
J. Math. Anal. Appl. 477 (2019) 357–379
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Mathematical analysis of a parabolic-elliptic problem with 

moving parabolic subdomain through a Lagrangian approach

Rafael Muñoz-Sola
Departamento de Matemática Aplicada, Universidade de Santiago de Compostela, ES-15782, 
Santiago de Compostela, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 May 2018
Available online 18 April 2019
Submitted by J. Guermond

Keywords:
Parabolic-elliptic problem
Moving parabolic subdomain
Regularity
Lagrangian formulation

The aim of this paper is to study the regularity of the solution of some linear 
parabolic-elliptic problems in which parabolicity region depends on time. More 
specifically, this region is the position occupied by a body undergoing a motion (a 
deformation smoothly evolving in time). The main tool we introduce is a suitable 
extension of the motion to the entire spatial domain of the PDE. This enables us to 
reduce the original problem to a parabolic-elliptic problem with variable coefficients 
and with a parabolicity region independent of time. This problem can be seen 
as a Lagrangian formulation of our original problem. Next, we obtain regularity 
results for a class of parabolic-elliptic problems with variable coefficients and fixed 
parabolicity region. We apply these results to the Lagrangian formulation and, 
finally, we obtain a regularity result for our original problem.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The goal of this paper is to study the regularity of the following parabolic-elliptic initial-boundary value 
problem: find a function A = A(t, x) such that⎧⎪⎪⎨⎪⎪⎩

σ ∂A
∂t − ρ�A = f in (0, T ) × Ω,

A = 0 on (0, T ) × ∂Ω,

A(0, ·) = A0 in Ω̂,

(1.1)

where Ω is a bounded domain of Rn with Lipschitz boundary, Ω̂ ⊂⊂ Ω a subdomain with smooth enough 
boundary, T > 0 a given number, ρ > 0 is a constant and σ ≥ 0 is defined through a motion X :
[0, T ] × Ω̂ �→ Rn in such a way that {x ∈ Ω; σ(t, x) > 0} = Ωt where Ωt = X(t, ·)(Ω̂). (For n = 3, X
represents a deformation of the body Ω̂ evolving smoothly with time and Ωt is the region occupied by the 
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body at instant t.) We assume that f(t, x) vanishes for x /∈ ΩS, where ΩS ⊂ Ω is open and ΩS ∩ Ωt = ∅ for 
all t ∈ [0, T ]. The detailed description of the problem is given in Section 2.

Our main goal is to find a condition on A0 and f ensuring that ∂
2A
∂t2 ∈ L2(Q), where

Q := {(t, x) ∈ Rn+1, t ∈ (0, T ), x ∈ Ωt}. (1.2)

A motivation for this study comes from an eddy current model with moving conductors considered in [3]
and [4] in the context of Electromagnetic Forming (EMF). This model allows to compute the electromagnetic 
field produced by a coil in a cylindrical metallic moving workpiece under axisymmetric assumptions. To 
reduce the problem to a bounded domain, the authors introduce a three-dimensional cylinder Ω̃ containing 
the coil and the workpiece, with its boundary sufficiently far from them at all times t ∈ [0, T ]. Because of the 
cylindrical symmetry, the problem is posed in Ω = {(r, z); 0 < r < R, 0 < z < L}, which is a meridian section 
of Ω̃. Under suitable axisymmetry assumptions on the motion, this one is determined by its description X

in this meridian section, with X : [0, T ] × Ω̂ �→ Ω, where Ω̂ ⊂ Ω is a reference configuration. The meridian 
section of the workpiece at time will be Ωt = X(t, ·)(Ω̂). To ensure cylindrical symmetry, the coil is modeled 
by several concentric rings with toroidal geometry. The open set ΩS is the union of the meridian sections 
of the rings. The assumption ΩS ∩Ωt = ∅ for all t ∈ [0, T ] means that the workpiece never touches the coil. 
Let Γ0 denote the intersection between Ω and the axis r = 0, and ΓD := ∂Ω \ Γ0.

The density current in the coil �JS := JS(t, r, z) �eθ is taken as a data. Then, under suitable axisymmetry 
assumptions on the data (see [3], [1] and [2]) there exists a divergence-free magnetic vector potential �A of 
the form

�A(t, x, y, z) = Acyl(t, r, z)�eθ, (1.3)

and �A satisfies

σ
∂ �A

∂t
+ 1

μ
rot(rot �A) = �JS in (0, T ) × Ω̃, (1.4)

where μ is the magnetic permeability and σ is the electric conductivity, which vanishes outside the workpiece. 
Function σ is taken such that

σ(t, r, z) = σ̂(r̂, ẑ), with (r̂, ẑ) ∈ Ω̂ : (r, z) = X(t, r̂, ẑ),

where σ̂ is the conductivity in the reference domain Ω̂. Equation (1.4) can be rewritten in cylindrical 
coordinates as

σ
∂Acyl

∂t
− 1

μ

∂

∂r

[
1
r

∂(rAcyl)
∂r

]
− 1

μ

∂2Acyl

∂z2 = JS in (0, T ) × Ω. (1.5)

This parabolic-elliptic equation is complemented with the initial condition

Acyl(0, ·) = A0
cyl in Ω0

and homogeneous Dirichlet boundary conditions for Acyl on (0, T ) × ΓD (see [3] for details).
For the model above, some results of existence, uniqueness and regularity were obtained in [3], and a 

fully discrete Euler implicit/continuous piecewise linear discretization for problem (1.5) was described and 
analyzed in [4]. Convergence of the solution of the discrete problem to the solution of the continuous one 
was obtained by assuming Acyl ∈ H2(0, T ; L2

r(Ω))), where
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L2
r(Ω) :=

⎧⎨⎩Z : Ω �→ R measurable ; ‖Z‖2
L2

r(Ω) :=
∫
Ω

|Z|2 r dr dz < ∞

⎫⎬⎭ .

However, the above regularity for Acyl has not been previously obtained.
We notice that (1.1) and (1.5) have analogous structure. The weak formulation of the latter involves 

weighted Sobolev spaces, whereas the weak formulation of the former involves standard (unweighted) Sobolev 
spaces. Moreover, equation (1.3), div �A = 0 and the identity

Δ �A = ∇(div �A) − rot(rot �A)

imply that �A satisfies (1.4) if and only if its Cartesian coordinates Ai satisfy the partial differential equation 
(PDE) in (1.1) with ρ = μ−1 and right-hand side ( �JS)i. Hence it can be expected to obtain regularity results 
for (1.5) from the regularity results for (1.1).

For both problems, the fact that the PDE is parabolic only in the time-dependent set Ωt makes difficult 
to study the regularity by using the approach of [3], which is based in the Eulerian coordinates x. For this 
reason, we develop in this paper an alternative approach, which is based on the Lagrangian coordinate p (x
is the position of the material point p at instant t). As the motion is only defined in [0, T ] × Ω̂, we construct 
a suitable extension X̃ of the motion X to the entire [0, T ] ×Ω. This enables us to reduce problem (1.1) to 
a parabolic-elliptic problem with variable coefficients (for the function Â(t, p) = A(t, X̃(t, p))) whose region 
of parabolicity is Ω̂, hence independent of time. This problem can be seen as a Lagrangian formulation of 
our original problem. We obtain regularity results for a class of parabolic-elliptic problems with variable 
coefficients and fixed parabolicity region. Since the Lagrangian formulation fits into this class, we obtain 
a regularity result for Â. Finally, we obtain regularity results for the solution of our original problem by 
changing Lagrangian coordinates back to Eulerian coordinates.

Firstly, let us comment on previous related work. Some authors deal with parabolic-elliptic problems 
whose structure is similar to problem (1.1). In [8], results of existence, uniqueness and regularity for some 
degenerate linear evolution equations are obtained. Degenerate parabolic equations are considered in Sec-
tion 6 of [8], but its regularity results are not applicable to problem (1.1) because our coefficient σ(t, x) does 
not have the regularity required in [8]. Besides, in the present case σ(0, x) vanishes outside Ω̂ and hence 
equation (6.4) of [8] does not hold true.

Article [13] includes existence, uniqueness and regularity results for an abstract differential equation of 
the form

Bu′ + Au = f,

where B can be a non-invertible linear operator and A can be a non-linear operator, both independent of 
time. So they are not applicable to problem (1.1).

Existence and uniqueness results for degenerate evolutionary equations of the form

d

dt
(B(t)u(t)) + A(t)u(t) = f(t),

where B(t) can be a non-invertible linear operator are obtained in [20] and [21, Chapter III] (for linear A(t)), 
and in [12], [14] and [17] (where A(t) can be non-linear). Among the last five cited references, regularity is 
only addressed in [17], where a result related to the first order time derivative is obtained.

Moreover, Pluschke [18] studies an initial boundary-value problem for parabolic-elliptic equations of the 
form

g(x, t, u)∂u − div(a(x, t)∇u) + a0(x, t)u = f(x, t, u) ,

∂t
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where a(x, t) is matrix-valued, g = g(x, t, u) is nonnegative and it is allowed to vanish for certain values of 
(x, t, u). The author obtains existence, uniqueness and some regularity results. It is assumed that the region 
of parabolicity is independent of t. So problem (1.1) does not fit into his framework.

In [19], the authors prove the existence of a weak local solution to a parabolic-elliptic problem where 
the time derivative is multiplied by a coefficient which may vanish on time-dependent spatial subdomains. 
Problem (1.1) does not satisfy the assumptions about the parabolic region made in [19].

Consequently, none of the aforementioned articles can be applied to prove the regularity that we propose 
to undertake in the present article.

The article is organized as follows: in Section 2 we formulate the problem and comment about the 
results which can be obtained with an Eulerian approach by an easy adaptation of those of [3]. Section 3
is dedicated to the motion extension. In Section 4 we reduce our original parabolic-elliptic problem to a 
parabolic-elliptic problem with fixed region of parabolicity, Ω̂. In Section 5 we obtain existence, uniqueness 
and regularity results for a class of parabolic-elliptic problems with fixed region of parabolicity by using 
parabolic regularization. The regularity results involve compatibility conditions between the initial condition 
and the initial value of the source term. In Section 6 we apply to the reduced problem a regularity result 
obtained in Section 5 and we derive the corresponding result for our original problem. Section 7 contains 
two examples. The first one concerns the spatial regularity of A and the second one illustrates the main 
features considered in this paper.

