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Abstract

The inverse scattering transform is developed for a combined modified Korteweg-

de Vrie equation through the technique of Riemann-Hilbert problems. From special

Riemann-Hilbert problems with an identity jump matrix, soliton solutions are gener-

ated, which corresponds to the inverse scattering problems with reflectionless coeffi-

cients. A specific example of two-soliton solutions is explicitly presented, together with

its 3d plots, contour plots and x-curve plots.
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1 Introduction

In modern soliton theory [1, 2], the inverse scattering transform is one of the most powerful

techniques to solve nonlinear integrable equations and particularly generate soliton solu-

tions. The transform is also called the Fourier transform method in a nonlinear world [3],

and closely connected with the Riemann-Hilbert problems associated with matrix spectral

problems [2]. In the theory of Riemann-Hilbert problems, one starts from bounded eigenfunc-

tions analytically extendable to the upper or lower half-plane and continuous in the closed

upper or lower half-plane. Once taking the identity jump matrix, reduced Riemann-Hilbert

problems yield soliton solutions, whose special limits can generate lump solutions, periodic

solutions and complexiton solutions. A few integrable equations, including the multiple wave

interaction equations [2], the general coupled nonlinear Schrödinger equations [4], the Harry

Dym equation [5], and the generalized Sasa-Satsuma equation [6], have been studied by the

Riemann-Hilbert technique.

The standard procedure for establishing Riemann-Hilbert problems on the real axis is as

follows. One starts from a pair of matrix spectral problems of the following form:

−iφx = Uφ, −iφt = V φ, U = A(λ) + P (u, λ), V = B(λ) +Q(u, λ), (1.1)

where i is the unit imaginary number, λ is a spectral parameter, u is a potential, φ is an

m ×m matrix eigenfunction, A,B are constant commuting m ×m matrices, and P,Q are

trace-less m ×m matrices. It is known that the compatibility condition of the two matrix

spectral problems is the zero curvature equation

Ut − Vx + i[U, V ] = 0, (1.2)

where [·, ·] is the matrix commutator. This zero curvature equation presents so-called soliton

equations. To formulate Riemann-Hilbert problems for integrable equations, we adopt the

following pair of equivalent matrix spectral problems

ψx = i[A(λ), ψ] + P̌ (u, λ)ψ, ψt = i[B(λ), ψ] + Q̌(u, λ)ψ, (1.3)

where ψ is anm×mmatrix eigenfunction, P̌ = iP and Q̌ = iQ. The commutativity of A and

B guarantees this equivalence, and there is a relation between the two matrix eigenfunctions
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φ and ψ:

φ = ψEg, Eg = eiA(λ)x+iB(λ)t.

For the matrix spectral problems (1.3), we can have two bounded analytical matrix

eigenfunctions with the asymptotic conditions

ψ± → Im, when x, t→ ±∞, (1.4)

where Im stands for the identity matrix of size m. Let C
+ and C

− denote the upper and

lower half-planes:

C
+ = {z ∈ C| Im(z) > 0}, C− = {z ∈ C| Im(z) < 0}, (1.5)

and C
+
0 and C

−
0 , the closed upper and lower half-planes:

C
+
0 = {z ∈ C| Im(z) ≥ 0}, C−0 = {z ∈ C| Im(z) ≤ 0}. (1.6)

Based on the above two matrix eigenfunctions ψ±, we try to determine two matrix functions

P±(x, t, λ), which are analytical in C
+ and C

− and continuous in C
+
0 and C

−
0 , respectively,

and then formulate a Riemann-Hilbert problem on the real axis:

G+(x, t, λ) = G−(x, t, λ)G(x, t, λ), λ ∈ R, (1.7)

with

G+(x, t, λ) = P+(x, t, λ), λ ∈ C
+
0 , (G

−)−1(x, t, λ) = P−(x, t, λ), λ ∈ C
−
0 . (1.8)

Upon taking the jump matrix G to be the identity matrix, the corresponding Riemann-

Hilbert problem can be often solved to generate soliton solutions, through observing asymp-

totic behaviors of the matrix functions P± at infinity of λ, which also provide the canonical

normalization conditions of the Riemann-Hilbert problems.

