends on η; 
when ν is even we have 

(
d(2))2−(

d(1))2 = 0, d(1)d(2) = (−1)η4η−1d2 and its sign depends on η. In particular 
when ν = 1 we have d(1) = 1 and d(2) = 0, when ν = 2 we have d(1) = −1 and d(2) = 1.

Let us consider the following four square matrices of order ν: when ν = 1, W (1) = (0), W (2) = (1), 
D(1) =

(
s
(γ)
0

)
, D(2) =

(
c
(γ)
0

)
; when ν = 2, W (1) = (−s·,1 + c·,1, s·,0), W (2) = (−s·,1 − c·,1, c·,0), D(1) =

Diag(s(γ)
1 , s(γ)

0 ), D(2) = Diag(c(γ)
1 , c(γ)

0 ); when ν ≥ 3

W (1) =
(
−c·,ρ−

2 (ν),−c·,ρ−
2 (ν)+1, . . . ,−c·,η−1,

d(2) (ρ2s·,η + ρ−2 c·,η
)

+ d(1) (−ρ2c·,η + ρ−2 s·,η
)
,

s·,η−1, s·,η−2, . . . , s·,1, s·,0
)

(20)

W (2) =
(
s·,ρ−

2 (ν), s·,ρ−
2 (ν)+1, . . . , s·,η−1,

d(2) (ρ2c·,η − ρ−2 s·,η
)

+ d(1) (ρ2s·,η + ρ−2 c·,η
)
,

c·,η−1, c·,η−2, . . . , c·,1, c·,0
)

(21)

D(1) = Diag
(
s
(γ)
ρ−
2 (ν), s

(γ)
ρ−
2 (ν)+1, . . . , s

(γ)
η−1, s

(γ)
η , s

(γ)
η−1, . . . , s

(γ)
1 , s

(γ)
0

)
(22)

D(2) = Diag
(
c
(γ)
ρ−
2 (ν), c

(γ)
ρ−
2 (ν)+1, . . . , c

(γ)
η−1, c

(γ)
η , c

(γ)
η−1, . . . , c

(γ)
1 , c

(γ)
0

)
(23)

For the determinants of matrices W (1) and W (2) we have the following result.
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Lemma 2. For matrices W (1) and W (2) defined in (20), (21), the following results hold

det
(
W (1)

)
= 0, det

(
W (2)

)
= ρ2(ν)22ηd2 − ρ−2 (ν)22η−1d2 �= 0 (24)

where d is given by (19).

Proof. See Appendix B.

3. The singular value expansion of K

We describe the characteristic equation for the singular values μ of K and we give the expression of the 
left-singular function and the right-singular function associated to a given singular value μ of K.

Theorem 1. Let μl > 0 be a singular value of the integral operator K defined by its kernel (1), and let 
γl = 1/ ν

√
μl. Then, the singular functions corresponding to μl are

ul(t) =
ν−ρ2(ν)∑

p=0
eγlcpt

(
C(u)

p cos(γlspt) + S(u)
p sin(γlspt)

)
, t ∈ [0, 1], (25)

vl(t) =
ν−ρ2(ν)∑

p=0
eγlcpt

(
C(v)

p cos(γlspt) + S(v)
p sin(γlspt)

)
, t ∈ [0, 1], (26)

where coefficients C(·)
p , S(·)

p ∈ R, p = 0, 1, . . . , ν − ρ2(ν), are defined by the following relations:

• if ν is odd

C(u)
p = (−1)p+1S(v)

p , S(u)
p = (−1)pC(v)

p , (27)
ν−1∑
p=0

(
C(v)

p ck,p − S(v)
p sk,p

)
= 0, k = 0, 1, . . . , ν − 1, (28)

ν−1∑
p=0

α(γl)
p

(
S(v)
p c

(γl)
k,p + C(v)

p s
(γl)
k,p

)
= 0, k = 0, 1, . . . , ν − 1; (29)

• if ν is even

S
(v)
0 = S(v)

ν = S
(u)
0 = S(v)

ν = 0, (30)

C(u)
p = (−1)pC(v)

p , S(u)
p = (−1)pS(v)

p , (31)
ν∑

p=0

(
C(v)

p ck,p − S(v)
p sk,p

)
= 0, k = 0, 1, . . . , ν − 1, (32)

ν∑
p=0

α(γl)
p

(
C(v)

p c
(γl)
k,p − S(v)

p s
(γl)
k,p

)
= 0, k = 0, 1, . . . , ν − 1. (33)

Proof. Let t ∈ [0, 1] and l be a positive integer. Let μl > 0 be the lth singular value of K with singular 
functions ul(t) and vl(t), then they satisfy (7) and (8). Let

σl(t) = ul(t) − (−1)νιρ2(ν)vl(t) δl(t) = ul(t) + (−1)νιρ2(ν)vl(t), (34)
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then, from (7) and (8), σl and δl are solutions of the following differential equations:

μl
dν

dtν
σl = −ιρ2(ν)σl, (35)

μl
dν

dtν
δl = ιρ2(ν)δl. (36)

In particular, the solution of equation (35) is supposed to have the form σl(t) = λt; then parameter λ must 
satisfy the following equation

μllogν λ = −ιρ2(ν)

from which we have

λ = eγlz2p+1 , p = 0, 1, . . . , ν − 1,

where γl = 1
ν
√
μl

. Hence, the ν complex linearly independent solutions of (35) are

σl,p(t) = etγlz2p+1 , p = 0, 1, . . . , ν − 1. (37)

For equation (36) similar arguments hold, in particular the ν complex linearly independent solutions of (36)
are

δl,p(t) = etγlz2p , p = 0, 1, . . . , ν − 1. (38)

We note that σl,p(0) = 1, σl,p(1) = eγlz2p+1 = eγlc2p+1
(
c
(γl)
2p+1 + ιs

(γl)
2p+1

)
, δl,p(0) = 1, δl,p(1) = eγlz2p =

eγlc2p
(
c
(γl)
2p + ιs

(γl)
2p

)
.

From (37) and (38), it is straightforward to prove that

σl,ν−p−1(t) = ρ2(ν)δl,p(t) + ρ−2 (ν)σl,p(t), p = 0, 1, . . . ν − 1,

δl,ν−p−1(t) = ρ2(ν)σl,p(t) + ρ−2 (ν)δl,p+1(t), p = 0, 1, . . . ν − 1.

In particular, we have that both sets of the complex integrals of (35) and of (36) are generated by the 
following 2ν linearly independent real functions

σ
(1)
l,p (t) ≡ Re(σl,p(t)) = etγlc2p+1 cos(tγls2p+1), p = 0, . . . , η − 1, (39)

σ
(2)
l,p (t) ≡ Im(σl,p(t)) = etγlc2p+1 sin(tγls2p+1), p = 0, . . . , η − 1, (40)

δ
(1)
l,p (t) ≡ Re(δl,p(t)) = etγlc2p cos(tγls2p), p = 0, . . . , η, (41)

δ
(2)
l,p (t) ≡ Im(δl,p(t)) = etγlc2p sin(tγls2p), p = ρ−2 (ν), . . . , η − ρ−2 (ν). (42)

Hence from (34), we have that the set of the real integrals of (7), (8) is also generated by the above functions, 
that is

vl(t) =
η∑

q=0

(
C

(v)
2q δ

(1)
l,q (t) + S

(v)
2q δ

(2)
l,q (t)

)
+

η−1∑
q=0

(
C

(v)
2q+1σ

(1)
l,q (t) + S

(v)
2q+1σ

(2)
l,q (t)

)
, (43)

ul(t) =
η∑(

C
(u)
2q δ

(1)
l,q (t) + S

(u)
2q δ

(2)
l,q (t)

)
+

η−1∑(
C

(u)
2q+1σ

(1)
l,q (t) + S

(u)
2q+1σ

(2)
l,q (t)

