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Abstract

A linear integro-differential equation modelling multiple fragmentation with inherent mass loss is
investigated by means of substochastic semigroup theory. The existence of a semigroup is established
and, under natural conditions on certain coefficients, the generator of this semigroup is identified.
This yields, in particular, a validation of the formal mass-loss rate equation for the model.
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1. Introduction

Fragmentation processes arise in many physical situations such as polymer degradation,
liquid droplet breakup, combustion, and the crushing and grinding of rocks. Often, when
modelling such processes, it is assumed that the total mass in the system is a conserved
guantity. However, as pointed out in [1,2], there are many situations where mass loss can
occur in a natural manner. Motivated by this, Edwards et al. [1,2] introduced the following
linear rate equation to describe fragmentation with mass loss:

o]

du(x,t)=—a(x)u(x,t)+ / a(Mb(x|y)u(y,t)dy + o [r(x)u(x, t)]. (1.2)

X
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This equation involves a particle mass distribution functipa fragmentation rate, a con-
tinuous mass loss rate and a nonnegative measurable functiowhereb(x|y) describes
the distribution of particle massesspawned by the fragmentation of a particle of mass
The continuous mass loss ratds defined so that(m(t)) = —dm/dt for a particle of
time-dependent mags(t), while the normalizing condition

y
/ Gl dx =y — 2(3)y. (1.2)
0

where 0< A(y) < 1, allows for so-called discrete mass loss to occur in the fragmentation
process.

Note that a rate equation for the mass in the system can be obtained, as in [3], by
multiplying (1.1) byx and integrating. This leads to

%/u(x,t)xdx:—/a(x))»(x)u(x,t)xdx—/r(x)u(x,t)dx. (1.3)
0 0 0

Although it is expected that the mass in the system will evolve according to (1.3), it cannot
be assumed that this will be the case since only formal arguments have been used to derive
it. Consequently, one of our objectives in this paper is to establish the validity of (1.3) in a
mathematically rigorous manner.

Past investigations into (1.1) appear to have concentrated on finding exact and asymp-
totic solutions, usually for specific choicesafb andr; see, for example, [1-3]. However,
it seems that little has been done to establish general conditions for the existence and
unigueness of solutions to (1.1), despite the fact that numerous results of this type have
been proved for the mass conserving version of (1.1), in whiemd A are both iden-
tically zero. Relevant work in this area includes [4] and [5], and also [6] and [7] where
results are presented for a combined coagulation—fragmentation equation. Our aim here is
to rectify this situation by using functional-analytic techniques to establish that an abstract
formulation of (1.1) has a unique solution under fairly mild conditiong@mdr.

The strategy we adopt involves the theory of semigroups of linear operators [8] and is
largely based on an approach developed by Voigt [9] and Arlotti [10], and used later by
one of the present authors in several cases; see, e.g., [4,11]. In particular, in [4] the method
was used to analyse a class of formally mass conserving fragmentation equations. Crucial
to this approach is a theorem by Voigt [9] (the origins of which go back to the fundamental
work by Kato [12] on Kolmogorov equations) which establishes that, under appropriate
assumptions, a perturbation+ B of a generatord of a substochastic semigroup by a
positive (unbounded) operat® has an extensioX that also generates a substochastic
semigroup. An account of this theorem and Arlotti’s work is given in Section 2, where
we also prove a new theorem giving conditions which guaranteekthiatthe closure of
A+ B.

In Section 3, we examine an abstract formulation of the transport equation that is ob-
tained from (1.1) when the integral is omitted. Whemndr are suitably restricted, the
existence of a positive strongly continuous contractive (and thus substochastic) semigroup
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is proved by using the Hille—Yosida theorem. Moreover, we find an explicit formula for
this semigroup.

Returning to the full equation (1.1) in the final section, we use Voigt’s result to deduce
the existence of a minimal substochastic semigroup generated by an extension of the op-
erator formally defined by the right-hand side of (1.1). Under an additional assumption on
a andr, this solution is shown to satisfy the mass rate equation. It is worthwhile to note
that in the particular case wherand are identically zero and(x) = x* (see, e.g., [13])
the sufficient conditions derived here coincide with the necessary and sufficient conditions
for mass conservation obtained in [4], which suggests that the developed technique is quite
sharp.

2. The Voigt perturbation theorem

The approach we shall adopt in our analysis of (1.1) is to reformulate the associated
initial-value problem as an abstract Cauchy problem (ACP) which can then be treated
using the theory of semigroups of operators. For convenience, we include here an account
of a perturbation theorem due to Voigt that plays a prominent r6le later. Further details on
this theorem can be found in [4,9].

Let (2, u) be a measure space and}tenote the Banach spate(s2, 1) endowed
with the standard nornfj - ||. For any subspac& C X, we denote byZ, the cone of
nonnegative (a.e.) elements Bf Let (G(¢)); >0 be a strongly continuous semigroup on
X. We say thaiG(t)),>0 is asubstochastic semigrouf for eacht > 0, G(r) > 0 and
G| < 1.ltis called asstochasticsemigroup if additionallyG (¢) f || = || f || for f € X .

