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We consider a fully coupled system consisting of a parabolic equation, with boundary 
and initial conditions, and an abstract elliptic equation in a variational form with 
time as a parameter. Such systems appear in applications related to the modeling of 
coupled diffusion and elastic deformation processes in inhomogeneous porous media 
within a quasi-static assumption. We establish the global existence, uniqueness, 
and continuous dependence on initial and boundary data of a weak solution to the 
system. The proof of this result involves the proposed pseudo-decoupling method 
which reduces the coupled system to an initial-boundary value problem for a single 
implicit equation and a refined approach to deriving a priori energy estimates based 
on component-wise contributions of system parameters to energy norms.
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1. Introduction

We first introduce some notation that will be used throughout the paper. Let Ω ⊂ Rn be a bounded 
domain with a sufficiently smooth boundary Γ, Ω̄ = Ω ∪Γ, and Γ0 ⊂ Γ have a nonempty interior relative to 
Γ. The symbol tf ∈ (0, ∞) stands for a final time and the dot notation (˙) is used for the time derivative. 
Boldface letters represent vectors, both variables and functions, e.g. x ∈ Ω̄, u, or Φ. The ith component of 
a vector u is denoted by ui and uT means the transpose of u. The following notation will be used for the 
spaces of vector-valued functions: Hn

Ω = L2(Ω)n, Hn
Γ = L2(Γ)n, and Vn = H1(Ω)n, n ∈ N, with the usual 

norms. The subspace Vn
0 = H1

0 (Ω)n is equipped with the norm

‖u‖0,n =
[ n∑
k=1

∫
Ω

|∇uk|2dΩ
]1/2

,
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as is the subspace Ṽn
0 =

{
ϕ ∈ Vn : ϕ

∣∣
Γ0

= 0
}
. The norm on L∞(Ω)n will be denoted by ‖ · ‖∞,n. The 

superscript and subscript n = 1 will be suppressed for notational simplicity, e.g. HΩ = L2(Ω), ‖ ·‖∞ = ‖ ·‖∞,1. 
We denote by L2(a, b; X) the space of L2-integrable functions from [a, b] ⊂ R into a Hilbert space X with 
the norm

‖u‖L2(a,b;X) =
[ b∫

a

‖u(t)‖2
Xdt

]1/2

Finally, the space L∞(a, b; X) is the space of essentially bounded functions from [a, b] into X equipped with 
the norm

‖u‖L∞(a,b;X) = ess sup
[a,b]

‖u(t)‖X

Let a(λ) : Vn × Vn → R be a continuous and Ṽn
0 -coercive bilinear form depending on a parameter 

λ ∈ L∞(Ω)k. Let B(b) : Ṽn
0 :→ Hm

Ω be a linear continuous operator depending on a parameter b ∈ L∞(Ω)m
such that, for every ψ ∈ Hm

Ω and every Φ ∈ Ṽn
0 ,

(
ψ, B(b)Φ

)
Hm

Ω
=

(
e(bTψ), B(e)Φ

)
Hm

Ω
(1)

where e is an m-dimensional unit vector such that all but one of its components are zero. Condition (1)
immediately implies the linearity of the operator B with respect to its parameter b. Let σ ∈ L2(0, tf ; Hn

Γ ⊗
Hn

Γ
)

be an n × n second-order tensor such that σ̇ ∈ L2(0, tf ; Hn
Γ ⊗Hn

Γ
)
.

We consider the following class of coupled systems consisting of a parabolic equation, with boundary and 
initial conditions, and an abstract elliptic equation in a variational form with time t ∈ (0, tf ) as a parameter.

M(x) ˙̄V −∇ ·
[
A(x)∇V̄

]
= −B

(
b0(x)

)
u̇, in Ω × (0, tf ) (2)

a(λ(x);u,Φ) =
(
V̄, B(b1(x))Φ

)
Hm

Ω
+

(
σ(x, t)n,Φ

)
Hn

Γ
, ∀Φ ∈ Ṽn

0 (3)

V̄(x, t) = V̄B(x, t), on Γ × (0, tf ) (4)

V̄(x, 0) = V̄I(x), in Ω̄ (5)

Here M and A are m × m non-symmetric coefficient matrices, V̄ is an m-vector, b0 and b1 are coupling 
vectors such that b0 �= Sb1 for any scaling transformation S, and n is the outward unit normal vector on 
the boundary.

Systems like (2)-(5) are motivated by the modeling of coupled diffusion and elastic deformation processes 
in inhomogeneous porous media within the quasi-static assumption.

The objective of this paper is to develop existence-uniqueness-continuous dependence theory for a weak 
solution of the coupled parabolic-elliptic system (2)-(5).

Many physical phenomena are modeled by various coupled parabolic-elliptic systems, and the problems 
of existence, uniqueness, and continuous dependence, as well as regularity of solutions to such systems, 
have attracted a great deal of attention in the literature. Focusing on the class of coupled parabolic-elliptic 
systems under consideration, we mention the works of Showalter [12,13] and Malysheva and White [7,8]. 
In [12,13], based on the theory of linear degenerate evolution equations in Hilbert spaces, the existence-
uniqueness-regularity theory was developed for strong and weak solutions to the mixed parabolic-elliptic 
system describing the classical quasi-static Biot consolidation models of poroelasticity and thermoelasticity. 
It should be noted that, with slight modifications, these results can be extended to the special case of 
the system (2)-(5) with symmetric coefficient matrices M and A and equal coupling vectors b0 and b1. 
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However, the arguments employed in [12,13] are not applicable to the general case of the system (2)-(5). 
Well-posedness for a coupled parabolic-elliptic system constituting the general model of chemical thermo-
poroelasticity [3] that satisfies (2)-(5) with constant coefficients and B(b)Φ = b(∇ ·Φ), Φ ∈ Ṽn

0 , has been 
treated in [7,8]. Sufficient conditions for Hadamard well-posedness in a weak sense for this system were 
obtained in [7], and in [8], using the proposed pseudo-decoupling method, the full well-posedness theory was 
derived for a weak solution of the system. Existence, uniqueness, and regularity results for other classes of 
linear and nonlinear coupled parabolic-elliptic systems can be found, for example, in [1,2,5,9–11].

In this paper, we establish the global existence, uniqueness, and continuous dependence on initial and 
boundary data of weak solutions to the class of coupled parabolic-elliptic systems of the form (2)-(5). We 
show that far more general well-posedness results can be obtained by extending the idea of the pseudo-
decoupling technique introduced in [8].