In this paper, we shall present an application example of the inverse scattering transform,

based on the Riemann-Hilbert technique. The nonlinear equation that we shall discuss is

the following combined modified Korteweg-de Vries (mKdV) equation⎧⎨
⎩

p1,t = −p1,xxx − 6|p1|2p1,x + 3|p2|2p1,x + 3p1p̄2p2,x,

p2,t = −p2,xxx + 6|p2|2p2,x − 3|p1|2p2,x − 3p̄1p2p1,x,
(1.9)

where f̄ denotes the complex conjugate of f and |f |2 = ff̄ . When p1 and p2 are real, the

above combined mKdV equation is reduced to⎧⎨
⎩

p1,t = −p1,xxx − 6p21p1,x + 3p22p1,x + 3p1p2p2,x,

p2,t = −p2,xxx + 6p22p2,x − 3p21p2,x − 3p1p2p1,x.
(1.10)

3



The cases of p1 = 0 and p2 = 0 further give the positive and negative mKdV equations

respectively, which possess different properties (see, e.g., [7]). The equation (1.10) adds to

the class of combined mKdV equations in the real field, the other two of which are discussed

in [8, 9, 10].

The rest of the paper is structured as follows. In Section 2, within the zero-curvature

formulation, we derive a combined mKdV hierarchy, together with its recursion operator,

based on a matrix spectral problem suited for the Riemann-Hilbert theory. In Sections 3

and 4, to present an inverse scattering transform for the combined mKdV equation (1.9),

we analyze analytical properties of matrix eigenfunctions and build a kind of Riemann-

Hilbert problems of the equivalent matrix spectral problem. In Section 5, we compute

soliton solutions to the combined mKdV equation from special associated Riemann-Hilbert

problems on the real axis, in which the jump matrix is taken as the identity matrix. The

last section is devoted to conclusions and remarks.

2 A combined mKdV integrable hierarchy

2.1 Zero curvature formulation

We state the zero curvature formulation to generate integrable hierarchies as follows (see,

e.g., [11, 12, 13]). Let u be a vector potential and λ, a spectral parameter. Choose a square

matrix spectral matrix U = U(u, λ) from a given matrix loop algebra, whose underlying Lie

algebra could be either semisimple [11, 12] or non-semisimple [13]. Assume that there is a

formal Laurent series solution

W = W (u, λ) =
∞∑

m=0

Wmλ
−m =

∞∑
m=0

Wm(u)λ
−m (2.1)

to the corresponding stationary zero curvature equation

Wx = i[U,W ]. (2.2)

Using this solution W , we introduce a series of Lax matrices

V [r] = V [r](u, λ) = (λrW )+ +Δr, r ≥ 0, (2.3)

where the subscript + denotes the operation of taking a polynomial part in λ, and Δr, r ≥ 0,

are appropriate modification terms. The selection of Δr is somewhat subtle and depends on
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whether an integrable hierarchy

ut = Kr(u) = Kr(x, t, u, ux, · · · ), r ≥ 0, (2.4)

can be generated from a series of zero curvature equations

Ut − V [r]
x + i[U, V [r]] = 0, r ≥ 0. (2.5)

The two matrices U and V [r] are called a Lax pair [14] of the r-th integrable equation in

the hierarchy (2.4). Obviously, the zero curvature equations in (2.5) are the compatibility

conditions of the spatial and temporal matrix spectral problems

−iφx = Uφ = U(u, λ)φ, −iφt = V [r]φ = V [r](u, λ)φ, r ≥ 0, (2.6)

where φ is the matrix eigenfunction.

To show the commutability of the hierarchy (2.4), we normally start by verifying Lax

operator algebras (see, e.g., [15, 16, 17] for details):

[[V [m], V [n]]] = V [m]′(u)[Kn]− V [n]′(u)[Km] = 0, m, n ≥ 0, (2.7)

which ensures the existence of infinitely many common commuting Lie symmetries {Km}∞m=0:

[Km, Kn] = K ′
m(u)[Kn]−K ′

m(u)[Kn] = 0, m, n ≥ 0. (2.8)

In the above computations, R′ stands for the Gateaux derivative of R with respect to u in

a direction S:

R′(u)[S] =
∂

∂ε

∣∣∣
ε=0

R(u+ εS, ux + εSx, · · · ).

When the underlying matrix loop algebra in the zero curvature formulation is simple,

the associated zero curvature equations engender classical integrable hierarchies [18, 19];

when semisimple, the associated zero curvature equations generate a collection of different

integrable hierarchies; and when non-semisimple, we get hierarchies of integrable couplings

[20], which require extra care in exploring their integrability.

2.2 A combined mKdV hierarchy

We consider the following matrix spectral problem

−iφx = Uφ = U(u, λ)φ, U = (Ujl)3×3 =

⎡
⎢⎢⎢⎢⎣

2λ p1 p2

p̄1 λ 0

−p̄2 0 λ

⎤
⎥⎥⎥⎥⎦ , u =

⎡
⎣ p1

p2

⎤
⎦ , (2.9)
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where λ is a spectral parameter. Two special cases: (a) p2 = 0 and real p1, and (b) p1 = 0

and real p2, are reduced to the spectral problems associated with the positive and negative

mKdV equations, respectively.

