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Abstract

This paper considers performance output tracking and disturbance rejection for a boundary

controlled one-dimensional Euler-Bernoulli beam equation suffered unknown external bounded

disturbance. We first propose a disturbance estimator and then based on this disturbance

estimator, we construct a servomechanism to track the reference signal and reject the external

disturbance. Four control objectives are achieved: a) the output is exponentially tracking the

reference signal; b) the disturbance is rejected; c) all the states of internal-loops are bounded;

d) when the disturbance and reference are disconnected, the closed-loop is exponentially stable.

Finally, the state of the system is shown to be exponentially tracking the reference state.

Keywords: Distributed parameter system, Euler-Bernoulli beam, disturbance rejection,

performance output tracking.

AMS subject classifications: 93C20, 93D15, 35B35, 35P10

1 Introduction

Up to today, the output regulation problem, or alternatively the servomechanism is still one cen-

tral problem in control theory. This problem addresses designing a controller so that the output of

closed-loop system asymptotically tracks a reference signal regardless of the external disturbances

and the initial state. Many effort have been made to generalize classical output regulation results

for finite-dimensional systems (see, e.g., [3, 4, 5, 6, 7, 13, 15]) to infinite-dimensional systems, like

[1, 12, 14, 16, 17, 20, 18] and [2], among many others. On one hand, most of the above works about
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output regulation problem focus on the extension of internal model principle theory to infinite-

dimensional systems where reference signal and disturbance are generated by finite-dimensional or

infinite-dimensional exosystem. Moreover, the most infinite-dimensional systems considered are of

bounded control and observer operators. On the other hand, the performance output tracking is

not sufficiently addressed in the context of infinite-dimensional systems. Recently, the performance

output tracking problem for finite-dimensional linear system ([19, p.315]) which has no disturbance

is firstly generalized to a one-dimensional wave equation with unknown general harmonic distur-

bance in [8], where an adaptive tracking controller is designed and the error between reference

signal and output is shown to be asymptotically convergent to zero as the time goes to infinity.

Later, two improved results compared with that of [8] are reported in [24, 26] where an exponen-

tially tracking controller is designed for a one-dimensional wave equation with unknown general

bounded disturbance. More recently, the assumption in [8] that the wave system is exponentially

stable if there is no disturbance at the boundary, is removed by paying the price that the reference

is taken as the zero signal [9] and the harmonic signal [10] rather than the general signal. It is well

know that both the Euler-Bernoulli beam equation and wave equation are two benchmark vibration

systems. To our best knowledge, there is no report about the performance output tracking problem

for Euler-Bernoulli beam equation no matter with harmonic disturbance or more general bounded

disturbance.

In this paper, we consider the performance output tracking problem for the following Euler-

Bernoulli beam equation :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ytt(x, t) + yxxxx(x, t) = 0, x ∈ (0, 1), t > 0,

y(0, t) = yx(0, t) = 0, t ≥ 0,

yxx(1, t) = U(t), t ≥ 0,

yxxx(1, t) = qyt(1, t) + d(t), t ≥ 0,

y(x, 0) = y0(x), yt(x, 0) = y1(x), 0 ≤ x ≤ 1,

ym(t) = {y(1, t), yxt(1, t)},
e(t) = yout − yref(t) = yx(1, t)− yref(t),

(1.1)

where and henceforth y′ or yx denotes the derivative of y with respect to x and ẏ or yt the derivative

with respect to t, U(t) is the input, yout is output to be regulated which is not necessary measured.

ym is measured output, yref(t) is a reference signal, d(t) is a unknown disturbance, e(t) is tracking

error. (y0, y1) is the initial state. As that in [8], we assume that q is a positive constant, i.e., q > 0.

System (1.1) is a typical control system in which the control is unmatched with the external

disturbance. That is, the control input and the disturbance are not at the same end.

We consider system (1.1) in the state Hilbert space H = H2
L(0, 1)× L2(0, 1) (where H2

L(0, 1) =

{φ ∈ H2(0, 1) : φ(0) = φ′(0) = 0}) with the inner product given by

〈(φ1, ψ1)
�, (φ2, ψ2)

�〉H =

∫ 1

0
[φ′′

1(x)φ
′′
2(x) + ψ1(x)ψ2(x)]dx, ∀ (φi, ψi)

� ∈ H, i = 1, 2. (1.2)

The objective of this paper is to find feedback control law for system (1.1) such that
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• (i) lim
t→∞ e(t) = 0;

• (ii) the bounded disturbance is rejected;

• (iii) all the states of internal-loops are bounded;

• (iv) the closed-loop is exponentially convergent to zero, when the disturbance and reference

are disconnected, that is, d(t) = yref (t) ≡ 0.

The key characteristic of our approach is to design an infinite-dimensional disturbance estimator

in which there is no high gain needed. Then the servo system is constructed, which is completely

determined by the reference signal to be tracked and the disturbance estimator.