The remainder of the paper is structured as follows. In Section 2 we describe the pseudo-decoupling 
method that transforms the coupled parabolic-elliptic system (2)-(5) into an initial-boundary value problem 
for a single implicit equation and discuss the decomposition of the obtained problem using the principle 
of superposition. In Section 3 we prove the global existence, uniqueness, and continuous dependence on 
initial and boundary data of weak solutions to subproblems resulting from the decomposition carried out 
in Section 2. In Section 4 we develop global existence-uniqueness-continuous dependence theory for weak 
solutions to the class of coupled parabolic-elliptic systems (2)-(5).

2. The pseudo-decoupling method

In this section we present the pseudo-decoupling method that allows one to transform the coupled 
parabolic-elliptic system (2)-(5) into an initial-boundary value problem for a single implicit equation. Us-
ing the superposition principle, the obtained initial-boundary value problem is then decomposed into two 
subproblems: first, for an autonomous parabolic equation and second, for an implicit equation with homo-
geneous boundary and initial conditions.

We shall be using the following assumption on the coefficient matrices M and A and the coupling vector 
b0.

Assumption 1. We assume that the matrix A(x) can be expressed as the product of a symmetric matrix 
A0(x) and a constant diagonal matrix D,

A(x) = A0(x)D,

where D is such that

Db0 = b0 (6)

Considering Assumption 1, we define the vector

V̄D = DV̄ (7)

The transformation (7) and the linearity of the operator B(·) lead to the following coupled system equivalent 
to (2)-(5).

MD(x) ˙̄VD −∇ ·
[
A0(x)∇V̄D

]
+ B

(
b0(x)

)
u̇ = 0, in Ω × (0, tf ) (8)

a(λ(x);u,Φ) =
(
V̄D, B

(
D−1b1(x)

)
Φ
)
Hm

Ω
+
(
σ(x, t)n,Φ

)
Hn

Γ
, ∀Φ ∈ Ṽn

0 (9)

V̄D(x, t) = DVB(x, t), on Γ × (0, tf ) (10)
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V̄D(x, 0) = DVI(x), in Ω̄ (11)

where MD(x) = M(x)D−1 is a non-symmetric matrix.
Our next step is to incorporate the abstract elliptic equation (9) into the equation (8). According to the 

Lax-Milgram theorem [14], the properties of continuity and Ṽn
0 -coercivity of the bilinear form a(λ; ·, ·) allow 

us to define the linear operator EB(b) : Hm
Ω → Ṽn

0 depending on the operator B(b) : Ṽn
0 → Hm

Ω and its 
parameter b ∈ L∞(Ω)m by

a(λ;EB(b)ψ,Φ) =
(
ψ, B(b)Φ

)
Hm

Ω
, ∀Φ ∈ Ṽn

0 (12)

and the function uΓ = uΓ(σ) ∈ Ṽn
0 by

a(λ;uΓ,Φ) =
(
σn,Φ

)
Hn

Γ
, ∀Φ ∈ Ṽn

0 (13)

Remark 1. The linearity of the operator B(b) with respect to its parameter b yields the linearity of EB(b)
with respect to b. Moreover, the operator EB is continuous. Indeed, since a(λ; ·, ·) is Ṽn

0 -coercive, for every 
ψ ∈ Hm

Ω ,

a(λ;EB(b)ψ, EB(b)ψ) ≥ γ(λ)‖EB(b)ψ‖2
0,n (14)

where γ(λ) > 0 is the coercivity constant of a(λ; ·, ·). From the above inequality, (1), (12), and the continuity 
of the operator B(b) we have

γ(λ)‖EB(b)ψ‖2
0,n ≤

∣∣a(λ;EB(b)ψ, EB(b)ψ)
∣∣

=
∣∣∣(ψ, B(b)EB(b)ψ

)
Hm

Ω

∣∣∣ =
∣∣∣(e(bTψ), B(e)EB(b)ψ

)
Hm

Ω

∣∣∣
≤ ‖bTψ‖HΩ‖B(e)EB(b)ψ‖Hm

Ω

≤ ‖bTψ‖HΩ‖B(e)‖‖EB(b)ψ‖0,n

where ‖B(b)‖ = sup{‖B(b)v‖Hm
Ω

: v ∈ Ṽn
0 , ‖v‖0,n = 1}. Therefore,

‖EB(b)ψ‖0,n ≤ 1
γ(λ)‖B(e)‖‖bTψ‖HΩ (15)

and hence,

‖EB(b)ψ‖0,n ≤
√
m

γ(λ)‖b‖∞,m‖B(e)‖‖ψ‖Hm
Ω

Applying (12) and (13) to (9) gives, for all Φ ∈ Ṽn
0 ,

a(λ(x);u,Φ) = a
(
λ(x);EB

(
D−1b1(x)

)
V̄D,Φ

)
+ a(λ(x);uΓ,Φ)

It follows that

u = EB

(
D−1b1(x)

)
V̄D + uΓ (16)

and hence,

B
(
b0(x)

)
u̇ =

[
B
(
b0(x)

)
EB

(
D−1b1(x)

)] ˙̄VD + B
(
b0(x)

)
u̇Γ (17)
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Substituting (17) into the parabolic equation (8), we obtain the implicit equation

[
MD(x) + B

(
b0(x)

)
EB

(
D−1b1(x)

)] ˙̄VD −∇ ·
[
A0(x)∇V̄D

]
+ B

(
b0(x)

)
u̇Γ = 0

This equation supplemented with the boundary and initial conditions (10) and (11) yields the initial-
boundary value problem for a single implicit equation,

[
MD(x) + B

(
b0(x)

)
EB

(
D−1b1(x)

)] ˙̄VD −∇ ·
[
A0(x)∇V̄D

]
+ B

(
b0(x)

)
u̇Γ = 0, in Ω × (0, tf )

V̄D(x, t) = DVB(x, t), on Γ × (0, tf )

V̄D(x, 0) = DVI(x), in Ω̄

which is equivalent to the coupled parabolic-elliptic system (2)-(5). In what follows we shall denote this 
initial-boundary value problem by P0.