To derive an associated combined mKdV hierarchy, we first solve the stationary zero

curvature equation (2.2) corresponding to (2.9), as suggested in the general zero curvature

formulation. We seek a solution W of the form

W =

⎡
⎣ a b

c d

⎤
⎦ , (2.10)

where a is a real scalar, b = (b1, b2) and c = (b̄1,−b̄2)T are two-dimensional vectors, and d is

a 2 × 2 matrix satisfying d†(λ̄) = d(λ)
T
= Σd(λ̄)Σ−1, Σ = diag(1,−1). It is direct to show

that the stationary zero curvature equation (2.2) is

⎡
⎢⎢⎢⎢⎣

ax = i(pc− bq),

bx = i(αλb+ pd− ap),

dx = i(qb− cp),

(2.11)

where q = (q1, q2)
T = (p̄1,−p̄2)T . We take W as a formal series:

W =

⎡
⎣ a b

c d

⎤
⎦ =

∞∑
m=0

Wmλ
−m, Wm = Wm(u) =

⎡
⎣ a[m] b[m]

c[m] d[m]

⎤
⎦ , m ≥ 0, (2.12)

where b[m], c[m] and d[m] are expressed as

b[m] = (b
[m]
1 , b

[m]
2 ), c[m] =

(
b
[m]
1 ,−b[m]

2

)T
, d[m] = (d

[m]
jl )2×2, m ≥ 0, (2.13)

where the d[m]’s satisfy (d[m])† = Σd[m]Σ−1, m ≥ 0. Then, the system (2.11) exactly presents

the following recursion relations:

b[0] = 0, c[0] = 0, a[0]x = 0, d[0]x = 0, (2.14a)

b[m+1] = −ib[m]
x − pd[m] + a[m]p, m ≥ 0, (2.14b)

a[m]
x = i(pc[m] − b[m]q), d[m]

x = i(qb[m] − c[m]p), m ≥ 1. (2.14c)

Next we choose the initial values:

a[0] = 2, d[0] = I2, (2.15)
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and take constants of integration in (2.14c) to be zero, that is, require

Wm|u=0 = 0, m ≥ 1. (2.16)

Then, with a[0] and d[0] given by (2.15), all matrices Wm, m ≥ 1, are uniquely determined.

For example, a direct computation, in virtue of (2.14), generates that

b
[1]
j = pj, a

[1] = 0, d
[1]
jl = 0; (2.17a)

b
[2]
j = −ipj,x, a[2] = −pq, d[2]jl = plqj; (2.17b)

b
[3]
j = −pj,xx − 2pqpj, (2.17c)

a[3] = −i(pqx − pxq), d
[3]
jl = −i(pl,xqj − plqj,x); (2.17d)

b
[4]
j = i(pj,xxx + 3pqpj,x + 3pxqpj), (2.17e)

a[4] = 3(pq)2 + pqxx − pxqx + pxxq, (2.17f)

d
[4]
jl = −3plpqqj − pl,xxqj + pl,xqj,x − plqj,xx; (2.17g)

where 1 ≤ j, l ≤ 2.

To generate the combined mKdV hierarchy, we introduce the following Lax matrices

V [r] = V [r](u, λ) = (V
[r]
jl )3×3 = (λrW )+ =

r∑
m=0

Wmλ
r−m, r ≥ 0, (2.18)

where the modification terms are taken as zero. The compatibility conditions of (2.6), i.e.,

the zero curvature equations (2.5), engender the so-called combined mKdV hierarchy:

ut = pTt = Kr = ib[r+1]T , r ≥ 0, (2.19)

which can be shown, by checking the corresponding Lax operator algebra, to satisfy

[Km, Kn] = 0, m, n ≥ 0, (2.20)

It is direct to work out the following recursion operator [21] for the combined mKdV hierarchy

Φ =

⎡
⎣ Φ11 Φ12

Φ21 Φ22

⎤
⎦ , (2.21)

with the entries being defined by⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Φ11 = i[−∂ − 2p1∂
−1p̄1 + p2∂

−1p̄2 + 2p1∂
−1p1(̄·)],

Φ12 = i[p1∂
−1p̄2 − p2∂

−1p1(̄·)− p1∂
−1p2(̄·)],

Φ21 = i[−p2∂−1p̄1 + p1∂
−1p2(̄·) + p2∂

−1p1(̄·)],
Φ22 = i[−∂ − p1∂

−1p̄1 + 2p2∂
−1p̄2 − 2p2∂

−1p2(̄·)],

(2.22)
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where (̄·) denotes the conjugate operator: (̄·)f = f̄ .