2. Statement of the problem

Let Ω be a bounded domain of Rn with Lipschitz boundary, Ω̂ ⊂⊂ Ω a subdomain with Lipschitz 

boundary, T ∈ R, T > 0 the (given) final time and X : [0, T ] × Ω̂ �→ Rn be a given mapping such that:

(i) X ∈ C1([0, T ]; [C1(Ω̂)]n);
(ii) det(DpX)(t, p) > 0 for all (t, p) ∈ [0, T ] × Ω̂;
(iii) X(t, ·) is injective ∀t ∈ [0, T ]; (⇔ X(t, ·) : Ω̂ �→ Ωt is bijective, where Ωt := X(t, ·)(Ω̂));
(iv) X([0, T ]) × Ω̂) ⊂ Ω (In fact ⊂⊂ holds true);
(v) X(0, p) = p for all p ∈ Ω̂.

Our notations are standard. In assumption (i) and thereafter, for any bounded open set G ⊂ Rn, we 
denote by C1(G) the set of functions in C(G) ∩ C1(G) such that all its first-order partial derivatives have 
continuous extensions to G. Moreover, as it is usually done in the theory of time-dependent PDEs, we identify 
a function having independent variables (t, x) (resp. (t, p)) with a function of the time variable t taking values 
in a suitable function space of variable x (resp. p). For instance, if g : (t, p) ∈ [0, T ] × Ω̂ �→ R is a continuous 
mapping, we identify it to the function t ∈ [0, T ] �→ g(t) ∈ C(Ω̂), where g(t)(p) = g(t, p). Sometimes we will 
use the notation g(t, ·) instead of g(t). In particular, we make the identifications C([0, T ] ×Ω̂) ≡ C([0, T ]; C(Ω̂))
and L2((0, T ) × Ω̂) ≡ L2(0, T ; L2(Ω̂)).

If n = 3, X is essentially a motion ([11]) of a body , Ω̂ = Ω0 is the region occupied by the body at t = 0, 
which is taken as the reference configuration.

Let σ̂ ∈ L∞(Ω̂) be such that

σ̂(p) ≥ σ > 0 a.e. p ∈ Ω̂. (2.1)

We define
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σ(t, x) =

⎧⎨⎩ σ̂(p) if x = X(t, p) with p ∈ Ω̂,

0 otherwise.
(2.2)

Finally, we are given an initial data A0 ∈ H1(Ω̂) and a right-hand side f ∈ H1(0, T ; L2(ΩS)), where the 

open set ΩS ⊂ Ω and ΩS∩Ωt = ∅ for all t ∈ [0, T ] (i.e.,X([0, T ] × Ω̂) ∩ΩS = ∅). We extend f by zero outside 
[0, T ] × ΩS and still denote this extension by f .

Let Ψ : [0, T ] × Ω̂ �→ [0, T ] × Ω be defined by Ψ(t, p) = (t, X(t, p)). We recall that Q denotes the 
noncylindrical open subset of (0, T ) × Ω defined in (1.2) and we notice that Q = Ψ((0, T ) × Ω̂). Moreover, 
the inverse Ψ−1 : Q �→ [0, T ] × Ω̂ has the form

Ψ−1(t, x) = (t,P (t, x)) ,

where P is the reference map, that is, for all t ∈ [0, T ], P (t, ·) : Ωt �→ Ω̂ is the inverse of X(t, ·). In other 
words, p = P (t, x) is the material point occupying the position x at time t.

Problem (1.1) is parabolic only in the subdomain Q. For each t ∈ (0, T ), we have an elliptic PDE in 
Ω \ Ωt.

The initial condition is only given in Ω0 = Ω̂, not in the entire Ω.
The weak formulation of problem (1.1) is:⎧⎪⎪⎨⎪⎪⎩

Find A ∈ L2(0, T ;H1
0 (Ω)), with ∂A

∂t ∈ L2(Q) such that∫
Ωt

σ ∂A
∂t z dx + ρ

∫
Ω ∇A · ∇z dx =

∫
ΩS

fz dx ∀z ∈ H1
0 (Ω) a.e. t ∈ (0, T ),

A(0) = A0 in Ω̂.

(2.3)

2.1. Results that can be obtained through an Eulerian approach

In [3] some results of existence, uniqueness and regularity were obtained for (1.5) by using an Eulerian 
approach (strictly speaking, the approach was based in the cylindrical coordinates (r, z) associated to x).
Thus, before developing the Lagrangian approach for problem (2.3), it seems natural to state the results 
obtained for this problem through the Eulerian approach. It is easy to adapt the results of [3] to the analysis 
of problem (2.3). This amounts essentially to replace the weighted Sobolev spaces used in [3] by standard 
(unweighted) Sobolev spaces.

The following theorem summarizes the analogues to results [3, Theorems 4.2, 4.3 and 5.1].

Theorem 2.1. Assume that A0 ∈ H1(Ω̂) and f ∈ H1(0, T ; L2(ΩS)). There exists a unique solution to 
Problem (2.3). Furthermore, it satisfies A ∈ L∞(0, T ; H1

0 (Ω)), 
√
t∂tA ∈ L2(0, T ; H1

0 (Ω)) and χQ

√
t∂tA ∈

L∞(0, T ; L2(Ω)).

Here and in the sequel χS will stand for the characteristic function of a measurable set S and ∂t will be 
often used to denote the derivative with respect to time.

The solution A : [0, T ] → H1
0 (Ω) is weakly continuous at t = 0. Indeed, the values of A(0) in Ωe := Ω \ Ω̂

are completely determined by the initial data of (2.3), A0 (= A(0)|Ω̂), and the initial value of the right hand 
side, f(0). Indeed, let Γe := ∂Ωe ⋂ ∂Ω̂. We notice that, since Ω̂ ⊂⊂ Ω, we have: Γe = ∂Ω̂ and ∂Ωe = Γe

⋃
∂Ω

(disjoint union). Let Ae ∈ H1(Ωe) be the (unique) weak solution of⎧⎪⎪⎨⎪⎪⎩
−ρΔAe = f(0) in Ωe,

Ae
|Γe = A0

|Γe ,

Ae = 0,

(2.4)
|∂Ω
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and Ã0 ∈ H1
0 (Ω) be the extension of A0 to the entire Ω, defined by

Ã0 :=
{

A0 in Ω̂,

Ae in Ωe.

The analogue to [3, Theorem 5.3]) reads as follows:

Theorem 2.2. Under the assumptions of Theorem 2.1, A(t) ⇀ Ã0 weakly in H1
0 (Ω) as t → 0+.

Remark 2.1. Concerning space regularity, on the grounds of elliptic regularity ([10, Theorems 3.2.1.2 and 
2.2.2.3]), we have the analogue to [3, Remark 5.1]: if Ω is convex or it has a boundary of class C1,1 then 
A ∈ L2(0, T ; H2(Ω)) and A ∈ L∞(ε, T ; H2(Ω)) for ε > 0.

The following regularity result is the analogue to [3, Theorems 5.4 and 5.5].

Theorem 2.3. Under the assumptions of Theorem 2.1:

(i) If A ∈ H1(0, T ; H1
0 (Ω)) ∩ L∞(0, T ; H2(Ω)), then Ã0 ∈ H2(Ω).

(ii) If

�A0 ∈ L2(Ω̂) and ∂A0

∂ν
= ∂Ae

∂ν
on Γe , (2.5)

then A ∈ H1(0, T ; H1
0 (Ω)) and σ ∂A

∂t ∈ L∞(0, T ; L2(Ω)). If, further, Ω is convex or it has a boundary of 
class C1,1, then A ∈ L∞(0, T ; H2(Ω)).

Remark 2.2. Condition Ã0 ∈ H2(Ω) always implies condition (2.5). The converse holds true when Ω is 
convex or it has a boundary of class C1,1. Note that equation (2.5) includes a regularity requirement on A0

a non-trivial compatibility condition between A0 and the initial value of the right hand side, f(0).

The last implication in part (ii) of Theorem 2.3 and the converse implication in this remark make use of 
elliptic regularity ([10, Theorems 3.2.1.2 and 2.2.2.3]).

We point out that we cannot obtain further regularity through the Eulerian framework because obtaining 
energy estimates for ‖∂2A

∂t2 ‖L2(Q) does not work. This is why we develop a Lagrangian approach.

3. Extension theorems

The aim of this section is to build a suitable extension of mapping X (defined in [0, T ] × Ω̂) to the entire 
[0, T ] × Ω.

In the sequel, we consider that the spaces Rn and Rn+1 are equipped with the Euclidean norm. The 
distance between two subsets of this spaces must be understood according to this.

Theorem 3.1. We assume the hypothesis about Ω, Ω̂ and the mapping X stated in Section 2. We assume 

further that Ω̂ has a boundary of class C1. Let K be a compact subset of Ω such that X([0, T ] × Ω̂) 
⋂
K = ∅

and let ε, 0 < ε < dist(X([0, T ] × Ω̂), K). Then, there exists a mapping X̃ : [0, T ] × Ω �→ Rn such that:

(a) X̃ is an extension of X.
(b) X̃ ∈ C1([0, T ]; [C1(Ω]n).
(c) det(DpX̃)(t, p) > 0 for all (t, p) ∈ [0, T ] × Ω.
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(d) For all t ∈ [0, T ], X̃(t, ·) : Ω �→ Ω is an homeomorphism.
(e) X̃(0, p) = p, ∀p ∈ Ω.
(f) X̃(t, p) = p, ∀p ∈ ∂Ω, ∀t ∈ [0, T ].
(g) X̃(t, p) = p, ∀p ∈ Nε(K), ∀t ∈ [0, T ], where Nε(K) = {p ∈ Ω; dist(p, K) < ε}.