)
, (44)
q=0 q=0
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where C(·)
p , S(·)

p ∈ R, p = 0, 1, . . . , 2η, and S(v)
0 = S

(u)
0 = S

(v)
2η = S

(u)
2η = 0 when ν = 2η, and so we have (25), 

(26) and (30).
In Appendix C we prove that the solutions of (35) and (36) satisfy the following relations:

Kσ
(1)
l,p (t) = −

ν−1∑
k=0

tν−k−1

(ν − k − 1)!γk+1
l

ck,2p+1 − μlσ
(1+ρ2(ν))
l,p (t), (45)

K∗σ
(1)
l,p (t) =

ν−1∑
k=0

(−1)k(1 − t)ν−k−1

(ν − k − 1)!γk+1
l

eγlc2p+1c
(γl)
k,2p+1 − (−1)νμlσ

(1+ρ2(ν))
l,p (t), (46)

Kσ
(2)
l,p (t) =

ν−1∑
k=0

tν−k−1

(ν − k − 1)!γk+1
l

sk,2p+1 − (−1)νμlσ
(2−ρ2(ν))
l,p (t), (47)

K∗σ
(2)
l,p (t) = −

ν−1∑
k=0

(−1)k(1 − t)ν−k−1

(ν − k − 1)!γk+1
l

eγlc2p+1s
(γl)
k,2p+1 − μlσ

(2−ρ2(ν))
l,p (t), (48)

Kδ
(1)
l,p (t) = −

ν−1∑
k=0

tν−k−1

(ν − k − 1)!γk+1
l

ck,2p + μlδ
(1+ρ2(ν))
l,p (t), (49)

K∗δ
(1)
l,p (t) =

ν−1∑
k=0

(−1)k(1 − t)ν−k−1

(ν − k − 1)!γk+1
l

eγlc2pc
(γl)
k,2p + (−1)νμlδ

(1+ρ2(ν))
l,p (t), (50)

Kδ
(2)
l,p (t) =

ν−1∑
k=0

tν−k−1

(ν − k − 1)!γk+1 sk,2p + (−1)νμlδ
(2−ρ2(ν)))
l,p (t), (51)

K∗δ
(2)
l,p (t) = −

ν−1∑
k=0

(−1)k(1 − t)ν−k−1

(ν − k − 1)!γk+1
l

eγlc2ps
(γl)
k,2p + μlδ

(2−ρ2(ν)))
l,p (t). (52)

From (43)–(52) we have

Kvl(t) = μl

η∑
q=0

(
C

(v)
2q δ

(1+ρ2(ν))
l,q (t) + (−1)νS(v)

2q δ
(2−ρ2(ν))
l,q (t)

)
+

+ μl

η−1∑
q=0

(
−C

(v)
2q+1σ

(1+ρ2(ν))
l,q (t) − (−1)νS(v)

2q+1σ
(2−ρ2(ν))
l,q (t)

)
+

−
ν−1∑
k=0

tν−k−1

(ν − k − 1)!γk+1
l

(
η∑

q=0

(
C

(v)
2q ck,2q − S

(v)
2q sk,2q

)
+

+
η−1∑
q=0

(
C

(v)
2q+1ck,2q+1 − S

(v)
2q+1sk,2q+1

))
,

K∗ul(t) = μl

η∑
q=0

(
(−1)νC(u)

2q δ
(1+ρ2(ν))
l,q (t) + S

(u)
2q δ

(2−ρ2(ν))
l,q (t)

)
+

μl

η−1∑
q=0

(
(−1)ν+1C

(u)
2q+1σ

(1+ρ2(ν))
l,q (t) − S

(u)
2q+1σ

(2−ρ2(ν)
l,q (t)

)
+

+
ν−1∑ (−1)k(1 − t)ν−k−1

(ν − k − 1)!γk+1

(
η∑

eγlc2q
(
C

(u)
2q c

(γl)
k,2q − S

(u)
2q s

(γl)
k,2q

)
+

k=0 l q=0
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+
η−1∑
q=0

eγlc2q+1
(
C

(u)
2q+1c

(γl)
k,2q+1 − S

(u)
2q+1s

(γl)
k,2q+1

))
.

So that, from (5) we obtain relations (27), (31) and

−
ν−1∑
k=0

tν−k−1

(ν − k − 1)!γk+1
l

(
η∑

q=0

(
C

(v)
2q ck,2q − S

(v)
2q sk,2q

)
+

+
η−1∑
q=0

(
C

(v)
2q+1ck,2q+1 − S

(v)
2q+1sk,2q+1

))
= 0,

ν−1∑
k=0

(1 − t)ν−k−1

(ν − k − 1)!γk+1
l

(−1)k
(

η∑
q=0

eγlc2q
(
C

(u)
2q c

(γl)
k,2q − S

(u)
2q s

(γl)
k,2q

)
+

+
η−1∑
q=0

eγlc2q+1
(
C

(u)
2q+1c

(γl)
k,2q+1 − S

(u)
2q+1s

(γl)
k,2q+1

))
= 0,

form which we have (28), (29) and (32), (33), this concludes the proof of the theorem. �
From the above theorem, we have that when μ is a singular value of integral operator K, defined by its 

kernel (1), and γ = 1
ν
√
μ then the coefficients of the corresponding singular functions must satisfy: equations 

(27)–(29) in the case ν odd, and equations (30)–(33) in the case ν even. These equations can be written as 
the following linear system having 2ν equations

M

(
S

C

)
= 02ν , (53)

where

CT =
(
C

(v)
0 , C

(v)
1 , . . . , C

(v)
ν−ρ2(ν)

)
∈ R

ν+ρ−
2 (ν)

ST =
(
S

(v)
ρ−
2 (ν), S

(v)
ρ−
2 (ν)+1, . . . , S

(v)
ν−1

)
∈ R

ν−ρ−
2 (ν)

and matrix M =
(
M ·,1,M ·,2, . . . ,M ·,2ν

)
∈ R

2ν×2ν has columns

M ·,i =

⎛
⎜⎝

−s·,i−ρ2(ν)

α
(γ)
i−ρ2(ν)

(
ρ2(ν)c(γ)

·,i−ρ2(ν) − ρ−2 (ν)s(γ)
·,i−ρ2(ν)

)
⎞
⎟⎠ ,

i = 1, 2, . . . , ν − ρ−2 (ν) (54)

M ·,i+ν−ρ−
2 (ν) =

⎛
⎜⎝

c·,i−1

α
(γ)
i−1

(
ρ2(ν)s(γ)

·,i−1 + ρ−2 (ν)c(γ)
·,i−1

)
⎞
⎟⎠ ,

i = 1, 2, . . . , ν + ρ−2 (ν). (55)

Definition 1. We define

hν(γ) = det (M) (56)

where M is the matrix of order 2ν whose columns are given by (54) and (55).
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When μl, l = 1, 2, . . . , is a singular value of integral operator K defined by its kernel (1), then γl = 1/ ν
√
μl

is a zero of hν and the coefficients of the singular functions associated with μl respect to the base functions 
(39)–(42) are given by a non trivial solution of the corresponding linear system (53).

Hence, in order to compute the singular values of K we have to compute the positive zeros of hν. In the 
following we give the expression of hν for ν = 1, 2, and we give the asymptotic behavior of hν when ν ≥ 3.

Remark 3. When ν = 1 we have that h1 : R+ = (0, +∞) → R defined in (56) is

h1(γ) = − cos(γ), (57)

and for l = 1, 2, . . . and t ∈ [0, 1] the SVE is

γl = π

2 + lπ, μl = 1
γl
, ul(t) =

√
2 sin(γlt), vl(t) =

√
2 cos(γlt).