The paper is organized as follows. In next section, Section 2, we give the disturbance estimator

design. The servomechanism design is given in Section 3. In Section 4, we give the boundedness

analysis of the reference system. We give main result of this paper in Section 5 . We present some

illustrative simulation results in Section 6.

2 Disturbance estimator design

This section is devoted to the design of the disturbance estimator with the measured output ym(t) =

(y(1, t), yxt(1, t)). We propose an infinite-dimensional disturbance estimator for d(t) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ztt(x, t) + zxxxx(x, t) = 0,

z(0, t) = zx(0, t) = 0,

zxx(1, t) = −c0(zxt(1, t)− yxt(1, t)) + U(t),

z(1, t) = y(1, t),

z(x, 0) = z0(x), zt(x, 0) = z1(x),

(2.1)

where c0 is a positive tuning parameter. Here and in the rest of paper, we omit the obvious domains

for t and x. System (2.1) can be used to recover the disturbance. To this end, we are going to show

that zxxx(1, t)− qzt(1, t) ≈ d(t). Indeed, set

α(x, t) = z(x, t)− y(x, t). (2.2)

Then, it is easy to check that α(x, t) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

αtt(x, t) + αxxxx(x, t) = 0,

α(0, t) = αx(0, t) = 0,

αxx(1, t) = −c0αxt(1, t), α(1, t) = 0,

α(x, 0) = α0(x), αt(x, 0) = α1(x),

(2.3)

where

α0(x) = z0(x)− y0(x), α1(x) = z1(x)− y1(x).
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The system (2.3) can be rewritten as⎧⎨⎩
d
dt(α(·, t), αt(·, t)) = A0(α(·, t), αt(·, t)),
(α(·, 0), αt(·, 0)) = (α0, α1),

where the operator A0 : D(A0)(⊂ H) → H is given by⎧⎨⎩ A0(φ, ψ) = (ψ,−φ′′′′), ∀(φ, ψ) ∈ D(A0),

D(A0)=
{
(φ, ψ) ∈ (H4(0, 1)×H2

L(0, 1)) ∩H : φ′′(1) = −c0ψ
′(1), φ(1) = 0

}
.

(2.4)

Next lemma states the properties of A0.

Lemma 2.1. Let A0 be given by (2.4). Then, there is a sequence of generalized eigenvectors of

A0 which forms a Riesz basis for the state space H. Moreover, A0 generates an exponential stable

C0-semigroup on H.

Proof. The proof is broken into several steps as follows.

Step 1. We claim that there is a family of eigenvalues {λn, λn}, λn = iτ2n of A0 with the following

asymptotic expression:

τn = (n+ 1/2)π +O(n−1), λn = i(n+ 1/2)2π2 − 2

c0
+O(n−1). (2.5)

A direct computation shows that

A−1
0 (φ, ψ)=

(
(3x2 − x3)

12

∫ 1

0
(1− ξ)3ψ(ξ)dξ+

(x3 − x2)

4

(∫ 1

0
(1− ξ)ψ(ξ)dξ−c0φ′(1)

)
−1

6

∫ x

0
(x− ξ)3ψ(ξ)dξ, φ(x)

)
.

(2.6)

By the Sobolev embedding theorem, A−1
0 is compact on H, and thus σ(A0) only consists of eigen-

values of A0. It is easily seen that λ = iτ2 ∈ σ(A0) if and only if there exists φ �= 0 satisfying⎧⎨⎩ φ(4)(x)− τ4φ(x) = 0,

φ(0) = φ′(0) = φ(1) = 0, φ′′(1) = −ic0τ
2φ′(1)

and the associated egienfunction is (φ, λφ). First, the general solution of⎧⎨⎩ φ(4)(x)− τ4φ(x) = 0,

φ(0) = φ′(0) = 0

is of the form

φ(x) = a1(cos τx− cosh τx) + a2(sin τx− sinh τx), (2.7)

where a1, a2 are constants. Next, by the condition φ(1) = 0, we can take

a1 = (sin τ − sinh τ), a2 = −(cos τ − cosh τ).
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Substituting this into (2.7) gives

φ(x) = (sin τ − sinh τ)(cos τx− cosh τx)− (cos τ − cosh τ)(sin τx− sinh τx). (2.8)

The last condition φ′′(1) = −ic0τ
2φ′(1) yields

ic0τ [1− cos τ cosh τ ] + cosh τ sin τ − cos τ sinh τ = 0, (2.9)

which can be re-written asymptotically as⎧⎪⎨⎪⎩
cos τ = O(|τ |−1), or

cos τ = − 1

ic0τ
[cos τ tanh τ − sin τ ] +O(e−Reτ ), as Imτ bounded Reτ → ∞.

