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Abstract

A formula for the magnetostatic energy of a finite magnet is proven. In contrast to common approaches, the
new energy identity does not rely on evaluation of a nonlocal boundary integral inside the magnet or the
solution of an equivalent Dirichlet problem. The formula is therefore computationally efficient, which is also
shown numerically. Algorithms for the simulation of magnetic materials could benefit from incorporating
the presented representation of the energy. In addition, a natural analogue for the energy via the magnetic
induction is given. Proofs are carried out within a setting which is suitable for common discretizations in
computational micromagnetics.

Keywords: micromagnetics, magnetostatics, boundary integral operators, stray field energy, single layer
potential

1. Introduction

The magnetostatic energy of a magnet Ω ⊂ R
3 is, up to a constant, given as

ed = −
∫
Ω

m · hs dx =

∫
Ω

m · ∇u dx, (1)

where the magnetization m is defined in Ω and zero elsewhere, hs = −∇u is the stray field and u its scalar
potential satisfying Δu = ∇ ·m in R

3 [1]. In micromagnetic simulations the self-energy (1) is known to be
the most time-consuming part due to its nonlocal nature [2]. Our main contribution is the derivation and
proof of the following energy identity

ed =

∫
Ω

|∇u0|2 dx+
1

4π

∫
∂Ω

∫
∂Ω′

(m · n− ∂nu0)(m
′ · n′ − ∂n′u′

0)

|x− x′| dsx′ dsx, (2)

where

−Δu0 = −∇ ·m in Ω (3)

u0 = 0 on ∂Ω. (4)

The key observation which leads to the expression (2) is the L2-orthogonal decomposition of the magnetic
field in Ω. Note, that neither evaluations of a nonlocal boundary integral inside the domain Ω nor the solution
of an equivalent Dirichlet problem is required to obtain the energy from (2). This is an interesting observation,
since most numerical methods in micromagnetics implement the magnetic self-energy in the form (1) with
first computing the nonlocal field via the convolution with the Green’s kernel G(x) = 1

4π
1
|x| [3, 2]

hs(x) = −∇u(x) =

∫
Ω

∇G(x− x′)∇ ·m′ dx′ −
∫
∂Ω

∇G(x− x′)m′ · n′ dsx′ (5)
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or the solution of the PDE

Δu = ∇ ·m in R
3 (6)

with the help of boundary integral operators, which account for the contribution of the field in the external
region R

3 \ Ω. In any of these cases, the computation of the energy requires the evaluation of a part of the
field by nonlocal convolutions evaluated on the boundary and inside the magnet or an additional Dirichlet
problem. The evaluation of the presented formula, and the analogue to the energy via the vector potential,
gets along without these computational tasks. Besides the solution of one Dirichlet problem, only the
single layer potential has to be evaluated on the boundary, where efficient numerical techniques are already
available, e.g. [4]. This leads to computational advantages if the energy has to be computed directly without
relying on the stray field several times in a simulation, as in parts of energy minimization algorithms, e.g.,
derivative-free line search [5, 6], or derivative-free methods like simulated annealing [7, 8].
In the following sections we give the main results along with related definitions and illustrate and exemplify
the usefulness of the new energy formula numerically. Proofs are given in the final section.

2. Main results

In the following we will use smoothness assumptions which are sufficient to ensure the existence of
a unique solution of the stray field problem (compare with Def. 1). This is also a suitable setting for
common discretization schemes in numerical micromagnetics. However, the results presented here are
certainly compatible with higher order regularity assumptions. For a rigorous presentation of the fol-
lowing definitions we refer to the literature [9, 10, 11]. Let Ω ⊂ R

3 be a bounded Lipschitz-domain
with boundary Γ := ∂Ω. We denote the exterior domain with Ωext := R

3 \ Ω. We will make use
of the Sobolev spaces H1(Ω) := W 1,2(Ω) = {u ∈ L2(Ω) : weak derivatives ∂qu ∈ L2(Ω), q = 1, 2, 3}
and H1

loc(Ω
ext) := {u ∈ H1(C) : C ⊂ Ωext compact}. For the definition of the Sobolev spaces on

manifolds, in particular H1/2(Γ) and its dual space H−1/2(Γ), we refer to the literature. We denote
H1

0 (Ω) := {u ∈ H1(Ω) : γ0u = 0 on Γ}, where γ0 : H1(Ω) → H1/2(Γ) is the trace. Further, we
use the short notation 〈u, v〉Γ = (u, v)L2(Γ). The conormal derivative γint