We consider two linear operatofd, D(A)) and (B, D(B)) in X, which are assumed
to have the following properties:

(A.1) (A, D(A)) generates a substochastic semigroup denotédrlyr)); >0,
(A.2) D(B) 2 D(A)andBf >0foranyf e D(B)4,
(A.3) forany f € D(A)4

/(Af+Bf)d;L<O. (2.1)
2

Let us observe that the above list yields that the ope@¢dr— A) 1 is a bounded positive
operator onX [9]. In addition, the following perturbation result can be proved [4,9,10].

Theorem 2.1. Let A and B satisfy assumption@.1)—(A.3). Then there exists a smallest
substochastic semigro x (1)), >0 generated by an extensi&hof A 4 B. The generator
K is characterized by

(I-K)tf= 2(1 -AHBU-H7"f VfeX. (2.2)

n=0
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Proof. See [4, Theorem 2.1], where also some more constructive formuléé foir)); >0
are given. O

The main drawback of Theorem 2.1 is that it fails to provide any characterization of the
domainD(K) of the generatoK . It turns out that this is not only of mathematical interest
but determines, for example, whether the solution to (1.1) satisfies the formal rate equation
for mass (1.3) and thus whether this solution is physically relevant in the sense that it obeys
the physical laws used to construct the model.

To explain this in more detail let us first consider applications in which the underlying
model is formally conservative, that is

/(A+B)fd;L=0, Vf e D(A),. (2.3)
2

In this case the desired situation is tlat= A + B since this results in [4]
d
EHGK(t)f” =0, VfeD(K)4, t>0.

As we indicated in Section 1, it is expected that the system governed by (1.1) is non-
conservative since, formally, there is mass loss described by (1.3). To cater for this, we
replace (2.3) by

/ (A+B)fdp=—c(f). VfeD(A)s, (2.4)
22

wherec is a positive linear functional o (A). Note that (2.4) is consistent with assump-
tion (A.3). Ideally, (2.4) should lead to

d
EHGK(t)f” =—c(Gxk®)f), VfeDK)y, t>0, (2.5)

so that the semigroup yields solutions that decay in accordance with (2.4). Clearly, if
D(K) = D(A), then(Gk (1)), >0 Satisfies (2.5), sinc€k (1) f € D(A)4 forall t > 0 and
f e D(A)y,andso

d d
EHGK(t)f” Z/EGK(t)fdMZ/(AGK(t)f+BGK(t)f)dl’L
2 2
=—c(Gk (@) f).

However, as with the conservative case, the less restrictive requiremetk that + B

can also be physically acceptable providdths some additional properties. These include
cases when is closed onD(K) or, alternatively, whem is a positive linear functional on
D(A);+ and(K, D(K)4) is, in a suitable sense, accessible frbifi) . through monotonic
sequences of functions (see Theorem 2.2). If either of these additional constrainits on
satisfied and = A + B, then

/ Kfdu =n|Lmoo/(A +B) fadp=— lim c(fp) =—c(f),
2 2
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where (f)nen C D(A)+ is such thatf, — f € D(K)+ and(A + B) f, — Kf (and
fn /' f ifthe second assumption is satisfied). This in turn shows thé&fD (K )., then

Slexws= [ £Gx0ndu= [ Kox0rdu=-c(Gewy). vi=0
2 2
as required.

Note, however, that iK is a proper extension of + B, then (2.5) may not hold and
solutions may decay in a manner that is not accounted for by the model. This situation has
been encountered in investigations into the formally conservative fragmentation process
governed by the equation

o
Qu(x,t) =—x%u(x,t)+ Z/yaflu(y, Hdy, x>0, a<0;
X

see [4,14] for further details. For the model (1.1) with some special coefficients such “shat-
tering” solutions were found in [1].

The problem of determining sufficient conditions under which= A 4+ B has obvi-
ously received some attention, with relevant results presented in [4,9,10]. Unfortunately,
it is difficult to apply these results directly to (1.1) as they were developed for formally
conservative models. Therefore we devote the remainder of this section to establishing suf-
ficient conditions more suited to the problem in hand. Since the right-hand side of (1.1)
can be expressed in terms of three operators, we make the further assumption that

(A4 ACAp+ A1, D(A) S D(Ap) N D(A1),

where Ag and A1 are both linear operators iK. It should be noted that a similar sce-
nario was examined in [10] but under the much more restrictive assumption ghathe
generator of a substochastic semigroupfoandA = Ag + A1.

Adopting the approach used in [10], we denoteshiye set of all measurable functions
defined ons2 taking values in the extended set of real numbers (that is, infinity is allowed
as the value of a function). Clearly c E. We define the subsét c E by the follow-
ing condition: f € F if and only if for every nonnegative and nondecreasing sequence of
functions(f»),en satisfying sup f, = | f| we have sup(l — A1 eX.

Before proceeding any further we adopt the following assumptioB.on

(A5 f e D(B) if and only if ft = max/f, 0}, f~ = max—f,0} both belong to
D(B). Moreover, if (f',)nen, (f”,)nen are two nondecreasing sequences of ele-
ments ofD(A) . satisfying sup f,, = sup, £, almost everywhere, then sppf, =
sup, Bf, a.e.