(2.10)

By the first equality of (2.10), we get τn = (n + 1/2)π + O(n−1). Substitute τn into the second

equality of (2.10) to obtain O(n−1) = − 1
[ic0(n+1/2)π] +O(n−2), and so

λn = i(n+ 1/2)2π2 − 2

c0
+O(n−1).

Step 2. We claim that there is an eigenfunction (φn, λnφn)
� of A0 corresponding to λn = iτ2n such

that

Fn(x)=

⎛⎝−(−1)ne−(n+1/2)π(1−x) + cos(n+1/2)πx− sin(n+1/2)πx+ e−(n+1/2)πx

−i(−1)ne−(n+1/2)π(1−x)−i cos(n+1/2)πx+i sin(n+1/2)πx+ie−(n+1/2)πx

⎞⎠+O(n−1)

and limn→∞ ‖Fn(x)‖[L2(0,1)]2 = 2, where Fn(x) = 2τ−2
n e−τn(φ′′

n(x), λnφn(x))
�. Actually, let (φn, λnφn)

be the eigenfunction of A0 corresponding to λn, where φn = φ(x) is defined by (2.7) with τ = τn.

By (2.8), we derive

τ−2φ′′(x) = (sin τ − sinh τ)(− cos τx− cosh τx)− (cos τ − cosh τ)(− sin τx− sinh τx). (2.11)

Noticing that by (2.5), for any y > 0 and 0 ≤ x ≤ 1, e−τny = e−(n+1/2)πy + O(n−1), sin τnx =

sin(n + 1/2)πx + O(n−1), cos τnx = cos(n + 1/2)πx + O(n−1), and letting τ = τn in (2.11), we

obtain

2τ−2
n e−τnφ′′

n(x)=−(−1)ne−(n+1/2)π(1−x) +cos(n+1/2)πx− sin(n+1/2)πx+ e−(n+1/2)πx+O(n−1).

The estimate for φn is similar, we omit the detail. By using the Lebesgue’s dominated convergence

theorem, it is easy to verify limn→∞ ‖Fn(x)‖[L2(0,1)]2 = 2.

Step 3. We claim that the eigenfunctions of A0 form an Riesz basis for H. For this purpose, we

introduce the following auxiliary operator Aa given by⎧⎨⎩ Aa(φ, ψ) = (ψ,−φ′′′′), ∀(φ, ψ) ∈ D(Aa),

D(Aa) =
{
(φ, ψ) ∈ (H4(0, 1)×H2

L(0, 1)) ∩H : φ′′(1) = 0, φ(1) = 0
}
.

(2.12)
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By letting c0 = 0 in (2.6), we know that Aa has compact resolvent. It is easily to verify that the

operator Aa is skew-adjoint in the state space H, i.e., A∗
a = −Aa and all eigenvalues of Aa are

located on the imaginary axis and there is a sequence of generalized eigenfunctions of Aa forming

a Riesz basis for H. Let λa = iω2 be the eigenvalue of Aa and (φa, λaφa) be the eigenfunction of

Aa corresponding to λa = iω2. By letting c0 = 0 in (2.9), we obtain

coshω sinω − cosω sinhω = 0, (2.13)

which gives

ωn = (n+ 1/2)π +O(n−1).

Similar to the calculation in Step 2, we obtain that the eigenfunction (φan, λanφan) of Aa have the

following asymptotical expression:

Gn(x)=

⎛⎝−(−1)ne−(n+1/2)π(1−x) + cos(n+1/2)πx− sin(n+1/2)πx+ e−(n+1/2)πx

−i(−1)ne−(n+1/2)π(1−x)−i cos(n+1/2)πx+i sin(n+1/2)πx+ie−(n+1/2)πx

⎞⎠+O(n−1),

whereGn(x) = 2ω−2
n e−ωn(φ′′

an(x), λnφan(x))
�. It is easy to see that {(φan, λanφan)}∞n=1∪ {conjugates}

is a Riesz basis for H. It follows that there is an N > 0 such that

∞∑
n>N

‖Fn −Gn‖[L2(0,1)]2 =
∞∑

n>N

‖2τ−2
n e−τn(φ′′

n(x), λnφn(x))
�

−2ω−2
n e−ωn(φ′′

an(x), λanφan(x))
�‖[L2(0,1)]2 =

∞∑
n>N

O(n−2) < +∞.

(2.14)

The same thing is true for conjugates. Therefore, operator A0 has a sequence of eigenfunctions

which quadratically closed to a Riesz basis in the sense of (2.14). By [11, Theorem 1], we have

shown that the eigenfunctions of A0 form an Riesz basis for H.