1 u ∈ H−1/2(Γ) is defined as
the solution of the variational problem 〈γint

1 u, γint
0 v〉Γ = (∇u,∇v)L2(Ω) − 〈f, v〉 for all v ∈ H1(Ω), where

u ∈ H1(Ω) satisfies Δu = f, f ∈ H1(Ω)∗, in the sense of distributions; the exterior conormal derivative
γext
1 : H1

loc(Ω
ext) → H−1/2(Γ) is defined accordingly. The expression on the boundary m ·n, where n is the

outer normal, is defined by the bounded linear map γn :
(
H1(Ω)

)3 → H−1/2(Γ), γn(m) = m · n [12].
The scalar potential can be characterized via the following transmission problem.

Definition 1 (Transmission problem). Let m ∈ (
H1(Ω)

)3
. Then the scalar potential u = (uint, uext) ∈

H1(Ω)×H1
loc(Ω

ext) is the unique solution [13] of

−Δuint = −∇ ·m in Ω

γint
0 uint = γext

0 uext on Γ

γint
1 uint = γext

1 uext +m · n on Γ

−Δuext = 0 in Ωext

uext = O(|x|−1) |x| → ∞,

(7)

where n denotes the outer normal vector. The stray field is hs = −∇u.

A solution of (7) can be represented with the help of the single layer potential.

Definition 2 (Single layer potential [9]). The single layer potential Ṽ : H−1/2(Γ) → H1
loc(R

3) is

(Ṽφ)(x) :=
∫
Γ

G(y − x)φ(y)dsy, (8)

where G(x) = 1
4π

1
|x| is the Green’s function of the Laplacian in R

3.
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There holds [9]

ΔṼφ = 0 in Ω ∪ Ωext. (9)

The linear operator Ṽ is continuous, while the conormal derivative jumps on Γ, i.e.,

γint
0 Ṽφ− γext

0 Ṽφ = 0 (10)

γint
1 Ṽφ− γext

1 Ṽφ = φ. (11)

There holds Ṽ(x) = O(|x|−1) as |x| → ∞. We define the trace of the single layer potential V := γ0Ṽ :
H−1/2(Γ) → H1/2(Γ), which is then a bounded linear operator.

The following can be verified, by using the above mentioned properties of the single layer potential.

Proposition 1 ([14]). The solution to (7) is given by u =
(
u0 + Ṽ(m · n − γint

1 u0), Ṽ(m · n − γint
1 u0)

)
,

where

−Δu0 = −∇ ·m in Ω

γint
0 u0 = 0 on Γ.

(12)

Hence, the stray field in whole space is given as

hs = hs,0 + hs,1 := −∇u0 −∇Ṽ(m · n− γint
1 u0), (13)

where u0 satisfies (12) in Ω and is extended with zero to the exterior domain. �
The main result is the following energy identity corresponding to formula (2).

Theorem 2 (Energy formula). Let hs,0 = −∇u0 with u0 ∈ H1
0 (Ω) fulfilling the Dirichlet problem (12).

Then the magnetostatic energy is given by

ed = −(hs,m)(L2(Ω))3 = ‖hs,0‖2(L2(Ω))3 + 〈(m · n− γint
1 u0,V

(
m · n− γint

1 u0

)〉Γ. (14)

�

An analog energy formula can be derived via the magnetic induction and its vector potential.

Definition 3 (Transmission problem for the vector potential). Let m ∈ (
H1(Ω)

)3
. Then the vector

potential A = (Aint,Aext) ∈ (
H1(Ω)

)3 × (
H1

loc(Ω
ext)

)3
is the unique solution of

ΔAint = −∇×m in Ω, (15a)

ΔAext = 0 in Ωext, (15b)

γint
0 Aint = γext

0 Aext on Γ, (15c)

γint
1 Aint = γext

1 Aext +m× n on Γ, (15d)

Aext
j = O(|x|−1), j = 1 . . . 3 in Ωext, (15e)

where n denotes the outer normal vector. The trace operators and conormal derivatives are applied component-
wisely.

The analogue to Thm. 2 is given next.