Proof. 1st step: Extension in space and time.
Let K1 be a compact set such that Ω̂ ⊂ int(K1) ⊂ K1 ⊂ Ω and let C1

K1
(Ω) be the space of functions 

in C1(Ω) having support contained in K1. C1
K1

(Ω) is a Banach space which can be identified to C1
K1

(Rn)
(analogous notation). Since Ω̂ has a C1 boundary and Ω̂ ⊂⊂ Ω, in virtue of [9, Lemma 6.37] and its proof, 
there exists a linear bounded extension operator E : [C1(Ω̂)]n �→ [C1

K1
(Ω)]n. Because of assumption (i), the 

displacement field u(t, p) := X(t, p) − p belongs to C1([0, T ]; [C1(Ω̂)]n). We define ũ by ũ(t) = E(u(t)). 
Since E is linear and bounded, ũ ∈ C1([0, T ]; [C1

K1
(Ω)]n). By using an standard procedure, we construct 

an extension of ũ, denoted û, which belongs to C1([−T, 2T ]; [C1
K1

(Ω)]n). Next, we define the mapping 
X̂ : [−T, 2T ] ×Rn �→ Rn by

X̂(t, p) = p + û(t)(p) ∀t ∈ [−T, 2T ] ∀p ∈ Rn .

Mapping X̂ is an extension of X. From assumption (v), we have

X̂(0, p) = p ∀p ∈ Rn. (3.1)

2nd step: From the inclusion Ω̂ ⊂⊂ Ω, assumptions (ii) and (iv), and uniform continuity arguments we 

deduce that ∃δ1 > 0 such that Nδ1(Ω̂)) ⊂ Ω,

X̂([−δ1, T + δ1] ×Nδ1(Ω̂)) ⊂ Ω (3.2)

and

det(DpX̂)(t, p) > 0 for all (t, p) ∈ [−δ1, T + δ1] ×Nδ1(Ω̂)). (3.3)

Here and in the sequel notation N has the meaning explained in item (g).
3rd step: Now we claim that there exists δ2, 0 < δ2 < δ1 such that for all t ∈ [−δ2, T + δ2], the mapping 

X̂(t, ·) : Nδ2(Ω̂) �→ Rn is injective. We argue by contradiction. Let us assume that the claim is not true. 
Then, for all integer m > 1/δ1 there exists tm ∈ [− 1

m , T + 1
m ] and pm, p̃m ∈ N1/m(Ω̂), pm �= p̃m such that

X̂(tm, pm) = X̂(tm, p̃m) . (3.4)

After extracting subsequences, we have

pm → p ∈ Nδ1(Ω̂), p̃m → p̃ ∈ Nδ1(Ω̂), tm → t ∈ [−δ1, T + δ1] .

Since dist(pm, Ω̂) ≤ 1/m for all m, we have p ∈ Ω̂. In the same manner, p̃ ∈ Ω̂ and t ∈ [0, T ]. Besides, from 
(3.4) and the continuity of X̂, we have

X(t, p) = X̂(t, p) = X̂(t, p̃) = X(t, p̃) .

If p �= p̃, this contradicts assumption (iii). Now we address the case p = p̃. Let Ψ̂ be the mapping defined by 
Ψ̂(t, p) := (t, X̂(t, p)). Owing to (3.3) and the inverse function theorem, Ψ̂ is locally injective at (t, p). But, 
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on the other hand, both sequences (tm, pm), (tm, p̃m) converge to the same point (t, p), (tm, pm) �= (tm, p̃m)
for all m and (3.4) implies that Ψ̂(tm, pm) = Ψ̂(tm, p̃m). This contradicts the local injectivity of Ψ̂ at (t, p). 
Hence, the claim holds true.

4th step: mapping Ψ̂ : [−δ2, T + δ2] ×Nδ2(Ω̂) �→ Rn+1 is injective and continuous, so it is an homeomor-
phism between the compact set [−δ2, T + δ2] ×Nδ2(Ω̂) and its image. In the sequel, for any 0 < δ ≤ δ2, we 
will use the notation Qδ := Ψ̂((−δ, T + δ) ×Nδ(Ω̂)). Note that, because of (3.2) and δ2 < δ1, we have

(t, x) ∈ Qδ ⇒ x ∈ Ω. (3.5)

We have Ψ̂([−δ2, T + δ2] ×Nδ2(Ω̂)) = Qδ2 and, from (3.3) and the inverse function theorem, the set Qδ2 is 
open, Ψ̂ : (−δ2, T + δ2) ×Nδ2(Ω̂) �→ Qδ2 is a diffeomorphism and Ψ̂

−1 ∈ [C1(Qδ2)]n+1. Moreover, function 

Ψ̂
−1

has the form Ψ̂
−1

(t, x) = (t, P̂ (t, x)), where P̂ : Qδ2 �→ Nδ2(Ω̂) is an extension of P .
5th step: We define the velocity field v : Qδ2 �→ Rn by

v(t, x) = ∂X̂

∂t
(t, P̂ (t, x))

(
= ∂X̂

∂t
(Ψ̂

−1
(t, x))

)
. (3.6)

From the regularity of X̂ and Ψ̂
−1

we deduce that v ∈ [C(Qδ2)]n, Dxv exists in Qδ2 and

∂vk
∂xi

(t, x) =
n∑

j=1

∂2X̂k

∂pj∂t
(Ψ̂

−1
(t, x))∂P̂ j

∂xi
(t, x) ∀(t, x) ∈ Qδ2 , (3.7)

so Dxv ∈ C(Qδ2 ; Mn×n(R)).
6th step: Since Q = Ψ̂([0, T ] ×Ω̂) and 0 < ε < dist(X([0, T ] ×Ω̂), K), we have dist(Q, Nε([0, T ] ×K)) > 0. 

Because of the uniform continuity Ψ̂, we can pick δ3, 0 < δ3 < δ2, such that Qδ3 ∩Nε([0, T ] ×K) = ∅.
Moreover, since Qδ3 is an open neighborhood of the compact set Q, there exists δ4, 0 < δ4 < δ3 such that 

we can construct a cut-off function φ ∈ C∞
c (Rn+1) with supp φ ⊂ Qδ3 satisfying φ = 1 in Qδ4 . Note that φ

vanishes in Nε([0, T ] ×K) and on [0, T ] × ∂Ω (this set is disjoint from Qδ3 because of (3.5)).
Let w : Qδ3 �→ Rn be defined by w(t, x) := φ(t, x)v(t, x). Since w has compact support contained in Qδ3 , 

its extension by zero to the entire Rn+1, still denoted w, is continuous and Dxw exists and is continuous 
and bounded in Rn+1. Hence w is globally Lipschitz-continuous with respect to x uniformly in t.

7th step: Let X̃ be the (unique) solution of the initial value problem⎧⎨⎩
dX̃

dt
= w(t, X̃),

X̃(0, p) = p.

(3.8)

The function X̃ is defined in fact in the entire Rn+1. Now we check that X̃ fulfills all the assertions (a)-(g). 
From (3.6), the fact that w = v in Qδ4 = Ψ̂((−δ4, T + δ4) ×Nδ4(Ω̂)) and (3.1), we deduce that X̂ satisfies{

∂X̂
∂t (t, p) = v(t, X̂(t, p)) = w(t, X̂(t, p)) ∀(t, p) ∈ (−δ4, T + δ4) ×Nδ4(Ω̂),

X̂(0, p) = p ∀p ∈ Nδ4(Ω̂).

Now, by the uniqueness of the solution of problem (3.8), we have

X̂(t, p) = X̃(t, p) ∀(t, p) ∈ (−δ4, T + δ4) ×Nδ4(Ω̂).

This, together with the fact that X̂ is an extension of X, proves assertion (a).
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Statement (b) is a consequence of classical results about the differentiability of the solution of an ODE 
with respect to initial conditions ([6]). Jacobi’s formula yields to

det(DpX̃)(t, p) = exp

⎛⎝ t∫
0

n∑
i=1

∂wi

∂xi
(τ, X̃(τ, p)) dτ

⎞⎠ > 0 ∀(t, p) ∈ Rn+1 ,

so we have statement (c).
Assertion (e) is obvious. The fact that w vanishes on [0, T ] × ∂Ω and in Nε([0, T ] ×K) ⊃ [0, T ] ×Nε(K)

together with (e) and the uniqueness of the solution of (3.8) imply assertions (f) and (g).
From classical results, X̃(t, ·) : Rn �→ Rn is a diffeomorphism. If p ∈ Ω, then the orbit {X̃(t, p), t ∈ R}

cannot traverse ∂Ω (again by an uniqueness argument). This, together with (e) implies that X̃(t, ·)(Ω) ⊂ Ω. 
Given a time t ∈ [0, T ] and point x ∈ Ω, we consider the solution Ỹ of the ODE in (3.8) with initial 
condition Ỹ (t) = x. In the same manner, the orbit {Ỹ (t), t ∈ R} ⊂ Ω, in particular Ỹ (0) ∈ Ω and we have 
X̃(t, Ỹ (0)) = x, so X̃(t, ·) : Ω �→ Ω is onto and therefore a bijection. Then assertion (d) holds true. �
Remark 3.1. Let Ψ̃ be the extension of Ψ defined by

Ψ̃(t, p) = (t, X̃(t, p)) .

Ψ̃ is a homeomorphism from [0, T ] ×Ω onto itself and a diffeomorphism from (0, T ) ×Ω onto itself. Besides, 
the mapping Ψ̃−1 has the form

Ψ̃−1(t, x) = (t, P̃ (t, x)) , (3.9)

where P̃ (t, ·) = X̃(t, ·)−1 for all t ∈ [0, T ], and the mapping P̃ is an extension of P .

Theorem 3.2. We make the assumptions of Theorem 3.1. If we have further that X ∈ C1([0, T ]; [C2(Ω̂]n) and 
Ω̂ has a boundary of class C2, then we can build a mapping X̃ satisfying all properties (a)-(g) in Theorem 3.1
and also X̃ ∈ C1([0, T ]; [C2(Ω]n).

