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For any primitive matrix M ∈ R
n×n with positive diagonal entries, we prove the 

existence and uniqueness of a positive vector x = (x1, . . . , xn)t such that Mx =
( 1
x1

, . . . , 1
xn

)t. The contribution of this note is to provide an alternative proof of 
a result of Brualdi et al. (1966) [1] on the diagonal equivalence of a nonnegative 
matrix to a stochastic matrix.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In this note, we consider matrices mapping a vector with positive entries onto its element-wise inverse. 
We prove unicity and existence of such a vector for primitive matrices, that is nonnegative matrices some 
power of which is positive, with positive diagonal entries. The main result is:

Theorem 1. Let M ∈ R
n×n
≥0 be a primitive matrix with positive diagonal entries. Then there exists a unique 

vector x = (x1, . . . , xn)t with positive entries such that Mx = ( 1
x1
, . . . , 1

xn
)t.

It turns out that this question was already answered in 1966 under an equivalent form. In [1], it was 
proved that if A is a nonnegative square matrix with positive diagonal entries, then there exists a unique 
diagonal matrix D with positive diagonal entries such that DAD is row stochastic (see also [3] who proved 
it for positive matrices A). The equivalence is explained below in Lemma 2.

As a consequence, the contribution of this note is to provide an alternative proof of the above result. Unic-
ity for primitive matrices is obtained as a consequence of Perron theorem whereas existence for nonnegative 
matrices with positive diagonal entries is deduced from the Brouwer fixed-point theorem.
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This note is structured as follows. In Section 2, we present an equivalent system of quadratic equations 
to be solved. In Section 3, we deduce unicity for primitive matrices from Perron theorem. In Section 4, 
we reduce the question to finding fixed-points of a function and we recall Brouwer and Banach fixed-point 
theorems in Section 5. In Section 6, we use Brouwer fixed-point theorem to prove existence for nonnegative 
matrices with positive diagonal entries. In Section 7, we use Banach fixed-point theorem to prove existence 
and unicity for nonnegative matrices with relatively large enough diagonal entries including matrices which 
are not primitive (Proposition 12).

2. A system of quadratic equations

We say that a vector or a matrix is nonnegative (resp. positive) if all of its entries are nonnegative (resp. 
positive).

Lemma 2. Let M = (mij) ∈ R
n×n be a nonnegative matrix and x = (x1, . . . , xn)t be a positive vector. The 

following conditions are equivalent.

(i) Mx = ( 1
x1
, . . . , 1

xn
)t,

(ii) diag(x)Mdiag(x) is a stochastic matrix,
(iii) for every i ∈ {1, . . . , n},

xi

n∑
j=1

mijxj = 1. (1)

Proof. (i) ⇐⇒ (ii). The matrix diag(x)Mdiag(x) is stochastic if and only if (1, . . . , 1)t is a right eigenvector 
with eigenvalue 1, that is,

diag(x)Mdiag(x)(1, . . . , 1)t = (1, . . . , 1)t (2)

which is equivalent to Mx = diag(x)−1(1, . . . , 1)t = ( 1
x1
, . . . , 1

xn
)t.

(ii) ⇐⇒ (iii). Let ri be the i-th row of the matrix M . We develop (2) and we get

diag(x)Mx = diag(x)(r1 · x, . . . , rn · x)t = (x1r1 · x, . . . , xnrn · x)t = (1, . . . , 1)t.

This equation is verified if and only if, for each i ∈ {1, . . . , n}, the quadratic Equation (1) in x1, . . . , xn

holds. �
The system of equations (1) for i ∈ {1, . . . , n} is illustrated in Fig. 1 for n = 2 and n = 3.

3. Uniqueness for primitive matrices

A primitive matrix is a nonnegative matrix some power of which is positive.

Lemma 3. Let M ∈ R
n×n
≥0 be a primitive matrix and v ∈ R

n
>0. If M2 v = v, then Mv = v.

Proof. We already have that v is a positive vector fixed by M2 which is primitive. But so is Mv:

M2(Mv) = M(M2v) = Mv.