Theorem 3 (Energy formula). Let b′0 = ∇ × A0 with A0 ∈ (H1
0 (Ω))

3 fulfilling the Dirichlet problem
(38). Then the magnetostatic energy is given by

ed = ‖m‖2(L2(Ω))3 −
(‖∇A0‖2L2(Ω)3×3 + 〈m× n− γint

1 A0,V
(
m× n− γint

1 A0

)〉Γ3 . (16)

�

3



Table 1: Errors and timings for uniformly magnetized unit cube with analytical value 1/6 [μ0M2
s ] (including a factor 1/2 in

formula (1), μ0 denotes the vacuum permeability and Ms the saturation magnetization). Mesh data: number of nodes (#nodes),
number of surface nodes (#snodes), number of surface triangles (#stri) and number of tetrahedral elements (#tets). Energies:
Energy value computed with formula (2) (Enew) and with FEM/BEM (EFB). Deviations/Errors: Relative deviation of energies
computed with new formula (2) and FEM/BEM (dNewFB), reference value and FEM/BEM (dRefFB) and reference value and
new formula (dRefNew). Timings: Computation time via FEM/BEM (tFB), computation time for formula (2) (tnew) and gain
(in %).

#nodes #snodes #stri #tets Enew EFB dNewFB dRefFB dRefNew tFB [s] tnew [s] gain

2744 1016 2028 13182 1.652E-01 1.652E-01 0 8.32E-03 8.32E-03 0.19 0.17 12%
9261 2402 4800 48000 1.659E-01 1.659E-01 0 4.05E-03 4.05E-03 0.31 0.27 12%
19683 4058 8112 105456 1.662E-01 1.662E-01 5.96E-05 2.49E-03 2.43E-03 0.47 0.39 17%
68921 9602 19200 384000 1.665E-01 1.665E-01 1.38e-05 1.13E-03 1.11E-03 1.28 0.97 25%

3. Numerical validation

In the following we will give numerical results that demonstrate that the presented formulation in Eqn. (2)
leads to properly calculated magnetostatic energy. We perform our computations on finite element grids with
P1-elements and compare with FEM/BEM for (7) via the representation in Prop. 1 using a mass-lumped
stray field for the energy computation [15] via Eqn. (1). This approach is common in micromagnetics [14, 4]
and requires the solution of two Dirichlet problems, the one in Eqn. 12 and a second one with zero right hand
side and Dirichlet data obtained from the evaluation of the single layer potential on the boundary nodes. In
contrast to that, the new energy formula does not require solving the latter. For the efficient computation of
the single layer potential on the boundary nodes in (quasi) linear time (and linear memory consumption) the
NUFFT method in [4] is used. In all computations the normal component of the magnetization in the source
term of the single layer potential was projected onto the space of piecewise constant functions (L2-projection).
Likewise, the L2-projection is used for a piecewise constant approximation of the V-surface values in the
trace product, cf. Eqn. (14). In the FEM/BEM approach a nodal interpolation of the V-surface values
for the Dirichlet data is used for the sake of effectiveness. The Dirichlet problems are solved with an ILU
preconditioned conjugate gradient method. Computations were performed on the Vienna Scientific Cluster
3 (VSC3). Mesh generation was done with help of NETGEN [16]. Results for the uniformly magnetized unit
cube are given in Tab. 1, for a uniformly magnetized sphere in Tab. 2 and for some random configuration
in the cube in Tab. 3. For the cases of a uniformly magnetized sphere or cube the results are also compared
with the analytical values. All test cases show accurate results for the new formula and a gain in efficiency
from 12 − 25% relative to the FEM/BEM approach. This mostly amounts to the cost of solving one
additional inhomogeneous Dirichlet problem in the FEM/BEM approach, which is particularly apparent for
bulk material, but gets less relevant for, e.g., thin film geometries.

4. Proofs of the energy identities

There holds the following L2-orthogonality.

Lemma 4 (L2-orthogonality). Let u0 ∈ H1
0 (Ω) be the solution to the Dirichlet problem (12) and h0 =

−∇u0 ∈ (L2(Ω))3 the corresponding field. Let further hΔ ∈ (L2(Ω))3 be a Laplace field, i.e., ∇ · hΔ = 0 in
Ω. Then

(h0,hΔ)(L2(Ω))3 :=

∫
Ω

h0 · hΔ dx = 0. (17)

Proof. By partial integration on gets

(−∇u0,hΔ)(L2(Ω))3 = (u0,∇ · hΔ)L2(Ω) − 〈γint
0 u0,hΔ · n〉Γ. (18)