Remark 4. When ν = 2 we have that h2 : R+ → R defined in (56) is

h2(γ) = −4 (1 − cos(γ) cosh(γ)) , (58)

and for l = 1, 2, . . . and t ∈ [0, 1] the SVE is given by

• γl are the positive zeros of h2(γ) such that 0 < γ1 < γ2 < γ3 < . . . ,
• μl = 1

γ2
l
,

• ul(t) = C (βle
γlt + (βl + 1) cos(γlt) + (βl − 1) sin(γlt) + e−γlt),

• vl(t) = C (βle
γlt − (βl + 1) cos(γlt) − (βl − 1) sin(γlt) + e−γlt),

where C is the same normalization constant and

βl = cos(γl) + sin(γl) + e−γl

cos(γl) − sin(γl) + eγl
.

Theorem 2. When ν ≥ 3 we have that hν : R
+ → R defined in (56) satisfies the following asymptotic 

relation:

hν(γ) = (−1)η+1d222η−1(2ρ2(ν) − ρ−2 (ν)) cos(γ)eγξ + gν(γ), (59)

where gν(γ) = O(eγξ0) when γ → +∞, d > 0 is given by (19), and

ξ = 2
η−1∑
i=0

ci − ρ−2 (ν)c0, (60)

ξ0 = cη−1 + 2
η−2∑
i=0

ci − ρ−2 (ν)c0. (61)

We note that when ν ≥ 3

eγξ0

eγξ
= e−γcη−1 → 0, γ → +∞.

Proof. Let ν ≥ 3, P2ν is the set of permutations of {1, 2, . . . , 2ν}, P (i), i = 1, 2, 3, is a given partition of P2ν , 
τ1 is the restriction of the bijection τ ∈ P2ν to {1, 2, . . . , ν} and τ2 is the restriction of the bijection τ ∈ P2ν
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to {ν + 1, ν + 2, . . . , 2ν}, see Appendix D for an extensive definition of these objects and their properties. 
Let sign(τ) be the signature of permutation τ ∈ P2ν . From standard arguments on matrix determinant, and 
the fact that {P (i), i = 1, 2, 3} is a partition of P2ν we have

hν(γ) = det(M) =
∑

τ∈P2ν

sign(τ)
2ν∏
i=1

Mi,τ(i) =
∑

τ∈P (1)

sign(τ)
2ν∏
i=1

Mi,τ(i) +

+
∑

τ∈P (2)

sign(τ)
2ν∏
i=1

Mi,τ(i) +
∑

τ∈P (3)

sign(τ)
2ν∏
i=1

Mi,τ(i). (62)

Appendix D defines also four sets of bijections B(j)
i , i, j = 1, 2 and two special permutations τ (j) ∈ P (j), 

j = 1, 2, such that for j = 1, 2

τ ∈ P (j) ⇔ τi ∈ B
(j)
i , i = 1, 2, (63)

sign(τ) = sign(τ (j))sign(j)(τ1)sign(j)(τ2), if τ ∈ P (j), (64)

where, when τ ∈ P (j), sign(j)(τi) = (−1)k, and k is the number of inversions necessary to obtain τi from 
τ

(j)
i .

From the definitions of τ1 and τ2, and formulas (63), (64), with j = 1, we have

∑
τ∈P (1)

sign(τ)
2ν∏
i=1

Mi,τ(i) =
∑

τ∈P (1)

sign(τ)
(

ν∏
i=1

Mi,τ(i)

)( 2ν∏
i=ν+1

Mi,τ(i)

)
=

=
∑

τ1∈B
(1)
1 ,τ2∈B

(1)
2

sign(τ (1))sign(1)(τ1)sign(1)(τ2)
(

ν∏
i=1

Mi,τ1(i)

)
·

·
( 2ν∏

i=ν+1
Mi,τ2(i)

)
= sign(τ (1))

⎛
⎝ ∑

τ1∈B
(1)
1

sign(1)(τ1)
ν∏

i=1
Mi,τ1(i)

⎞
⎠ ·

·

⎛
⎝ ∑

τ2∈B
(1)
2

sign(1)(τ2)
2ν∏

i=ν+1
Mi,τ2(i)

⎞
⎠ . (65)

The second factor in the last formula is the determinant of the matrix obtained by removing the last ν
rows and the last ν columns from the matrix Mτ(1) , that is matrix M with columns permutated by τ (1), see 
Appendix D for a precise definition. In particular, from the definition of matrix M given by (54) and (55), 
the definition of τ (1) given in Appendix D

τ (1) = (2ν, 2ν − 1, . . . , 2ν − η + 1,

η + ρ2(ν), η + ρ2(ν) + 1, . . . , 2ν − η,

η + ρ2(ν) − 1, η + ρ2(ν) − 2, . . . , 1)

and the definition of T (1) given by (12), we have

⎛
⎝ ∑

(1)

sign(1)(τ1)
ν∏

i=1
Mi,τ1(i)

⎞
⎠ =
τ1∈B1
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= det
(
c·,ν−ρ2(ν), c·,ν−ρ2(ν)−1 . . . , c·,η+1,−s·,η,−s·,η+1 . . . ,−s·,ν−1

)
=

= (−1)ν−ηdet
(
T (1)

)
. (66)

The third factor in (65) is the determinant of the matrix obtained from Mτ(1) by removing the first ν rows 
and the first ν columns, in particular, from the definition of matrix M given by (54) and (55), the definition 
of τ (1), and the definition of U (i), i = 1, 2, given by (14), (15), we have

⎛
⎝ ∑

τ2∈B
(1)
2

sign(1)(τ2)
2ν∏

i=ν+1
Mi,τ2(i)

⎞
⎠ = ρ2(ν)det

(
α

(γ)
0 s

(γ)
·,0 , α

(γ)
1 s

(γ)
·,1 , . . .

. . . , α
(γ)
η−1s

(γ)
·,η−1, α

(γ)
η s(γ)

·,η , α
(γ)
η−1c

(γ)
·,η−1, α

(γ)
η−2c

(γ)
·,η−2, . . . , α

(γ)
ρ−
2 (ν)c

(γ)
·,ρ−

2 (ν)

)
+

+ ρ−2 (ν)det
(
α

(γ)
0 c

(γ)
·,0 , α

(γ)
1 c

(γ)
·,1 . . . , α(γ)

η c(γ)
·,η ,

− α
(γ)
η−1s

(γ)
·,η−1,−α

(γ)
η−2s

(γ)
·,η−2, . . . ,−α

(γ)
ρ−
2 (ν)s

(γ)
·,ρ−

2 (ν)

)
=

= ρ2(ν)α(γ)
η

η−1∏
i=0

(
α

(γ)
i

)2
det

(
U (1)

)
+

− ρ−2 (ν)α(γ)
η α

(γ)
0

η−1∏
i=1

(
α

(γ)
i

)2
det

(
U (2)

)
=

= (−1)ηeγξ
(
ρ2(ν)det

(
U (1)

)
− ρ−2 (ν)det

(
U (2)

))
, (67)

in fact α(γ)
η = (−1)ηeγcη = (−1)η, and

ρ2(ν)
η−1∏
i=0

(
α

(γ)
i

)2
+ ρ−2 (ν)α(γ)

0

η−1∏
i=1

(
α

(γ)
i

)2
= eγξ.