By Perron’s theorem, v and Mv must be colinear, that is, there exists λ ∈ R such that v = λMv. Then, 
v = λ2M2v = λ2v and thus λ2 = 1. Since v and Mv are positive, we deduce λ = 1. �
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Fig. 1. Left: the two quadratic curves x2
1 + 3x1x2 = 1, 5x1x2 + 2x2

2 = 1, intersect in a unique point in the box [0, 1]2. Right: the 
three quadratic surfaces x2

1 + 2x1x2 + 2x1x3 = 1, x1x2 + x2
2 + x2x3 = 1, x1x3 + 3x2x3 + x2

3 = 1 intersect in a unique point in the 
box [0, 1]3.

Proposition 4. Let M ∈ R
n×n be a primitive matrix. If there exists a positive vector x = (x1, . . . , xn)t ∈ R

n
>0

such that Mx = ( 1
x1
, . . . , 1

xn
)t, then it is unique.

Proof. Let x = (x1, . . . , xn)t, y = (y1, . . . , yn)t ∈ R
n
>0. Suppose that X = diag(x) and Y = diag(y) are such 

that XMX and YMY are both stochastic. The product of diagonal matrices commutes, so we have

(XMY )2 = XM(Y X)MY = XM(XY )MY = (XMX)(YMY ).

We conclude that (XMY )2 is stochastic. From Lemma 3, we conclude that XMY is stochastic. Thus we 
have

XMY (1, . . . , 1)t = (1, . . . , 1)t and YMY (1, . . . , 1)t = (1, . . . , 1)t

and

(x−1
1 , . . . , x−1

n ) = X−1(1, . . . , 1)t = MY (1, . . . , 1)t = Y −1(1, . . . , 1)t = (y−1
1 , . . . , y−1

n ).

Therefore x = y. The conclusion follows from Lemma 2. �
4. Solutions are fixed points

It can be seen in Fig. 1 that the surfaces of each equation in the positive octant are functions of the form 
y = f(x) or z = f(x, y). We now formalize and prove this.

Let M = (mij) ∈ R
n×n be a nonnegative matrix. For each i ∈ {1, . . . , n} and (x1, . . . , xi−1, xi+1, . . . , xn) ∈

R
n−1
≥0 , we denote

bi =
∑
j �=i

mijxj . (3)

For each i ∈ {1, . . . , n}, we define a function f (M)
i : Rn−1

≥0 → R>0:

f
(M)
i (x1, . . . , xi−1, xi+1, . . . , xn) =

⎧⎪⎪⎨
⎪⎪⎩
b−1
i if mii = 0,

−bi +
√

b2i + 4mii

2mii
if mii �= 0.

(4)



JID:YJMAA AID:22092 /FLA Doctopic: Real Analysis [m3L; v1.233; Prn:14/03/2018; 15:59] P.4 (1-7)
4 S. Labbé / J. Math. Anal. Appl. ••• (••••) •••–•••
Lemma 5. Let M = (mij) ∈ R
n×n be a nonnegative real matrix, i ∈ {1, . . . , n} and assume x =

(x1, . . . , xn)t ∈ R
n
>0. The vector x satisfies Equation (1) if and only if xi = f

(M)
i (x1, . . . , xi−1, xi+1, . . . , xn).

Proof. Equation (1) can be seen as a quadratic equation of the variable xi:

miix
2
i + bixi − 1 = 0 (5)

where bi =
∑

j �=i mijxj is the coefficient of xi in this quadratic polynomial. If mii = 0, then bixi = 1 and 
there is only one solution xi = b−1

i to Equation (5). Moreover xi > 0. If mii �= 0, then there are exactly two 
real solutions

−bi −
√
b2i + 4mii

2mii
< 0 and −bi +

√
b2i + 4mii

2mii
> 0

to Equation (5), the second one being positive. �
For every matrix M ∈ R

n×n, let

F (M) : Rn
≥0 → R

n
>0 : x �→

⎛
⎜⎜⎜⎜⎜⎝

f
(M)
1 (x2, x3, . . . , xn)

f
(M)
2 (x1, x3, . . . , xn)
. . .

f
(M)
n (x1, x2, . . . , xn−1)

⎞
⎟⎟⎟⎟⎟⎠

We now have a new equivalent statement.

