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In this paper, we study the asymptotic properties of minimizers for a class of 
constraint minimization problems derived from the Maxwell-Schrödinger-Poisson 
system

−Δu− (|u|2 ∗ |x|−1)u− α|u|2pu− μpu = 0, x ∈ R3

on the L2-spheres Aλ =
{
u ∈ H1(R3) :

∫
R3 |u|2dx = λ

}
, where α, p > 0. Let 

λ∗ = ‖Q 2
3
‖2
2, and Q 2

3
is the unique (up to translations) positive radial solution of 

− 3p
2 Δu + 2−p

2 u − |u|2pu = 0 in R3 with p = 2
3 . We prove that if λ < α− 3

2 λ∗, then 
minimizers are relatively compact in Aλ as p ↗ 2

3 . On the contrary, if λ > α− 3
2 λ∗, 

by directly using asymptotic analysis, we prove that all minimizers must blow up 
and give the detailed asymptotic behavior of minimizers.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction and main results

Due to its importance in various physical frameworks: gravitation, plasma physics, semiconductor theory, 
quantum chemistry and so on (see, e.g. [4,13,14] and the reference therein), the following Xα-Schrödinger-
Poisson (Xα-SP) model or Maxwell-Schrödinger-Poisson system has been studied extensively in recent years, 
see [3–5,8,9,14,16,18] for instance. The wave function ψ : R3 × [0, T ) → C satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
i
∂ψ

∂t
= −Δxψ + V (x, t)ψ − α|ψ(x, t)|2pψ,

− ΔxV = ε4π|ψ|2,
ψ(x, 0) = φ(x)

(1.1)
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with φ ∈ L2(R3), and α, p > 0. The self-consistent Poisson potential V can be rewritten explicitly in the 
form of V (x, t) = ε|ψ(x, t)|2 ∗ |x|−1, where ∗ refers to the convolution with respect to x on R3 and ε takes 
the value +1 or −1, depending on whether the interaction between the particles is repulsive or attractive. 
The system (1.1) can be therefore reduced to a single nonlinear and nonlocal Schrödinger-type equation

⎧⎪⎨
⎪⎩
i
∂ψ

∂t
= −Δxψ + ε(|ψ|2 ∗ |x|−1)ψ − α|ψ|2pψ,

ψ(x, 0) = φ(x).
(1.2)

Such a model appears in various frameworks, such as black holes in gravitation (ε = −1, see [17]), one-
dimensional reduction of electron density in plasma physics (ε = +1), as well as in semiconductor theory 
(ε = +1), as a correction to the Schrödinger-Poisson system (which is Xα-SP with α = 0), see [4,13,14,16]
and the reference therein. The last term |ψ(x, t)|2pψ is usually considered to be a correction to the nonlocal 
term V ψ, for example, p = 1

3 , which is called the Slater correction, or p = 2
3 , which is named as Dirac 

correction. The interested reader is recommended to find more backgrounds in the reference, see [5,18] and 
the reference therein.

In the following, we will be concerned with the standing waves, that is, solutions to (1.2) of the form

ψ(x, t) = e−iμptu(x)

with μp ∈ R and u ∈ H1(R3) solving

−Δu + ε(u2 ∗ |x|−1)u− α|u|2pu− μpu = 0,

which is a special case of Schrödinger-Maxwell equations [8]. It is well known that, minimizers of the following 
minimization problem solve the above equation with μp being some Lagrange multiplier:

e(p, λ) := inf
u∈Aλ

Ep(u), λ > 0, (1.3)

where the functional Ep(·) is given by

Ep(u) :=
∫
R3

|∇u|2dx + ε

2

∫
R3

∫
R3

|u(x)|2|u(y)|2
|x− y| dxdy − α

p + 1

∫
R3

|u|2p+2dx

and

Aλ =
{
u ∈ H1(R3) :

∫
R3

|u|2dx = λ
}
.