From (65), (66) and (67), we have

∑
τ∈P (1)

sign(τ)
2ν∏
i=1

Mi,τ(i) = (−1)νsign(τ (1))eγξdet
(
T (1)

)
·

·
(
ρ2(ν)det

(
U (1)

)
− ρ−2 (ν)det

(
U (2)

))
. (68)

With a similar discussion but by using τ (2), defined in Appendix D, we have

∑
τ∈P (2)

sign(τ)
2ν∏
i=1

Mi,τ(i) = (−1)ν−1sign(τ (2))eγξdet
(
T (2)

)
·

·
(
ρ2(ν)det

(
U (2)

)
+ ρ−2 (ν)det

(
U (1)

))
. (69)

On the other hand, for the last addendum in (62) we have:
∣∣∣∣∣∣
∑

(3)

sign(τ)
2ν∏

Mi,τ(i)

∣∣∣∣∣∣ ≤
∑

(3)

∣∣∣∣∣
ν∏

Mi,τ1(i)

∣∣∣∣∣
∣∣∣∣∣

2ν∏
Mi,τ2(i)

∣∣∣∣∣ ≤
∑

(3)

∣∣∣∣∣
2ν∏

Mi,τ2(i)

∣∣∣∣∣ ,

τ∈P i=1 τ∈P i=1 i=ν+1 τ∈P i=ν+1
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where the last inequality follows from the fact that when i ≤ ν, Mi,· is sine or cosine. In Appendix E the 
following formula is proved:

∑
τ∈P (3)

∣∣∣∣∣
2ν∏

i=ν+1
Mi,τ2(i)

∣∣∣∣∣ = O(eγξ0), (70)

where ξ0 is defined by (61). Hence we have

∑
τ∈P (3)

sign(τ)
2ν∏
i=1

Mi,τ(i) = O(eγξ0). (71)

From (62), (68), (69), (71), and from sign(τ (1)) = −sign(τ (2)) (see Appendix D), we have:

hν(γ) = sign(τ (2))eγξρ2(ν)
(
det

(
T (1)

)
det

(
U (1)

)
+ det

(
T (2)

)
det

(
U (2)

))
+

+ sign(τ (2))eγξρ−2 (ν)
(
det

(
T (1)

)
det

(
U (2)

)
− det

(
T (2)

)
det

(
U (1)

))
+

+ O(eγξ0), (72)

where matrices T (1), T (2), U (1), U (2) are defined in (12)–(15). From sign
(
τ (2)) = (−1)η+1 (see Appendix D), 

formulas (10), (11), (72), and the multilinearity property of the determinant, we have:

hν(γ) = (−1)η+1eγξρ2(ν)
(
d(1)det

(
U (1)

)
+ d(2)det

(
U (2)

))
+

+ (−1)η+1eγξρ−2 (ν)
(
d(1)det

(
U (2)

)
− d(2)det

(
U (1)

))
+ O(eγξ0) =

= (−1)η+1eγξdet
(
s
(γ)
·,ρ−

2 (ν), s
(γ)
·,ρ−

2 (ν)+1, . . . , s
(γ)
·,η−1,

d(1)
(
ρ2(ν)s(γ)

·,η + ρ−2 (ν)c(γ)
·,η

)
+ d(2)

(
ρ2(ν)c(γ)

·,η − ρ−2 (ν)s(γ)
·,η

)
,

c
(γ)
·,η−1, c

(γ)
·,η−2, . . . , c

(γ)
·,0

)
+ O(eγξ0) =

= (−1)η+1eγξ · det
(
W (2)D(2) + W (1)D(1)

)
+ O(eγξ0), (73)

where W (1), W (2), D(1), D(2) are given by (20)–(23). In Appendix B it is proved that there exist aq, 
q = 0, 1, . . . , η − 1, and bp, p = ρ−2 (ν), ρ−2 (ν) + 1, . . . , η − 1, such that

d(2) (ρ2s·,η + ρ−2 c·,η
)

+ d(1) (−ρ2c·,η + ρ−2 s·,η
)

=
η−1∑

p=ρ−
2 (ν)

bps·,p +
η−1∑
q=0

aqc·,q. (74)

Let

a =
(
aη−1, aη−2, . . . , aρ−

2 (ν)

)T

∈ R
η−ρ−

2 (ν), (75)

b =
(
bρ−

2 (ν), bρ−
2 (ν)+1, . . . , bη−1

)T

∈ R
η−ρ−

2 (ν), (76)

from (74), we have
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W (2)

⎛
⎜⎝ Oη b Jη

0Tη 0 0Tη
−Jη a Oη

⎞
⎟⎠ = W (1), when ν is odd, (77)

W (2)

⎛
⎜⎜⎜⎝

Oη−1 b Jη−1 0η−1
0Tη−1 0 0Tη−1 0
−Jη−1 a Oη−1 0η−1
0Tη−1 a0 0Tη−1 0

⎞
⎟⎟⎟⎠ = W (1), when ν is even. (78)

So W (1) = W (2)J (ν), where J (ν) is the matrix defined by relations (77), (78), and

det
(
W (2)D(2) + W (1)D(1)

)
= det

(
W (2)

)
det

(
D(2) + J (ν)D(1)

)
.

From (73) we have

hν(γ) = (−1)η+1eγξdet
(
W (2)

)
det

(
D(2) + J (ν)D(1)

)
+ O(eγξ0),

where det
(
D(2) + J (ν)D(1)) = cos(γ), see Appendix F for a proof of this last relation, and from Lemma 2

we have (59). This concludes the proof of the theorem. �
4. Numerical examples

We propose a simple algorithm to compute the ν-derivative of a function f(t), t ∈ [0, 1], by knowing 
f (j)(0), j = 0, 1, . . . , ν−1. This algorithm is based on the singular value expansion presented in the previous 
sections; so it has the following straight structure:

Algorithm 1. Given ν, L ∈ N, given f(t), t ∈ [0, 1] and f (j)(0), j = 0, 1, . . . , ν−1, compute an approximation 
f̃ (ν) of f (ν) by the following steps:

1. compute the first L singular values, μl, l = 1, 2, . . . , L, of K in (1), by the L lowest zeros γl > 0, 
l = 1, 2, . . . , L, of function hν defined in (56),

2. for each l = 1, 2, . . . , L, compute the left-singular function ul and right-singular function vl, by (25)–(33),
3. compute the approximation f̃ (ν) of f (ν) by formula (6), where the sum is truncated to index l = L and 

g is given by (3).

This algorithm is tested by two numerical experiments. In the first experiment the following two functions

f1(x) = 1
1 + x2 , (79)

f2(x) = cos
(
(1 + x)2

)
, (80)

are considered with respect to derivation order ν = 1, 2, 10. Note that, for each one of these functions, 
the corresponding right-hand side of integral equation (4) is computed by formal calculations. Moreover 
an extension of the Neville algorithm [10], [12] is used to compare the results obtained with the proposed 
method. In the second experiment we consider the numerical derivation of some singular functions of the 
kernel (1) for the case ν = 1, 2.

Fig. 1 shows the first L singular values, μl, l = 1, 2, . . . , L, when ν = 1, 2, 10. Algorithm 1 is used to 
compute the ν-derivative of f1, f2 at 100 points uniformly distributed into the interval [0, 0.5] and the errors 
on these approximations are evaluated by the explicit derivatives of f1, f2. Table 1 shows the results of this 
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Fig. 1. The diagrams give the singular value μl, l = 1, 2, . . . , L, of K as a function of l, for derivation orders ν = 1, 2, 10 and 
truncation parameters: L = 320 for ν = 1; L = 160 for ν = 2; L = 71 for ν = 10.

numerical simulation. In particular, it reports the errors on the approximations computed by Algorithm 1, 
and by the extension of Neville algorithm; moreover it reports also the difference between ||K||2 (the L2-norm 
of K) and the norm of the singular integral operator obtained by the first L terms of the singular value 
expansion of K. We note that different truncation parameters L are used for different differential orders ν. 
This is due to the different asymptotic behavior of the singular values μl when l → ∞ for different orders 
ν, see Fig. 1, as consequence of different regularity properties of K defined in (1). In particular, from the 
last column of Table 1, we note that when ν = 10 the truncation error for the kernel K is 1.6(−14) when 
L = 30, instead when ν = 2 is 3.2(−5) when L = 150 and when ν = 1 is 1.8(−2) when L = 300. From 
Table 1, we can observe that the extension of Neville algorithm is superior to Algorithm 1 for low derivation 
orders; on the contrary the two algorithms has similar accuracy levels for ν = 10, where the truncation 
error is very small. We note that approximation methods based on integral equation (4) guarantee accurate 
approximations in a neighborhood of zero, instead the numerical error for Algorithm 1 has been computed 
on the interval [0, 0.5].

The relevance of the second experiment is explained by the following remark.