Lemma 6. Let M ∈ R
n×n be a nonnegative matrix and x = (x1, . . . , xn)t be a positive vector. Then Mx =

( 1
x1
, . . . , 1

xn
)t if and only if x is a fixed point of F (M).

Proof. Let x = (x1, . . . , xn)t > 0. We have that F (M)(x) = x if and only if

xi = f
(M)
i (x1, . . . , xi−1, xi+1, . . . , xn)

for every i ∈ {1, . . . , n} if and only if x satisfies Equation (1) for every i ∈ {1, . . . , n} from Lemma 5 if and 
only if Mx = ( 1

x1
, . . . , 1

xn
)t from Lemma 2. �

5. Fixed-point theorems

From [4], we recall some classical fixed-point theorems.

Theorem 7 (Brouwer fixed point theorem). Every continuous function from a closed ball of a Euclidean space 
into itself has a fixed point.

We consider closed balls for the ∞-norm. For every a = (a1, . . . , an), b = (b1, . . . , bn) ∈ R
n, the closed 

ball with center (a+b)/2 and radius max{0, (ai− bi)/2} for every i-th coordinate, 1 ≤ i ≤ n, is denoted by

Box(a,b) = {(x1, . . . , xn) ∈ R
n | ai ≤ xi ≤ bi, 1 ≤ i ≤ n}.

A function F : Rn
≥0 → R

n
≥0 is said decreasing if F (x + t) ≤ F (x) for every x, t ∈ R

n
≥0.
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Corollary 8. Let F : Rn
≥0 → R

n
≥0 be a continuous and decreasing function. Then there exists a vector x ∈ R

n
≥0

such that x = F (x).

Proof. Since F is continuous and decreasing, we have that, for every a, b ∈ R
n
≥0,

F (Box(a,b)) ⊆ Box(F (b), F (a)).

Moreover, F reaches its maximal value at a = 0 so that F (Rn
≥0) ⊆ Box(0, F (0)). Then

F (Box(0, F (0))) ⊆ Box(F 2(0), F (0)) ⊆ Box(0, F (0))

and Brouwer fixed point theorem applies since Box(0, F (0)) is a closed ball. �
5.1. Banach fixed-point theorem

Let (X, d) be a metric space. Then a map T : X → X is called a contraction mapping on X if there 
exists q ∈ [0, 1) such that

d(T (x), T (y)) ≤ qd(x, y)

for all x, y ∈ X.

Theorem 9 (Banach fixed point theorem). Let (X, d) be a non-empty complete metric space with a contraction 
mapping T : X → X. Then T admits a unique fixed-point x in X.

6. Existence for nonnegative matrices with positive diagonal entries

Now we compute the gradient of f (M)
i :

�∇f
(M)
i (x) =

⎧⎪⎪⎨
⎪⎪⎩
−b−2

i (mi1, . . . ,mi,i−1,mi,i+1, . . . ,min)t if mii = 0,

1
2mii

(
bi√

b2i + 4mii

− 1
)

(mi1, . . . ,mi,i−1,mi,i+1, . . . ,min)t if mii �= 0,
(6)

and we conclude that �∇f
(M)
i ≤ 0.

We now prove the existence of a fixed point of F (M) using Brouwer fixed-point theorem.

Proposition 10. Let M = (mij) ∈ R
n×n be a nonnegative real matrix such that mii > 0 for every i with 

1 ≤ i ≤ n. Then there is a positive vector x = (x1, . . . , xn)t > 0 such that Mx = ( 1
x1
, . . . , 1

xn
)t.