ThroughB we construct another subset®fsayG, defined as the set of all functiorfse X

such that for any nonnegative, nondecreasing sequefien of elements oD (B) such

that sup f, = | f|, we have supBf, < +oo almost everywhere. It is easy to check that
D(A) CG C X CFCE. Aconsequence of assumptions (A.1)—(A.5) is that we can define
mappingB:G; — E; andL:F, — X, by
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Bf :=supBf,, VfeGi, (2.6)
Lf:=supl —A)1f,, VfeF,, (2.7)

where 0< f,, < fy+1 foranyn € N, and sup f, = f. Precisely speaking, the correctness
of the definition ofL follows from the fact, proved in [11], that, as defineds a restriction
of the so-called Sobolev tower extension®yfL, A); see [8].

We extend the mappindsandB ontoF andG, respectively, by linearity. The relation
betweerL and the extension a®(1, A) yields easily the result that

Lf e D(A) ifandonlyif feX, (2.8)

which was established in [10, Lemma 2] by a different method.

Recalling that we denoted bi the generator of the full semigroup constructed by
Voigt's method, letr € D(K). Theng = (I —K)h € X andsd_.g = (I —A)~1g € D(A) C
D(B) which implies thaBLg = BLg. Consequently, from (2.2), we obtain

o
h=Y L(BL'g. (2.9)
k=0
Following [10], for any giverg € X and arbitrary: € N we write
fo=Y (BL*g (2.10)
k=0
and
hy =Lfy. (2.11)

By (2.2), (hy)nen CONverges td: in X. However, for positiveg we can consider limits

of both sequences,f,).en and (h,),en, in the sense of monotonic convergence almost
everywhere, as and B are positive operators. Denoting the respective limitsfbgnd

h, it follows thath € X andLf = h. We can now prove a more general version of [10,
Theorem 2].

Theorem 2.2. Let assumptionfA.1)—(A.5) be satisfied and let be the positive functional
defined by(2.4). Moreover, for arbitraryg € X, let i, h, and f, be defined by2.9),
(2.10)and(2.11)

(@) The real sequence(h,)),cn IS coOnvergent.
(b) If we have

— lim c¢(hy) g/Khdy,, (2.12)
n—oo
2

thenK = A+ B.
(c) If cis of the form

o(f) = / Ifdu. feD(A),

2
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where the functiohis positive(a.e) on 2 andK = A + B, then, for any: € D(K) .,
/Kudu:—c(u). (2.13)
2
Proof. (a) Sincer,, € D(A) € D(Ap) N D(A1), we can write
fo=—Ag— Ahy, (2.14)
and so

I fall = llAnl —/thndu—/AlhndM

2 2

— kol + / Bhy dy / (Aohn + Athn + Bhy) djt
2

2
= [lhnll + [|BAnll + c(hp). (2.15)
Noting that
n
Bhy=BLfy =Y (BL"'g=fir1—g=fu+ (B g —¢g, (2.16)
k=0
we obtain
IBhal =1l full + | (B g| — ligll. (2.17)

Combining (2.17) with (2.15) produces
gl = nll + cChn) + | (BL"tg, (2.18)

and therefordc(h,)),en is bounded. From the positivity @fand the definition oh,, we
deduce thatc(h,)),cn is also nondecreasing and hence is convergent.

(b) It follows from (a) and (2.18) that| (BL)"t¢g|).en is convergent. Moreover, as
g=h— Kh,we have

gl =lAll —/Khdu- (2.19)
2
Consequently, from (2.18), (2.19) and assumption (2.12), we obtain

lim H(BL)"+1g|| =|lgll — |lk]| — lim c(h,,):—/](hdu— lim c(h,) <O0.
n—>oo n—oo n—oo
2
This shows that

lim [(BL)"g| =0, VgeXy, (2.20)
n—o0
and, by linearity, we conclude that (2.20) is also valid for gny X. The final statement

Kh = (A + B)h follows as in [10, Theorem 2] or by invoking the general result [15, The-
orem 3.1].
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(€) If u e D(K), thenu=( — K)1g=( — K) (gt — g7), whereg € X and
g, g™ € X,. Writing h* = (I — K)"1g*, we obtainu = h* — h~. Bothh+ andh~ can
be achieved by monotonic sequen¢es, ), cx, defined as in (2.9) witlg*, respectively.
Both sequences are iR(A), and converge irX to 1™, respectively. Moreover, by com-
bining (2.14) and (2.16), we gét + B)h;: = hif 4+ (BL)"T1g* — g%, so that by (2.20) and
K = A+ B, (A+B)hf — Kh* in X. Thus, passing to the limitifi, Kh;* du = —c(h)
we obtain, by the monotone convergence theorﬁ;ﬂ{hjE dp = —c(h*), where the right-
hand limit is finite. Finally, for arbitrary. € D(K) we obtain

/Kuduszhwu—/Kh*du:—c(h+—h*)=—c(u). O
2 2 2

3. Thetransport semigroup

As a first step toward applying the theory of Section 2 to Eq. (1.1), we now establish
the existence of a strongly continuous semigrodp (1)), >0 associated with the transport
equation

oru(x,t) = 8x[r(x)u(x, t)] —a(x)u(x,t), t>0, x>0,
u(0,x) =g). (3.2)

Throughout we shall assume that the functisrda satisfy the following conditions:

(C.1) risstrictly positive on0, oo) and absolutely continuous on any compact subinterval
of (0, 00),
(C.2) a € L1,0c(0, 00) and is nonnegative almost everywhere(6n0o).