Remark 5. The singular functions ul and vl corresponding to the singular value μl satisfy the following 
relations

u
(ν)
l (t) = 1

μl
vl(t), (81)

v
(ν)
l (t) = (−1)ν

ul(t). (82)

μl
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Table 1
The second and third column report the 2-norm relative er-
rors obtained, by applying the proposed Algorithm 1 and the 
extension of Neville algorithm (NAG), in the computation 
of the ν-derivative of fi, i = 1, 2; the errors are computed 
by using 100 points uniformly distributed into the interval 
[0, 0.5]. The fourth columns reports the difference between 
the L2-norm of K and the norm of the corresponding sin-
gular value expansion used in the proposed algorithm.

f1 f2 ||K||2 −
∑L

l=1 μ2
l

ν = 1
L = 100 5.2(−4) 1.9(−4) 3.2(−2)
L = 200 1.9(−3) 2.2(−3) 2.2(−2)
L = 300 6.6(−5) 2.4(−5) 1.8(−2)
NAG 1.2(−14) 3.1(−15)

ν = 2
L = 50 2.6(−3) 3.2(−2) 1.6(−4)
L = 100 1.3(−3) 1.6(−2) 5.8(−5)
L = 150 8.5(−4) 1.1(−2) 3.2(−5)
NAG 1.5(−13) 2.6(−13)

ν = 10
L = 10 4.0(−3) 5.0(−1) 1.6(−14)
L = 20 6.3(−4) 3.3(−1) 1.6(−14)
L = 30 6.5(−4) 2.3(−1) 1.6(−14)
NAG 4.7(−3) 5.6(−2)

Table 2
The 2-norm relative errors, at 100 points uniformly distributed into the inter-
val [0, 0.5], obtained by applying the proposed Algorithm 1, to compute the 
ν-derivative, ν = 1, 2 of u1, u5, u10, v1, v5, v10, whose analytic solutions are 
given by (81) and (82).

u1 u5 u10 v1 v5 v10

ν = 1
L = 100 2.4(−13) 2.1(−13) 9.1(−13) 2.1(−3) 3.7(−3) 6.3(−3)
L = 200 5.8(−13) 2.2(−13) 9.2(−13) 8.8(−4) 1.6(−3) 2.4(−3)
L = 300 1.3(−12) 2.6(−13) 9.2(−13) 5.3(−4) 9.6(−4) 1.4(−3)

ν = 2
L = 50 1.7(−9) 4.2(−11) 9.4(−12) 1.1(−3) 3.5(−3) 6.5(−3)
L = 100 2.1(−6) 5.7(−8) 1.3(−8) 2.8(−4) 9.8(−4) 2.1(−3)
L = 150 2.4(−7) 5.7(−8) 1.3(−8) 1.3(−4) 4.6(−4) 1.0(−3)

These relations (see also formulas (7) and (8)) are used in the derivation of the characteristic equation 
hν(γ) = 0 given by (56).

In particular, this experiment tests relation (81) and (82) for the cases ν = 1, 2 by considering the 
derivation problem for the following singular functions u1, u5, u10, v1, v5, v10. The numerical results are 
obtained by applying the proposed Algorithm 1, these results are compared with the theoretical results, 
i.e. (81) and (82). Table 2 reports the 2-norm relative errors, at 100 points uniformly distributed into the 
interval [0, 0.5]. This table confirms the theoretical results, in fact the approximations of the ν derivatives 
of v1, v5, v10 have the same quality of those for general functions such as f1 and f2 reported in Table 1; on 
the contrary, for the ν derivatives of u1, u5, u10 we have good approximations because their ν derivatives 
are in the finite dimensional space used for the representation of the solution, i.e. span(v1, v2, . . . , vL), that 
is the space generated by the singular functions vl, see formula (6) for details.

These preliminar results serve to show the correctness of the proposed method; however, they also provide 
an interesting outcome, in fact the simple Algorithm 1 proposed in this paper can be greatly improved by 
different ways, such as the regularization of the inversion of singular value decomposition [16], or the joint 
use of operator K and its adjoint K∗; in particular, with this last choice we conjecture to obtain a better 
approximation on all the interval [0, 1] by considering a self-adjoint operator.
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The numerical results shown in this section have been computed by a FORTRAN program running 
in an Intel Pentium D CPU 36Hz with operative system Windows 7. In particular for the Neville algo-
rithm we have used the implementation provided by the routine D04AAF of the NAG Numerical Library 
[14].

5. Conclusions

The problem of numerical differentiation, reformulated by a Volterra integral equation of the first kind, 
has been solved through the singular value expansion of the corresponding integral kernel. This singular 
value expansion allows the definition of a simple algorithm to compute the numerical derivatives of a given 
function. The numerical results obtained with this algorithm give a numerical evidence of the correctness 
of the general approach proposed in the present paper. However these results can be improved by using 
refined algorithms taking into account the regularization techniques to deal with ill-posedness of problem 
(2). Another way to improve the results obtained by Algorithm 1 is the joint use of integral operator K and 
of its adjoint K∗. Finally, an interesting future study is also the application of the proposed method in the 
solution of differential equations.

Appendix A

In the following Lemma 1 is proved.
When ν = 1, T (1) = (s0) = (1) and T (2) = (c0) = (0), so d(1) = 1 and d(2) = 0.
When ν = 2, T (1) = (c·,2, s·,1) and T (2) = (c·,2, c·,1), so, also in this case, it is immediate to verify that 

d(1) = −1 and d(2) = 1.
Let ν ≥ 3 and let

ep =
(
eιθp , eι2θp , . . . , eινθp

)T = eιθp
(
1, eιθp , . . . , eι(ν−1)θp

)T

∈ C
ν ,

then

ep =
(
e−ιθp , e−ι2θp , . . . , e−ινθp

)T = e−ιθp
(
1, e−ιθp , . . . , e−ι(ν−1)θp

)T

.

From the multilinearity property of the determinant we have:

d(2) + ιd(1) = det
(
c·,ν−ρ2(ν), c·,ν−ρ2(ν)−1, . . . , c·,η+1, c·,η + ιs·,η, s·,η+1, s·,η+2, . . . , s·,ν−1

)
=

= det
(

1
2

(
eν−ρ2(ν), eν−ρ2(ν)−1, . . . , eη+1, eη, ιeη+1, ιeη+2, . . . , ιeν−1

)
+

+ 1
2

(
eν−ρ2(ν), eν−ρ2(ν)−1, . . . , eη+1, eη,−ιeη+1,−ιeη+1, . . . ,−ιeν−1

))
=

= det
(

1
2

(
eν−ρ2(ν), eν−ρ2(ν)−1, . . . , eη+1, eη, ιeη+1, ιeη+2, . . . , ιeν−1

)
(Iν + J)

)
,

where J = (Ji,j)1≤i,j≤ν is a matrix having the following non null entries: when ν is odd, Ji,ν−i+1 = −ι, for 
i = 1, 2, . . . , ν, i �= η + 1, and Jη+1,η+1 = 1; when ν is even, J1,1 = 1, Ji,ν−i+2 = −ι, for i = 2, 3, . . . , ν, 
i �= η + 1, and Jη+1,η+1 = 1.

Let

x =
(
eιθν−ρ2(ν) , eιθν−ρ2(ν)−1 , . . . , eιθη+1 , eιθη , e−ιθη+1 , e−ιθη+2 , . . . , e−ιθν−1

)
∈ C

ν .
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When ν is odd

x =
(
eιθν−1 , eιθν−2 , . . . , eιθη+1 , eιθη , e−ιθη+1 , e−ιθη+2 , . . . , e−ιθν−1

)
,

det
(
eν−ρ2(ν), eν−ρ2(ν)−1, . . . , eη+1, eη, ιe

−1
η+1, ιe

−1
η+2, . . . , ιe

−1
ν−1

)
=

det
(
eν−1, eν−2, . . . , eη+1, eη, ιe

−1
η+1, ιe

−1
η+2, . . . , ιe

−1
ν−1

)
=

ιν−η−1eιθη

(
ν−1∏

p=η+1
eιθpe−ιθp

)
det

⎛
⎜⎜⎜⎝

1Tν
x

. . .

xν−1

⎞
⎟⎟⎟⎠ ,

moreover, from the definition of J and (9), we have

det (Iν + J) = 2
η∏

p=1
(1 − (−ι)(−ι)) = 2η+1.