The first nonlinear integrable equation in the hierarchy (2.19) is a combined nonlinear

Schrödinger equation:

pj,t = −i[pj,xx + 2(|p1|2 − |p2|2)pj], 1 ≤ j ≤ 2, (2.23)

and the second equation is exactly the combined mKdV equation (1.9).

In what follows, we shall discuss the scattering and inverse scattering problems for the

combined mKdV equation (1.9) using the Riemann-Hilbert technique [2] (see also [22, 23]).

The results will lay the groundwork for soliton solutions later on.

3 Direct scattering

The matrix spectral problems of the combined mKdV equation (1.9) are

−iφx = Uφ = U(u, λ)φ, −iφt = V [3]φ = V [3](u, λ)φ, (3.1)

where the Lax pair reads

U = λΛ + P, V [3] = λ3Λ +Q, Λ = diag(2, 1, 1), (3.2)

with

P =

⎡
⎢⎢⎢⎢⎣

0 p1 p2

p̄1 0 0

−p̄2 0 0

⎤
⎥⎥⎥⎥⎦ , Q =

⎡
⎣ a[1]λ2 + a[2]λ+ a[3] b[1]λ2 + b[2]λ+ b[3]

c[1]λ2 + c[2]λ+ c[3] d[1]λ2 + d[2]λ+ d[3]

⎤
⎦ , (3.3)

where c[m], 1 ≤ m ≤ 3, are defined through (2.13), and a[m], b[m], d[m], 1 ≤ m ≤ 3, are

determined in (2.17).

Assume that all the potentials sufficiently rapidly vanish when x → ±∞ or t → ±∞.

From the matrix spectral problems in (3.1), we note that when x, t → ±∞, we have the

asymptotic behavior: φ ∼ eiλΛx+iλ3Λt. Therefore, if we make the variable transformation

φ = ψEg, Eg = eiλΛx+iλ3Λt,

then we can have the canonical normalization ψ → I3, when x, t → ±∞. Once setting

P̌ = iP and Q̌ = iQ, the equivalent pair of matrix spectral problems to (3.1) reads

ψx = iλ[Λ, ψ] + P̌ψ, (3.4)
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ψt = iλ3[Λ, ψ] + Q̌ψ, (3.5)

Upon applying a generalized Liouville’s formula [24], we can have

detψ = 1, (3.6)

due to tr(P̌ ) = tr(Q̌) = 0.

Let us now formulate an associated Riemann-Hilbert problem with the variable x, under

the integrable conditions:

∫ ∞

−∞
|x|m

2∑
j=1

(|pj|+ |qj|) dx <∞, m = 0, 1. (3.7)

In the direct scattering problem, we first introduce two matrix solutions ψ±(x, λ) of (3.4)

with the asymptotic conditions

ψ± → I3, when x→ ±∞, (3.8)

respectively. The above superscripts refer to which end of the x-axis the boundary conditions

are required for. Based on (3.6), we see that detψ± = 1 for all x ∈ R. Since

φ± = ψ±E, E = eiλΛx, (3.9)

are two matrix solutions of (3.1), they are linearly dependent, and as a result of the fact,

one has

ψ−E = ψ+ES(λ), λ ∈ R, (3.10)

where S(λ) = (sjl)3×3 is the scattering matrix. Note that detS(λ) = 1 because of detψ± = 1.

Through the method of variation in parameters, we can transform the x-part of (3.1)

into the following Volterra integral equations for ψ± [2]:

ψ−(λ, x) = I3 +

∫ x

−∞
eiλΛ(y−x)P̌ (y)ψ−(λ, y)eiλΛ(x−y) dy, (3.11)

ψ+(λ, x) = I3 −
∫ ∞

x

eiλΛ(y−x)P̌ (y)ψ+(λ, y)eiλΛ(x−y) dy, (3.12)

where the boundary condition (3.8) has been used. Therefore, under the conditions (3.7),

the theory of Volterra integral equations tells that the eigenfunctions ψ± exist and allow

analytical continuations off the real axis λ ∈ R as long as the integrals on their right hand

sides converge. Based on the diagonal form of Λ, we can easily see that the integral equation
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for the first column of ψ− contains only the exponential factor e−iαλ(y−x), which decays

because of y < x in the integral, when λ is in the closed upper half-plane, and the integral

equation for the last two columns of ψ+ contains only the exponential factor eiαλ(y−x), which

also decays because of y > x in the integral, when λ is in the closed upper half-plane. Thus,

these three columns are analytical in the upper half-plane and continuous in the closed

upper half-plane. In a similar manner, we can show that the last two columns of ψ− and the

first column of ψ+ are analytical in the lower half-plane and continuous in the closed lower

half-plane.