Note that the possible singularities ofallowed here make it rather difficult to apply di-
rectly the fairly general theory of first-order equations developed in [16] and subsequent
papers. Thus we have decided for a straightforward approach that is presented below.

In the sequel, any function that is absolutely continuous on all compact subintervals of
(0, o0) will be said to be locally absolutely continuous (abbreviated to l.a.c.). Since (C.1)
and (C.2) imply that 1r,a/r € L110c(0, 00), their respective antiderivative® and Q,
given by

R(): L, _ [a© d
(x):= o) s, Ox):= ) s
X0 X0

(for fixed xg > 0), are both l.a.c. ConsequentR+ Q is bounded on any compact subin-
terval of (0, c0), and, since the exponential function is uniformly Lipschitz on any (fixed)
compact subinterval, it follows that-?+¢ is also l.a.c. for any fixed constait Other
immediate consequences of (C.1) and (C.2) are gh# strictly increasing (and hence
invertible) on(0, oco), andQ is nondecreasing of®, co). Definem g, Mg, mo andMg by
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lim R(x) =mpg, lim R(x) = Mg,
x—0 X—>00
lim o) =mg,  lim Q()=Mo.

We note thatng andm g can be finite or-oo, while Mz and Mg can be finite oH-co.
Clearly, Mg > mg and Mo > mgo, and the images oR and Q are (mg, Mg) and
(mg, Mg), respectively.

As the total mass in the system at timis given byM (¢) = fo"o xu(x,t)dx, we refor-
mulate (3.1) as the ACP

‘:l—':(t) =Au®], t>0,

u0) =g, (3.2)
posed in the Banach spade:= L1([0, c0), x dx), where A is given formally byAf =
(d/dx)(rf) —af. More precisely, we define

Af:=Aof+A1f, [fe€D(A) S D(Ap) ND(A1),
whereAg f 1= (d/dx)(rf), Arf := —af, and

D(Ap) = {feX: rfisl.a.c. andc%(rf) eX},
D(Ay) :={f e X: af € X}.

Our main result in this section is to identify a domaii(A), for A, so that(A, D(A))
generates a substochastic semigrougXon
By direct integration, we find that the general solution to the differential equation

d
M (x)+a(x) fx) — E(r(X)f(x)) =0, 1>0,

is given by f (x) = Cf,(x), where

e MROX)+0(x)

filx) = T = e()‘fl)R(x)fl(x). (3.3)

For some choices of anda (e.g., forr(x) = x? with p > 2 anda bounded and inte-
grable), a routine calculation shows thig. || is finite. In such caseg; € D(Ag) N D(A1)
and therefore(Al — A, D(Ag) N D(A1)) is not invertible fora > 0 and consequently
(A, D(Ap) N D(A1)) cannot be the generator ofa-semigroup. Thus, our first aim is
to determine the domaif(A) of A for which (A\I — A, D(A)) is invertible for all» > 0
and all functions- anda satisfying (C.1) and (C.2).

Lemma 3.1. For eachi > 0O, let

1(2) :=/xfx(x)dx= I £l (3.4)
0
where f; is given by(3.3).
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(@ If Mg = o0, thenI (L) =oco forall A > 0.

(b) If I(A) < 400 for someir > 0, thenMy < oo.
(©) I(A) <ocoforanyr > Qifandonlyifl (1) < oo.
(d) Foranyg € D(Ag) N D(A1) and Mg < +o00,

im $% _o itandonyit lim £ o
X—00 fk(x) xX—00 fl(x)
(e If I(A) =00, then
g(x) _o.
X—>00 f)\(x)

Proof. (a) and (b). Since exp(AR(x) + Q(x)) is positive and increasing, we obtain

o0 o
[()\)>/xfk(x)dx>erkR(XO)+Q(XO)/Cf_x):xoekR(Xo)JrQ(XO)MR’
rx
X0 X0

from which both (a) and (b) follow immediately.
(c) and (d). IfMr < o0, then

lim e*DRW = ,O=DMr ¢ (0 00), (3.5)
X—>00

and therefore for any > 0

oo oo
/xf;\(x)dx < oo ifandonly if /xfl(x) dx < 00.
y y

Since, for anyx > 0,

y y
1 d
/xf;\(x)dx == /er(x)—(eAR(x)) dx < XeQ(y)(e)‘R(y) — eA'"R), (3.6)
A dx A
0 0
we obtain (c). The result stated in (d) also follows directly from (3.3) and (3.5).
(e) LetI(x) =oc and letg € D(Ag) N D(A1). Then, fory > 0,
r d
/e_)‘R(x)_Q(x)d—(r(x)g(x))dx < 0. (3.7)
X
y
Furthermorerg ande *£~2 are l.a.c. and so the left-hand side of (3.7) can be integrated
by parts to produce