In the repulsive case ε = +1, many existence results have been known. In [11], a negative answer was given 
to p = 0. In [6], a positive answer is given to p ∈ (0, 12 ) with λ > 0 small. In [18], as part of its results, 
a positive answer was obtained to the Slater correction case: p = 1

3 . In [2], Bellazzini and Siciliano proved 
that (1.3) admits at least one minimizer if p ∈ (1

2 , 
2
3 ) and λ > 0 is large enough. In [12], Jeanjean and Luo 

showed the sharp nonexistence results for (1.3) with p ∈ [ 12 , 
2
3 ], i.e. for p ∈ (1

2 , 
2
3 ), there exists λ1 > 0 such 

that (1.3) has a minimizer if and only if λ ≥ λ1. When p = 1
2 or p = 2

3 , no minimizer exists for all λ > 0. 
For 2

3 < p < 2, problem (1.3) does not work. It has been proved in [1] that there exists at least one critical 
point of E(u) restricted to A with a minimax characterization.

For the attractive case ε = −1, the existence of minimizer for (1.3) is quite well understood. Before 
stating the result, we first recall from [19] the following Gagliardo-Nirenberg inequality
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∫
R3

u2p+2dx ≤ p + 1
λ∗
p
p

(∫
R3

|∇u|2dx
) 3p

2
(∫
R3

u2dx
) 2−p

2
, u ∈ H1(R3) , (1.4)

where λ∗
p = ‖Qp‖2

2 with Qp(x) = Qp(|x|) optimizing the above inequality and being the unique positive 
radially symmetric solution of

−3p
2 Δu + 2 − p

2 u− |u|2pu = 0 in R3, where p ∈ (0, 2). (1.5)

It follows directly from Lemma 8.1.2 in [7] that Qp(|x|) satisfies

∫
R3

|∇Qp|2dx =
∫
R3

Q2
pdx = 1

p + 1

∫
R3

Q2p+2
p dx. (1.6)

Moreover, a simple analysis shows that Qp satisfies

Qp(x) → Q 2
3
(x) strongly in H1(R3) and λ∗

p → λ∗ := ‖Q 2
3
‖2
2 as p ↗ 2

3 .

Similar to Theorem 1.1 in [21], the existence of the minimizer for (1.3) with ε = −1 is established by 
making full use of the above Qp(x) and the Gagliardo-Nirenberg inequality (1.4), and we omit the details 
for simplicity.

Theorem 1.1. Let Qp be the unique (up to translations) positive radial solution of (1.5). Then, we have the 
followings:

(I). If 0 < p < 2
3 , then there exists at least one minimizer of (1.3) for any λ ∈ (0, +∞).

(II). If 2
3 < p < 2, then there is no minimizer of (1.3) for any λ ∈ (0, +∞).

(II). If p = 2
3 , then we have:

(II)1. If 0 < λ < α− 3
2λ∗ := α− 3

2 ‖Q 2
3
‖2
2, there exists at least one minimizer for (1.3).

(II)2. If λ ≥ α− 3
2λ∗, there is no minimizer for (1.3).

We remark that there exists at least one minimizer up for (1.3) if p ∈ (0, 23 ). In what follows, we investigate 
the limit behavior of minimizers of (1.3) as p ↗ 2

3 . Firstly, if 0 < λ < α− 3
2λ∗ is fixed, our result shows that 

the minimizers of (1.3) are relatively compact in the space Aλ as p ↗ 2
3 . More precisely, we have

Theorem 1.2. For any given 0 < λ < α− 3
2λ∗, and let up be a nonnegative minimizer of (1.3) for each 

p ∈ (0, 23 ). Then,

lim
p↗ 2

3

e(p, λ) = e(2
3 , λ).

Moreover, for any sequence {pk} with pk ↗ 2
3 , there exists a subsequence, still denoted by {pk} and a 

sequence {ypk
}, such that

upk
(x + ypk

) k→∞−−−−→ u0 ∈ Aλ with u0 being a minimizer of e(2
3 , λ).