Using the superposition principle, the problem P0 can be decomposed into the following two subproblems: 
the subproblem P1 for an autonomous parabolic equation,

MD(x) ˙̄W −∇ ·
[
A0(x)∇W̄

]
= 0, in Ω × (0, tf )

W̄(x, t) = DVB(x, t), on Γ × (0, tf )

W̄(x, 0) = DVI(x), in Ω̄

and the subproblem P2 for an implicit equation with homogeneous boundary and initial conditions,

[
MD(x) + B

(
b0(x)

)
EB

(
D−1b1(x)

)]
V̇ −∇ ·

[
A0(x)∇V

]
= F(x, t), in Ω × (0, tf ), (18)

V(x, t) = 0, on Γ × (0, tf ), (19)

V(x, 0) = 0, in Ω̄, (20)

where the source term is given by

F(x, t) = −B
(
b0(x)

)
EB

(
D−1b1(x)

) ˙̄W −B
(
b0(x)

)
u̇Γ, (21)

with ˙̄W being the time derivative of the solution to the problem P1 and uΓ defined by (13). Then the 
solution of the problem P0 is the sum of the solutions to the subproblems P1 and P2:

V̄D = W̄ + V (22)

and from (7), (16), and (22), the solution (V̄, u) of the coupled parabolic-elliptic system (2)-(5) is given by

V̄ = D−1(W̄ + V) (23)

u = EB

(
D−1b1(x)

)
(W̄ + V) + uΓ (24)

Remark 2. Equation (19) yields the auxiliary boundary condition for problem P2:

V̇(x, t) = 0, on Γ × (0, tf ) (25)
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3. Weak solutions to problem P1 and problem P2 with an arbitrary source term

We shall address the questions of existence, uniqueness, and continuous dependence on initial and bound-
ary data of weak solutions to the problem P1 and the problem P2 with an arbitrary nonhomogeneous source 
term F(x, t). The following assumption will be made throughout the remainder of this paper.

Assumption 2. We assume the matrices MD(x) = [mij(x)]mi,j=1 and A0(x) = [aij(x)]mi,j=1 satisfy the follow-
ing conditions:

(i) mij , aij ∈ L∞(Ω), 1 ≤ i, j ≤ m.
(ii) There exist constants mi > 0 such that mii(x) ≥ mi, ∀x ∈ Ω̄, 1 ≤ i ≤ m.
(iii) There exists a constant c ∈ (0, 1) such that

0 <
(
‖mij‖∞ + ‖mji‖∞

)2
< cmimj

for all 1 ≤ i ≤ m − 1, i + 1 ≤ j ≤ m.
(iv) The matrices 1

2
(
MD + MT

D

)
and A0 are positive definite.

3.1. Problem P1

Using the superposition principle, problem P1 can further be decomposed into the elliptic boundary value 
problem, denoted by P1.1, with time t ∈ [0, tf ] as a parameter:

−∇ ·
[
A0(x)∇W0

]
= 0, in Ω

W0(x, t) = DVB(x, t), on Γ

where Ẇ0 satisfies

−∇ ·
[
A0(x)∇Ẇ0

]
= 0, in Ω (26)

Ẇ0(x, t) = DV̇B(x, t), on Γ, (27)

and the parabolic initial-boundary value problem, denoted by P1.2:

MD(x)Ẇ −∇ ·
[
A0(x)∇W

]
= −MD(x)Ẇ0, in Ω × (0, tf )

W(x, t) = 0, on Γ × (0, tf )

W(x, 0) = DVI(x) − W0(x, 0), in Ω̄

where Ẇ0 is the solution to the boundary value problem (26) and (27). Then the solution to the problem 
P1 is given by

W̄ = W0 + W (28)

The next two lemmas establish the global existence and uniqueness of weak solutions to the subproblems P1.1 
and P1.2 and the continuous dependence of the solutions on the initial and boundary data. We omit their 
proofs because they follow the standard Galerkin methods for elliptic and parabolic problems, respectively. 
Henceforth, Ĉ > 0 denotes a generic constant independent of functions to be estimated.
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Lemma 1. Given VB ∈ L2(0, tf ; H1/2(Γ)m
)

with V̇B ∈ L2(0, tf ; H1/2(Γ)m
)
, under Assumption 2 (i) and 

(iv) on the matrix A0, there exists a global unique weak solution W0 ∈ L2(0, tf ; Vm
)

to the problem P1.1 
with Ẇ0 ∈ L2(0, tf ; Vm

)
and the following estimates hold

‖W0‖L2(0,tf ;Vm) ≤ Ĉ‖VB‖L2(0,tf ;H1/2(Γ)m)

‖Ẇ0‖L2(0,tf ;Vm) ≤ Ĉ‖V̇B‖L2(0,tf ;H1/2(Γ)m)

Moreover, for each t ∈ [0, tf ],

‖W0(t)‖Vm ≤ Ĉ‖VB(t)‖H1/2(Γ)m

‖Ẇ0(t)‖Vm ≤ Ĉ‖V̇B(t)‖H1/2(Γ)m

Lemma 2. Given Ẇ0 ∈ L2(0, tf ; Vm), VI ∈ Vm, and W0(0) ∈ Vm, under Assumption 2 (i) and (iv), the 
problem P1.2 admits a global unique weak solution W ∈ L∞(

0, tf ; Vm
0
)
, with Ẇ ∈ L2(0, tf ; Hm

Ω
)
, and the 

solution depends continuously on the data; that is,

‖W‖L∞(0,tf ;Vm
0 ) ≤ Ĉ

(
‖VI‖Vm + ‖W0(0)‖Vm + ‖Ẇ0‖L2(0,tf ;Vm)

)
‖Ẇ‖L2(0,tf ;Hm

Ω ) ≤ Ĉ
(
‖VI‖Vm + ‖W0(0)‖Vm + ‖Ẇ0‖L2(0,tf ;Vm)

)

As a direct consequence of Lemmas 1 and 2, and (28), we have the following global existence-uniqueness-
continuous dependence result for a weak solution to the problem P1.

Corollary 1. Given the boundary and initial data VB ∈ L2(0, tf ; H1/2(Γ)m
)

with V̇B ∈ L2(0, tf ; H1/2(Γ)m
)
, 

and VI ∈ Vm, under Assumption 2 (i) and (iv), there exists a global unique weak solution

W̄ ∈ L2(0, tf ;Vm) with ˙̄W ∈ L2(0, tf ;Hm
Ω ) (29)

to the problem P1, and the solution depends continuously on the data in the sense that the following estimates 
hold

‖W̄‖L2(0,tf ;Vm) ≤ Ĉ
(
‖VI‖Vm + ‖VB(0)‖H1/2(Γ)m

+ ‖VB‖L2(0,tf ;H1/2(Γ)m) + ‖V̇B‖L2(0,tf ;H1/2(Γ)m)
)

(30)

‖ ˙̄W‖L2(0,tf ;Hm
Ω ) ≤ Ĉ

(
‖VI‖Vm + ‖VB(0)‖H1/2(Γ)m + ‖V̇B‖L2(0,tf ;H1/2(Γ)m)

)
(31)

3.2. Problem P2

We begin by obtaining formal a priori energy estimates for the problem P2. In real-world applications 
elements of the matrices M and A and the coupling vectors b0 and b1 of the system (2)-(5) may differ by 
more than 20 orders of magnitude (see [3,4]). The same obviously holds true for the coefficient matrices 
and vectors of the problem P2. For this reason, we propose a refined approach to deriving a priori energy 
estimates that is based on element-wise contributions of system parameters to energy norms.