[e*AR(")*Q(x)r(x)g(X)];o—/%(e*AR(")*Q(”)r(X)g(x)dx
y
= lim 2(8) - ;(gy)) +/(k+a(x))g(x)dx, (3.8)

y
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from which we deduce that

Supposd. # 0. Then there exisf > 0 andy > 0 such thatg(x)|/f.(x) > C forall x > y,
in which case

oo o0

/xfk(x)dx=/x|g(x)||];((;))| dx < %/x|g(x)‘dx<oo.
0

y y
Thus, it follows from (3.6) thaf (A) < oo, contrary to the assumption digr). 0O

The results given in the previous lemma suggest that we dbfide C D(Ag) N D (A1)
by
D(Ag) N D(A1) if 1(1) =

D(4) ::{{geD(Ao)ﬂD(Al) lim £ — o} if 7(2) < +oo, (3.9)

where f1 and (1) are given by (3.3) and (3.4), respectively. Note tiiat — A, D(A)) is
invertible and that the condition

jim £

x—c0 f1(x)

is always satisfied, irrespective of whetldég and/ (1) are finite or infinite.

=0, Vge D(A), (3.10)

Lemma 3.2. For eachi > 0, let R(A) be defined by

e @]

(R(A)g)(x) :=/G (x, y)%dy geX, x>0, (3.11)

X

whereG, (x, y) = fo(x)/f,(y). ThenR()) is the resolvent ofi.

Proof. Forg € X andi > 0 we have, by Tonelli’'s theorem,

o0 y
IR <//xG)\(x y)lg(y)ld dx_/ylg(y)l /XGA(x,y) Ay
r(y) Y _0 r(y) ) y y

1
< = dy=— , 3.12
A/y\g(y)\ y A||g|| (3.12)
0
where the last inequality follows, by (3.6), from

y y
xG(x,y) 1 / 1
dx = dx < =.
/ y ACK. *hxdx s

0
HenceR (1) is a bounded operator ati with ||R(A) || < 1/A.
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Next we note that

oo o0

y
O/a(X)X|(R()»)g)(X)|dx<0/y|g(y)|<Wlﬁ(y)0/xa(X)fx(X)dX) dy.

Since

y y
d

/xa(x)fk(x)dx:/xekR(x)d_(eQ(x))dx
X

0 0

<y RO (20 ") <yr(y) fr(y),
we deduce thalA1R(M)g|l < llgll for eachg € X andA > 0, and soR(A)X C D(A1).
Now observe that, fog € X,
o0
r(0)(R()g) (x) = OO / eTHITOWg(y) dy,

X
and bothe* R+ and the integral (as a function of its lower limit) are absolutely continuous
and bounded on any compact subinterval®foo). ThereforerR(1)g is l.a.c. Moreover,

d
AoR(\)g = y (rR(Vg) =01 —ADRMg—g, VgeX, (3.13)

dx
so thatR(A)X € D(Ap) and henceR(A)X € D(Ag) N D(A1) forall A > 0. If 1(1) = o0,
we deduce immediately th&(L) X € D(A). If 1(1) < oo, then

‘ (R(M)g)(x)

e R@®-0) T
Si(x) /

o
< /efo(y)fQ(y)|g(y)|dy < ylg|dy—0
X

X

asx — oo and againR(A)X € D(A) forall A > 0.
Finally, it follows from (3.13) that

A —A)RM)g =l —Ao— AR g = (A — A)R(A)g — AoR(M)g =g,
Vg e X.
Also, for g € D(A), integration by parts yields

]

TGy d
(R(A)Aog)(x)—/ o) E(r(y)g(y))dy
_ o i d (Gix,y)
=[Gt g’ / ) dy( - )dy
_ 8
~ Ty T
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+ A / (h +a()e *RO-2Wg (1) dy

= (RO = Apg)(x) — g(x).
Consequently,
RMA(AI —Apg— A1)g =—R(A)Aog + R(M(AI — A1)g =g, Vge D(A),
and the theorem is provedO

Theorem 3.1. The operatorA, D(A)) is the infinitesimal generator of a strongly contin-
uous positive semigroup of contractions, $6y (1));>0, onX.

Proof. This follows immediately from Lemma 3.2, the positivity (1) and the Hille—
Yosida theorem. O

To complete our analysis of (3.2), we now find an explicit formula(@u (1)), >o0. If
we define
Y(t,x) =R (R(x)+1), x>0,0<r<Mg—R(x),
then direct integration of (3.1) leads to the solution
e@Or (Y (1, x))g(¥ (1, x))

u(x, 1) = eo “)(Y(S’x))d“)g(Y(t, x)) = 000y (x) , (3.14)
where the second equation in (3.14) is obtained by using the identities

d rF(Y(s,x)dY

7 Inr(Y(s, x)) = mz =r (Y(s,x))
and

t Y(t,x)
/a(Y(s,x))ds = / j((g do = Q(Y(1,x)) — Q). (3.15)
0 X

If My is finite, then (3.14) is not defined for all- 0. To enable a semigroup to be defined
in such cases we must find a suitable extension beyond the stipulated limitoafo this,
we observe thaY (¢, x) approaches-co as R(x) + ¢t approached/g and thus, by (3.9),
u(x,t) converges to zero (at least fgre D(A)). Thus a reasonable candidate for the
semigroup is

2O (¥ (1,x))g (Y (1,x))

[Z(t)g](x) = { Q) p(x)
0

for R(x) +1t < Mg,
forR(x) +t > Mg.