On the contrary, if λ > α− 3
2λ∗, the result is quit different and blow-up will happen in minimizers as 

p ↗ 2 . Our main results in this direction can be stated as the following theorem.
3
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Theorem 1.3. Suppose that λ > α− 3
2λ∗ and let up be a nonnegative minimizer of (1.3) for each p ∈ (0, 23 ). 

For any sequence {pk} with pk ↗ 2
3 , then up to subsequence, such that each upk

has a unique maximum 
point xk, and

lim
k→∞

s
− 3

4
pk upk

(xk + s
− 1

2
pk x) = 1

λ
1
4λ∗ 1

2
Q 2

3
( x

λ
1
2
) strongly in H1(R3),

where spk
=

(
3pk

2
αλ

2−pk
2

λ∗
pk

pk

) 2
2−3pk

. Moreover,

lim
p↗ 2

3

3p
3p− 2s

−1
p e(p, λ) = 1.

2. Asymptotic behavior of minimizers

In this section, we shall establish Theorem 1.2 and Theorem 1.3, which is focused on the asymptotic be-
havior of minimizers for e(p, λ) as p ↗ 2

3 . Under the assumptions of Theorem 1.1 (I), let up is a nonnegative 
minimizers for (1.3), which satisfies the Euler-Lagrange equation

−Δup − (|up|2 ∗ |x|−1)up − α|up|2pup − μpup = 0 in R3, (2.1)

where μp ∈ R is a suitable Lagrange multiplier associated to up.

2.1. Case of 0 < λ < α− 3
2λ∗

The aim of this subsection is to prove that when 0 < λ < α− 3
2λ∗ is fixed, all minimizers of (1.3) are 

relatively compact in the space Aλ as p ↗ 2
3 , which gives the proof of Theorem 1.2.

Lemma 2.1. For any given 0 < λ < α− 3
2λ∗ and p ↗ 2

3 , {up} is bounded in Aλ.

Proof. For any λ, t > 0, let Qt(x) = λ
1
2 t

3
2

λ∗ 1
2
Q 2

3
(tx), where Q 2

3
is the unique positive radial solution of (1.5)

with p = 2
3 . Then Qt(x) ∈ Aλ and

Ep(Qt) = λt2 − λ2t

λ∗2

∫
R3

∫
R3

Q2(x)Q2(y)
|x− y| dxdy − αλp+1t3p

(p + 1)λ∗p+1

∫
R3

Q2p+2
2
3

dx,

which implies that

e(p, λ) ≤ inf
t>0

Ep(Qt) < 0. (2.2)

We combine the Hardy-Littlewood-Sobolev inequality and the Sobolev inequality to yield that there exists 
a positive constant C such that

1
2

∫
R3

∫
R3

u2(x)u2(y)
|x− y| dxdy ≤Cλ

3
2

⎛
⎝∫
R3

|∇u|2dx

⎞
⎠

1
2

≤ε

∫
|∇u|2dx + Cε−1λ3.

(2.3)
R3
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It follows from (1.4), (2.2) and (2.3) that

∫
R3

|∇up|2dx < ε

∫
R3

|∇up|2dx + Cε + αλ
2−p
2

λ∗
p
p (

∫
R3

|∇up|2)
3p
2 .

We claim that

lim sup
p↗ 2

3

∫
R3

|∇up|2dx < +∞. (2.4)

On the contrary, suppose there exists a subsequence such that

lim
p↗ 2

3

∫
R3

|∇up|2dx = ∞,

which implies that

∫
R3

|∇up|2dx ≤ (ε + 3p
2
αλ

2−p
2

λ∗
p
p )

∫
R3

|∇up|2dx + Cε.

Noting that

lim
p↗ 2

3

3p
2
αλ

2−p
2

λ∗
p
p < 1,

then there exists ε > 0, such that

ε + 3p
2
αλ

2−p
2

λ∗
p
p < 1 as p ↗ 2

3 .