We first formally multiply (18) by V̇T , integrate over Ω, and split the first integral on the left-hand side 
into the sum of two integrals:

∫
V̇TMD(x)V̇dΩ +

∫
V̇TB(b0(x))EB(D−1b1(x))V̇dΩ −

∫
V̇T∇ ·

[
A0(x)∇V

]
dΩ =

∫
V̇TFdΩ (32)
Ω Ω Ω Ω
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Table 1
Coefficients 1

εk
for ‖V̇i‖2.

i
j 1 2 3 · · · m − 1 m

1 – 1
ε1

1
ε2

· · · 1
εm−2

1
εm−1

2 – – 1
εm

· · · 1
ε2m−4

1
ε2m−3

...
...

...
...

. . .
...

...
m − 1 – – – · · · – 1

εm(m−1)/2

Table 2
Coefficients εk for ‖V̇j‖2.

i
j 1 2 3 · · · m − 1 m

1 – ε1 ε2 · · · εm−2 εm−1
2 – – εm · · · ε2m−4 ε2m−3
...

...
...

...
. . .

...
...

m − 1 – – – · · · – εm(m−1)/2

We shall estimate each term of (32) separately. Under Assumption 2 (i), for the first term on the left-hand 
side of (32) we have

∣∣∣∣
∫
Ω

V̇TMD(x)V̇ −
m∑
i=1

mii(x)V̇ 2
i dΩ

∣∣∣∣ ≤
m−1∑
i=1

m∑
j=i+1

1
2
(
‖mij‖∞ + ‖mji‖∞

) ∫
Ω

2|V̇i||V̇j |dΩ

≤
m−1∑
i=1

m∑
j=i+1

1
2
(
‖mij‖∞ + ‖mji‖∞

)[ 1
εij

‖V̇i‖2
HΩ

+ εij‖V̇j‖2
HΩ

]
(33)

for every εij > 0, 1 ≤ i ≤ m − 1, i + 1 ≤ j ≤ m.
We observe that there are 1

2m(m − 1) constants εij in (33), and for the sake of convenience, we change 
notation from double-indexed εij, 1 ≤ i ≤ m −1, i +1 ≤ j ≤ m, to single-indexed εk, 1 ≤ k ≤ 1

2m(m −1), as 
follows. The constants εij , 1 ≤ i ≤ m − 1, i + 1 ≤ j ≤ m, can be considered as the elements of a symmetric 
matrix 

[
εij

]m
i,j=1 located above the main diagonal. Using the row-major ordering method, the elements 

ε12, . . . , ε1m are indexed as ε1, . . . , εm−1, the elements ε23, . . . , ε2m are indexed as εm, . . . , ε2m−3, and so on. 
In general, the elements εi,i+1, 1 ≤ i ≤ m −1, become εk, with k = (m −1) +(m −2) +· · ·+(m −(i −1)) +1 =
m(i − 1) − 1

2 i(i − 1) + 1, and the elements εij , 1 ≤ i ≤ m − 1, i + 1 ≤ j ≤ m, are indexed as εk, with 
k = m(i − 1) − 1

2 i(i − 1) + (j − i) = j + m(i − 1) − 1
2 i(i + 1). Thus, (33) can be written as

∣∣∣∣
∫
Ω

V̇TMD(x)V̇ −
m∑
i=1

mii(x)V̇ 2
i dΩ

∣∣∣∣ ≤
m−1∑
i=1

m∑
j=i+1

1
2
(
‖mij‖∞ + ‖mji‖∞

)[ 1
εk

‖V̇i‖2
HΩ

+ εk‖V̇j‖2
HΩ

]
(34)

where 1 ≤ k ≤ 1
2m(m −1) are given by k = j+m(i −1) − 1

2 i(i +1). Tables 1 and 2 summarize the coefficients 
1
εk

for ‖V̇i‖2 and εk for ‖V̇j‖2 in (34), respectively.
Under Assumption 2 (ii), from (34) we obtain

∫
Ω

V̇TMD(x)V̇dΩ ≥
m∑
i=1

mi‖V̇i‖2
HΩ

−
m−1∑
i=1

m∑
j=i+1

1
2
(
‖mij‖∞ + ‖mji‖∞

) 1
εk

‖V̇i‖2
HΩ

−
m−1∑
i=1

m∑
j=i+1

1
2
(
‖mij‖∞ + ‖mji‖∞

)
εk‖V̇j‖2

HΩ
(35)
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Table 3
Coefficients 1

εk
and εl for ‖V̇i‖2.

i
j 1 2 3 · · · m − 1 m

1 – 1
ε1

1
ε2

· · · 1
εm−2

1
εm−1

2 ε1 – 1
εm

· · · 1
ε2m−4

1
ε2m−3

3 ε2 εm – · · · 1
ε3m−7

1
ε3m−6

...
...

...
...

. . .
...

...
m − 1 εm−2 ε2m−4 ε3m−7 · · · – 1

εm(m−1)/2

m εm−1 ε2m−3 ε3m−6 · · · εm(m−1)/2 –

with 1 ≤ k ≤ 1
2m(m − 1) given by k = j + m(i − 1) − 1

2 i(i + 1). It is convenient to rewrite the last double 
sum in (35) in terms of ‖V̇i‖2

HΩ
. To this end, we first observe that indices i and j can be interchanged as 

follows.

m−1∑
i=1

m∑
j=i+1

1
2
(
‖mij‖∞ + ‖mji‖∞

)
εk‖V̇j‖2

HΩ
=

m−1∑
j=1

m∑
i=j+1

1
2
(
‖mij‖∞ + ‖mji‖∞

)
εl‖V̇i‖2

HΩ
(36)

where 1 ≤ l ≤ 1
2m(m − 1) is given by l = i +m(j − 1) − 1

2j(j + 1). Changing the order of summation in the 
double sum further implies

m−1∑
j=1

m∑
i=j+1

1
2
(
‖mij‖∞ + ‖mji‖∞

)
εl‖V̇i‖2

HΩ
=

m∑
i=2

i−1∑
j=1

1
2
(
‖mij‖∞ + ‖mji‖∞

)
εl‖V̇i‖2

HΩ
(37)

with 1 ≤ l ≤ 1
2m(m − 1), l = i + m(j − 1) − 1

2j(j + 1).
Applying (37) to (35) gives

∫
Ω

V̇TMD(x)V̇dΩ ≥
m∑
i=1

mi‖V̇i‖2
HΩ

−
m−1∑
i=1

m∑
j=i+1

1
2
(
‖mij‖∞ + ‖mji‖∞

) 1
εk

‖V̇i‖2
HΩ

−
m∑
i=2

i−1∑
j=1

1
2
(
‖mij‖∞ + ‖mji‖∞

)
εl‖V̇i‖2

HΩ

=
m∑
i=1

[
mi −

m∑
j=i+1

1
2
(
‖mij‖∞ + ‖mji‖∞

) 1
εk

−
i−1∑
j=1

1
2
(
‖mij‖∞ + ‖mji‖∞

)
εl

]
‖V̇i‖2

HΩ
(38)

where k = j + m(i − 1) − 1
2 i(i + 1), for i + 1 ≤ j ≤ m, and l = i + m(j − 1) − 1

2j(j + 1), for 1 ≤ j ≤ i − 1. 
Table 3 shows the coefficients 1

εk
and εl for ‖V̇i‖2 depending on the index j in (38).