Proof. The proof is a modification of the proof of Theorem 3.1. In the first step, we take now a C2 extension 
operator E, so that we obtain X̂ ∈ C1([−T, 2T ]; [C2(G)]n) for all open bounded set G ⊂ Rn. Recalling that 
P̂ (t, ·) = (X̂(t, ·))−1, the inverse function theorem gives the formula

DxP̂ (t, x) =
(
DpX̂(t, P̂ (t, x))

)−1
=

(
DpX̂(Ψ̂

−1
(t, x))

)−1
∀(t, x) ∈ Qδ2 .

Using this, it can be inferred that DxP̂ ∈ C1(Qδ2). From this, the regularity of X̂ and (3.7), we deduce that 
D2

xv exists and is continuous in Qδ2 and then D2
xw exists and is continuous and bounded in Rn+1. Now, by 

applying classical results about the differentiability of the solution of an ODE with respect to parameters 
and initial conditions ([6]), we readily obtain that X̃ ∈ C1([0, T ]; [C2(Ω]n). �
Theorem 3.3. We make the assumptions of Theorem 3.1. Let us further assume that X ∈ C1([0, T ]; [C2(Ω̂]n) ∩
C2([0, T ]; [C1(Ω̂]n) and Ω̂ has a boundary of class C2. Then we can build a mapping X̃ satisfying all properties 
(a)-(g) in Theorem 3.1 and also X̃ ∈ C1([0, T ]; [C2(Ω]n) ∩ C2([0, T ]; [C1(Ω]n).

Proof. Now, we take an operator E ∈ L([C1(Ω̂)]n, [C1
K1

(Ω)]n) ∩L([C2(Ω̂)]n, [C2
K1

(Ω)]n) and use a C2 extension 
operator in the time variable, so that we obtain X̂ ∈ C1([−T, 2T ]; [C2(G)]n) ∩ C2([−T, 2T ]; [C1(G)]n) for all 
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open bounded set G ⊂ Rn. Now we have Ψ̂
−1 ∈ C2(Qδ2) and we deduce that the partial derivatives ∂vi∂t , 

∂2vi
∂t∂xj

, ∂2vi
∂xj∂t

exist and are continuous in Qδ2 . Hence, the analogous property hold true for w in the entire 

Rn+1. This regularity, the continuity of D2
xw (see Theorem 3.2), and classical results on ODEs imply that 

X̃ ∈ C2([0, T ]; [C1(Ω]n). �
4. Reduction to a parabolic-elliptic problem with fixed parabolic spatial subdomain Ω̂

In this section we assume the hypothesis about Ω, Ω̂ and mapping X stated in Section 2. We also assume 
that Ω̂ has a C1 boundary, adopt the assumptions of Theorem 2.1 regarding the data A0 and f , and take 
for simplicity ρ = 1.

The aim of this section is to make a change of variables which transforms problem (2.3) into a parabolic-
elliptic problem with fixed parabolic spatial domain Ω̂.

We apply extension Theorem 3.1 (or 3.3 when we have enough regularity of Ω̂ and X) taking K = ΩS , 
and we consider the mapping X̃ given by the applied theorem.

Let A be the solution of problem (2.3). We introduce the function Â defined by

Â(t, p) = A(t, X̃(t, p)), t ∈ [0, T ], p ∈ Ω. (4.1)

Note that variable p can be considered as a Lagrangian coordinate so that the field Â can be considered as 
a material description of spatial field A. (We follow here the terminology of [11].)

Lemma 4.1. Let A ∈ L2(0, T ; L2(Ω)) ≡ L2((0, T ) ×Ω) and let Â be defined by (4.1). Then Â ∈ L2((0, T ) ×Ω). 
Besides,

(i) If A ∈ L2(0, T ; H1
0 (Ω)), then Â ∈ L2(0, T ; H1

0 (Ω)).
(ii) If A ∈ L2(0, T ; H1(Ω)) and ∂A∂t ∈ L2(Q), then Â ∈ L2(0, T ; H1(Ω̂)) ∩H1(0, T ; L2(Ω̂)) ≡ H1((0, T ) × Ω̂).

This lemma can be easily proved by using [5, Proposition IX.6] and the properties of the mapping X̃. The 
strong measurability Â : (0, T ) �→ H1

0 (Ω) of item (i) follows because Â ∈ L2(0, T ; L2(Ω)) and Â(t) ∈ H1
0 (Ω)

a.e. t ∈ [0, T ] (see also Proposition A.1.) Moreover, under the assumptions of the third assertion, using again 
[5, Proposition IX.6] we obtain

∇xA(t, x) = [DpX̃(t, p)]−T∇pÂ(t, p) with x = X̃(t, p), (4.2)

and

∂A

∂t
(t, x) = ∂Â

∂t
(t, p) −∇xA(t, x) · ∂X

∂t
(t, p) = ∂Â

∂t
(t, p) − [DpX(t, p)]−1 ∂X

∂t
(t, p) · ∇pÂ(t, p). (4.3)

Remark 4.1. For all t ∈ [0, T ], the mapping z ∈ H1
0 (Ω) �→ ẑ = z ◦ X̃(t, ·) ∈ H1

0 (Ω) is an isomorphism.

We denote J̃(t, p) = det(DpX̃)(t, p) and J = J̃|[0,T ]×Ω̂
(= det(DpX)). Note that J only involves X but 

not its extension.
Using Lemma 4.1, Remark 4.1, and equations (4.2), (4.3) and (2.2), and taking into account property (g) 

of Theorem 3.1 and the fact that supp f ⊂ [0, T ] ×ΩS = [0, T ] ×K, we deduce that function Â is a solution 
of the following problem:
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Find Â ∈ L2(0, T ;H1
0 (Ω)) with ∂Â

∂t ∈ L2(0, T ;L2(Ω̂)) s.t.∫
Ω̂ σ̂J ∂Â

∂t ẑ dp−
∫
Ω̂ σ̂J(DpX)−1 ∂X

∂t · ∇pÂ ẑ dp +
∫
Ω J̃(DpX̃)−T∇pÂ · (DpX̃)−T∇pẑ dp

=
∫
ΩS

fẑ dp ∀ẑ ∈ H1
0 (Ω) a.e. t ∈ (0, T ),

Â(0) = A0 in Ω̂.

(4.4)

This is the weak formulation of the parabolic-elliptic PDE

Jσ̂
∂Â

∂t
− Jσ̂(DpX)−1 ∂X

∂t
· ∇pÂ− divp(J̃(t)(DpX̃(t))−1(DpX̃(t))−T∇pÂ) = f in (0, T ) × Ω, (4.5)

where σ̂ has been extended by zero outside Ω̂ and the product σ̂ ∂Â
∂t is understood to be zero outside 

(0, T ) × Ω̂. This PDE has variable coefficients, but now the parabolicity domain is fixed. Note also that the 
first term of the left hand side involves now the function σ̂, which depends only on p. This PDE holds in 
the sense of D′(Ω) a.e. t ∈ [0, T ].

5. Parabolic-elliptic problems with variable coefficients and fixed parabolicity domain (0, T ) × Ω̂

In this section we consider parabolic-elliptic problems of the following form:
Find a function u = u(t, p) such that:

u ∈ L2(0, T ;H1
0 (Ω)) , ∂u

∂t
∈ L2(0, T ;L2(Ω̂)) , (5.1)

σ̂α
∂u

∂t
− divp(β∇pu) + σ̂�b · ∇pu + σ̂au = F in (0, T ) × Ω, (5.2)

u(0) = u0 in Ω̂. (5.3)

Here Ω is a bounded domain of Rn with Lipschitz boundary, Ω̂ ⊂⊂ Ω a subdomain with Lipschitz boundary, 
β = β(t, p) is a matrix-valued function defined in [0, T ] × Ω, β = (βij)1≤i,j≤n, �b = �b(t, p) is vector valued, 
�b = (bi)1≤i≤n and α = α(t, p) and a = a(t, p) are scalar valued. Functions �b, α and a are defined only 

in [0, T ] × Ω̂ and σ̂ has the same meaning as above. In particular, the terms containing σ̂ as a factor are 
understood to be zero outside [0, T ] × Ω̂.

Throughout this section, ∇ = ∇p and div = divp. We make the following assumptions on the given 

coefficients: the matrix β(t, p) is symmetric for all (t, p) ∈ [0, T ] × Ω, α ∈ C1([0, T ]; C(Ω̂)), the βij ∈
C1([0, T ]; C(Ω)), the bi ∈ C([0, T ]; C(Ω̂)), a ∈ C([0, T ]; C(Ω̂)),

α1 := min
(t,p)∈[0,T ]×Ω̂

α(t, p) > 0 , (5.4)

and there exists a constant ν > 0 such that

ν|ξ|2 ≤
n∑

i=1

n∑
j=1

βij(t, p)ξiξj ∀ξ ∈ Rn ∀(t, p) ∈ [0, T ] × Ω. (5.5)

We denote

M := max
(t,p)∈[0,T ]×Ω

⎡⎣ n∑ n∑
|βij(t, p)|2

⎤⎦1/2

,M1 := max
(t,p)∈[0,T ]×Ω

⎡⎣ n∑ n∑
|∂tβij(t, p)|2

⎤⎦1/2

. (5.6)

i=1 j=1 i=1 j=1
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Poincaré inequality and (5.5) imply that there is a constant γ > 0 such that

γ‖z‖2
H1(Ω) ≤

∫
Ω

n∑
i=1

n∑
j=1

βij(t, p)
∂z

∂pj

∂z

∂pi
dp ∀z ∈ H1

0 (Ω) ∀t ∈ [0, T ]. (5.7)

Let us assume for the moment F ∈ L2(0, T ; H−1(Ω)) and u0 ∈ L2(Ω̂). The weak form of problem (5.1), 
(5.2), (5.3) is given by

∫
Ω̂

σ̂α(t)∂tu(t)z dp +
∫
Ω

β(t)∇u(t) · ∇z dp +
∫
Ω̂

σ̂
[
�b(t) · ∇u(t) + a(t)u(t)

]
z dp

=< F (t), z > ∀z ∈ H1
0 (Ω) a.e. t ∈ [0, T ] (5.8)

together with (5.1) and (5.3). (In this section < ·, · >=< ·, · >H−1(Ω),H1
0 (Ω).) From now on, in any inequality, 

C will denote a strictly positive constant not necessarily the same at each occurrence, depending only on 
the functions σ̂, α, β, �b, a, the final time T and domains Ω and Ω̂ but independent of F and u0. Later we 
will deal with problems depending on a small parameter ε. Constants denoted by C will be also independent 
of ε.