First, if we express

ψ± = (ψ±1 , ψ
±
2 , ψ

±
3 ), (3.13)

that is, ψ±j stands for the jth column of φ± (1 ≤ j ≤ 3), then the matrix solution

P+ = P+(x, λ) = (ψ−1 , ψ
+
2 , ψ

+
3 ) = ψ−H1 + ψ+H2 (3.14)

is analytic in λ ∈ C
+ and continuous in λ ∈ C

+
0 , and the matrix solution

(ψ+
1 , ψ

−
2 , ψ

−
3 ) = ψ+H1 + ψ−H2 (3.15)

is analytic in λ ∈ C
− and continuous in λ ∈ C

−
0 . In the above derivation, H1 and H2 are the

following matrices

H1 = diag(1, 0, 0), H2 = diag(0, 1, 1). (3.16)

Moreover, from the Volterra integral equations (3.11) and (3.12), we find that

P+(x, λ) → I3, when λ ∈ C
+
0 → ∞, (3.17)

and

(ψ+
1 , ψ

−
2 , ψ

−
3 ) → I3, when λ ∈ C

−
0 → ∞. (3.18)

Secondly, we construct the analytic counterpart of P+ in the lower half-plane C
− from

the adjoint counterparts of the matrix spectral problems. The adjoint equation of the x-part

of (3.1) and the adjoint equation of (3.4) are given by

iφ̃x = φ̃U, (3.19)

and

iψ̃x = λ[ψ̃,Λ] + ψ̃P. (3.20)
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Note that the inverse matrices φ̃± = (φ±)−1 and ψ̃± = (ψ±)−1 solve these two adjoint

equations, respectively. Upon expressing ψ̃± as follows:

ψ̃± = (ψ̃±,1, ψ̃±,2, ψ̃±,3)T , (3.21)

that is, ψ̃±,j stands for the jth row of ψ̃± (1 ≤ j ≤ 3), we can verify by similar arguments

that the adjoint matrix solution of (3.20),

P− = (ψ̃−,1, ψ̃+,2, ψ̃+,3)T = H1ψ̃
− +H2ψ̃

+ = H1(ψ
−)−1 +H2(ψ

+)−1, (3.22)

is analytic in λ ∈ C
− and continuous in λ ∈ C

−
0 , and the other matrix solution of (3.20),

(ψ̃+,1, ψ̃−,2, ψ̃−,3)T = H1ψ̃
+ +H2ψ̃

− = H1(ψ
+)−1 +H2(ψ

−)−1, (3.23)

is analytic in λ ∈ C
+ and continuous in λ ∈ C

+
0 . Using a similar argument, we can see that

P−(x, λ) → I3, when λ ∈ C
−
0 → ∞, (3.24)

and

(ψ̃+,1, ψ̃−,2, ψ̃−,3)T → I3, when λ ∈ C
+
0 → ∞. (3.25)

Till now, we have constructed the two matrix functions, P+ and P−, which are analytic

in C
+ and C

− and continuous in C
+
0 and C

−
0 , respectively. Defining

G+(x, λ) = P+(x, λ), λ ∈ C
+
0 , (G

−)−1(x, λ) = P−(x, λ), λ ∈ C
−
0 , (3.26)

we can directly show that on the real axis, the two matrix functions G+ and G− are related

by

G+(x, λ) = G−(x, λ)G(x, λ), λ ∈ R, (3.27)

where by (3.10), we have

G(x, λ) = E(H1 +H2S(λ))(H1 + S−1(λ)H2)E
−1

= E

⎡
⎢⎢⎣

1 ŝ12 ŝ13

s21 1 0

s31 0 1

⎤
⎥⎥⎦E−1 (3.28)

with S−1(λ) = (S(λ))−1 = (ŝjl)3×3. The equations (3.27) and (3.28) are exactly the asso-

ciated matrix Riemann-Hilbert problems we would like to build for the combined mKdV

equation (1.9). The asymptotic properties

P±(x, λ) → I3, when λ ∈ C
±
0 → ∞, (3.29)
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provide the canonical normalization conditions

G±(x, λ) → I3, when λ ∈ C
±
0 → ∞, (3.30)

for the presented Riemann-Hilbert problems.