Step 4. We claim that A0 generates an exponential stable C0-semigroup on H. Since the eigenfunc-

tions of A0 form an Riesz basis for H that is justified by Step 3, the spectrum-determined growth

condition holds. In order to show that eA0t is a exponential stable semigroup, it suffices to prove

that Reλ < 0 for any λ ∈ σ(A0). Actually, a simple computation gives

Re〈A0(φ, ψ), (φ, ψ)〉H = −c0|ψ′(1)|2 ≤ 0, (2.15)

which implies that for any λ ∈ σ(A0) must satisfy Reλ ≤ 0. Since A−1
0 is compact, we only need

to show that there is no eigenvalue on the imaginary axis. Let λ = iτ2 ∈ σ(A0) with τ ∈ R
+ and

the corresponding eigenfunction (φ, ψ)� ∈ D(A0). By (2.15),

Re〈A0(φ, ψ), (φ, ψ)〉H = Re〈iτ2(φ, ψ), (φ, ψ)〉H = −c0|ψ′(1)|2 = 0, (2.16)

and hence ψ′(1) = 0. Furthermore, A(φ, ψ) = iτ2(φ, ψ) gives that ψ = iτ2φ with φ satisfying⎧⎨⎩ φ(4)(x)− τ4φ(x) = 0,

φ(0) = φ′(0) = φ(1) = φ′(1) = φ′′(1) = 0,
(2.17)

6



Now, we show that the above equation admits only zero solution. For this, we prove that there

exists at least one zero of φ in (0, 1). Actually, by φ(0) = φ(1) = 0, Rolle’s theorem yields φ′(ξ1) = 0

for some ξ1 ∈ (0, 1), which, jointly with φ′(0) = φ′(1) = 0, implies that φ′′(ξ2) = φ′′(ξ3) = 0 for

some ξ2 ∈ (0, ξ1), ξ3 ∈ (ξ1, 1), and so φ′′′(ξ4) = φ′′′(ξ5) = 0 for some ξ4 ∈ (ξ2, ξ3), ξ5 ∈ (ξ3, 1) by the

condition φ′′(1) = 0. Thus, there exists a ξ6 ∈ (ξ4, ξ5) such that φ(4)(ξ6) = 0, which, together with

the first equation of (2.17), gives φ(ξ6) = 0. Next, we prove that if there are n different zeros of

φ in (0, 1), then there at least n+ 1 number of different zeros of φ in (0, 1). Indeed, suppose that

0 < ξ1 < ξ2 < · · · < ξn < 1, φ(ξj) = 0, j = 1, 2, . . . , n. Since φ(0) = φ(1) = 0, if follows from Rolle’s

theorem that there exist ηj , j = 1, 2, . . . , n+ 1, 0 < η1 < ξ1 < η2 < ξ < 2 · · · < ξn < ηn+1 < 1 such

that φ′(ηj) = 0. By φ′(0) = φ′(1) = 0, using Rolle’s theorem again, there exist αj , j = 1, 2, . . . , n+2,

0 < α1 < η1 < α2 < η2 < · · · < ξn+1 < αn+2 < 1 such that φ′′(αj) = 0. It follows from φ′′(1) = 0

that there exist βj , j = 1, 2, . . . , n + 2, α1 < β1 < α2 < β2 < · · · < αn+2 < βn+2 < 1 such that

φ′′′(βj) = 0. Using Rolle’s theorem again, we have θj , j = 1, 2, . . . , n + 1, β1 < θ1 < β2 < · · · <
βn+1 < θn+1 < βn+2 such that φ(4)(θj) = 0. Thus, φ(θj) = 0, j = 1, 2, . . . , n+ 1. By mathematical

induction, there is an infinite number of different zeros {xj}∞j=1 of φ in (0, 1). Let x0 ∈ [0, 1] be

an accumulation point of {xj}∞j=1. Obviously, φ(j)(x0) = 0, j = 0, 1, 2, 3. Since φ satisfies the first

equation of (2.17), by the uniqueness of the solution of linear ordinary different equation, we have

φ ≡ 0.

By lemma 2.1, we have the following well-posedness and stability results for system (2.3).

Lemma 2.2. For any initial value (α0, α1) ∈ H∩[H1
0 (0, 1) ×L2(0, 1)], system (2.3) admits a unique

solution (α(·, t), αt(·, t)) ∈ C(0,∞;H ∩ [H1
0 (0, 1)× L2(0, 1)]) that satisfies ‖(α(·, t), αt(·, t))‖H ≤

Me−μt with some M,μ > 0.

Lemma 2.3. ([23]) For any initial value (α0, α1) ∈ D(A0) with the compatibility condition α(1, 0) =

αt(1, 0) = 0, the classical solution of (2.3) satisfies |αxxx(1, t)| ≤ Me−μt with some M,μ > 0.

From (1.1) and (2.1), one has that

αxxx(1, t) = zxxx(1, t)− yxxx(1, t) = zxxx(1, t)− qzt(1, t)− d(t).

By Lemma 2.3, we can regard zxxx(1, t)− qzt(1, t) as an approximation of d(t), that is,

zxxx(1, t)− qzt(1, t) ≈ d(t).