Before going further, for convenience, we introduce the following notation.

bD(x) = D−1(b1(x) − b0(x))

Using (6), (12), and linearity of the operator EB(b) with respect to its parameter b, the second term on 
the left-hand side of (32) can be written as
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∫
Ω

V̇TB(b0(x))EB(D−1b1(x))V̇dΩ =
(
V̇, B(b0(x))

[
EB(D−1b1(x))V̇

])
Hm

Ω

= a
(
λ;EB(b0)V̇, EB(D−1b1)V̇

)
= a

(
λ;EB(b0)V̇, EB(D−1[b0 + (b1 − b0)])V̇

)
= a

(
λ;EB(b0)V̇, EB(b0)V̇

)
+ a

(
λ;EB(b0)V̇, EB(bD)V̇

)
(39)

The coercivity property (14) of the bilinear form a(λ; ·, ·) immediately yields

a
(
λ;EB(b0)V̇, EB(b0)V̇

)
≥ γ(λ)‖EB(b0)V̇‖2

0,n (40)

On the other hand, the continuity of a(λ; ·, ·) and the Poincaré inequality imply

∣∣a(λ;EB(b0)V̇, EB(bD)V̇
)∣∣ ≤ α(λ)‖EB(b0)V̇‖0,n‖EB(bD)V̇‖0,n

where α(λ) > 0 is the continuity constant of a(λ; ·, ·). From the last inequality and (15), we deduce that

∣∣a(λ;EB(b0)V̇, EB(bD)V̇
)∣∣ ≤ α(λ)

[
1
2ε‖EB(b0)V̇‖2

0,n + ε

2‖EB(bD)V̇‖2
0,n

]

≤ α(λ)
[

1
2ε‖EB(b0)V̇‖2

0,n + ε

2
1

γ2(λ)‖B(e)‖2‖bT
DV̇‖2

HΩ

]

≤ α(λ)
[

1
2ε‖EB(b0)V̇‖2

0,n + ε

2
1

γ2(λ)‖B(e)‖2
m∑
i=1

‖bDi
‖2
∞‖V̇i‖2

HΩ

]

where ε > 0, and therefore,

a
(
λ;EB(b0)V̇, EB(bD)V̇

)
≥ − 1

2εα(λ)‖EB(b0)V̇‖2
0,n − ε

2
α(λ)
γ2(λ)‖B(e)‖2

m∑
i=1

‖bDi
‖2
∞‖V̇i‖2

HΩ
(41)

For the last term on the left-hand side of (32), using the divergence theorem and the auxiliary boundary 
condition (25), we obtain

−
∫
Ω

V̇T∇ ·
[
A0(x)∇V

]
dΩ =

∫
Ω

m∑
i=1

∇V̇i ·
( m∑

j=1
aij(x)∇Vj

)
dΩ

=
∫
Ω

n∑
k=1

∂kV̇TA0(x)∂kVdΩ (42)

where ∂k is the partial derivative with respect to xk.
Let us define the bilinear form ā : Vm

0 × Vm
0 → R by

ā(ψ,φ) =
∫
Ω

n∑
i=1

∂iψ
TA0(x)∂iφdΩ (43)

The symmetry of the matrix A0(x), (42) and (43) imply

−
∫

V̇T∇ ·
[
A0(x)∇V

]
dΩ = 1

2
d

dt
ā(V,V) (44)
Ω
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Remark 3. The symmetric bilinear form ā : Vm
0 ×Vm

0 → R is coercive and continuous. Indeed, Assumption 2
(iv) on the matrix A0 guarantees that there exists α̂ > 0 such that, for every ψ ∈ Vm

0 ,

ā(ψ,ψ) ≥ α̂‖ψ‖2
0,m (45)

On the other hand, for every ψ, φ ∈ Vm
0 ,

|ā(ψ,φ)| =
∣∣∣∣
∫
Ω

n∑
k=1

∂kψ
TA0(x)∂kφdΩ

∣∣∣∣

≤ max
1≤i,j≤m

{‖aij‖∞}
n∑

k=1

m∑
i,j=1

‖∂kψi‖HΩ‖∂kφj‖HΩ

≤ max
1≤i,j≤m

{‖aij‖∞}
m∑
i=1

n∑
k=1

‖∂kψi‖HΩ

m∑
j=1

n∑
k=1

‖∂kφj‖HΩ

≤ mn max
1≤i,j≤m

{‖aij‖∞}‖ψ‖0,m‖φ‖0,m

and the result follows.

The right-hand side of (32) is estimated as

∫
Ω

V̇TFdΩ ≤ 1
2

m∑
i=1

[
mi‖V̇i‖2

HΩ
+ 1

mi
‖Fi‖2

HΩ

]
(46)

where mi, 1 ≤ i ≤ m, are specified in Assumption 2 (ii).
Applying (38)-(41), (44), and (46) to (32), we have

2
m∑
i=1

[
mi −

m∑
j=i+1

(
‖mij‖∞ + ‖mji‖∞

)
2

1
εk

−
i−1∑
j=1

(
‖mij‖∞ + ‖mji‖∞

)
2 εl

− ε

2
α(λ)
γ2(λ)‖B(e)‖2‖bDi

‖2
∞

]
‖V̇i‖2

HΩ

+ 2
[
γ(λ) − 1

2εα(λ)
]
‖EB(b0)V̇‖2

0,n + d

dt
ā(V,V)

≤
m∑
i=1

[
mi‖V̇i‖2

HΩ
+ 1

mi
‖Fi‖2

HΩ

]

which yields

m∑
i=1

[
mi −

m∑
j=i+1

(
‖mij‖∞ + ‖mji‖∞

) 1
εk

−
i−1∑
j=1

(
‖mij‖∞ + ‖mji‖∞

)
εl

− ε
α(λ)
γ2(λ)‖B(e)‖2‖bDi

‖2
∞

]
‖V̇i‖2

HΩ

+
[
2γ(λ) − 1

ε
α(λ)