When ν is even

x =
(
eιθν , eιθν−1 , . . . , eιθη+1 , eιθη , e−ιθη+1 , e−ιθη+2 , . . . , e−ιθν−1

)
.

det
(
eν−ρ2(ν), eν−ρ2(ν)−1, . . . , eη+1, eη, ιe

−1
η+1, ιe

−1
η+2, . . . , ιe

−1
ν−1

)
=

det
(
eν , eν−1, . . . , eη+1, eη, ιe

−1
η+1, ιe

−1
η+2, . . . , ιe

−1
ν−1

)
=

ιν−η−1eιθηeιθν

(
ν−1∏

p=η+1
eιθpe−ιθp

)
det

⎛
⎜⎜⎜⎝

1Tν
x

. . .

xν−1

⎞
⎟⎟⎟⎠ ,

moreover, from the definition of J and (9), we have

det (Iν + J) = 4
η−1∏
p=1

(1 − (−ι)(−ι)) = 2η+1.

So that, by noting that eιθη = ι and when ν is even eιθν = −1, we have

d(2) + ιd(1) =
(

1
2

)ν

ιν−η (−1)ν+1 det

⎛
⎜⎜⎜⎝

1Tν
x

. . .

xν−1

⎞
⎟⎟⎟⎠ 2η+1 =

(
1
2

)ν

(2)η+1(ι)ν−η (−1)ν+1 ∏
1≤i<j≤ν

(xj − xi),

where we used the Vandermonde determinant with xi the ith entry of x.
We note that when i �= j, i, j = 1, 2, . . . , ν then xi �= xj , so that d(2) + ιd(1) �= 0, moreover by using the 

definition of xi and by analyzing separately the two sets of indices {(i, j) : 1 ≤ i ≤ η + 1, i < j ≤ ν} and 
{(i, j) : η + 2 ≤ i < j ≤ ν}, it is straightforward to prove that

∏
(xi − xj) = (−4)ν−η−1 (1 + ρ−2 (ν)ι

)
d,
1≤i<j≤ν
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and hence (16). Let ζ ∈ N, we have

d(2) + ιd(1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)ζ22ζdι ν = 4ζ + 1, η = 2ζ,
(−1)ζ22ζ+1d ν = 4ζ + 3, η = 2ζ + 1,
(−1)ζ+1 (ι− 1) 22ζd ν = 4ζ + 2, η = 2ζ + 1,
(−1)ζ+1 (1 + ι) 22ζ+1d ν = 4ζ + 4, η = 2ζ + 2,

d(2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 ν = 4ζ + 1, η = 2ζ,
(−1)ζ22ζ+1d ν = 4ζ + 3, η = 2ζ + 1,
(−1)ζ22ζd ν = 4ζ + 2, η = 2ζ + 1,
(−1)ζ+122ζ+1d ν = 4ζ + 4, η = 2ζ + 2,

d(1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)ζ22ζd ν = 4ζ + 1, η = 2ζ,
0 ν = 4ζ + 3, η = 2ζ + 1,
(−1)ζ+122ζd ν = 4ζ + 2, η = 2ζ + 1,
(−1)ζ+122ζ+1d ν = 4ζ + 4, η = 2ζ + 2,

from which we have (17) and (18). �

Appendix B

In the following Lemma 2 is proved. When ν = 1 it is trivial. When ν = 2 it follows from s·,0 = 02, 
0 = θ0 < θ1 = π

2 < θ2 = π, s·,1 = (1, 0)T , c·,1 = (0, 1)T . When ν ≥ 3, for p, k ∈ Z, we have

zν−ρ2(ν)−p = eιθν−ρ2(ν)−p = eι
(2ν−2ρ2(ν)−2p+ρ2(ν))

2ν π = eιπe−ιθp = −zp,

zkν−ρ2(ν)−p = (−1)kzkp,

cos(kθν−ρ2(ν)−p) = (−1)k cos(kθp), (B.1)

sin(kθν−ρ2(ν)−p) = −(−1)k sin(kθp). (B.2)

For k = 1, 2, . . . , ν and p ∈ Z, cos(kθp) is the kth entry of vector c·,p ∈ R
ν and sin(kθp) is the kth entry of 

vector s·,p ∈ R
ν . By multiplying the η+ ρ2(ν) rows of the matrices T (1) and T (2) having odd indices by −1, 

and by using (B.1), (B.2) and the multilinearity property of the determinant, we have

d(1) = det
(
c·,ν−ρ2(ν), c·,ν−ρ2(ν)−1 . . . , c·,η+1, s·,η, s·,η+1 . . . , s·,ν−1

)
=

= (−1)η−ρ2(ν) det
(
c·,0, c·,1, . . . , c·,η−1,−s·,η,−s·,η−1, . . . ,−s·,ρ−

2 (ν)

)
=

= det
(
c·,0, c·,1, . . . , c·,η−1, s·,η, s·,η−1, . . . , s·,ρ−

2 (ν)

)
,

d(2) = det
(
c·,ν−ρ2(ν), c·,ν−ρ2(ν)−1, . . . , c·,η, s·,η+1, s·,η+2 . . . , s·,ν−1

)
=

= (−1)η−ρ2(ν) det
(
c·,0, c·,1, . . . , c·,η,−s·,η−1,−s·,η−2, . . . ,−s·,ρ−

2 (ν)

)
=

= −det
(
c·,0, c·,1, . . . , c·,η, s·,η−1, s·,η−2, . . . , s·,ρ−

2 (ν)

)
.

When ν is even s·,0 = 0ν and so det
(
W (1)) = 0; when ν is odd

det
(
W (1)

)
= d(1)det

(
−c·,0,−c·,1, . . . ,−c·,η, s·,η−1, s·,η−2, . . . , s·,0

)
+
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+ d(2)det
(
−c·,0,−c·,1, . . . ,−c·,η−1, s·,η, s·,η−1, . . . , s·,0

)
=

= −(−1)η+1d(1)d(2) + (−1)ηd(2)d(1),

so that, from (17) det
(
W (1)) = 0 also for ν odd. In the same way we have

det
(
W (2)

)
= d(2)det

(
s·,ρ−

2 (ν), s·,ρ−
2 (ν)+1, . . . , s·,η−1,

ρ2(ν)c·,η − ρ−2 (ν)s·,η, c·,η−1, c·,η−2, . . . , c·,0
)

+

+ d(1)det
(
s·,ρ−

2 (ν), s·,ρ−
2 (ν)+1, . . . , s·,η−1,

ρ2(ν)s·,η + ρ−2 (ν)c·,η, c·,η−1, c·,η−2, . . . , c·,0
)

=

= ρ2(ν)
(
−(−1)ηd(2)d(2) + (−1)ηd(1)d(1)

)
+

+ ρ−2 (ν)
(
−(−1)ηd(2)d(1) − (−1)ηd(1)d(2)

)
,

from which by using Lemma 1 we have (24) and in particular det(W (2)) is positive when ν is odd and 
negative otherwise. This concludes the proof of Lemma 2. Moreover from Lemma 1 we have

det
(
s·,ρ−

2 (ν), s·,ρ−
2 (ν)+1, . . . , s·,η−1,

d(2) (ρ2(ν)s·,η + ρ−2 (ν)c·,η
)

+ d(1) (−ρ2(ν)c·,η + ρ−2 (ν)s·,η
)

, c·,η−1, c·,η−2, . . . , c·,0
)

=

= ρ2(ν)
(
(−1)ηd(2)d(1) + (−1)ηd(1)d(2)

)
+

+ ρ−2 (ν)
(
−(−1)ηd(2)d(2) + (−1)ηd(1)d(1)

)
= 0,

hence, because detW (2) �= 0 there exist aq, q = 0, 1, . . . , η − 1, and bp, p = ρ−2 (ν), ρ−2 (ν) + 1, . . . , η − 1, such 
that

d(2) (ρ2(ν)s·,η + ρ−2 (ν)c·,η
)

+ d(1) (−ρ2(ν)c·,η + ρ−2 (ν)s·,η
)

=
η−1∑

p=ρ−
2 (ν)

bps·,p +
η−1∑
q=0

aqc·,q.