Theorem 5.1. We make the above assumptions on α, β, �b, a, F and u0. Problem (5.1), (5.8), (5.3) has at 
most one solution u and the following a priori estimate holds

sup
t∈[0,T ]

⎡⎢⎣∫
Ω̂

σ̂|u(t)|2 dp

⎤⎥⎦
1/2

+ ‖u‖L2(0,T ;H1(Ω)) ≤ C
(
‖u0‖L2(Ω̂) + ‖F‖L2(0,T ;H−1(Ω))

)
. (5.9)

The proof follows essentially the same lines of the obtention of inequality (6.3) of [15]. We just point out 
that the integral 

∫
Ω̂ σ̂�b(t) · ∇u(t) u(t) dp is bounded by using a Young inequality.

Now we derive an existence result for problem (5.1), (5.8), (5.3).

Theorem 5.2. We make the assumptions of Theorem 5.1 and also

u0 ∈ H1(Ω̂), (5.10)

i)F ∈ H1(0, T ;H−1(Ω)) or ii) F ∈ L2(0, T ;L2(Ω)) and supp(F ) ⊂ [0, T ] × Ω̂. (5.11)

Then problem (5.1), (5.8), (5.3) has a unique solution u. Besides u ∈ L∞(0, T ; H1
0 (Ω)) and satisfies the 

estimate

‖u‖L∞(0,T ;H1
0 (Ω)) + ‖∂tu‖L2(0,T ;L2(Ω̂)) ≤ C

(
‖u0‖H1(Ω̂) + |||F |||

)
, (5.12)

where |||F ||| stands for ‖F‖H1(0,T ;H−1(Ω)) in case i) of assumption (5.11) and ‖F‖L2(0,T ;L2(Ω̂)) in case ii).

Proof. Let ũ0 ∈ H1
0 (Ω) be an extension of u0 to the whole Ω. We choose ũ0 so that ‖ũ0‖H1(Ω) ≤ C‖u0‖H1(Ω̂). 

We introduce the following regularized problem, where ε > 0 is a small parameter: Find uε such that

uε ∈ L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;L2(Ω)) , (5.13)

(εχΩe + σ̂α)∂u
ε

∂t
− div(β∇uε) + σ̂�b · ∇uε + σ̂auε = F in (0, T ) × Ω , (5.14)

uε(0) = ũ0 in Ω. (5.15)
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We recall that Ωe = Ω \ Ω̂. Of course, a weak form of this problem can be written just by adding the term 
ε 
∫
Ωe ∂tu

ε zdp in the left-hand side of (5.8). This regularized problem is a special case of the diffraction
problem formed by equations (13.10), (13.2)-(13.4) and (13.11) of ([15, Chapter III]).

In order to pass to the limit as ε → 0+ we need to obtain estimates on uε independent of ε. To do this, 
we introduce the Galerkin approximation of the regularized problem. Let {φn}n∈N a “basis” of H1

0 (Ω) in 
the following sense: {φn}n∈N is a set of linear independent elements of H1

0 (Ω) whose linear span is dense in 
H1

0 (Ω). We consider the subspaces VN :=< {φ1, · · · , φN} >. We take u0
N ∈ VN such that u0

N → ũ0 strongly 
in H1

0 (Ω) and ‖u0
N‖H1(Ω) ≤ C‖ũ0‖H1(Ω). The Galerkin approximation of the regularized problem reads: 

Find a function of the form uε
N (t, p) =

∑N
j=1 u

ε
jN (t)φj(p) such that

∫
Ω

(εχΩe + σ̂α(t))∂tuε
N (t) φi dp +

∫
Ω

β(t)∇uε
N (t) · ∇φi dp +

∫
Ω̂

σ̂�b(t) · ∇uε
N (t)φi dp

+
∫
Ω̂

σ̂a(t)uε
N (t)φi dp =< F (t), φi > i = 1, . . . , N a.e. t ∈ [0, T ], (5.16)

uε
N (0) = u0

N in Ω (5.17)

This problem has a unique solution in H1(0, T ; VN ). To obtain a priori estimates, we multiply (5.16) by 
∂tu

ε
iN (t) and sum up from i = 1 to N . This yields an equation (like (5.16) itself with φi replaced by ∂tuε

N (t)), 
which can be rewritten as∫
Ω

(εχΩe + σ̂α(t))|∂tuε
N (t)|2 dp + 1

2
d

dt

∫
Ω

β(t)∇uε
N (t) · ∇uε

N (t) dp =< F (t), ∂tuε
N (t) > +

1
2

∫
Ω

∂tβ(t)∇uε
N (t) · ∇uε

N (t) dp−
∫
Ω̂

σ̂
[
�b(t) · ∇uε

N (t) + a(t)uε
N (t)

]
∂tu

ε
N (t) dp.

We integrate in time from 0 to τ (0 < τ ≤ T ). By using the inequality

|σ̂�b · ∇uε
N ∂tu

ε
N | ≤ α1

4 σ̂|∂tuε
N |2 + 1

α1
‖σ̂‖L∞(Ω̂)‖ |�b| ‖2

L∞((0,T )×Ω̂))|∇uε
N |2,

handling the term σ̂a(t)uε
N (t)∂tuε

N (t) in a similar way and using (5.4), (5.6) and (5.7), we arrive to

ε

τ∫
0

∫
Ωe

|∂tuε
N (t)|2 dp dt + α1

2

τ∫
0

∫
Ω̂

σ̂|∂tuε
N (t)|2 dp dt + γ

2 ‖u
ε
N (τ)‖2

H1(Ω)

≤ M

2 ‖u0
N‖2

H1(Ω) +
τ∫

0

< F (t), ∂tuε
N (t) > dt + C

τ∫
0

‖uε
N (t)‖2

H1(Ω) dt. (5.18)

In case i) of assumption (5.11), we integrate by parts in time and apply a Young inequality to get the bound

|
τ∫

0

< F (t), ∂tuε
N (t) > dt| ≤ 1

2

τ∫
0

‖uε
N (t)‖2

H1(Ω) dt + 1
2

τ∫
0

‖dF
dt

(t)‖2
H−1(Ω) dt

+ γ

4 ‖u
ε
N (τ)‖2

H1(Ω) + 1
γ
‖F (τ)‖2

H−1(Ω) + 1
2‖u

0
N‖2

H1(Ω) + 1
2‖F (0)‖2

H−1(Ω). (5.19)
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By inserting this in (5.18), applying Gronwall’s lemma and recalling the bound of ‖u0
N‖H1(Ω), we arrive to 

the estimate

ε

τ∫
0

∫
Ωe

|∂tuε
N (t)|2 dp dt + α1

2

τ∫
0

∫
Ω̂

σ̂|∂tuε
N (t)|2 dp dt + γ

4 ‖u
ε
N (τ)‖2

H1(Ω)

≤ C
(
‖ũ0‖2

H1(Ω) + ‖F‖2
H1(0,T ;H−1(Ω))

)
∀τ ∈ [0, T ]. (5.20)

In case ii) of assumption (5.11), we have

τ∫
0

< F (t), ∂tuε
N (t) > dt =

τ∫
0

∫
Ω̂

F (t)∂tuε
N (t) dp dt

≤ α1

4

τ∫
0

∫
Ω̂

σ̂|∂tuε
N (t)|2 dp dt + 1

α1σ

τ∫
0

∫
Ω̂

|F (t)|2 dp dt. (5.21)

The same steps as above yield to an analogous estimate to (5.20) but with ‖F‖L2(0,T ;L2(Ω̂)), α1/4 and γ/2
instead of ‖F‖H1(0,T ;H−1(Ω)), α1/2 and γ/4.

Thus, we have proved the following a priori estimates:

• uε
N is bounded in L∞(0, T ; H1

0 (Ω)),
• ∂tu

ε
N is bounded in L2(0, T ; L2(Ω̂)),

•
√
ε ∂tu

ε
N is bounded in L2(0, T ; L2(Ωe)).

Therefore, for fixed ε, there exists uε ∈ L∞(0, T ; H1
0 (Ω)) ∩H1(0, T ; L2(Ω)) and a subsequence {uε

Nm
} such 

that uε
Nm

⇀ uε weakly-star in L∞(0, T ; H1
0 (Ω)) and ∂tuε

Nm
⇀ ∂tu

ε weakly in L2(0, T ; L2(Ω)). We take 
any fixed i ∈ N, so that for Nm ≥ i, φi ∈ VNm

. We multiply (5.16) by an arbitrary function in D((0, T )), 
integrate in time, and pass to the limit as m → ∞. This allows to show that uε satisfies an equation like (5.16)
but with uε

N replaced by uε. This equation holds for all i ∈ N a.e. [0, T ]. Since the linear combinations 
of functions φi are dense in H1

0 (Ω), we deduce that uε is a weak solution of (5.14). Besides, the above 
convergences imply uε

Nm
(0) ⇀ uε(0) weakly in L2(Ω). From this, (5.17) and the fact that u0

N → ũ0 strongly 
in H1

0 (Ω), we get uε(0) = ũ0. Therefore uε is the weak solution of the regularized problem (5.13)-(5.15). 
Besides, it is also possible to pass to the limit in estimate (5.20) (or in its analogue in case ii) of assumption 
(5.11)) (see, for instance, [5, Prop. III.5 & III.12]) to obtain

ε

τ∫
0

∫
Ωe

|∂tuε|2 dp dt + α1

4

τ∫
0

∫
Ω̂

σ̂|∂tuε|2 dp dt + γ

4 ‖u
ε(τ)‖2

H1(Ω)

≤ C
(
‖ũ0‖2

H1(Ω) + |||F |||2
)

∀τ ∈ [0, T ]. (5.22)

From the above estimate, we conclude that there exists u ∈ L∞(0, T ; H1
0 (Ω)) with ∂tu ∈ L2(0, T ; L2(Ω̂))

and a sequence {εm}m∈N converging to 0 such that

uεm ⇀ u weakly-star in L∞(0, T ;H1
0 (Ω)), (5.23)