]
‖EB(b0)V̇‖2

0,n + d

dt
ā(V,V) ≤

m∑
i=1

1
mi

‖Fi‖2
HΩ

where k = j + m(i − 1) − 1 i(i + 1), for i + 1 ≤ j ≤ m, and l = i + m(j − 1) − 1j(j + 1), for 1 ≤ j ≤ i − 1.
2 2
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Integrating the last inequality with respect to time from 0 to t and applying (20) and (45) give, for every 
t ∈ [0, tf ],

β̂

t∫
0

‖V̇‖2
Hm

Ω
ds + γ̂

t∫
0

‖EB(b0)V̇‖2
0,nds + α̂‖V(t)‖2

0,m ≤ 1
μ̂

t∫
0

‖F‖2
Hm

Ω
ds (47)

Here β̂ = min
1≤i≤m

βi with

βi = mi −
m∑

j=i+1

(
‖mij‖∞ + ‖mji‖∞

) 1
εk

−
i−1∑
j=1

(
‖mij‖∞ + ‖mji‖∞

)
εl − ε

α(λ)
γ2(λ)‖B(e)‖2‖bDi

‖2
∞, (48)

1 ≤ i ≤ m, k = j+m(i −1) − 1
2 i(i +1), for i +1 ≤ j ≤ m, and l = i +m(j−1) − 1

2j(j+1), for 1 ≤ j ≤ i −1;

γ̂ = 2γ(λ) − 1
ε
α(λ) (49)

0 < μ̂ = min
1≤i≤m

mi (50)

The values εk > 0, εl > 0, and ε > 0 must be chosen to guarantee that β̂ > 0 and γ̂ ≥ 0.
The condition β̂ > 0 is equivalent to βi > 0 for all 1 ≤ i ≤ m. From (48) we observe that the latter 

condition holds true if, for 1 ≤ i ≤ m, there exist constants pij > 1, i + 1 ≤ j ≤ m, qij > 1, 1 ≤ j ≤ i − 1, 
and ri > 1 such that

m∑
j=i+1

1
pij

+
i−1∑
j=1

1
qij

+ 1
ri

< 1 (51)

and

(
‖mij‖∞ + ‖mji‖∞

) 1
εk

≤ 1
pij

mi, (52)

for i + 1 ≤ j ≤ m and k = j + m(i − 1) − 1
2 i(i + 1);

(
‖mij‖∞ + ‖mji‖∞

)
εl ≤

1
qij

mi, (53)

for 1 ≤ j ≤ i − 1 and l = i + m(j − 1) − 1
2j(j + 1); and

ε
α(λ)
γ2(λ)‖B(e)‖2‖bDi

‖2
∞ ≤ 1

ri
mi (54)

Indeed, applying (51)-(54) to (48) we have, for every 1 ≤ i ≤ m,

βi ≥ mi −
m∑

j=i+1

1
pij

mi −
i−1∑
j=1

1
qij

mi −
1
ri
mi

=
[
1 −

m∑
j=i+1

1
pij

−
i−1∑
j=1

1
qij

− 1
ri

]
mi > 0
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Taking into account (36) and (37), condition (53) can be written as

(
‖mij‖∞ + ‖mji‖∞

)
εk ≤ 1

qji
mj (55)

where 1 ≤ i ≤ m − 1, i + 1 ≤ j ≤ m, and k = j +m(i − 1) − 1
2 i(i + 1). Putting together (52) and (55) yields

pij
(
‖mij‖∞ + ‖mji‖∞

)
mi

≤ εk ≤ mj

qji
(
‖mij‖∞ + ‖mji‖∞

) , (56)

where 1 ≤ i ≤ m − 1, i + 1 ≤ j ≤ m, and 1 ≤ k ≤ 1
2m(m − 1) is given by k = j + m(i − 1) − 1

2 i(i + 1). The 

existence of positive intervals (56) for εk, 1 ≤ k ≤ 1
2m(m − 1), is guaranteed by Assumption 2 (iii).

Next we find index values i and j that correspond to a specific value k, 1 ≤ k ≤ 1
2m(m − 1), in (56). To 

this end, using the equation k = j + m(i − 1) − 1
2 i(i + 1) we express j as a function of i,

j(i) = k −m(i− 1) + 1
2 i(i + 1) (57)

It can be shown that j(i) is strictly decreasing for 1 ≤ i ≤ m − 1. Therefore, we seek the smallest integer 
1 ≤ i ≤ m − 1 such that j ≤ m. Setting

k −m(i− 1) + 1
2 i(i + 1) ≤ m

and solving it with respect to i, with 1 ≤ i ≤ m − 1, ultimately leads to

i =
⌈

1
2

(
2m− 1 −

√
(2m− 1)2 − 8k

)⌉

where �·� denotes the ceiling function. The corresponding value of j then follows from (57).
Now we want to determine ε > 0 that guarantees γ̂ > 0. From (49) and (54), we have

α(λ)
2γ(λ) ≤ ε ≤ γ2(λ)

α(λ)‖B(e)‖2 min
1≤i≤m

mi

ri‖bDi
‖2
∞

(58)

To ensure the existence of a positive interval (58) for ε, we enforce the following assumption.

Assumption 3. We assume that the bilinear form a(λ; ·, ·), the operator B(e), the matrix MD(x) =
[mij(x)]mi,j=1, and the vector bD(x) satisfy the following condition. There exists a constant c̃ ∈ (0, 1)
such that

α2(λ)
2γ3(λ) < c̃

μ̂

‖B(e)‖2‖bD‖2
∞,m

where α(λ) and γ(λ) are the continuity and coercivity constants of a(λ; ·, ·), respectively, and μ̂ is given by 
(50).

We have proved the following result.

Lemma 3. Suppose, for every 1 ≤ i ≤ m, constants pij > 1, i + 1 ≤ j ≤ m, qij > 1, 1 ≤ j ≤ i − 1, and 
ri > 1 are such that
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m∑
j=i+1

1
pij

+
i−1∑
j=1

1
qij

+ 1
ri

< 1 (51)

Then under Assumptions 2 and 3, the a priori energy estimate (47) holds with β̂ > 0 and γ̂ ≥ 0 if εk, 
1 ≤ k ≤ 1

2m(m − 1), and ε satisfy the following conditions.

pij
(
‖mij‖∞ + ‖mji‖∞

)
mi

≤ εk ≤ mj

qji
(
‖mij‖∞ + ‖mji‖∞

) (56)

where i =
⌈

1
2

(
2m− 1 −

√
(2m− 1)2 − 8k

)⌉
, �·� denotes the ceiling function, and j = k−m(i −1) + 1

2 i(i +1); 
and

α(λ)
2γ(λ) ≤ ε ≤ γ2(λ)

α(λ)‖B(e)‖2 min
1≤i≤m

mi

ri‖bDi
‖2
∞

(58)

Remark 4. From the formal a priori energy estimate (47) we conclude that the weak solution to problem 
P2 is expected to be

V ∈ L∞(0, tf ;Vm
0 ), V̇ ∈ L2(0, tf ;Hm

Ω )

provided F ∈ L2(0, tf ; Hm
Ω ).