This leads to a contradiction, thus (2.4) is obtained. From (2.4), we see that {up} is bounded in Aλ. �
It then follows from Lemma 2.1 that for any sequence {pk} with pk ↗ 2

3 , there exist a subsequence, still 
denoted by {pk} and ũ ∈ Aλ, such that upk

⇀ ũ in Aλ as k → ∞. We next prove that

∫
R3

u2pk+2
pk

dx−
∫
R3

u
10
3
pk dx

k−→ 0. (2.5)

Choosing s > 3
10 , it follows from Hölder inequality that

‖upk
‖ 10

3
≤ ‖upk

‖αk
2pk+2‖upk

‖1−αk
s , αk = (2pk + 2)(3s− 10)

10(s− 2pk − 2) ,

and

‖upk
‖2pk+2 ≤ ‖upk

‖βk
10
3
‖upk

‖1−βk

2 , βk = 5pk
2pk + 2 .

Then,
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‖upk
‖

1
αk
10
3
‖upk

‖
αk−1
αk

s ≤ ‖upk
‖2pk+2 ≤ λ

1−βk
2 ‖upk

‖βk
10
3
.

By Lemma 2.1, assuming that ‖upk
‖ 10

3

k−→ a, ‖upk
‖s k−→ b and ‖upk

‖2pk+2
k−→ c. Noting that αk, βk

k−→ 1, 
which implies that a = c. (2.5) is therefore proved. From (2.5) we see that

lim
k→∞

e(pk, λ) = lim
k→∞

Epk
(upk

) = lim
k→∞

E 2
3
(upk

) ≥ e(2
3 , λ).

On the other hand, suppose that ū is a minimizer of e(2
3 , λ), then

e(2
3 , λ) = E 2

3
(ū) = lim

k→∞
Epk

(ū) ≥ lim
k→∞

e(pk, λ),

which implies that

lim
k→∞

e(pk, λ) = e(2
3 , λ).

Since the above argument holds for any sequence {pk} satisfying limk→∞ pk = 2
3 , we thus have

lim
p↗ 2

3

e(p, λ) = e(2
3 , λ).

Proof of Theorem 1.2. In view of above facts, {upk
} ⊂ Aλ is a bounded minimizing sequence for e(2

3 , λ). 
By the concentration-compactness principle, there exists a sequence {yk} such that upk

(· + yk) is relatively 
compact in Lp(R3) for 2 ≤ p < 6. Therefore, there exists a subsequence still denoted by {pk} and u0 ∈ Aλ

such that

lim
k→∞

upk
(x + yk) = u0(x) strongly in Lp(R3) for 2 ≤ p < 6.

Using the weak lower semicontinuity, we have

e(2
3 , λ) ≤ E 2

3
(u0) ≤ lim

k→∞
E 2

3
(upk

) = e(2
3 , λ).

This completes the proof of Theorem 1.2. �
2.2. Case of λ > α− 3

2λ∗

In the following, we intend to prove that all minimizers must blow up in Aλ as p ↗ 2
3 . Towards this 

purpose, we introduce the following auxiliary minimization problem as:

ẽ(p, λ) = inf

⎧⎨
⎩Ẽp(u) :

∫
R3

|u|2dx = λ

⎫⎬
⎭ , (2.6)

where Ẽp(u) is defined by

Ẽp(u) =
∫
R3

|∇u|2dx− α

p + 1

∫
R3

|u|2p+2dx.

Similar to Lemma 3.1 in [20], the exact value of the minimum energy of (2.6) as well as the precise form of 
its minimizers are established, and we omit the details for simplicity.
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Lemma 2.2. Let p ∈ (0, 23 ) and Qp is the unique positive radial solution of (1.5). Then

ẽ(p, λ) = 3p− 2
3p sp, where sp =

(
3p
2
αλ

2−p
2

λ∗
p
p

) 2
2−3p

, (2.7)

and the unique (up to translations) positive minimizer of (2.6) must be of the form

Q̃p(x) =
(

λ

λ∗
p

) 1
2

t
3
2
p Qp(tpx), where tp =

(sp
λ

) 1
2
.