∂tu
εm ⇀ ∂tu weakly in L2(0, T ;L2(Ω̂)), (5.24)
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√
εm ∂tu

εm ⇀ 0 weakly in L2(0, T ;L2(Ωe)). (5.25)

This allows to pass to the limit in the weak form of (5.14) to obtain that u satisfies (5.8). Besides, the 
above convergences imply uεm(0) ⇀ u(0) weakly in L2(Ω̂). From this and (5.15) we deduce that u(0) = u0

in Ω̂. Therefore u is a solution of problem (5.1), (5.8), (5.3). Finally, passing to the limit as εm → 0 in 
estimate (5.22), we obtain (5.12). �

Now we derive a regularity result for the problem (5.1), (5.8), (5.3). (We restrict ourselves to the case 
a = 0 because it will be sufficient for our goal.) Let us assume (5.10) and

F ∈ H1(0, T ;L2(Ω)) with supp(F ) ⊂ [0, T ] × Ωe. (5.26)

Let ue ∈ H1(Ωe) be the unique weak solution of

⎧⎪⎪⎨⎪⎪⎩
−div(β(0)∇ue) = F (0) in Ωe,

ue
|Γe = u0

|Γe ,

ue
|∂Ω = 0,

(5.27)

and ũ0 ∈ H1
0 (Ω) be the extension of u0 to the entire Ω, defined by

ũ0 :=
{

u0 in Ω̂,

ue in Ωe.
(5.28)

The condition

div(β(0)∇u0) ∈ L2(Ω̂) and β(0)∇u0 · ν = β(0)∇ue · ν on Γe (5.29)

imposes not only a regularity requirement on u0 but also a compatibility condition between u0 and F (0). 
Provided that the βij(0) ∈ C1(Ω), condition ũ0 ∈ H2(Ω) implies (5.29) and the converse holds true if, in 
addition, Ω is convex or it has a boundary of class C1,1 ([10, Theorems 3.2.1.2 and 2.2.2.3]).

Theorem 5.3. We make the assumptions of Theorem 5.1. We further assume: a = 0, bi ∈ C1([0, T ]; C(Ω̂)), 1 ≤
i ≤ n, (5.10), (5.26) and (5.29). Then u ∈ H1(0, T ; H1

0 (Ω)) with ∂tu ∈ L∞(0, T ; L2(Ω̂)). Besides, ∂tu sat-
isfies

d

dt

∫
Ω̂

σ̂α(t)∂tu(t)z dp +
∫
Ω

β(t)(∇∂tu)(t) · ∇z dp

=< g(t), z > ∀z ∈ H1
0 (Ω) in D′((0, T )), (5.30)

(σ̂α∂tu)(0) = σ̂α(0)w0 in H−1(Ω), (5.31)

where

g(t) := ∂tF (t) + div(∂tβ(t)∇u(t)) − σ̂�b(t) · (∇∂tu)(t) − σ̂∂t�b(t) · ∇u(t) , (5.32)

w0 := 1
σ̂α(0)div(β(0)∇u0) − 1

α(0)
�b(0) · ∇u0 in Ω̂. (5.33)
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Proof. We keep on using notation and partial results from the proof of Theorem 5.2. But we apply now the 
Galerkin method with a “basis” {φn}n∈N of H1

0 (Ω) such that φ1 = ũ0. This allows us to take u0
N = ũ0 for all 

N ∈ N, since ũ0 ∈ H1
0 (Ω) is an extension of u0. Note that the initial condition (5.17) of the “approximate” 

regularized problem reduces to uε
N (0) = ũ0; hence, it is exact and independent of both, N and ε.

The time regularity of the coefficients and F implies that uε
N ∈ H2(0, T ; VN ). Thus (5.16) holds for all 

t ∈ [0, T ]. Besides, we are allowed to differentiate with respect to time, which leads to

∫
Ω

(εχΩe + σ̂α(t))∂ttuε
N (t)φi dp +

∫
Ω̂

σ̂∂tα(t) ∂tu
ε
N (t)φi dp +

∫
Ω

β(t)(∇∂tu
ε
N )(t) · ∇φi dp

+
∫
Ω

∂tβ(t)∇uε
N (t) · ∇φi dp +

∫
Ω̂

σ̂
[
�b(t) · (∇∂tu

ε
N )(t) + ∂t�b(t) · ∇uε

N (t)
]
φi dp =<

dF

dt
(t), φi > . (5.34)

We multiply (5.34) by ∂tuε
iN (t) and sum up from i = 1 to N . This yields an equation (like (5.34) itself with 

φi replaced by ∂tuε
N (t)) which can be rewritten as

1
2
d

dt

∫
Ω

(εχΩe + σ̂α(t))|∂tuε
N (t)|2 dp +

∫
Ω

β(t)(∇∂tu
ε
N )(t) · (∇∂tu

ε
N )(t) dp

=<
dF

dt
(t), ∂tuε

N )(t) > −1
2

∫
Ω̂

σ̂∂tα(t)|∂tuε
N (t)|2 dp−

∫
Ω

∂tβ(t)∇uε
N (t) · (∇∂tu

ε
N )(t) dp

−
∫
Ω̂

σ̂�b(t) · (∇∂tu
ε
N )(t) ∂tu

ε
N (t) dp−

∫
Ω̂

σ̂∂t�b(t) · ∇uε
N (t) ∂tu

ε
N (t) dp =: T1 − T2 − T3 − T4 − T5

with evident notations. Using (5.7) and the bounds

|T1| ≤
γ

4 ‖∂tu
ε
N (t)‖2

H1(Ω) + 1
γ

∥∥∥∥dFdt (t)
∥∥∥∥2

H−1(Ω)
,

|T2| ≤
1
2‖∂tα‖L∞((0,T )×Ω̂))

∫
Ω̂

σ̂|∂tuε
N (t)|2 dp,

|T3| ≤
γ

4 ‖∂tu
ε
N (t)‖2

H1(Ω) + M2
1
γ

‖uε
N (t)‖2

H1(Ω),

|T4| ≤
γ

4 ‖∂tu
ε
N (t)‖2

H1(Ω) + 1
γ
‖σ̂‖L∞(Ω̂)‖ |�b| ‖2

L∞((0,T )×Ω̂))

∫
Ω̂

σ̂|∂tuε
N (t)|2 dp,

|T5| ≤
1
2‖u

ε
N (t)‖2

H1(Ω) + 1
2‖σ̂‖L∞(Ω̂)‖ |∂t�b| ‖2

L∞((0,T )×Ω̂))

∫
Ω̂

σ̂|∂tuε
N (t)|2 dp,

and integrating in [0, τ ] we obtain

1
2

∫
Ω

(εχΩe + σ̂α(τ))|∂tuε
N (τ)|2 dp + γ

4

τ∫
0

‖uε
N (t)‖2

H1(Ω)dt ≤
1
2

∫
Ω

(εχΩe + σ̂α(0))|∂tuε
N (0)|2 dp

+ 1
γ

τ∫ ∥∥∥∥dFdt (t)
∥∥∥∥2

H−1(Ω)
dt + C

⎡⎢⎣ τ∫ ∫
σ̂|∂tuε

N (t)|2 dp dt +
τ∫
‖uε

N (t)‖2
H1(Ω) dt

⎤⎥⎦ .
0 0 Ω̂ 0
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Now, taking into account (5.20) and (5.4), we obtain

ε

2

∫
Ωe

|∂tuε
N (τ)|2 dp + α1

2

∫
Ω̂

|∂tuε
N (τ)|2 dp + γ

4

τ∫
0

‖uε
N (t)‖2

H1(Ω)dt

≤ ε

2

∫
Ωe

|∂tuε
N (0)|2 dp + 1

2

∫
Ω̂

σ̂α(0)|∂tuε
N (0)|2 dp + C

(
‖ũ0‖2

H1(Ω) + ‖F‖2
H1(0,T ;H−1(Ω))

)
∀τ ∈ [0, T ].

(5.35)

A key point of the proof is to obtain a priori estimates for the first two terms of the right-hand side. To 
do this, we use the same argument as in [3, Theorem 5.5]. Taking t = 0 in equation (5.16), recalling that 
uε
N (0) = ũ0 and using (5.26)-(5.29), we obtain∫

Ω

(εχΩe + σ̂α(0))∂tuε
N (0)φi dp =

∫
Ω̂

(
div(β(0)∇u0) − σ̂�b(0) · ∇u0

)
φi dp. (5.36)

Multiplying this equation by ∂tuε
iN (0) and summing up from i = 1 to N yields

ε

∫
Ωe

|∂tuε
N (0)|2 dp +

∫
Ω̂

σ̂α(0)|∂tuε
N (0)|2 dp =

∫
Ω̂

(
div(β(0)∇u0) − σ̂�b(0) · ∇u0

)
∂tu

ε
N (0) dp, (5.37)

from which we easily deduce

ε

∫
Ωe

|∂tuε
N (0)|2 dp +

∫
Ω̂

σ̂α(0)|∂tuε
N (0)|2 dp ≤ 1

α1σ
‖div(β(0)∇u0) − σ̂�b(0) · ∇u0‖2

L2(Ω̂). (5.38)

This, together with (5.35), implies

√
ε‖∂tuε

N‖L∞(0,T ;L2(Ωe)) + ‖∂tuε
N‖L∞(0,T ;L2(Ω̂)) + ‖∂tuε

N‖L2(0,T ;H1(Ω))

≤ C
(
‖ũ0‖H1(Ω) + ‖div(β(0)∇u0) − σ̂�b(0) · ∇u0‖L2(Ω̂) + ‖F‖H1(0,T ;H−1(Ω))

)
.