To complete the direct scattering transform, let us take the derivative of (3.10) with time

t and use the vanishing conditions of the potentials at infinity of t. This way, we can verify

that the scattering matrix S satisfies

St = iλ3[Λ, S], (3.31)

which tells the time evolution of the time-dependent scattering coefficients:

s12 = s12(0, λ)e
iλ3t, s13 = s13(0, λ)e

iλ3t, s21 = s21(0, λ)e
−iλ3t, s31 = s31(0, λ)e

−iλ3t, (3.32)

and all other scattering coefficients are independent of the time variable t:

s11,t = s22,t = s23,t = s32,t = s33,t = 0. (3.33)

4 Inverse scattering

It is known that the Riemann-Hilbert problems with zeros can be solved by transforming

into the ones without zeros [2]. The uniqueness of solutions to each associated Riemann-

Hilbert problem, defined by (3.27) and (3.28), does not hold unless the zeros of detP± in

the upper and lower half-planes are specified and the structures of kerP± at these zeros are

determined [2, 25, 26].

Based on detψ± = 1, it follows from the definitions of P± and the scattering relation

between ψ+ and ψ− that

detP+(x, λ) = s11(λ), detP
−(x, λ) = ŝ11(λ), (4.1)

where, due to detS = 1, we have

ŝ11 = (S−1)11 = s22s33 − s23s32.

We now specify the scattering data. Let N be an arbitrary natural number and assume

that detP+ has N zeros {λk, 1 ≤ k ≤ N} in the upper half-plane, and detP− has N zeros
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{λ̂k, 1 ≤ k ≤ N} in the lower half-plane. The numbers of zeros of detP+ and detP− must

be the same, and otherwise, the associated Riemann-Hilbert problems are not solvable. Let

us further assume that

kerP+(λk) =Mk, imP−(λ̂k) = Nk 1 ≤ k ≤ N, (4.2)

where two subspaces Mk and Nk of C3 are given and satisfy

Mk ⊕Nk = C
3, 1 ≤ k ≤ N. (4.3)

We transform the Riemann-Hilbert problems in (3.27) with zeros into the corresponding

Riemann-Hilbert problems without zeros. To this end, we introduce

P− = P−I P̃
−, P+ = P̃+P+

I , (4.4)

where P−I and P+
I are determined by a reduced Riemann-Hilbert problem

P−I P
+
I = I3, (4.5)

with the same zeros given as for (3.27) and the same kernel structures:

kerP+
I (λk) = kerP+(λk), imP−I (λ̂k) = imP−(λ̂k), 1 ≤ k ≤ N. (4.6)

Then, P̃+ and P̃− satisfy a Riemann-Hilbert problem without zeros

P̃−P̃+ = G̃, G̃ = (P−I )−1G(P+
I )−1 = P+

I G(P
+
I )−1. (4.7)

This kind of regular Riemann-Hilbert problems with canonical normalization can be system-

atically solved (see, e.g., [2]). The solution to the special Riemann-Hilbert problem in (4.5)

with the indicated zeros and kernel structures can be determined as follows [2]:

P−I =
(
I3 +

λ1−λ̂1

λ−λ1
P1

)
· · ·

(
I3 +

λN−λ̂N

λ−λN
PN

)
,

P+
I =

(
I3 − λN−λ̂N

λ−λ̂N
PN

)
· · ·

(
I3 − λ1−λ̂1

λ−λ̂1
P1

)
,

(4.8)

where Pk, 1 ≤ k ≤ N, are the projections (i.e., P 2
k = Pk) which satisfy

Mk = kerP+
I (λk) = Uk imPk, Nk = imP−I (λ̂k) = Uk kerPk, 1 ≤ k ≤ N. (4.9)

Note that a projection is uniquely determined when its kernel and image are given. In the

above computations, Uk, 1 ≤ k ≤ N , are determined by

P−I (λ̂k) = Uk(I3 − Pk)Vk, P
+
I (λk) = V −1k (I3 − Pk)U

−1
k , 1 ≤ k ≤ N. (4.10)
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Actually, those yield

Uk =
(
I3 +

λ1−λ̂1

λ̂k−λ1
P1

)
· · ·

(
I3 +

λk−1−λ̂k−1

λ̂k−λk−1
Pk−1

)
,

Vk =
(
I3 +

λk+1−λ̂k+1

λ̂k−λk+1
Pk+1

)
· · ·

(
I3 +

λN−λ̂N

λ̂k−λN
PN

)
,

(4.11)

which are non-degenerate matrices, since (I3 − cP )−1 = I3 − c
c−1P for P 2 = P when c 
= 1.