Denote now up to be a nonnegative minimizer of (1.3). In the following we shall derive refined estimates 
on ‖∇up‖2.

Lemma 2.3. There exists a positive constant K, independent of p, such that

K ≤ s−1
p

∫
R3

|∇up|2 ≤ 1
K

as p ↗ 2
3 ,

where sp is defined in (2.7).

Proof. We first give the lower bound of 
∫
R3 |∇up|2dx. Using (1.4) and (2.3), we have

Ep(u) ≥ (1 − ε)
∫
R3

|∇u|2dx− αλ
2−p
2

λ∗
p
p

⎛
⎝∫
R3

|∇u|2dx

⎞
⎠

3p
2

− Cε−1λ3.

Set

f(s) = (1 − ε)s− αλ
2−p
2

λ∗
p
p s

3p
2 ,

then f(s) has a unique minima s∗ = ( 1
1−ε )

2
2−3p sp.

We claim that there exists γ > 0 small such that for p ↗ 2
3 ,

γ
3p
2 − 3p

2 γ

1 − 3p
2

+ γ < 1. (2.8)

In fact, taking γ > 0 sufficiently small such that −γ ln γ + 2γ < 1
2 , then the conclusion follows by taking 

the limit p ↗ 2
3 in (2.8).

Let γ > 0 be chosen as in the above claim. We then claim that

s−1
p

∫
R3

|∇up|2 ≥ γ, for p ↗ 2
3 . (2.9)

Otherwise, there exists a sequence {pk} with pk ↗ 2
3 as k → ∞ satisfying

∫
|∇upk

|2dx < γspk
.

R3
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Choose εk = 2−3pk

3pk
> 0 small such that s∗ = ( 1

1−εk
)

2
2−3pk spk

> γspk
for pk ↗ 2

3 , it then yields that

3pk − 2
3pk

spk
=ẽ(pk, λ) ≥ e(pk, λ) ≥ f

⎛
⎝∫
R3

|∇upk
|2dx

⎞
⎠− Cε−1

k λ3

≥f(γspk
) − Cε−1

k λ3 = −
(

2
3pk

γ
3pk
2 − γ + 2 − 3pk

3pk
γ

)
spk

− Cε−1
k λ3.

Thus,

−Cλ3 ≤ −2 − 3pk
3pk

(
2 − 3pk

3pk
− 2

3pk
γ

3pk
2 + γ − 2 − 3pk

3pk
γ

)
spk

k→ −∞,

which leads to a contradiction.
To get the upper bound of 

∫
R3 |∇up|2dx, we first deduce from the Pohožaev identity that

2
∫
R3

|∇up|2 = 1
2

∫
R3

∫
R3

u2
p(x)u2

p(y)
|x− y| + 3αp

p + 1

∫
R3

|up|2p+2. (2.10)

Therefore, we combine (1.4), (2.3) and (2.10) to yield that

2
∫
R3

|∇up|2dx ≤ 3αpλ 2−p
2

λ∗
p
p

⎛
⎝∫
R3

|∇up|2dx

⎞
⎠

3p
2

+ Cλ
3
2

⎛
⎝∫
R3

|∇up|2dx

⎞
⎠

1
2

.

Then, there exists constant λ̄ > 1, such that

s−1
p

∫
R3

|∇up|2dx ≤
(
1 − Cλ

3
2 γ− 1

2 λ̄− 1
2−3p

)− 2
2−3p → 1 as p ↗ 2

3 .

This completes the proof of Lemma 2.3. �
In view of above facts, we next define the L2(R2)-normalized function

wp(x) := s
− 3

4
p up

(
s
− 1

2
p x + xp

)
, (2.11)

where xp is a global maximum point of up. It follows from Lemma 2.3 that

K ≤
∫
R3

|∇wp|2 ≤ 1
K

as p ↗ 2
3 . (2.12)

Before proving Theorem 1.3, we first establish the following lemma.