The preceding remark suggests the weak formulation of the problem P2 as follows.
Given F ∈ L2(0, tf ; Hm

Ω ), find V ∈ L∞(0, tf ; Vm
0 ) with V̇ ∈ L2(0, tf ; Hm

Ω ) such that, for all ψ ∈ Vm
0 ,

∫
Ω

ψTMD(x)V̇dΩ +
∫
Ω

ψTB(b0(x))EB(D−1b1(x))V̇dΩ

−
∫
Ω

ψT∇ ·
[
A0(x)∇V

]
dΩ =

∫
Ω

ψTFdΩ (59)

V(x, 0) = 0 (60)

By the same arguments as those used in (39), the second term on the left-hand side of (59) can be written 
as

∫
Ω

ψTB(b0(x))EB(D−1b1(x))V̇dΩ = a
(
λ;EB(b0)ψ, EB(b0)V̇

)
+ a

(
λ;EB(b0)ψ, EB(bD)V̇

)
(61)

From the continuity of the bilinear form a(λ; ·, ·) and the continuity the linear operator EB, we observe that

ψ,Φ �→ a
(
λ;EB(b0)ψ, EB(b0)Φ

)
+ a

(
λ;EB(b0)ψ, EB(bD)Φ

)

is a bilinear continuous map from Hm
Ω × Hm

Ω to R. Therefore, we can define a continuous bilinear form 
l̄ : Hm

Ω ×Hm
Ω → R by

l̄(ψ,Φ) =
∫
Ω

ψTMD(x)ΦdΩ + a
(
λ;EB(b0)ψ, EB(b0)Φ

)
+ a

(
λ;EB(b0)ψ, EB(bD)Φ

)
(62)

Applying (61) and (62) to (59), the first two terms on the left-hand side of (59) take the form
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∫
Ω

ψTMD(x)V̇dΩ +
∫
Ω

ψTB(b0(x))EB(D−1b1(x))V̇dΩ = l̄(ψ, V̇) (63)

Remark 5. The bilinear form l̄ : Hm
Ω ×Hm

Ω → R is coercive and hence nondegenerate.
Indeed, from (38), (40), and (41), we have, for every V̇ ∈ Hm

Ω ,

l̄(V̇, V̇) ≥
m∑
i=1

[
mi −

m∑
j=i+1

(
‖mij‖∞ + ‖mji‖∞

)
2

1
εk

−
i−1∑
j=1

(
‖mij‖∞ + ‖mji‖∞

)
2 εl −

ε

2
α(λ)
γ2(λ)‖B(e)‖2‖bDi

‖2
∞

]
‖V̇i‖2

HΩ

+
[
γ(λ) − 1

2εα(λ)
]
‖EB(b0)V̇‖2

0,n

= 1
2

m∑
i=1

(mi + βi)‖V̇i‖2
HΩ

+ 1
2 γ̂‖EB(b0)V̇‖2

0,n ≥ 1
2 μ̂‖V̇‖2

Hm
Ω

where βi > 0, 1 ≤ i ≤ m, γ̂ ≥ 0, and μ̂ > 0 are given by (48)-(50), respectively.

For the last term on the left-hand side of (59), using the same arguments as in the derivation of (42)
together with (43), we have

−
∫
Ω

ψT∇ ·
[
A0(x)∇V

]
dΩ = ā(ψ,V) (64)

Substituting (63) and (64) into (59) yields the following abstract formulation of the problem P2 equivalent 
to (59) and (60). Given F ∈ L2(0, tf ; Hm

Ω ), find V ∈ L∞(0, tf ; Vm
0 ) such that V̇ ∈ L2(0, tf ; Hm

Ω ) and, for all 
ψ ∈ Vm

0 ,

l̄(ψ, V̇) + ā(ψ,V) = (ψ,F)Hm
Ω

(65)

V(x, 0) = 0 (60)

The next theorem summarizes results on a global weak solution to the problem P2.

Theorem 1. Given F ∈ L2(0, tf ; Hm
Ω ), under Assumptions 2 and 3, there exists a global unique weak solution

V ∈ L∞(0, tf ;Vm
0 ) with V̇ ∈ L2(0, tf ;Hm

Ω ) (66)

of the problem P2 in the sense of (65) and (60), and the solution depends continuously on the data F; that 
is, the mapping

F �→ V, V̇

from L2(0, tf ; Hm
Ω ) to L∞(0, tf ; Vm

0 ) × L2(0, tf ; Hm
Ω ) is continuous.

Proof. The continuity and coercivity of the bilinear forms l̄ and ā, the symmetry of ā, as well as energy 
estimates arising from (47) ensure the existence and uniqueness of the weak solution to the problem P2. 
The proof follows routinely from the standard Galerkin method, and we omit the details.
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To show that the weak solution depends continuously on F, we use the a priori energy estimate (47), 
which yields

‖V(t)‖2
0,m ≤ 1

α̂μ̂

tf∫
0

‖F‖2
Hm

Ω
ds

for every t ∈ [0, tf ], and hence,

‖V‖L∞(0,tf ;Vm
0 ) ≤ Ĉ‖F‖L2(0,tf ;Hm

Ω ) (67)

On the other hand, taking t = tf in (47), we obtain

‖V̇‖L2(0,tf ;Hm
Ω ) ≤ Ĉ‖F‖L2(0,tf ;Hm

Ω ) (68)

This completes the proof.

4. A weak solution to the coupled parabolic-elliptic system: main result

In this section, we establish global existence, uniqueness, and continuous dependence on initial and 
boundary data for a weak solution to the coupled parabolic-elliptic system (2)-(5). Our ultimate result is 
given in the following theorem.

Theorem 2. Given the initial data VI ∈ Vm, the boundary data VB ∈ L2(0, tf ; H 1
2 (Γ)m

)
with V̇B ∈

L2(0, tf ; H 1
2 (Γ)m

)
, and σ ∈ L2(0, tf ; Hn

Γ ⊗Hn
Γ
)

with σ̇ ∈ L2(0, tf ; Hn
Γ ⊗Hn

Γ
)
, under Assumptions 1, 2, and 

3, the coupled system (2)-(5) admits a global unique weak solution

(V̄,u) ∈ L2(0, tf ;Vm) × L2(0, tf ; Ṽn
0 ) (69)

with

( ˙̄V, u̇) ∈ L2(0, tf ;Hm
Ω ) × L2(0, tf ; Ṽn

0 ) (70)

and this solution depends continuously on the data VI , VB(0), VB, V̇B, σ, and σ̇.