It is worth noting that the above approximation is untraditional since the error between the

estimated value and the real value tends to zero only when the initial state is sufficiently smooth.

In the next two sections, we will see that this approximation is still valid when the initial state is

in the state space and is possibly not smoother.
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3 Servomechanism design

For the reference signal yref (t), we design the following reference model:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ŷtt(x, t) + ŷxxxx(x, t) = 0,

ŷ(0, t) = ŷx(0, t) = 0,

ŷx(1, t) = yref (t),

ŷxxx(1, t) = qŷt(1, t) + zxxx(1, t)− qzt(1, t),

ŷ(x, 0) = ŷ0(x), ŷt(x, 0) = ŷ1(x).

(3.1)

Noting that zxxx(1, t) − qzt(1, t) ≈ d(t), zxxx(1, t) − qzt(1, t) in (3.1) plays a role of the total

disturbance d(t). The motivation for the design of the above reference model is that finding a

controller makes reference model behaves as system (1.1), then boundary condition of (3.1) forces

the output of (1.1) tacks the reference signal. Let β(x, t) = y(x, t)− ŷ(x, t) denote the error between

y(x, t) and ŷ(x, t). Then β(x, t) is governed by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βtt(x, t) + βxxxx(x, t) = 0,

β(0, t) = βx(0, t) = 0,

βxx(1, t) = U(t)− ŷxx(1, t),

βxxx(1, t) = qβt(1, t)− αxxx(1, t),

β(x, 0) = β0(x), βt(x, 0) = β1(x),

(3.2)

where

β0(x) = y0(x)− ŷ0(x), β1(x) = y1(x)− ŷ1(x).

Moreover,

βx(1, t) = yx(1, t)− yref (t) = e(t)

is the performance output tracking error.

We propose the following output feedback controller:

U(t) = −c0(yxt(1, t)− ŷxt(1, t)) + ŷxx(1, t). (3.3)

Then the closed-loop of system (3.2) corresponding to the controller (3.3) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

βtt(x, t) + βxxxx(x, t) = 0,

β(0, t) = βx(0, t) = 0,

βxx(1, t) = −c0βxt(1, t),

βxxx(1, t) = qβt(1, t)− αxxx(1, t).

(3.4)

We consider system (3.4) in the state space H.
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Theorem 3.1. Suppose that αxxx(1, t) is generated by (2.3). For any initial value (β0, β1) ∈ H,

there exists a unique solution to (3.2) such that (β, βt) ∈ C(0,∞;H). Moreover, there exist two

constants M,μ > 0 such that∫ 1

0
[β2

xx(x, t) + β2
t (x, t)]dx ≤ Me−μt

∫ 1

0

[
[β′′

0 (x)]
2 + [β1(x)]

2

]
dx. (3.5)

Proof. Following the transformation trick as indicated in [25, Remark 4.1], we introduce a new

variable p(x, t) = β(x, t) + α(x, t). Then it is easy to verify that p(x, t) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ptt(x, t) + pxxxx(x, t) = 0,

p(0, t) = px(0, t) = 0,

pxx(1, t) = −c0pxt(1, t),

pxxx(1, t) = qpt(1, t),

(3.6)

which can be rewritten as the following operator form:

d

dt
(p(·, t), pt(·, t))� = Ap(p(·, t), pt(·, t))�, (3.7)

where the operator Ap : D(Ap)(⊂ H) → H is defined by⎧⎨⎩ Ap(φ, ψ)
� = (ψ, φ′′)�, ∀(φ, ψ)� ∈ D(Ap),

D(Ap) =
{
(φ, ψ)� ∈ H ∩H2(0, 1)×H1(0, 1) : φ′′(1) = −c0ψ

′(1), φ′′′(1) = qψ(1)
}
.

(3.8)

By [11], Ap generates an exponentially stable C0-semigroup, which implies that system (3.7) has

a unique solution that is exponentially stable. By Lemma 2.2 and noting that β(x, t) = p(x, t) −
α(x, t), we have that β is well-defined and is exponentially stable, i.e., (3.5) holds.

4 Well-posed and boundness of ŷ system

Now we turn to the state reference model (3.1). The resulting system now reads⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ŷtt(x, t) + ŷxxxx(x, t) = 0,

ŷ(0, t) = ŷx(0, t) = 0,

ŷx(1, t) = yref(t),

ŷxxx(1, t) = qŷt(1, t) + αxxx(1, t) + d(t),

ŷ(x, 0) = ŷ0(x), ŷt(x, 0) = ŷ1(x).

(4.1)

Theorem 4.1. For any initial value (ŷ0, ŷ1) ∈ H, d ∈ L∞(0,+∞) and yref ∈ W 1,∞(0,∞) satisfying

the compatibility condition ŷ′0(1) = yref(0), there exists a unique (weak) solution (ŷ, ŷt) ∈ C(0,∞;H)

to (4.1). Moreover, the solution of (4.1) satisfies

sup
t≥0

Eŷ(t) = sup
t≥0

1

2

∫ 1

0
[ŷ2xx(x, t) + ŷ2t (x, t)]dx < ∞.