Lemma 2.4. There exists a positive constant η such that

lim inf
p↗ 2

3

∫
|wp|2dx ≥ η > 0. (2.13)
B2(0)
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Proof. In view of (2.1), wp(x) defined in (2.11) satisfies the elliptic equation

−Δwp(x) − s
− 1

2
p (w2

p ∗ |x|−1)wp − αs
3p−2

2
p w2p+1

p − s−1
p μpwp = 0 in R3. (2.14)

We first claim that there exists a positive constant M , independent of p, such that

−M ≤ s−1
p μp ≤ − 1

M
as p ↗ 2

3 . (2.15)

In fact, using (2.10) we have

−λμp = 3
∫
R3

|∇up|2 −
(5p− 1)α
p + 1

∫
R3

|up|2p+2 ≤ 3
∫
R3

|∇up|2 as p ↗ 2
3 .

On the other hand, it follows from (2.2) and (2.10) that

−λμp = −e(p, λ) + αp

p + 1

∫
R3

|up|2p+2 + 1
2

∫
R3

∫
R3

u2
p(x)u2

p(y)
|x− y| ≥ 2

3

∫
R3

|∇up|2.

Therefore, (2.15) holds by Lemma 2.3.
Denote φwp

(x) =
∫
R3

w2
p(y)

|x−y|dy. It follows from Hölder inequality that there exists a constant C, indepen-
dent of p, such that

φwp
(x) =

∫
|x−y|<1

w2
p(y)

|x− y|dy +
∫

|x−y|≥1

w2
p(y)

|x− y|dy

≤
( ∫
|x−y|<1

1
|x− y| 32

dy
) 2

3
( ∫
|x−y|<1

w6
p(y)dy

) 1
3 +

∫
|x−y|≥1

w2
p(y)dy (2.16)

≤ C‖wp‖2
6 + λ ≤ C as p ↗ 2

3 .

Note from (2.14)-(2.16) that −Δwp − c(x)wp ≤ 0 in R3, where c(x) = αs
3p−2

2
p w2p

p (x). By applying Theorem 
4.1 in [10], we then have

max
B1(0)

wp ≤ C
( ∫
B2(0)

|wp|2dx
) 1

2
, (2.17)

where C > 0 depends only on the upper bound of ‖c(x)‖L2(B2(0)), i.e., the upper bound of ‖wp‖L4p(B2(0)). 
Therefore, it then follows from (1.4) that the constant C > 0 in (2.17) is bounded uniformly as p ↗ 2

3 . 
Since wp(x) attains its local maximum at x = 0, we thus obtain from (2.14)-(2.16) that

0 ≤ s−1
p μpwp(0) + s

− 1
2

p φwp
(0)wp(0) + αs

3p−2
2

p w2p+1
p (0) ≤ −Cwp(0) + C ′w2p+1

p (0) as p ↗ 2
3 ,

which implies that wp(0) ≥ C > 0 as p ↗ 2
3 . Then (2.13) holds, and this completes the proof of 

Lemma 2.4. �
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Proof of Theorem 1.3. We are now ready to complete the proof of Theorem 1.3 by the following two steps.
Step 1: The detailed asymptotic behavior. For any given sequence {pk} with pk ↗ 2

3 as k → ∞, we denote 

wk(x) := wpk
(x) = s

− 3
4

k uλk

(
xk + s

− 1
2

k x
)
≥ 0, and sk := spk

> 0, where sk is defined by (2.7) and satisfies 
sk → ∞ as k → ∞. In view of (2.14), wk(x) satisfies the Euler-Lagrange equation

−Δwk(x) − s
− 1

2
k (w2

k ∗ |x|−1)wk − αs
3pk−2

2
k w2pk+1

k − s−1
k μkwk = 0 in R3, (2.18)

and note from (2.15), up to a subsequence, that there exists a positive constant β, such that

s−1
k μk → −β as k → ∞.