Proof. Existence and Uniqueness. The solution (V̄, u) of the coupled parabolic-elliptic system (2)-(5) in 
terms of the solutions W̄ and V to the problems P1 and P2 is given by (23) and (24). Corollary 1 and 
Theorem 1, respectively, guarantee the global existence and uniqueness of weak solutions to the problems 
P1, and P2 with an arbitrary source term F, provided F ∈ L2(0, tf ; Hm

Ω ).
Next, we show that the source term (21) corresponding to the system (2)-(5) satisfies the above condition. 

The definition (13) of the function uΓ(σ) ∈ Ṽn
0 , σ ∈ L2(0, tf ; Hn

Γ ⊗Hn
Γ
)
, and σ̇ ∈ L2(0, tf ; Hn

Γ ⊗Hn
Γ
)

give

uΓ ∈ L2(0, tf ; Ṽn
0 ) (71)

u̇Γ ∈ L2(0, tf ; Ṽn
0 ) (72)

From Corollary 1, the definitions of the operators B(·) : Ṽn
0 :→ Hm

Ω and EB(·) : Hm
Ω → Ṽn

0 , and (72)
we infer that the source term F of the form (21) belongs to L2(0, tf ; Hm

Ω ). Thus, Theorem 1 holds for the 
problem P2 associated with the system (2)-(5). The global existence and uniqueness of the weak solution 
(V̄, u) satisfying (69) and (70) now follow immediately from (29), (66), (71), (72), and the definition of the 
operator EB applied to (23), (24), and their time derivatives.
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Continuous dependence on data. From (23), (30), (67), and (69) we have

‖V̄‖L2(0,tf ;Vm) ≤ Ĉ
(
‖W̄‖L2(0,tf ;Vm) + ‖V‖L∞(0,tf ;Vm

0 )
)

≤ Ĉ
(
‖VI‖Vm + ‖VB(0)‖H1/2(Γ)m + ‖VB‖L2(0,tf ;H1/2(Γ)m)

+ ‖V̇B‖L2(0,tf ;H1/2(Γ)m) + ‖F‖L2(0,tf ;Hm
Ω )

)
(73)

The time derivative of (23) together with (31), (68), and (70) give

‖ ˙̄V‖L2(0,tf ;Hm
Ω ) ≤ Ĉ

(
‖ ˙̄W‖L2(0,tf ;Hm

Ω ) + ‖V̇‖L2(0,tf ;Hm
Ω )

)
≤ Ĉ

(
‖VI‖Vm + ‖VB(0)‖H1/2(Γ)m + ‖V̇B‖L2(0,tf ;H1/2(Γ)m) + ‖F‖L2(0,tf ;Hm

Ω )
)

(74)

To estimate the source term F on the right-hand side of (73) and (74), we apply the continuity of the 
operators B and EB and (31) to (21) and obtain

‖F‖L2(0,tf ;Hm
Ω ) ≤ Ĉ

(
‖ ˙̄W‖L2(0,tf ;Hm

Ω ) + ‖u̇Γ‖L2(0,tf ;Ṽn
0 )
)

≤ Ĉ
(
‖VI‖Vm + ‖VB(0)‖H1/2(Γ)m + ‖V̇B‖L2(0,tf ;H1/2(Γ)m) + ‖u̇Γ‖L2(0,tf ;Ṽn

0 )
)

(75)

Next, we estimate uΓ and its time derivative. To that end, we take Φ = uΓ in (13) and use the Ṽn
0 -

coercivity of the form a(λ; ·, ·), as well as the trace theorem [6] and Poincaré-Friedrichs’ inequality [14]. 
Then, for every t ∈ [0, tf ],

γ(λ)‖uΓ(t)‖2
0,n ≤

∣∣a(λ;uΓ(t),uΓ(t))
∣∣ =

∣∣(σ(t)n,uΓ(t)
)
Hn

Γ

∣∣
≤ Ĉ‖σ(t)‖Hn

Γ⊗Hn
Γ
‖uΓ(t)‖0,n

From the above inequality, for every t ∈ [0, tf ],

‖uΓ(t)‖0,n ≤ Ĉ‖σ(t)‖Hn
Γ⊗Hn

Γ

and the integration over [0, tf ] yields

‖uΓ‖L2(0,tf ;Ṽn
0 ) ≤ Ĉ‖σ‖L2(0,tf ;Hn

Γ⊗Hn
Γ) (76)

By the similar argument, differentiating (13) with respect to time and taking Φ = u̇Γ, we eventually obtain

‖u̇Γ‖L2(0,tf ;Ṽn
0 ) ≤ Ĉ‖σ̇‖L2(0,tf ;Hn

Γ⊗Hn
Γ) (77)

Substituting (77) into (75) and applying the result to (73) and (74) we respectively get

‖V̄‖L2(0,tf ;Vm) ≤ Ĉ
(
‖VI‖Vm + ‖VB(0)‖H1/2(Γ)m + ‖VB‖L2(0,tf ;H1/2(Γ)m)

+ ‖V̇B‖L2(0,tf ;H1/2(Γ)m) + ‖σ̇‖L2(0,tf ;Hn
Γ⊗Hn

Γ)
)

(78)

and

‖ ˙̄V‖L2(0,tf ;Vm) ≤ Ĉ
(
‖VI‖Vm + ‖VB(0)‖H1/2(Γ)m

+ ‖V̇B‖L2(0,tf ;H1/2(Γ)m) + ‖σ̇‖L2(0,tf ;Hn
Γ⊗Hn

Γ)
)

(79)
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Our next step is to show that the u-component of the solution depends continuously on the initial and 
boundary data. Applying (7) and the continuity of the operator EB to (16) and combining the result with 
(76) and (78) give

‖u‖L2(0,tf ;Ṽn
0 ) ≤ Ĉ

(
‖VI‖Vm + ‖VB(0)‖H1/2(Γ)m

+ ‖VB‖L2(0,tf ;H1/2(Γ)m) + ‖V̇B‖L2(0,tf ;H1/2(Γ)m)

+ ‖σ‖L2(0,tf ;Hn
Γ⊗Hn

Γ) + ‖σ̇‖L2(0,tf ;Hn
Γ⊗Hn

Γ)
)

Finally, differentiating (7) and (16) with respect to time and applying the continuity of the operator EB

together with (77) and (79), we have

‖u̇‖L2(0,tf ;Ṽn
0 ) ≤ Ĉ

(
‖VI‖Vm + ‖VB(0)‖H1/2(Γ)m + ‖V̇B‖L2(0,tf ;H1/2(Γ)m) + ‖σ̇‖L2(0,tf ;Hn

Γ⊗Hn
Γ)
)

The proof of Theorem 2 is thus completed.
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