For fixed ε > 0, we can extract from {uε
Nm

} a subsequence, still denoted {uε
Nm

}, such that ∂tuε
Nm

⇀

∂tu
ε weakly in L2(0, T ; H1

0 (Ω)) and weakly-star in L∞(0, T ; L2(Ω)). Hence uε ∈ H1(0, T ; H1
0 (Ω)) ∩

W 1,∞(0, T ; L2(Ω)). Moreover, ∂tuε is bounded in L2(0, T ; H1
0 (Ω)) and in L∞(0, T ; L2(Ω̂)). Hence u ∈

H1(0, T ; H1
0 (Ω)) with ∂tu ∈ L∞(0, T ; L2(Ω̂)) and we have

∂tu
εm ⇀ ∂tu weakly in L2(0, T ;H1

0 (Ω)) and weakly-star in L∞(0, T ;L2(Ω̂)). (5.39)

Let (·, ·)ε denote the scalar product in L2(Ω) defined by

(v, z)ε =
∫
Ω

(εχΩe + σ̂α(0))vzdp v, z ∈ L2(Ω).

Note that 
√

(v, v)ε is a norm in L2(Ω), equivalent to the standard norm (but one of the equivalence constants 
depends on ε.) Let P ε

N : L2(Ω) �→ VN be the orthogonal projection with respect to (·, ·)ε. Since ∂tuε
N (0) ∈ VN

and satisfies (5.36), we have that ∂tuε
N (0) = P ε

Nw0
0, where
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w0
0 =

{
w0 in Ω̂,

0 in Ωe.
(5.40)

Hence, for fixed ε > 0, ∂tuε
N (0) → w0

0 strongly in L2(Ω) as N → ∞.
Now we will obtain an equation, in weak form, which is satisfied by ∂tuε. We first note that the sum of 

the first two terms of the left-hand side of equation (5.34) is equal to

d

dt

∫
Ω

(εχΩe + σ̂α(t))∂tuε
N (t)φi dp

and we rewrite (5.34) accordingly to this. We define

gε(t) := ∂tF (t) + div(∂tβ(t)∇uε(t)) − σ̂�b(t) · (∇∂tu
ε)(t) − σ̂∂t�b(t) · ∇uε(t).

Note that gε ∈ L2(0, T ; H−1(Ω)). Using that uε
Nm

⇀ uε weakly in H1(0, T ; H1
0 (Ω)) as m → ∞ and the 

above convergence of ∂tuε
N (0) together with standard techniques (see, for instance, [7, Chapter XVIII]), we 

can pass to the limit as m → ∞ to obtain that equation

−
T∫

0

∫
Ω

(εχΩe + σ̂α)∂tuε∂tη dp dt +
T∫

0

∫
Ω

β∇(∂tuε) · ∇η dp dt

=
T∫

0

< gε(t), η(t) > dt +
∫
Ω

(εχΩe + σ̂α(0))w0
0η(0) dp (5.41)

holds for all functions η which are finite sums of the form η(t, p) =
∑

i ψi(t)φi(p) with the ψi ∈ C1([0, T ]) such 
that ψi(T ) = 0. The set of such functions is dense in the space {η ∈ L2(0, T ; H1

0 (Ω)) ∩H1(0, T ; L2(Ω)); η(T ) =
0} ([15, Chapter II, Lemma 4.12]. Hence equation (5.41) holds for all η in this space. (In fact, this equation 
is a weak formulation which contains the PDE obtained by deriving (5.14) (in which a = 0) respect to time 
and the initial condition ∂tuε(0) = w0

0.)
We are allowed to pass to the limit as εm → 0 in equation (5.41) by using the convergences (5.23)-(5.25)

and (5.39). We thus obtain that ∂tu ∈ L2(0, T ; H1(Ω)) satisfies

−
T∫

0

∫
Ω̂

σ̂α∂tu∂tη dp dt +
T∫

0

∫
Ω

β∇(∂tu) · ∇η dp dt =
T∫

0

< g(t), η(t) > dt

+
∫
Ω̂

σ̂α(0)w0η(0) dp ∀η ∈ L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;L2(Ω)) with η(T ) = 0. (5.42)

This equation fits into the framework of linear degenerate parabolic equations described in [21, Section 
III.3]. Owing to the equivalence stated at the beginning of page 115 of this reference, we deduce that ∂tu
satisfies (5.30)-(5.31). �
Theorem 5.4. We make the assumptions of Theorem 5.3. We further assume the βij ∈ C2([0, T ]; C(Ω)), 
F ∈ H2(0, T ; L2(Ω)) and w0 ∈ H1(Ω̂). Then ∂

2u
∂t2 ∈ L2(0, T ; L2(Ω̂)) and u ∈ W 1,∞(0, T ; H1

0 (Ω)).

Proof. Let us consider g and w0 as given data. We introduce the problem

w ∈ L2(0, T ;H1
0 (Ω)), (5.43)
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d

dt

∫
Ω̂

σ̂α(t)w(t)zdp +
∫
Ω

β(t)∇w(t) · ∇z dp =

< g(t), z > ∀z ∈ H1
0 (Ω) in D′((0, T )), (5.44)

(σ̂αw)(0) = σ̂α(0)w0 in H−1(Ω). (5.45)

Owing to [21, Propositions III.3.2, III.3.3], this problem has a unique solution. Since ∂tu ∈ L2(0, T ; H1
0 (Ω))

and satisfies (5.30) and (5.31), we have ∂tu = w. Let us recall equation (5.32). The terms σ̂�b · (∇∂tu) and 
σ̂∂t�b · ∇u are in L2(0, T ; L2(Ω)) and vanish outside [0, T ] × Ω̂, and, because of the smoothness of β and F , 
the terms dFdt and div(∂tβ∇u) belong to H1(0, T ; H−1(Ω)). In virtue of Theorem 5.2 the problem

w̃ ∈ L2(0, T ;H1
0 (Ω)), with ∂tw̃ ∈ L2(0, T ;L2(Ω̂)) , (5.46)∫

Ω̂

σ̂α(t)∂tw̃(t)zdp +
∫
Ω̂

σ̂∂tα(t)w̃(t)zdp +
∫
Ω

β(t)∇w̃(t) · ∇pz dp

=< g(t), z > ∀z ∈ H1
0 (Ω) in D′((0, T )), (5.47)

w̃(0) = w0 in Ω̂, (5.48)

has a unique solution w̃ and, besides, w̃ ∈ L∞(0, T ; H1
0 (Ω)). Clearly w̃ is also a solution of problem (5.43), 

(5.44), (5.45). Hence w̃ = w and since we still have ∂u∂t = w, we obtain the desired result. �
6. Regularity results obtained through the Lagrangian approach

Problem (4.4) fits into the framework of Section 5, with:
α = J , �b = −J(DpX)−1 ∂X

∂t , β = J̃(DpX̃)−1(DpX̃)−T , a = 0, F = f , u0 = A0 and u = Â. Note that 
DpX̃(0) = I (the identity matrix) so α(0) = J(0) = 1, β(0) = I. Hence ũ0 = Ã0 and the compatibility 
condition (5.29) is exactly (2.5). Besides w0 = 1

σ̂�pA
0 + ∂X

∂t (0) · ∇pA
0.

Lemma 6.1. We make the hypothesis about Ω, Ω̂ and the mapping X stated in Section 2. We assume 

further that Ω̂ has a boundary of class C2, X ∈ C2([0, T ]; [C1(Ω̂)]n) ∩ C1([0, T ]; [C2(Ω̂)]n), ρ = 1, f ∈
H2(0, T ; L2(ΩS)), A0 ∈ H1(Ω̂), and that both compatibility conditions (2.5) and

1
σ̂
�pA

0 + ∂X

∂t
(0) · ∇pA

0 ∈ H1(Ω̂) (6.1)

hold true. Then we have

Â ∈ W 1,∞(0, T ;H1
0 (Ω)) and Â ∈ H2(0, T ;L2(Ω̂)). (6.2)

Proof. We construct the extension X̃ of X given by Theorem 3.3, so X̃ ∈ C1([0, T ]; [C2(Ω]n) ∩
C2([0, T ]; [C1(Ω]n). The result follows from Theorem 5.4 by noting that the coefficient functions appear-
ing in (4.4) have the required smoothness, the compatibility condition (5.29) holds true and assumption 
(6.1) is in fact w0 ∈ H1(Ω̂). �

By reversing the change of variables (4.1) and recalling equation (3.9), we can write

A(t, x) = Â(Ψ̃−1(t, x)) = Â(t, P̃ (t, x)), t ∈ [0, T ], x ∈ Ω. (6.3)

Theorem 6.1. We make the assumptions of Lemma 6.1. If Ω is convex or its boundary is of class C1,1, then 
A ∈ H2(Q).
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Proof. The regularity of X̃ implies that Ψ̃ ∈ [C2([0, T ] × Ω)]n+1 due to Theorem 3.3. From Theorem 2.3
and Remark 2.2, we have A(t) ∈ H2(Ω) for all t ∈ [0, T ]. Recalling equation (4.1) and applying (for each t) 
the formula of change of variables ([5, Proposition IX.6]), we deduce that Â(t) ∈ H2(Ω) and ‖Â(t)‖H2(Ω) ≤
C‖A(t)‖H2(Ω) for all t ∈ [0, T ]. This, together with Proposition A.1, gives Â ∈ L2(0, T ; H2(Ω)). This 
regularity, together with (6.2) imply that Â ∈ H2((0, T ) × Ω̂). Now, applying (in both space and time) 
the formula of change of variables in equation (6.3) and using that ψ−1 ∈ [C2(Q)]n+1, we deduce that 
A ∈ H2(Q). �
7. Two examples

Let us notice that H3(Ω) regularity in space cannot be obtained because of the discontinuity of σ across 
∂Q.

In fact, we have the following counterexample in 1D. Let Ω = (0, 1), Ω̂ = (a, b) where 0 < a < b < 1, 
X(t, p) = p (hence Ωt = Ω̂ for all t ∈ [0, T ]), σ̂ = 1 in Ω̂, ρ = 1 and f = 0. Problem (1.1) reduces to

⎧⎪⎪⎪⎨⎪⎪⎪⎩
χΩ̂

∂A

∂t
− ∂2A

∂x2 = 0 in (0, T ) × Ω,

A(t, 0) = A(t, 1) = 0 , t ∈ (0, T ),

A(0, x) = A0(x) , a < x < b.