Appendix C

In the following formulas (45)–(52) are proved. Let

fα : [0,∞) → C, fα(t) = etα, t ≥ 0, α ∈ C,

by applying iteratively integration by parts we have that

(Kfα) (t) = −
ν−1∑
k=0

tν−k−1

(ν − k − 1)!α
−(k+1) + α−νfα(t),

(K∗fα) (t) = eα
ν−1∑ (−1)k(1 − t)ν−k−1

(ν − k − 1)! α−(k+1) + (−1)να−νfα(t).

k=0
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Moreover, by using the notations introduced in Theorem 1, we have

σl,p(t) = eγlz2p+1t = fγlz2p+1(t),

δl,p(t) = eγlz2pt = fγlz2p(t),

(γlzq)−k−1 = e−ι(k+1)θq

γk+1
l

,

(γlzq)−ν = e−ιπ(2q+ρ2(ν))/2

γν
l

= (−1)qμle
−ιρ2(ν)π/2,

Re
(
e−ιρ2(ν)π/2σl,p(t)

)
= σ

(1+ρ2(ν))
l,p (t),

Im
(
e−ιρ2(ν)π/2σl,p(t)

)
= (−1)ρ2(ν)σ

(2−ρ2(ν))
l,p (t),

Re
(
e−ιρ2(ν)π/2δl,p(t)

)
= δ

(1+ρ2(ν))
l,p (t),

Im
(
e−ιρ2(ν)π/2δl,p(t)

)
= (−1)ρ2(ν)δ

(2−ρ2(ν))
l,p (t),

and by using the above formulas we have

Kσ
(1)
l,p (t) = (K (Re (σl,p))) (t) = Re ((Kσl,p) (t)) =

= −
ν−1∑
k=0

tν−k−1

(ν − k − 1)!γk+1
l

Re
(
e−ι(k+1)θ2p+1

)
+

+ (−1)2p+1μlRe
(
e−ιρ2(ν)π/2σl,p(t)

)
=

= −
ν−1∑
k=0

tν−k−1

(ν − k − 1)!γk+1
l

ck,2p+1 − μlσ
(1+ρ2(ν))
l,p (t),

that gives formula (45). Instead

K∗σ
(1)
l,p (t) =

ν−1∑
k=0

(−1)k(1 − t)ν−k−1

(ν − k − 1)!γk+1
l

Re
(
eγlz2p+1e−ι(k+1)θ2p+1

)
) +

+ (−1)ν+2p+1μlRe
(
e−ιρ2(ν)π/2σl,p(t)

)
=

=
ν−1∑
k=0

(−1)k(1 − t)ν−k−1

(ν − k − 1)!γk+1
l

eγlc2p+1c
(γl)
k,2p+1 + (−1)ν+1μlσ

(1+ρ2(ν))
l,p (t),

that is formula (46). The remaining formulas (47)–(52) arise in a similar way.

Appendix D

In the following we introduce some notations and properties of permutations, required in the proof of 
Theorem 2.

For n, m ∈ Z, n ≤ m, let In,m = {n, n + 1, . . . ,m}, B (H,K) be the set of bijective functions from 
H ⊂ Z to K ⊂ Z and Pm be the set of permutations of I1,m, that is Pm = B (I1,m, I1,m). We can denote a 
permutation τ ∈ Pm, m ≥ 1, also in the following way

τ = (τ(1), τ(2), . . . , τ(m)) , τ(i) ∈ I1,m, i ∈ I1,m.
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We consider the following disjoint sets of bijections

B
(1)
1 = B

(
I1,ν , Iη+ρ2(ν),ν+ρ2(ν)−1 ∪ Iν+η+ρ2(ν)+1,2ν

)
, (D.1)

B
(2)
1 = B

(
I1,ν , Iη+ρ2(ν)+1,ν+ρ2(ν)−1 ∪ Iν+η+ρ2(ν),2ν

)
, (D.2)

B
(1)
2 = B

(
Iν+1,2ν , I1,η+ρ2(ν)−1 ∪ Iν+ρ2(ν),ν+ρ2(ν)+η

)
, (D.3)

B
(2)
2 = B

(
Iν+1,2ν , I1,η+ρ2(ν) ∪ Iν+ρ2(ν),ν+η+ρ2(ν)−1

)
, (D.4)

bijections in B(j)
1 , j = 1, 2, have the same domain I1,ν and different codomains, instead bijections in B(j)

2 , 
j = 1, 2, have the same domain Iν+1,2ν and different codomains. Let τ ∈ P2ν we define τ1 = τ |I1,ν , 
τ2 = τ |Iν+1,2ν , it is easy to see that P (1), P (2), P (3) ⊂ P2ν such that

τ ∈ P (1) ⇔ τ1 ∈ B
(1)
1 ⇔ τ2 ∈ B

(1)
2 ,

τ ∈ P (2) ⇔ τ1 ∈ B
(2)
1 ⇔ τ2 ∈ B

(2)
2 ,

P (3) = P \
(
P (1) ∪ P (2)

)
,

is a particular partition of P2ν , moreover

τ ∈ P (3) ⇔ τ1 /∈ B
(1)
1 ∪B

(2)
1 ⇔ τ2 /∈ B

(1)
2 ∪B

(2)
2 . (D.5)

Let τ (j) ∈ P (j), j = 1, 2, be the following two particular permutations in P2ν

τ (1)(i) =
{

i + ρ2(ν) − 1, η + 1 ≤ i ≤ ν + η + 1,
2ν − i + 1, otherwise,

τ (2)(i) =
{

i + ρ2(ν) − 1, η + 2 ≤ i ≤ ν + η,

2ν − i + 1, otherwise.

We note that: τ (1)(i) = τ (2)(i) when i /∈ {η + 1, ν + η + 1}; τ (1) (η + 1) = τ (2) (ν + η + 1) = η + ρ2(ν); 
τ (1) (ν + η + 1) = τ (2) (η + 1) = ν +η+ρ2(ν) = 2ν−η; sign(τ (1)) = −sign(τ (2)) = − (−1)η+1, where sign(·)
denotes the signature of the permutation.

When τ ∈ P (j), j = 1, 2, from the definition of P (j) we have that

(τ1(1), τ1(2), . . . , τ1(ν)) and
(
τ

(j)
1 (1), τ (j)

1 (2), . . . , τ (j)
1 (ν)

)
are permutations of the same ν distinct elements that depends on j, and also

(τ2(ν + 1), τ2(ν + 2), . . . , τ2(2ν)) and
(
τ

(j)
2 (ν + 1), τ (j)

2 (ν + 2), . . . , τ (j)
2 (2ν)

)
are permutations of the same ν distinct elements that depends on j, so the following quantities are well 
defined:

sign(j)(τi) = (−1)k, τ ∈ P (j), j = 1, 2,

where k is the number of inversions necessary to obtain τi from τ (j)
i , and it is easy to prove the following

sign(τ) = sign(τ (j))sign(j)(τ1)sign(j)(τ2), if τ ∈ P (j), j = 1, 2.
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Let τ ∈ P2ν , we define Aτ the matrix obtained from A = (v1, v2, . . . , v2ν) ∈ C
2ν×2ν by permuting its 

columns by τ , that is

Aτ = A(vτ(1), vτ(2), . . . , vτ(2ν)).