(3.16)

Theorem 3.2. For any g € X, the function(z, x) — [Z(¢)g](x) is a representation of the
semigroup(G 4(1)); >0 in the sense that, for almost any- 0 andx > 0,

[Gag](x) =[Z()g]x).
If g € D(A), then the equality holds for anmy> 0 andx > 0.
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Proof. Let us fixg € X. For any fixedr > 0, the functiorr — [Z(t)g](x) is clearly mea-
surable and has Laplace transform

o Me= RO sir0m—0(r .0 Y Y
— - ’ t7 t’
/e,m[z([)g](x)dtz e r(Y(t,x))g(Y( x))dt
r(x)
0 0
o
AR()+Q(x)
_ eifef)nR(Z)fQ(Z)g(Z) dZ, (317)
r(x)

X

where the change of variables= Y (¢, x) = R~1(R(x) + ) has been used to obtain the
last formula. On the other hand, from Theorem 3.1 we have, fogany,

o0
/e*“GA(t)g dt=0I—A)g=RMNg inX.
0

SinceX is a space of type L [17, pp. 68—71], and> G 4(t)g is continuous, there is a
measurable representatiofi 4 (r)g) (x) for which we have for almost all > 0

o0 oo

/ eH(Gag) () dr = [ / e MGal)g dt} () =[R(1)g] ()
0 0
AR(x)+Q(x) 7
r(x)

X

As both[G4(1)g](x) and[Z(¢)g](x) are clearly locally integrable with respect toon
[0, 00) for almost anyx > 0, and the abscissae of convergence of the Laplace integrals are
equal to 0, from [18, Theorem 1.7.3] we infer that

[Ga(n)g](x)=[Z(1)g](x), fora.ar>0, x>0, (3.19)

sothat[Z(¢)g](x) is a representative @¥ 4 (¢)g.

If ¢ € D(A), then, from the definition oP(Ag) and the strict positivity of, we obtain
that g is continuous on0, co) so that, by the discussion preceding (3.1&))g](x) is
continuous irr € (0, co) for anyx > 0. On the other hand, far € D(A), G 4(¢)g is a dif-
ferentiableX -valued function so that, by [17, Theorem 3.4.2], a representiatiyér) g](x)
can be selected to be continuous ifor any x > 0. Repeating the previous argument we
obtain the validity of (3.19) for any > 0 andx > 0. The extension to= 0 can be done
by continuity ase (Y (¢, x)) is continuous at = 0 providedx > 0. O

From Theorems 3.1 and 3.2 we can state immediately that the ACP (3.2) has a strong
solutionu : [0, c0) — X4, given byu(t) := Ga(t)g = Z(t)g, for all g € D(A)+. By fur-
ther restrictingg to be an absolutely continuous function with suppofGyN], N < oo, it
is possible to show by direct, but lengthy, calculations that ¢) := [Z(¢)g](x) satisfies
the initial value problem (3.1) for almost alt~ 0 andx > 0.
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4. The semigroup for the fragmentation equation with massloss

Having established the existence of a substochastic semigtou()), >0 associated
with the reduced initial-value problem (3.1), we now turn our attention to the full mass-
loss fragmentation equation (1.1) and show that this can be analysed using the theory
described in Section 2. As in Section 3, we express the problem as an ACP in the space
X = L1([0, 00), xdx). In this case, the abstract problem takes the form

Z—L:(t) =Alu@®)]+ B[u®)], >0,

u(0) =g. (4.1)

ThroughoutA C Ag + A1 is defined as in the previous section, whilés given by

9]

(Bf)(x) 2=/a(y)b(XIy)f(y)dy, f € D(B), (4.2)

X

whereb satisfies (1.2) an®(B) = D(A) ={f € X: af € X}.

Lemma4.1. For any f € D(A) we have

/(Af+Bf)xdx=—c(f), (4.3)
0
where
c(f):/r(x)f(x)dx+/k(x)a(x)f(x)xdx. (4.4)
0 0

Proof. Let f € D(A). Thenf = (I — A)~1g for someg € X and, as in (3.13), we obtain
o

(Ao(l — A)~Lg)(x) = %e”*”m / e ROI=C0)g(y) dy — g(x).

X
Now

o]

o0
/<1+a(x)eR(x)+Q(x)/e—R(y)—Q(y)g(y)dy)xdx
0

r(x)

X

(e¢] y
:/e—R(y)—Q(y)g(y) /1+a(x)eR(x)+Q(X)xdx dy.
r(x)
0 0

where
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y

y

/1+“(x)eR(x>+Q(x)xdxZ/xieR(xHQ(x)dx
r(x) dx

0 0

,
— yeRO+00) _ /ER(XHQ(X) dax.
0

Hence
00 00 00 Y
/Ao(l—A)_lgxdx=/g(y)ydy—/e_R(”_Q(”g(y)</ eR(X)+Q(")dX> dy
0 0
o

gy)ydy

e ¢]

0

(e.¢]