Both terms on the r.h.s. are zero. �
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Table 2: Errors and timings for uniformly magnetized sphere with radius 0.5 with analytical value 8.727-E02 [μ0M2
s ] (including

a factor 1/2 in formula (1), μ0 denotes the vacuum permeability and Ms the saturation magnetization). Mesh data: number of
nodes (#nodes), number of surface nodes (#snodes), number of surface triangles (#stri) and number of tetrahedral elements
(#tets). Energies: Energy value computed with formula (2) (Enew) and with FEM/BEM (EFB). Deviations/Errors: Relative
deviation of energies computed with new formula (2) and FEM/BEM (dNewFB), reference value and FEM/BEM (dRefFB)
and reference value and new formula (dRefNew). Timings: Computation time via FEM/BEM (tFB), computation time for
formula (2) (tnew) and gain (in %).

#nodes #snodes #stri #tets Enew EFB dNewFB dRefFB dRefNew tFB [s] tnew [s] gain

2824 891 1778 14156 8.642E-02 8.642E-02 1.35e-05 9.60E-03 9.61E-03 0.19 0.16 14%
4749 1295 2586 24474 8.669E-02 8.669E-02 8.15E-06 6.64E-03 6.63E-03 0.21 0.18 15%
9084 2031 4058 48111 8.689E-02 8.689E-02 1.79E-08 4.23E-03 4.23E-03 0.34 0.29 15%
13837 4098 8192 70144 8.709E-02 8.709E-02 1.79e-07 2.07E-03 2.07E-03 0.58 0.49 15 %

Table 3: Errors and timings for randomly magnetized unit cube, deviating from uniform magnetization at nodes by normally
distributed polar angle with zero mean and standard deviation of 20 degrees. Mesh data: number of nodes (#nodes), number
of surface nodes (#snodes), number of surface triangles (#stri) and number of tetrahedral elements (#tets). Energies: Energy
value computed with formula (2) (Enew) and with FEM/BEM (EFB). Deviations: Relative deviation of energies computed
with new formula (2) and FEM/BEM (dNewFB). Timings: Computation time via FEM/BEM (tFB), computation time for
formula (2) (tnew) and gain (in %).

#nodes #snodes #stri #tets Enew EFB dNewFB tFB [s] tnew [s] gain

2744 1016 2028 13182 1.491E-01 1.491E-01 1.82E-04 0.19 0.17 12%
9261 2402 4800 48000 1.502E-01 1.503E-01 1.00E-03 0.30 0.26 12%
19683 4058 8112 105456 1.503E-01 1.506E-01 1.90E-03 0.46 0.39 15%
68921 9602 19200 384000 1.505E-01 1.507E-01 1.97E-03 1.57 1.16 26%
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For the components in Eqn. (13) we conclude.

Corollary 5. For the solution to (7) given by u = u0 + u1 with u1 := Ṽ(m · n− γint
1 u0) and u0 from (12)

the corresponding fields hs,0 = −∇u0 and hs,1 = −∇u1 are L2-orthogonal, i.e.,

(hs,0,hs,1)(L2(R3))3 = (hs,0,hs,1)(L2(Ω))3 = 0. (19)

�

The formula (2) (Theorem 2) follows with help of Cor. 5.

Proof of Thm. 2 By Thm. 2.7.7 in [10] we get from (12) with v ∈ H1(Ω)

〈γint
1 u0, γ

int
0 v〉Γ = (∇u0,∇v)(L2(Ω))3 + (∇ ·m, v)L2(Ω). (20)

Now, applying Green’s first identity gives

〈γint
1 u0, γ

int
0 v〉Γ = (∇u0,∇v)(L2(Ω))3 − (m,∇v)(L2(Ω))3 + 〈m · n, v〉Γ. (21)

Rearranging terms gives

〈γint
1 u0 −m · n, γint

0 v〉Γ = (∇u0,∇v)(L2(Ω))3 − (m,∇v)(L2(Ω))3 . (22)

We insert v := u = u0+u1 ∈ H1(Ω) with u1 := Ṽ(m·n−γint
1 u0) and u0 from (12) and use the zero-boundary

condition of u0 and the orthogonality from Cor. 5. This yields

〈γint
1 u0 −m · n, γint

0 u1〉Γ = ‖∇u0‖2(L2(Ω))3 − (m,∇u)(L2(Ω))3 , (23)

which immediately gives formula (14). �

There is an alternative derivation of (14) via the magnetic induction.