Appendix E

In this appendix relation (70) is proved. Let τ ∈ P (3) and let M be the matrix defined by (54), (55); for 
i = ν + 1, ν + 2, . . . , 2ν, we have

Mi,τ2(i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α
(γ)
τ2(i)−ρ2(ν)

(
ρ2(ν)c(γ)

i−ν−1,τ2(i)−ρ2(ν) − ρ−2 (ν)s(γ)
i−ν−1,τ2(i)−ρ2(ν)

)
,

τ2(i) ≤ ν − ρ−2 (ν),
α

(γ)
j

(
ρ2(ν)s(γ)

i−ν−1,j + ρ−2 (ν)c(γ)
i−ν−1,j

)
,

j = τ2(i) − ρ2(ν) − ν, τ2(i) > ν − ρ−2 (ν),

and so

∑
τ∈P (3)

∣∣∣∣∣
2ν∏

i=ν+1
Mi,τ2(i)

∣∣∣∣∣ ≤
∑

τ∈P (3)

⎛
⎜⎜⎜⎜⎜⎜⎝

2ν∏
i = ν + 1

τ2(i) ≤ ν − ρ−2 (ν)

|α(γ)
τ2(i)−ρ2(ν)|

2ν∏
i = ν + 1

τ2(i) > ν − ρ−2 (ν)

|α(γ)
τ2(i)−ρ2(ν)−ν |

⎞
⎟⎟⎟⎟⎟⎟⎠

=

=
∑

τ∈P (3)

⎛
⎜⎜⎜⎜⎜⎜⎝

2ν∏
i = ν + 1

τ2(i) ≤ ν − ρ−2 (ν)

eγcτ2(i)−ρ2(ν)

2ν∏
i = ν + 1

τ2(i) > ν − ρ−2 (ν)

eγcτ2(i)−ρ2(ν)−ν

⎞
⎟⎟⎟⎟⎟⎟⎠

=
∑

τ∈P (3)

eγ(a(τ)+b(τ)),

where

a(τ) =
2ν∑

i = ν + 1
τ2(i) ≤ ν − ρ−2 (ν)

cτ2(i)−ρ2(ν),

b(τ) =
2ν∑

i = ν + 1
τ2(i) > ν − ρ−2 (ν)

cτ2(i)−ρ2(ν)−ν .

So, relation (70) is proved if a(τ) + b(τ) ≤ ξ0 when τ ∈ P (3) and ξ0 is defined by (61). From Remark 2
we have 1 ≥ c0 > ci > ci+1 ≥ −1, i = 1, 2, . . . , ν − ρ2(ν) − 1, ci = −cν−ρ2(ν)−i, cη+i = −cη−i, i ∈ Z, and 
cη = 0. The value a(τ) is the sum of distinct terms chosen into {c1−ρ2(ν), c2−ρ2(ν), . . . , cν−1}; the value b(τ)
is the sum of distinct terms chosen into {c0, c1, . . . , cν−ρ2(ν)}; a(τ) + b(τ) is the sum of ν terms chosen into 
{c0, c1, . . . , cν−ρ2(ν)}; each ci, i = 1, 2, . . . , ν − 1, can appear at most two times into a(τ) + b(τ); c0 can 
appear at most 1 + ρ2(ν) times into a(τ) + b(τ). So that, from (60) we have

a(τ) + b(τ) ≤ cη + 2
η−1∑

ci + (1 + ρ2(ν))c0 = ξ.

i=1
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If τ ∈ P (3), from (D.5) τ2 /∈ B
(1)
2 ∪B

(2)
2 and so from (D.3) and (D.4) there exist ī, j̄ ∈ Iν+1,2ν such that

τ2(̄i) /∈ I1,η+ρ2(ν)−1 ∪ Iν+ρ2(ν),ν+ρ2(ν)+η,

τ2(j̄) /∈ I1,η+ρ2(ν) ∪ Iν+ρ2(ν),ν+η+ρ2(ν)−1.

If ī = j̄ then τ2(̄i) ∈ Iη+ρ2(ν)+1,ν+ρ2(ν)−1 ∪ Iν+η+ρ2(ν)+1,2ν and a(τ) + b(τ) contains a term lesser than cη
that is

a(τ) + b(τ) ≤ cη+1 + 2
η−1∑
i=1

ci + (1 + ρ2(ν))c0 = ξ0.

If ī �= j̄ then a(τ) + b(τ) contains two terms lesser than cη−1 that is

a(τ) + b(τ) ≤ cη + cη + cη−1 + 2
η−2∑
i=1

ci + (1 + ρ2(ν))c0 = ξ0.

This concludes the proof of (70).

Appendix F

We prove that det
(
D(2) + J (ν)D(1)) = cos(γ) that is required for the proof of Theorem 2, so in the 

following we use the notation introduced in this theorem. In particular D(·) are defined by (22), (23), and 
J (ν) is defined by (77) and (78). When ν is odd, from (22), (23), (77), (78), (74), (75) and (76) we have

det
(
D(2) + J (ν)D(1)

)
= det

⎛
⎜⎝D(2) +

⎛
⎜⎝ Oη b Jη

0Tη 0 0Tη
−Jη a Oη

⎞
⎟⎠D(1)

⎞
⎟⎠ =

= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
(γ)
0 0 . . . 0 b0s

(γ)
η 0 . . . 0 s

(γ)
0

0 c
(γ)
1 . . . 0 b1s

(γ)
η 0 . . . s

(γ)
1 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . c
(γ)
η−1 bη−1s

(γ)
η s

(γ)
η−1 . . . 0 0

0 0 . . . 0 c
(γ)
η 0 . . . 0 0

0 0 . . . −s
(γ)
η−1 aη−1s

(γ)
η c

(γ)
η−1 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 −s
(γ)
1 . . . 0 a1s

(γ)
η 0, . . . c

(γ)
1 0

−s
(γ)
0 0 . . . 0 a0s

(γ)
η 0 . . . 0 c

(γ)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

= c(γ)
η det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
(γ)
0 0 . . . 0 0 . . . 0 s

(γ)
0

0 c
(γ)
1 . . . 0 0 . . . s

(γ)
1 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . c
(γ)
η−1 s

(γ)
η−1 . . . 0 0

0 0 . . . −s
(γ)
η−1 c

(γ)
η−1 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 −s
(γ)
1 . . . 0 0 . . . c

(γ)
1 0

−s
(γ)
0 0 . . . 0 0 . . . 0 c

(γ)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

= c(γ)
η = cos(γ),

where we have used (9).
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When ν is even

det
(
D(2) + J (ν)D(1)

)
= det

⎛
⎜⎜⎜⎝D(2) +

⎛
⎜⎜⎜⎝

Oη−1 b Jη−1 0η−1
0Tη−1 0 0Tη−1 0
−Jη−1 a Oη−1 0η−1
0Tη−1 a0 0Tη−1 0

⎞
⎟⎟⎟⎠D(1)

⎞
⎟⎟⎟⎠ =

= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
(γ)
1 0 . . . 0 b1s

(γ)
η 0 . . . 0 s

(γ)
1 0

0 c
(γ)
2 . . . 0 b2s

(γ)
η 0 . . . s

(γ)
2 0 0

.. .. . . . .. .. .. . . . .. .. ..

0 0 0 . . . c
(γ)
η−1 bη−1s

(γ)
η s

(γ)
η−1 . . . 0 0 0

0 0 . . . 0 c
(γ)
η 0 . . . 0 0 0

0 0 . . . −s
(γ)
η−1 aη−1s

(γ)
η c

(γ)
η−1 . . . 0 0 0

.. .. . . . .. .. .. . . . .. ..

−s
(γ)
1 0 . . . 0 a1s

(γ)
η 0 . . . 0 c

(γ)
1 0

0 0 . . . 0 a0s
(γ)
η 0 . . . 0 0 c

(γ)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and so by (9) we have

det
(
D(2) + J (ν)D(1)

)
= c(γ)

η · c(γ)
0 = cos(γ).
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