/eR(x>+Q<x></ eR(y)Q(y)g(y)dy> dx
0

oo

0 0

X

= —/r(x)((l - A ) (x)dx.
0

SinceD(A) € D(Ag)ND(A1), itfollows that(I — A)~1g € D(A4¢) N D(A1) and therefore,
using (1.2), we deduce that

/(Af+Bf)xdx:/(A0f+A1f+Bf)xdx
0 0

8]

= —/r(x)((l —A) ) (x)dx — /xa(x)((l — A g)(x)dx
0 0

o0 o0

+ / x( / a(y)b(xly)f(y)dy) dx

X

0
o0 oo
= —/r(x)f(x)dx - /A(x)a(x)f(x)x dx=—c(f). O
0 0
Theorem 4.1. Letr anda satisfy(C.1)and(C.2). Then there exists a smallest substochastic
semigroup, sayG (t));>0, generated by an extensighof A + B.

Proof. This follows immediately from Theorem 2.1 and Lemma 4.1asf) < O for
feDA)y. O
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Our final aim is to obtain a complete characterization of the genekatnr using Theo-
rem 2.2 to show thak = A + B. In view of Theorem 2.2(c) and the comments made after
Theorem 2.1, this will then lead to

d
ZIGkOf| ==c(f). ¥feD@).

wherec is defined by (4.4), thus providing a rigorous justification of the mass-loss rate
equation (1.3).

We start with an auxiliary result that specifies some results of Section 2 in the present
context.

Lemma 4.2. In the setting of this section, lat= (I — K)~1g with g € X, and definef,
andh, via (2.10)and(2.11) respectively. Then we have

o0 o0 o
lim /th,lxdx =— lim /r(x)h,,(x)dx:—/r(x)(Lf)(x)dx. (4.5)
R 0 R 0 0
Consequently;L f is integrable with respect to the Lebesgue meagureSimilarly
o0 o
nli_)moo/)»(x)a(x)hn(x)xdx =/A(x)a(x)(Lf)(x)xdx, (4.6)
0 0

so thatral f is integrable with respect to the measurgx.

Proof. Recalling the notation (2.10) and (2.11), sinfes X+, h, € D(A) C D(Aop), and,
asinLemmad4.l,

/AoLfnxdx=—/r(x)(Lf,,)(x)dx.
0 0

Now, from the definitionL f,, converges monotonically almost everywheréte L f and
therefore(rL f,).en IS @ nondecreasing sequence converging almost everywhete to
From the monotone convergence theorem

oo oo

nimw/r(X)(Lﬁz)(X)dx=/V(X)(Lf)(X)dx,
0 0

and, by (4.4), we see that this limit does not exceed the lim{t6f,)),en Which, from
Theorem 2.2(a), is known to be finite.
The second part follows in the same waya

Theorem 2.2 is not immediately useful as we know neitkienor 4. To circumvent
this difficulty we could try an approach that has proved successful in previous investiga-
tions, such as [4,10,11]. However, this would require a substantially stronger condition that
(2.12) holds for the maximal extension 4f+ B, that is, for all positive: for which an ex-
pression on the right-hand side of (1.1) defines an integrable function. It turns out that such
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a condition is too crude for our purposes. Instead, we use the result below which follows
from a simple observation that, having obtained some necessary properties of functions
from D(K) in the previous lemma, we need only test (2.12) on functions that have these
properties. This leads to the following more convenient condition.

Theorem 4.2. Let

—/r(X)(Lf)(X)dx—/X(X)a(X)(Lf)(x)xdx
0 0
g/(Lf)(x)xdx+/(—f(x)+(BLf)(x))xdx (4.7)
0 0

for all functions f € F;. which are such that the products f andxAaL f are both inte-
grable with respect to the Lebesgue measingand— f + BLf € X. ThenK = A + B.

Proof. SinceKh =h — g, whereh =L f andBh = f — g, we can write
Kh=Lf— f+BLf. (4.8)

Moreover, if f € F is such that (4.8) holds, then the right-hand side is integrable (with
respect to the measuxeix). Sincel f € X, we see that it is enough to restrict our atten-
tion to functionsf satisfying— f + BL f € X. Substituting (4.8) and using (4.4) in (2.12)
gives (4.7). Also, from Lemma 4.2 it follows that it is enough to consider functions for
which the indicated products are integrablel

To be able to apply Theorem 4.2, we require the following lemma.
Lemma4.3.If f e F4 and
(C.3) lim,_ g+ r(x)/x < +o0 andlim,_ g+ a(x) < oo,
then f € L1([0, «], x dx) for anya < +o0.

Proof. Since(I — A)~!is an integral operator with a positive kernel, it follows from the
monotone convergence theorem thads the same integral operator, but now defined on
those measurable functions for which the integral is finite almost everywhere and defines
an integrable function. Consequently, from Lemma 3.2 and (3LIf1¥ X is given by

o]

Gi(x,
LF)(x) = / Md% (4.9)
J r(y)
and so, applying Tonelli's theorem, we obtain

8]

o0 y

1
/(Lf)(x)xdx=/Yf(Y) —/xGl(x,y)dx dy.
, , yr(y) ,



J. Banasiak, W. Lamb / J. Math. Anal. Appl. 284 (2003) 9-30 27

The function
1 y
Y(y) = —/xGl(x,y)dx
yr(y) J

is continuous, strictly positive and finite for alle (0, co). Moreover, by I'Hospital’s the-
orem
y 1

lim ¥(y)= lim = lim >0
y—>0t y=0tr(y) +y(L+a(y)) y—0tr(y)/y+1+a(y)

provided assumption (C.3) is satisfied and so the stated result follaws.