Since s11 and ŝ11 are independent of t, we have λk,t = λ̂k,t = 0, 1 ≤ k ≤ N . The time

evolution for Mk and Nk are determined as follows. First by using (3.5), we can show that

dv

dt
− iλ3kΛv ∈ kerP+(λk), for v ∈ kerP+(λk), 1 ≤ k ≤ N, (4.12)

which determines the law for the time evolution of the subspace Mk. Similarly, by using the

adjoint equation of (3.5),

iψ̃t = λ3[ψ̃,Λ] + ψ̃Q, (4.13)

we can have

dv

dt
+ iλ̂3kvΛ ∈ kerP−(λ̂k), for v ∈ kerP−(λ̂k), 1 ≤ k ≤ N, (4.14)

which determines the law for the time evolution of the complement Nk of the subspace Mk.

Let us finally recover the potential matrix P . Note that P+ solves the matrix spectral

problem (3.4). Therefore, as long as we expand P+ at large λ as

P+(x, λ) = I3 +
1

λ
P+
1 (x) + O(

1

λ2
), λ→ ∞, (4.15)

plugging this series expansion into (3.4) and comparing O(1) terms tell

P̌ = −i[Λ, P+
1 ]. (4.16)

To realize the symmetric property of P , let us assume that

λ̂k = λ̄k, P
†
k (λ̄) = Pk(λ) = CPk(λ̄)C

−1, C = diag(1, 1,−1), (4.17)

which guarantees

(P+
1 )† = −CP+

1 C
−1. (4.18)

It then follows that (4.16) equivalently presents the potential matrix:

P = −[Λ, P+
1 ] =

⎡
⎢⎢⎣

0 −(P+
1 )12 −(P+

1 )13

(P+
1 )21 0 0

(P+
1 )31 0 0

⎤
⎥⎥⎦ , (4.19)
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where P+
1 = ((P+

1 )jl)3×3 and the symmetric property

P † = CPC−1 (4.20)

is satisfied. Therefore, the two potentials p1 and p2 can be computed as follows:

p1 = −(P+
1 )12, p2 = −(P+

1 )13. (4.21)

This completes the inverse scattering probelm: Given the scattering coefficients s21, s31, ŝ12,

ŝ13, zeros λk ∈ C
+
0 and λ̂k = λ̄k ∈ C

−
0 , and subspaces Mk and Nk satisfying Mk ⊕ Nk =

C
3, 1 ≤ k ≤ N , we can get the potentials from (4.21), where P+ = G+ solves the Riemann-

Hilbert problem (3.27) with kerG+(λk) =Mk and im (G−)−1(λ̂k) = Nk, 1 ≤ k ≤ N.

5 Soliton solutions

To generate soliton solutions, we assume that all these zeros, λk and λ̂k = λ̄k, 1 ≤ k ≤ N,

are simple. Therefore, each of kerP+(λk), 1 ≤ k ≤ N , contains only a single basis column

vector, denoted by vk, 1 ≤ k ≤ N ; and each of kerP−(λ̂k), 1 ≤ k ≤ N , a single basis row

vector, denoted by v̂k, 1 ≤ k ≤ N :

P+(λk)vk = 0, v̂kP
−(λ̂k) = 0, 1 ≤ k ≤ N. (5.1)

The Riemann-Hilbert problems, by (3.27) and (3.28), with the canonical normalization

conditions in (3.30) and the zero structures in (5.1) can be solved as explained in the last

section, and thus one can readily work out the potential u through (4.21).

To present soliton solutions, we take G = I3 in each Riemann-Hilbert problem determined

in (3.27). This can be achieved if we take

s21 = ŝ12 = s31 = ŝ13 = 0, (5.2)

which means that no reflection exists in the scattering problem. The solution to this special

Riemann-Hilbert problem can be generated by (see, e.g., [2, 27]):

P+(λ) = I3 −
N∑

k,l=1

vk(M
−1)klv̂l

λ− λ̂l
, P−(λ) = I3 +

N∑
k,l=1

vk(M
−1)klv̂l

λ− λl
, (5.3)

where M = (mkl)N×N is a square matrix whose entries are determined by

mkl =
v̂kvl

λl − λ̂k
, 1 ≤ k, l ≤ N. (5.4)
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Since the zeros λk and λ̂k are constants, i.e., space and time independent, we can easily

work out the spatial and temporal evolutions for the vectors, vk(x, t) and v̂k(x, t), 1 ≤ k ≤ N ,

in the kernels. For example, let us evaluate the x-derivative of both sides of the first set of

equations in (5.1). By using (3.4) first and then again the first set of equations in (5.1), we

can arrive at

P+(x, λk)
(dvk
dx

− iλkΛvk

)
= 0, 1 ≤ k ≤ N. (5.5)

This implies that for each 1 ≤ k ≤ N , dvk
dx

− iλkΛvk is in the kernel of P+(x, λk) as required,

and so a constant multiple of vk. For the sake of convenience, we suppose that

dvk
dx

= iλkΛvk, 1 ≤ k ≤ N. (5.6)