Further, if yref(t) = d(t) ≡ 0, the solution (ŷ, ŷt) is exponentially stable.
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Proof We start with proving the first part. To this end, transform (4.1) into an equivalent

problem by the transformation v(x, t) = ŷ(x, t)− α(x, t) to obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vtt(x, t) + vxxxx(x, t) = 0,

v(0, t) = vx(0, t) = 0,

vx(1, t) = yref(t)− αx(1, t),

vxxx(1, t) = qvt(1, t) + d(t),

v(x, 0) = v0(x), vt(x, 0) = v1(x),

(4.2)

where

v0(x) = ŷ0(x)− α0(x), v1(x) = ŷ1(x)− α1(x).

Noticing that ẏref ∈ L∞(0,∞) and αxt(1, t) ∈ L2(0,∞), it is seen that the solution of (4.2)

is the solution of the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

vtt(x, t) + vxxxx(x, t) = 0,

v(0, t) = vx(0, t) = 0,

vxt(1, t) = ẏref(t)− αxt(1, t),

vxxx(1, t) = qvt(1, t) + d(t).

(4.3)

Therefore, we show that (i) system (4.3) has a unique solution that is bounded; (ii)

the solution of (4.3) is the solution of (4.2). We define an operator Av : D(Av) → H by{
Av(φ, ψ)

� = (ψ,−φ′′′′)�, ∀(φ, ψ) ∈ D(Av),

D(Av) =
{
(φ, ψ)� ∈ H⋂

(H4(0, 1)×H2
L(0, 1))| ψ′(1) = 0, φ′′′(1) = qψ(1)

}
.

(4.4)

Then system (4.3) can be written as

d

dt

(
v

vt

)
= Av

(
v

vt

)
+B1[ẏref(t)− αxt(1, t)] +B2d(t) (4.5)

where B1 = (0,−δ′′(x−1))� and B2 = (0,−δ(x−1))�. It is well-known from [11] that Av generates

an exponential stable C0-semigroup on H.

Next, we show that B1 and B2 are admissible for eAvt([22]). Actually, a straightforward com-

putation gives{
A∗

v(φ, ψ)
� = (−ψ, φ(4))�, ∀(φ, ψ) ∈ D(A∗

v),

D(A∗
v) = {(φ, ψ)� ∈ H⋂

(H4(0, 1)×H2
L(0, 1))| ψ′(1) = 0, φ′′′(1) = −qψ(1)}.

(4.6)
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Consider the observation problem of dual system of (4.3):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ŷ∗tt(x, t) + ŷ∗xxxx(x, t) = 0,

ŷ∗(0, t) = ŷ∗x(0, t) = 0,

ŷ∗xt(1, t) = 0,

ŷ∗xxx(1, t) = −qŷ∗t (1, t),

yo = {ŷ∗t (1, t), ŷ∗xx(1, t)}.

(4.7)

Define the energy function for (4.7) as

Eŷ∗(t) =
1

2

∫ 1

0
[ŷ∗t (x, t)]

2dx+
1

2

∫ 1

0
[ŷ∗xx(x, t)]

2dx.

Since Av generates a C0-semigroup solution, and so does for A∗
v. Hence system (4.7) associates

with a C0-semigroup solution and there exist two constants M1, u1 > 0 such that∫ 1

0
[ŷ∗t (x, t)]

2dx+

∫ 1

0
[ŷ∗xx(x, t)]

2dx ≤ M1e
μ1t

[ ∫ 1

0
[ŷ∗t (x, 0)]

2dx+

∫ 1

0
[ŷ∗xx(x, 0)]

2dx

]
. (4.8)

Let

ρ(t) =

∫ 1

0
xŷ∗t (x, t)ŷ

∗
x(x, t)dx.

Obviously, |ρ(t)| ≤ Eŷ∗(t). Differentiate ρ(t) with respect to t along the solution to (4.7) to obtain

ρ̇(t) =

∫ 1

0
xŷ∗t (x, t)ŷ

∗
xt(x, t)dx−

∫ 1

0
xŷ∗xxxx(x, t)ŷ

∗
x(x, t)dx

=
1

2
[ŷ∗t (1, t)]

2 +
1

2
[ŷ∗xx(1, t)]

2 + ŷ∗xx(1, t)ŷ
∗
x(1, t)− ŷ∗x(1, t)ŷ

∗
xxx(1, t)

−1

2

∫ 1

0
[ŷ∗t (x, t)]

2 + 3ŷ∗xx(x, t)]
2dx.