Theorem 4.3. Letr anda satisfy assumption&C.1)—(C.3) Then the generatok of the
substochastic semigrou ¢ (¢)), >0 of Theoren#.1satisfiesk = A + B.

Proof. Let f € F; satisfy the assumptions of Theorem 4.2, so that in particulart-
BLf € X. By Lemma 4.3 we see thagte L1([0, «], x dx) for any finitea > 0 and conse-
quentlyBL f € L1([0, o], x dx) for anya € (0, c0). Hence

/(—f(x)+ (BLf)(x))x dx =aﬂrﬂm/(—f(x) + (BLf)(x))x dx, (4.10)
0 0
where

/(—f(x) + BLA@))xdx = — / F(x)xdx + /(BLf)(x)x dx.
0 0 0

In an analogous manner tg the operatoB is defined by the same formula #and
therefore, interchanging the order of integration and using (1.2), we obtain

/ (BLS)(¥)xdx = / ( / a(y)b(xly)(Lf)(y)dy)xdx
0 0 X

o

=/a(y)(Lf)(y)ydy—/a(y)(Lf)(y))»(y)ydy+Ra, (4.11)
0 0

where Ry := [° [o a(»)b(|y)(Lf)(y)x dxdy. By assumptionyial f is integrable so
that

Jm_[am)enoiroydy = [amenmamydy <ce. (4.12)
0 0
and so we focus on the first integral in (4.11). Using (4.9) we obtain
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o

[ GROIHOH)
/}wyxpﬂcwydy— ‘/< os) /'—R@—Q“Uxmdz)ydy
0 0

y

+/ 1+a(y)

0

eRO+0()
)

/ “R@-0G) f(,) dz)y dy,

(4.13)

where clearly

[ RITOG) F v
lim / 7/6_R(Z)_Q(Z)f(z)dz ydy=/(Lf)(y)ydy<+00-
0

wtoo ) \ ()
J

Interchanging the order of integration in the second integral in (4.13) yields

o

/ ~R@=-0() f( )</ (1+“(y))y R(>)+Q(>)dy) dz+ Sy, (4.14)
0
where
1+a
Sa _//( r(;)y))y RM+Q(—R(2)— Q(Z)f(z)dydz
o
Since
Z
1 d
/ a0y re+00) gy = /y_eR(y)+Q(y)dy
r(y) dy

0
b4

— R0 _/eR(y)+Q(y) dy.
0
it follows that

o

/ ~RE=-0() ¢, )(/ (1+a(Y))y R<y>+Q(y>dy)dZ
0

o Z

=/f(z)zdz—/eR(Z)Q(Z)f(z)</eR(y)+Q(y)dy) dz. (4.15)
0

0 0
Now, by Lemma 4.2 and Tonelli’s theorem,

o Zz
im /e*R(z)fQ(z)f(Z) (/ eR<y>+Q(y>dy> dz
oa—> 00

0

0
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o0 Z
:/E—R(z)—Q(z)f(Z) (/ eR(y)+Q(y)dy) dz
0 0
(e.¢] (e.¢] o
:/eR(y)+Q(y) (/ e R@=0@ ¢ () dz) dy = / r(x)(Lf)(x)dx < oo.
0 y 0

Substituting into (4.11) and using (4.4), we obtain
oo o0
/(—f(X) + BLf)(x))xdx = aﬂTm(Ra + Se) — /(Lf)(y)y dy —c(Lf)
0 0

and soR, + S, must have a finite nonnegative limit as— oco. Therefore

o]

/ (Lf)()xdx + / (—F () + BLAG)) dx > —c(Lf).
0

0
and the result follows from Theorem 4.20

Corollary 4.1. Letr anda satisfy(C.1)—(C.3) Then, for anyf € D(K)+,

o0

d oo
EHGK(t)f” =—/F(X)[GK(t)f](X)dx—/k(X)a(X)[GK(I)f](X)de-
0 0

Proof. This follows from Theorem 2.2(c) and (4.4)0

To conclude, we consider the case wheandr do not satisfy (C.3) and show, by means
of a simpler argument, that the generakdrcoincides withA + B providedx is suitably
constrained.

Theorem 4.4. Leta andr satisfy(C.1)—(C.2)and suppose that for somg > 0 we have
M < A(y)<1lforall y>0.Then
D(K)=D(A)=D(Ag) N D(Ay). (4.16)

Proof. LetLf = h, whereh € D(K). From Lemma 4.2 and the assumptionjowe see
thatal f € X. Moreover, from Tonelli's theorem we obtain, as in (4.11),

/ (BLS)(x)xdx = / a(LHO)ydy — / a(LHOAG)ydy.
0 0 0

ThereforeBL f € X which leads, via (4.8), t¢' € X. If we now apply (2.8), then we obtain
h=Lf € D(A) which yields the stated result.c
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