Proof. The function F (M) : Rn
≥0 → R

n
>0 is continuous since mii �= 0 for all i such that 1 ≤ i ≤ n. It is 

decreasing since the entries of its gradient are zero or negative. Thus, Corollary 8 applies and there exists 
a vector x ∈ R

n
≥0 such that x = F (M)(x). From the definition of F (M), we conclude that the entries of x

are positive, i.e., x ∈ R
n
>0. From Lemma 6, we conclude the existence of a positive vector x = (x1, . . . , xn)t

such that Mx = ( 1
x1
, . . . , 1

xn
)t. �

Example 11. Let

M =

⎛
⎜⎝ 1 0 0

1 1 0
1 1 1

⎞
⎟⎠ and x =

(
1,

√
5 − 1
2 ,

√
2
√

5 + 22 −
√

5 − 1
4

)t

.
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We verify that

Mx =
(

1,
√

5 + 1
2 ,

√
5 +

√
2
√

5 + 22 + 1
4

)t

=
(

1, 2√
5 − 1

,
4√

2
√

5 + 22 −
√

5 − 1

)t

.

Proof of Theorem 1. Unicity follows from Proposition 4 since M is primitive. Existence follows from Propo-
sition 10 since diagonal entries of M are positive. �

Proposition 10 does not include primitive matrices with zero entries on the diagonal since we can’t apply 
Brouwer fixed-point theorem when mii = 0 for some i: f (M)

i is not continuous at 0 in this case. But the 
result still holds (see [1, Theorem 8.2]). For example, let

M =

⎛
⎜⎝ 0 0 1

1 0 0
0 1 1

⎞
⎟⎠ and x =

(√
2, 1√

2
,

1√
2

)t

.

We verify that Mx =
(

1√
2 ,

√
2,

√
2
)t

.

7. Uniqueness when diagonal entries are relatively large

To prove uniqueness in some cases including matrix M from Example 11 which is not primitive, we can 
use Banach fixed-point theorem. Note that it is not possible to prove that the map F (M) is a contraction 
for every nonnegative matrix M . For example, consider

M =

⎛
⎜⎝ 1 2m 2m

2m 1 2m
2m 2m 1

⎞
⎟⎠

for some m > 0. We get that the gradient of F (M) at x = 0 (in which case bi = 0 in Equation (6)) is

(
∂F (M)

∂xi
(0)

)
i=1,2,3

=

⎛
⎜⎝ 0 −m −m

−m 0 −m

−m −m 0

⎞
⎟⎠

which can get as large as m is. For some matrices M , the map F (M) is a contraction as we show now.

Proposition 12. Let M = (mij) ∈ R
n×n be a nonnegative real matrix such that 2mii > mij for every i, j with 

1 ≤ i, j ≤ n. Then there exists a unique positive vector x = (x1, . . . , xn)t > 0 such that Mx = ( 1
x1
, . . . , 1

xn
)t.

Proof. Existence follows from Proposition 10.
To prove uniqueness we use the Banach Fixed Point Theorem and we show that F (M) is a contraction. 

From the hypothesis, there exists a constant C > 0 such that

0 ≤ mij

2mii
≤ C < 1

for every i, j with 1 ≤ i, j ≤ n. Thus from Equation (6) and since
∣∣∣∣∣ bi√

b2 + 4m
− 1

∣∣∣∣∣ ≤ 1

i ii
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we get that

∥∥∥�∇f
(M)
i (x)

∥∥∥
∞

≤ 1
2mii

∥∥(mi1, . . . ,mi,i−1,mi,i+1, . . . ,min)t
∥∥
∞ ≤ C (7)

for every x ∈ R
n−1
≥0 and 1 ≤ i ≤ n. The function f (M)

i is differentiable on Rn−1
≥0 . Using the Mean value 

theorem in several variables, for every a, b ∈ R
n−1
≥0 there exists c ∈ [0, 1] such that

f
(M)
i (b) − f

(M)
i (a) = ∇f

(M)
i ((1 − c)a + cb) · (b − a).

Therefore, by the Cauchy–Schwarz inequality (|x · y| ≤ ‖x‖‖y‖),
∣∣∣f (M)

i (b) − f
(M)
i (a)

∣∣∣ ≤ C ‖b − a‖∞ .

Thus f (M)
i is a contraction for every i with 1 ≤ i ≤ n. Then F (M) is a contraction. The conclusion is 

deduced from Lemma 6. �
Proposition 12 seems to hold when 2mii ≤ mij . A possible option in this case is to show that some 

power of F (M) is a contraction and use a stronger version of Banach theorem: if some iterate Tn of T is a 
contraction, then T has a unique fixed point. More work has to be done.
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