(4.9)

Since

[ŷ∗x(1, t)]
2 =

(∫ 1

0
ŷ∗xx(ξ, t)dξ

)2

≤
∫ 1

0
[ŷ∗xx(ξ, t)]

2dξ, (4.10)

and by Young’s inequality, we obtain

|ŷ∗xx(1, t)ŷ∗x(1, t)| ≤ ε1[ŷ
∗
xx(1, t)]

2 +
1

4ε1
[ŷ∗x(1, t)]

2, (4.11)

and

|ŷ∗x(1, t)ŷ∗xxx(1, t)| ≤ ε2[ŷ
∗
xxx(1, t)]

2 +
1

4ε2
[ŷ∗x(1, t)]

2 ≤ ε2q
2[ŷ∗t (1, t)]

2 +
1

4ε2
[ŷ∗x(1, t)]

2, (4.12)

where ε1, ε2 is chosen so that ε1 ∈ (0, 1/2) and ε2 ∈ (0, 1/2q2). It follows from (4.9)-(4.12) that

ρ̇(t) ≥
(1
2
− ε2q

2
)
[ŷ∗t (1, t)]

2 +
(1
2
− ε1

)
[ŷ∗xx(1, t)]

2

−
(
3 +

1

4ε1
+

1

4ε2

)∫ 1

0
[ŷ∗t (x, t)]

2 + ŷ∗xx(x, t)]
2dx.
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Integrating from 0 to T with respect to t in the above equation and noting (4.8), one has(1
2
− ε2q

2
)∫ T

0
[ŷ∗t (1, t)]

2dt+
(1
2
− ε1

)∫ T

0
[ŷ∗xx(1, t)]

2dt

≤ Eŷ∗(T ) + 2
(
3 +

1

4ε1
+

1

4ε2

)
TEŷ∗(T )

≤ M1e
μ1T

(
1 + 2

(
3 +

1

4ε1
+

1

4ε2

)
T

)[∫ 1

0
[ŷ∗t (x, 0)]

2dx+

∫ 1

0
[ŷ∗xx(x, 0)]

2dx

]
.

(4.13)

On the other hand, a straightforward computation shows that B∗
1(I −Av)

∗−1 and B∗
2(I −Av)

∗−1

are bounded from H to C. This together with (4.13) shows that B∗
1 and B∗

2 are admissible for

eA
∗
vt, and so are B1 and B2 for eAvt. Since αxt(1, t) ∈ L2(0,∞) due to Lemma 2.2 and the fact

d, ẏref ∈ L∞(0,∞), it follows from [25, Lemma 2.1] or [26, Lemma 1.1] that for any initial value

(v0, v1) ∈ H, system (4.3) has a unique solution that is bounded.

Next, we claim that the solution of (4.3) is the solution of (4.2). Actually, letting (v, vt) be the

solution of (4.3), by the boundary condition of (4.3) vxt(1, t) = ẏref(t)− αxt(1, t) for all t ≥ 0 , we

get vx(1, t) = yref(t)− αx(1, t) +C with C = vx(1, 0)− [yref(0)− αx(1, 0)]. From the compatibility

condition ŷ′0(1) = yref(0) and v(x, 0) = ŷ(x, 0)−α(x, 0), we obtain C = ŷ′0(1)−αx(1, 0)− [yref(0)−
αx(1, 0)] = 0. Thus, the solution of (4.3) satisfies all the boundary condition of (4.2), which implies

that the solution of (4.3) is also the solution of (4.2).

Finally, Lemma 2.2 and the boundedness of the solution of system (4.3) imply that (ŷ, ŷt) is

bounded on H. When yref(t) = d(t) ≡ 0, the exponential stability of the solution (ŷ, ŷt) follows

from the fact that the operator Av generates an exponential stable C0-semigroup on H. �

5 Main result

In this section, we show the well-posedness and performance output tacking of the closed-loop

system obtained from (1.1). Under the control law (3.3), the closed-loop system is composed of

12



(1.1), (2.1) and (3.1), that is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ytt(x, t) + yxxxx(x, t) = 0,

y(0, t) = yx(0, t) = 0,

yxx(1, t) = −c0[yxt(1, t)− ŷxt(1, t)] + ŷxx(1, t),

yxxx(1, t) = qyt(1, t) + d(t),

ztt(x, t) + zxxxx(x, t) = 0,

z(0, t) = zx(0, t) = 0, z(1, t) = y(1, t),

zxx(1, t) = −c0[zxt(1, t)− ŷxt(1, t)] + ŷxx(1, t),

ŷtt(x, t) + ŷxxxx(x, t) = 0,

ŷ(0, t) = ŷx(0, t) = 0, ŷx(1, t) = yref (t),

ŷxxx(1, t) = qŷt(1, t) + zxxx(1, t)− qzt(1, t).

e(t) = yx(1, t)− yref(t)

(5.1)

We consider system (5.1) in the state space X = (H2
L(0, 1)× L2(0, 1))3.