Therefore, by passing to a subsequence if necessary, we deduce from (2.12) that wk ⇀ w0 ≥ 0 in H1(R3) for 
some w0 ∈ H1(R3). Moreover, by passing to the weak limit of (2.18), the nonnegative function w0 satisfies

−Δw0(x) + βw0(x) =
(
λ∗

λ

) 2
3

w
7
3
0 in R3. (2.19)

Furthermore, it follows from Lemma 2.4 that w0 �≡ 0, and thus w0 > 0 by the strong maximum principle. 
By a simple rescaling,

w0(x) =
( λ

λ∗

) 1
2
(3

2β
) 3

4
Q 2

3

(
(3
2β) 1

2 |x− y0|
)

for some y0 ∈ R3, (2.20)

where Q 2
3

is a positive radially symmetric solution of (1.5) with p = 2
3 . Note that 

∫
R3 |w0(x)|2dx = λ. By 

the norm preservation we further conclude that

wk
k→ w0 strongly in L2(R3).

Together with the boundness of H1(R3) norm for wk, this implies that

wk
k→ w0 strongly in L2(R3) for any 2 ≤ p < 6.

Moreover, since wk and w0 satisfy (2.18) and (2.19), respectively, a simple analysis shows that

wk
k→ w0 =

( λ

λ∗

) 1
2
(3

2β
) 3

4
Q 2

3

(
(3
2β) 1

2 |x− y0|
)

strongly in H1(R3). (2.21)

Using the standard elliptic regular theory, one can further obtain that

wk
k−→ w0 in C2

loc(R3). (2.22)

We notice that the origin is a critical (local maximum) point of wk for all k > 0, in view of (2.22) it is 
also a critical point of w0. We therefore conclude that w0 is spherically symmetric about the origin, i.e. 
y0 = (0, 0, 0) in (2.21) and

w0(x) =
( λ

λ∗

) 1
2
(3

2β
) 3

4
Q 2

3

(
(3
2β) 1

2 |x|
)
. (2.23)

Since wk decays uniformly to zero w.r.t. k as |x| → ∞, all local maximum points of wk stay in a finite ball 
in R3. It then follows from (2.22) and Lemma 4.2 in [15] that for large k, wk has no critical points other 
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than the origin. This gives the uniqueness of local maximum points for wk(x), which therefore implies that 
xk is the unique maximum point of uk.
Step 2: The exact value of β defined in (2.23). Using (2.10) we have

e(pk, λ) = 3pk − 2
3pk

sk

∫
R3

|∇wk|2 + 1 − 3pk
6pk

s
1
2
k

∫
R3

∫
R3

w2
k(x)w2

k(y)
|x− y| .

It follows from (2.21) that

lim
k→∞

3pk
3pk − 2s

−1
k e(pk, λ) = 3

2λβ.

On the other hand, by Lemma 2.2 we see that

lim
k→∞

3pk
3pk − 2s

−1
k ẽ(pk, λ) = 1.

Note that

e(pk, λ) ≤ ẽ(pk, λ) ≤ e(pk, λ) +
s

1
2
k

2

∫
R3

∫
R3

w2
k(x)w2

k(y)
|x− y| ,

which implies that

0 ≤ 3pk
3pk − 2s

−1
k (ẽ(pk, λ) − e(pk, λ)) ≤ 3pk

2(3pk − 2)s
− 1

2
k

∫
R3

∫
R3

w2
k(x)w2

k(y)
|x− y|

k→ 0.

Thus,

β = 2
3λ and lim

k→∞

3pk
3pk − 2s

−1
k e(pk, λ) = 1.

Since the above argument holds for any sequence {pk} satisfying limk→∞ pk = 2
3 , we thus have

lim
p↗ 2

3

3p
3p− 2s

−1
p e(p, λ) = 1,

and the proof is finished. �
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