Alternative proof of Thm. 2 We use the fundamental Helmholtz decomposition (omitting constants)
[1, 17]

m = b′ − hs in R
3, (24)

where b′ is the divergence-free magnetic induction (not including the part corresponding to the external
field). The fields hs, b

′ ∈ (L2(R3))3 are L2- orthogonal [1]. A consequence of this is that the energy can be
written as

ed = −
∫
Ω

m · hs dx =

∫
R3

|hs|2 dx. (25)

We can now use the representation hs = hs,0 + hs,1 := −∇u0 −∇u1, u1 = Ṽ(m · n− γint
1 u0) for the stray

field in whole space, where u0 is extended with zero in the exterior domain Ωext. Cor. 5 yields

ed =

∫
Ω

|hs,0|2 dx+

∫
R3

|hs,1|2 dx = ‖∇u0‖2(L2(Ω))3 +

∫
Ω

|hs,1|2 dx+

∫
Ωext

|hs,1|2 dx. (26)

By applying Green’s first formula we get [9, Ch. 6.6.1]∫
Ω

|hs,1|2 dx = 〈γint
1 u1, γ0u1〉Γ (27)∫

Ωext

|hs,1|2 dx = 〈−γext
1 u1, γ0u1〉Γ (28)
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The jump of the conormal derivative γint
1 u1 − γext

1 u1 = m · n− γint
1 u0 leads to the result. �

We derive and proof now the analog Thm. 3.

Proof of Thm. 3 Maxwell’s equations for magnetostatics read

∇ · b = 0, (29)

∇× h = j, (30)

where j is the current density. Excluding the divergence free part hext : ∇× hext = j from h = hs + hext

gives together with m = b′ − hs

∇ · b′ = 0, (31)

∇× b′ = ∇×m. (32)

By introducing a vector potential b′ = ∇×A with gauge condition ∇ ·A = 0 [18], we get

∇× (∇×A) = ∇(∇ ·A)−ΔA = ∇×m, (33)

and hence

ΔA = −∇×m in R
3. (34)

For a finite magnet Ω ⊂ R
3 this gives the boundary conditions [19]

γ0A
ext − γ0A

int = 0, (35)

γ1A
ext − γ1A

int = −m× n. (36)

The analogy of the transmission problem in Def. 3 to that of Def. 1 gives rise to the representation of the
solution for the magnetic induction

b′ = b′0 + b′1 := ∇×A0 +∇×A1 with A1 = Ṽ(m× n− γint
1 A0), (37)

where Ṽ is applied component-wisely and A0 ∈ (
H1

0 (Ω)
)3

fulfilling

ΔA0 = −∇×m in Ω

γint
0 A0 = 0 on Γ.

(38)

The magnetostatic energy can be expressed in terms of the vector potential by using the decomposition (24)

ed = −
∫
Ω

m · hs dx =

∫
Ω

|m|2 dx−
∫
Ω

m · b′ dx. (39)

The rest of the proof of Thm. 3 goes along the same lines as that of Thm. 2 but using the orthogonality

(∇A0,∇A1)L2(Ω)3×3 = 0, (40)

and the Green’s identity (e.g. [20]) for V ∈ (
H1(Ω)

)3
(∇×m,V )L2(Ω)3 = (∇× V ,m)L2(Ω)3 − 〈m× n,V 〉Γ3 . (41)

�
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5. Conclusion

We have derived, proven and numerically validated a new formula for the stray field energy. Computation
of the energy only requires the solution of a Dirichlet problem and the evaluation of the single layer potential
on the boundary. The efficiency is illustrated by means of numerical examples indicating a gain up to 25%
compared to a FEM/BEM approach with quasi-optimally scaling BEM part. The setting was chosen to
be suitable for common discretizations in numerical micromagnetics. The presented energy formula has an
analogue via the magnetic induction. Numerical software for simulation of magnetic materials could benefit
in terms of efficiency from incorporating the presented formulas.
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[16] J. Schöberl, Computing and visualization in science 1 (1997) 41–52.

[17] A. Aharoni, Introduction to the Theory of Ferromagnetism, volume 109, Clarendon Press, 2000.

[18] J. D. Jackson, Classical electrodynamics (Third edition), Wiley, 1999.

[19] W. F. Brown, in: Ferromagnetism, North-Holland Amsterdam, 1962.

[20] D. Sheen, Applied mathematics letters 5 (1992) 95–98.

9