Theorem 5.1. Suppose that d ∈ L∞(0,+∞), yref ∈ W 1,∞(0,∞). Then, for any initial value

(y0, y1, z0, z1, ŷ0, ŷ1) ∈ X with compatible boundary conditions z0(1) − y0(1) = 0, ŷ′0(1) = yref(0),

there exists a unique solution to (5.1) such that (y, yt, z, zt, ŷ, ŷt) ∈ C(0,∞;X ). Moreover, the

closed-loop system solution has the following properties:

(i)

sup
t≥0

(∫ 1

0
[y2xx(x, t) + y2t (x, t) + z2xx(x, t) + z2t (x, t) + ŷ2xx(x, t) + ŷ2t (x, t)]dx

)
< +∞;

(ii) there exist two constants M,μ > 0 such that∫ 1

0

(
[zxx(x, t)− yxx(x, t)]

2 + [zt(x, t)− yt(x, t)]
2
)
dx ≤ Me−μt;

and ∫ 1

0

(
[ŷxx(x, t)− yxx(x, t)]

2 + [ŷt(x, t)− yt(x, t)]
2
)
dx ≤ Me−μt;

(iii) there exist two constants M,μ > 0 such that

|e(t)| = |yx(1, t)− yref(t)| ≤ Me−μt, for all t ≥ 0.

(iv) When yref(t) = d(t) ≡ 0, the solution (y, yt, z, zt, ŷ, ŷt)) is exponentially stable on X .

Proof. Since (
z(x, t)

y(x, t)

)
=

(
1 1

0 1

)(
α(x, t)

β(x, t)

)
+

(
ŷ(x, t)

ŷ(x, t)

)
,
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(i) follows from Lemma 2.2, Theorem 3.1 and 4.1. Note that α(x, t) = z(x, t) − y(x, t), β(x, t) =

y(x, t) − ŷ(x, t), (ii) follows from Lemma 2.2 and Theorem 3.1. Since ŷx(1, t) = yref(t), (ii) and

Sobolev embedding theorem imply (iii). Finally, (iv) follows from (ii) and Theorem 4.1.

Remark 5.1. From (ii) in Theorem 5.1, both the z-part and the ŷ-part of the closed-loop system

(5.1) could be regarded as the state observer of (1.1). However, they play the different roles. The

main difference is that the z-part of (5.1) is used to estimate the disturbance while the ŷ-part of

(5.1) is used to be a servo system which is essentially a copy of the original system (1.1).

6 Numerical simulation

In this section, we present some numerical simulations for the closed-loop system (5.1) to illustrate

the effectiveness of the proposed feedback control. For numerical computations, we take reference

signal r(t) = 2 sin(2t) and the external disturbance d(t) = 2 sin(t)+0.7 cos(6t)−1. The parameters

are taken as q = 2, c0 = 1. The initial value are

y(x, 0) = 2x− x2, yt(x, 0) = 0, z(x, 0) = 0,

zt(x, 0) = 0, ŷ(x, 0) = −2x+ x2, ŷt(x, 0) = 0.

The Galerkin finite element method is adopted in computation of the displacements and velocity.

The time step is chosen as dt = 0.001, the interval [0, 1] is partitioned [(k − 1)/N, k/N ], k =

1, 2, . . . , N , where N = 4. Hermite cubic polynomials are used as basis functions ([21]).

The solution of system is plotted in Figures 1-3. Figure 4 shows that the reference model

(3.1) can be regarded as a state observer of (1.1). Figure 5 shows that the disturbance d(t) and

its estimate zxxx(1, t) − qzt(1, t). It is seen that the disturbance is estimated effectively. The

convergence is very satisfactory. Figure 6 shows that yx(1, t) and yref(t). It is seen that yx(1, t) can

tracks the reference signal yref(t) satisfactorily. Figure 7 displays the feedback control in time.
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Figure 1: The state y(x, t)
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Figure 2: The state z(x, t)

1

0.5

-2

0

0

2

05 10

4

15 20

6

8

Figure 3: The state ŷ(x, t)
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Figure 4: The error −β(x, t) = ŷ(x, t)− y(x, t)
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Figure 5: The disturbance and its estimation
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Figure 6: The reference signal r(t) and the output yx(1, t)
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Figure 7: The control law U(t)

7 Concluding Remark

We have designed a new infinite-dimensional disturbance estimator to estimate the unknown distur-

bance and proposed a servomechanism by using the measured output and the reference signal where

the estimation mechanism of unknown disturbance is presented. Four major control objectives are

achieved. a) The performance output tracks exponentially the reference signal; b) The unknown

disturbance can be estimated and thus be compensated; c) All the states of internal-loops are

bounded in the energy state space; d) When the disturbance and reference signal are disconnected

to the system, the closed-loop is exponentially stable.
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