On the other hand, we can similarly assume that the time dependence of vk is defined by

dvk
dt

= iλ3kΛvk, 1 ≤ k ≤ N. (5.7)

Therefore, we can explicitly give

vk(x, t) = eiλkΛx+iλ3
kΛtwk, 1 ≤ k ≤ N, (5.8)

where wk, 1 ≤ k ≤ N , are arbitrary constant column vectors. To guarantee the symmetric

property (4.20) in the spectral matrix, we need to take

v̂k(x, t) = ŵke
−iλ̄kΛx−iλ̄3

kΛt, ŵk = w†k C, 1 ≤ k ≤ N, (5.9)

where C is defined as in (4.17).

Finally, from the solutions in (5.3), we have

P+
1 = −

N∑
k,l=1

vk(M
−1)klv̂l, (5.10)

which satisfies (P+
1 )† = −CP+

1 C
−1, and thus further through the presentations in (4.21),

obtain an N -soliton solution to the combined mKdV equation (1.9):

p1 =
N∑

k,l=1

vk,1(M
−1)klv̂l,2, p2 =

N∑
k,l=1

vk,1(M
−1)klv̂l,3, (5.11)

where vk = (vk,1, vk,2, vk,3)
T and v̂k = (v̂k,1, v̂k,2, v̂k,3), 1 ≤ k ≤ N , are defined by (5.8) and

(5.9), respectively.

16



Particularly, taking⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ1 = 5i, λ2 = 3i, λ3 = i, λ̂1 = −5i, λ̂2 = −3i, λ̂3 = −i,
w1 = (3 + 2i, 1, i)T , w2 = (0, 2− i, 2 + 2i)T , w3 = (2,−2, 1 + i)T ,

ŵ1 = (3− 2i, 1, i), ŵ2 = (0, 2 + i,−2 + 2i), ŵ3 = (2,−2,−1 + i),

(5.12)

we obtain one two-soliton solution to the combined mKdV equation (1.9):

p1 =
f1
g
, p2 =

f2
g
, (5.13)

where

f1 = (−4992 + 27456i) e−23x+503t − (5760− 2400i) e−19x+379t

−(12000− 14880i) e−17x+377t + (360 + 300i) e−13x+253t,

f2 = (−22464− 12480i) e−23x+503t − (960 + 4800i) e−19x+379t

−(13500 + 8220i) e−17x+377t − (210− 390i) e−13x+253t,

g = 17784 e−22x+502t + 1664 e−24x+504t + 440 e−18x+378t

+65 e−12x+252t + 90 e−14x+254t.

Three three-dimensional plots, contour plots and x-curves of this set of solutions are made

in Figure 1 and Figure 2.

Figure 1: Profiles of |p1|: 3d plot (left), contour plot (middle) and x-curves (right)

6 Concluding remarks

We have considered a combined modified Korteweg-de Vries (mKdV) equation and its inverse

scattering transform in terms of the Riemann-Hilbert problems. From special Riemann-
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Figure 2: Profiles of |p2|: 3d plot (left), contour plot (middle) and x-curves (right)

Hilbert problems with the identity jump matrix, we have successfully worked out soliton

solutions to the considered combined mKdV equation. As a specific example, we have

presented a specific two soliton solution explicitly and made 3d plots, contour plots and

x-curve plots to shed light on the characteristics of the presented soliton solution.

We remark that it would be interesting to present other kinds of exact solutions to

integrable equations, including positon and complexiton solutions [28, 29], lump solutions

[30, 31, 32], and algebro-geometric solutions [33, 34, 35, 36], by applying the inverse scatter-

ing transform. It is expected that our studies would be helpful in recognizing those exact

solutions from the perspective of the inverse scattering transform based on Riemann-Hilbert

problems. About coupled mKdV systems, there are many recent studies such as integrable

couplings [37, 38], super hierarchies [39] and fractional analogous equations [40]. There-

fore, another important topic for further study is to present the inverse scattering transform

through Riemann-Hilbert problems for solving those generalized integrable counterparts.

The inverse scattering transform is very powerful in generating soliton solutions (see also,

e.g., [41, 42]). It has been recently generalized to solve initial-boundary value problems of

integrable equations on the half-line and the finite interval [43, 44]. Many other approaches

to soliton solutions are available in the field of integrable equations, among which are the

Hirota direct method [45], the generalized bilinear technique [46], the Wronskian technique

[47, 48] and the Darboux transformation [49, 50]. It would be interesting to explore relations

between those different approaches.
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