(7.1)

We can find the explicit expression of A(t, x) in the elliptic regions in terms of A(t, a) or A(t, b). Next, from 
the continuity of A(t, ·) and ∂A∂x (t, ·) at x = a and x = b, we obtain Robin boundary conditions at x = a

and x = b. Hence the restriction of A to (0, T ) × (a, b) is the unique solution of the following problem

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂A
∂t − ∂2A

∂x2 = 0 in (0, T ) × (a, b),

−a∂A
∂x (t, a) + A(t, a) = 0 , t ∈ (0, T ),

(1 − b)∂A∂x (t, b) + A(t, b) = 0 , t ∈ (0, T ),

A(0, x) = A0(x) , a < x < b.

(7.2)

Let us take b = 1 − a with 0 < a < 1
2 and consider the eigenvalue problem

⎧⎪⎪⎨⎪⎪⎩
−d2φ

dx2 = λφ in (a, b),

−adφ
dx (a) + φ(a) = 0 ,

adφ
dx (b) + φ(b) = 0 .

The results given in [16, Appendix B.1] motivate the choice a = 2
π+4 . For this value, we have that

φ(x) = sin(π + 4
2 x− 1) + cos(π + 4

2 x− 1)

is an eigenfunction, with associate eigenvalue λ = (π+4
2 )2 and φ(a) = φ(b) = 1. Thus, for the initial condition

A0(x) = φ(x), a < x < b,

the solution of problem (7.2) is A(t, x) = e−λtφ(x) and that of problem (7.1) is
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A(t, x) =

⎧⎪⎪⎨⎪⎪⎩
1
a
e−λtx for 0 ≤ x ≤ a,

e−λtφ(x) for a ≤ x ≤ b,

1
ae

−λt(1 − x) for b ≤ x ≤ 1.

It is easy to see that the equation appearing in compatibility condition (2.5) reduces to the above Robin 
boundary conditions written for A0. Hence (2.5) is fulfilled. Condition (6.1) is also satisfied and we also 
have that σ̂−1 ∂2A0

∂x2 = −λφ, which is the restriction of an entire function. On the other hand, ∂
2A

∂x2 (t, ·) is 
discontinuous across x = a and x = b, hence A(t, ·) /∈ H3(Ω) for all t ∈ (0, T ).

The following example illustrates the main features considered in this paper. Let 0 < α < a < b < β < 1
be given, Ω = (0, 1), Ω̂ = (a, b), X(t, p) = p, σ̂ = χ(a,(a+b)/2) + 2χ((a+b)/2),b) (for instance), ρ = 1 and 
f(t, x) = f̂(t)(χ(0,α)(x) + χ(β,1))(x), where f̂ : [0, T ] �→ R is given. Problem (1.1) reduces to⎧⎪⎪⎪⎨⎪⎪⎪⎩

σ̂(x)∂A
∂t

− ∂2A

∂x2 = f̂(t)(χ(0,α)(x) + χ(β,1)(x)) in (0, T ) × Ω,

A(t, 0) = A(t, 1) = 0 , t ∈ (0, T ),

A(0, x) = A0(x) , a < x < b.

(7.3)

Proceeding as in the previous example, we find that the restriction of A to (0, T ) × (a, b) is the unique 
solution of the problem

σ̂(x)∂A
∂t

− ∂2A

∂x2 = 0 in (0, T ) × (a, b), (7.4)

−a
∂A

∂x
(t, a) + A(t, a) = 1

2α
2f̂(t) , t ∈ (0, T ), (7.5)

(1 − b)∂A
∂x

(t, b) + A(t, b) = 1
2(1 − β)2f̂(t) , t ∈ (0, T ), (7.6)

A(0, x) = A0(x) , a < x < b. (7.7)

Let us consider also the PDE

∂

∂t
(σ̂(x)A) − ∂2A

∂x2 = 0 in (0, T ) × (a, b). (7.8)

If A0 ∈ L2(a, b) and f̂ ∈ L2(0, T ), the problem (7.8), (7.5)-(7.7) has a unique solution in L2(0, T ; H1(a, b)) ∩
C([0, T ]; L2(a, b)). In fact, the solution can be written as a series in terms of the eigenfunctions of the problem⎧⎪⎪⎨⎪⎪⎩

−d2φ
dx2 = λσ̂(x)φ in (a, b),

−adφ
dx (a) + φ(a) = 0 ,

(1 − b)dφdx (b) + φ(b) = 0 ,

The eigenvalues λn are real and strictly positive, they can be arranged in an increasing sequence such 
that limm →∞ λm = +∞, and there exists a Hilbert basis of L2(a, b), {φm}∞m=1 formed by eigenfunctions. 
Here L2(a, b) is endowed with the scalar product (v, z)σ̂ =

∫ b

a
σ̂(x)v(x)z(x) dx. Besides, {λ−1/2

m φm}∞m=1 is 
a Hilbert basis of H1(a, b) for the scalar product a(v, z) =

∫ b

a
v′(x)z′(x) + 1

av(a)z(a) +
1

1−bv(b)z(b), which 
induced norm is equivalent to the norm of H1(a, b). We have the expansion

A(t, p) = A1(t, p) + A2(t, p) =
∞∑

μm(t)φm(x) +
∞∑

νm(t)φm(x) (7.9)

m=1 m=1
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with μm(t) = (A0, φm)σ̂ e−λmt and νm(t) the solution of

dνm
dt

+ λmνm = f̂(t) < �, φm >, νm(0) = 0, (7.10)

where � ∈ (H1(a, b))′ is defined by < �, z >= 1
2 (α

2

a z(a) + (1−β)2
1−b z(b)). Due to the above properties of the 

φm, we have 
∑∞

m=1 λ
−1
m | < �, φm > |2 ≤ C‖�‖2

(H1(a,b))′ . Well-known estimates imply that the first series of 
(7.9) converges in L2(0, T ; H1(a, b)) ∩ C([0, T ]; L2(a, b)). It is also known that

max
[0,T ]

|νm(t)|2 ≤ 1
2λm

| < �, φm > |2
T∫

0

|f̂(s)|2 ds, (7.11)

T∫
0

|νm(t)|2 dt ≤ 1
λ2
m

| < �, φm > |2
T∫

0

|f̂(s)|2 ds. (7.12)

This estimates imply that the second series converges in L2(0, T ; H1(a, b)) ∩ C([0, T ]; L2(a, b)), too.
Assume now A0 ∈ H1(a, b) and f̂ ∈ H1(0, T ). Let Ψ(x) := (1−β)2−α2

2 f̂(0)x + α2

2 f̂(0). The transformation 
A0 ← A0 − Ψ, f̂ ← f̂ − f̂(0) allows us to assume f̂(0) = 0. Assumption A0 ∈ H1(a, b) is equivalent to ∑∞

m=1 |(A0, φm)σ̂|2λm < ∞ and (since 1
2 (1 − e−λ1T ) ≤ λm

∫ T

0 e−2λmt dt < 1
2 ) this in turn is equivalent to 

∂tA1 ∈ L2(0, T ; L2(a, b)). On the other hand, function ν′m satisfies a differential equation like (7.10) but 
with right-hand side f̂ ′(t) < �, φm >. Besides, f̂(0) = 0 and νm(0) = 0 imply ν′m(0) = 0. Thus we have for 
ν′m analogous estimates to (7.11) and (7.12) with f̂ ′ in lieu of f̂ . Hence we have ∂tA2 =

∑∞
m=1 ν

′
m(t)φm(x), 

where the series converges in L2(0, T ; H1(a, b)) ∩ C([0, T ]; L2(a, b)). Therefore ∂tA ∈ L2(0, T ; L2(a, b)) and 
A is the solution of problem (7.4) -(7.7).

Now we further assume A0 ∈ H2(a, b) and the compatibility condition (2.5). This reduces to the Robin 
boundary conditions (7.5) and (7.6) written for A0. Since f̂(0) = 0, we have

(− 1
σ̂

∂2A0

∂x2 , φm)σ̂ = a(A0, φm) = λm(A0, φm)σ̂, (7.13)

so 
∑∞

m=1 |(A0, φm)σ̂|2λ2
m < ∞. This implies that ∂tA1 =

∑∞
m=1 μ

′
m(t)φm(x), where the series converges in 

L2(0, T ; H1(a, b)) ∩ C([0, T ]; L2(a, b)). Derivation with respect to time of the weak formulation of problem 
(7.8), (7.5)-(7.7) is allowed. Besides

∂A

∂t
(0) =

∞∑
m=1

μ′
m(0)φm = −

∞∑
m=1

λmμm(0)φm = −
∞∑

m=1
λm(A0, φm)σ̂φm = 1

σ̂

∂2A0

∂x2 .

Thus, w = ∂A
∂t is the unique weak solution of the problem analogous to (7.8), (7.5)-(7.7) with f̂ ′ instead of 

f̂ and initial condition w(0) = 1
σ̂

∂2A0

∂x2 .
Therefore, if we further assume f̂ ∈ H2(0, T ) and 1

σ̂
∂2A0

∂x2 ∈ H1(a, b), we will have ∂2A
∂t2 ∈

L2(0, T ; L2(a, b)) ≡ L2((0, T ) × (a, b)). All the considerations developed in this example agree with the 
results of the paper.
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Appendix A. An auxiliary result

Proposition A.1. Let X be a reflexive and separable Banach space and let V be a Banach space such that 
X ⊂ V with continuous and dense injection. If f : (0, T ) �→ V is measurable and f(t) ∈ X for a.e. t ∈ [0, T ], 
then f : (0, T ) �→ X (defined a.e.) is measurable.

Proof. Due to Pettis theorem and the separability of X, it is enough to prove that f : (0, T ) �→ X is weakly 
measurable. We have V ′ ⊂ X ′ with continuous injection. The reflexivity of X implies that V ′ is dense in 
X ′. Thus, given � ∈ X ′, there exists a sequence {�n} ⊂ V ′ converging to � in X ′-strong. Since real-valued 
functions < �n, f(·) >V ′,V =< �n, f(·) >X′,X are measurable and converge a.e. to function < �, f(·) >X′,X , 
this will be measurable. �
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