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Abstract

A linear integro-differential equation modelling multiple fragmentation with inherent mass lo
investigated by means of substochastic semigroup theory. The existence of a semigroup is es
and, under natural conditions on certain coefficients, the generator of this semigroup is ide
This yields, in particular, a validation of the formal mass-loss rate equation for the model.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Fragmentation processes arise in many physical situations such as polymer degra
liquid droplet breakup, combustion, and the crushing and grinding of rocks. Often,
modelling such processes, it is assumed that the total mass in the system is a co
quantity. However, as pointed out in [1,2], there are many situations where mass lo
occur in a natural manner. Motivated by this, Edwards et al. [1,2] introduced the follo
linear rate equation to describe fragmentation with mass loss:

∂tu(x, t) = −a(x)u(x, t)+
∞∫
x

a(y)b(x|y)u(y, t) dy + ∂x
[
r(x)u(x, t)

]
. (1.1)
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This equation involves a particle mass distribution functionu, a fragmentation ratea, a con-
tinuous mass loss rater, and a nonnegative measurable functionb, whereb(x|y) describes
the distribution of particle massesx spawned by the fragmentation of a particle of masy.
The continuous mass loss rater is defined so thatr(m(t)) = −dm/dt for a particle of
time-dependent massm(t), while the normalizing condition

y∫
0

xb(x|y) dx = y − λ(y)y, (1.2)

where 0� λ(y) � 1, allows for so-called discrete mass loss to occur in the fragment
process.

Note that a rate equation for the mass in the system can be obtained, as in
multiplying (1.1) byx and integrating. This leads to

d

dt

∞∫
0

u(x, t)x dx = −
∞∫

0

a(x)λ(x)u(x, t)x dx −
∞∫

0

r(x)u(x, t) dx. (1.3)

Although it is expected that the mass in the system will evolve according to (1.3), it c
be assumed that this will be the case since only formal arguments have been used t
it. Consequently, one of our objectives in this paper is to establish the validity of (1.3
mathematically rigorous manner.

Past investigations into (1.1) appear to have concentrated on finding exact and a
totic solutions, usually for specific choices ofa, b andr; see, for example, [1–3]. Howeve
it seems that little has been done to establish general conditions for the existen
uniqueness of solutions to (1.1), despite the fact that numerous results of this typ
been proved for the mass conserving version of (1.1), in whichr andλ are both iden-
tically zero. Relevant work in this area includes [4] and [5], and also [6] and [7] w
results are presented for a combined coagulation–fragmentation equation. Our aim
to rectify this situation by using functional-analytic techniques to establish that an ab
formulation of (1.1) has a unique solution under fairly mild conditions ona andr.

The strategy we adopt involves the theory of semigroups of linear operators [8]
largely based on an approach developed by Voigt [9] and Arlotti [10], and used lat
one of the present authors in several cases; see, e.g., [4,11]. In particular, in [4] the m
was used to analyse a class of formally mass conserving fragmentation equations.
to this approach is a theorem by Voigt [9] (the origins of which go back to the fundam
work by Kato [12] on Kolmogorov equations) which establishes that, under appro
assumptions, a perturbationA + B of a generatorA of a substochastic semigroup by
positive (unbounded) operatorB has an extensionK that also generates a substocha
semigroup. An account of this theorem and Arlotti’s work is given in Section 2, w
we also prove a new theorem giving conditions which guarantee thatK is the closure of
A + B.

In Section 3, we examine an abstract formulation of the transport equation that
tained from (1.1) when the integral is omitted. Whena andr are suitably restricted, th
existence of a positive strongly continuous contractive (and thus substochastic) sem
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is proved by using the Hille–Yosida theorem. Moreover, we find an explicit formula
this semigroup.

Returning to the full equation (1.1) in the final section, we use Voigt’s result to de
the existence of a minimal substochastic semigroup generated by an extension of
erator formally defined by the right-hand side of (1.1). Under an additional assumpti
a andr, this solution is shown to satisfy the mass rate equation. It is worthwhile to
that in the particular case whenr andλ are identically zero anda(x)= xα (see, e.g., [13]
the sufficient conditions derived here coincide with the necessary and sufficient con
for mass conservation obtained in [4], which suggests that the developed technique
sharp.

2. The Voigt perturbation theorem

The approach we shall adopt in our analysis of (1.1) is to reformulate the asso
initial-value problem as an abstract Cauchy problem (ACP) which can then be t
using the theory of semigroups of operators. For convenience, we include here an a
of a perturbation theorem due to Voigt that plays a prominent rôle later. Further deta
this theorem can be found in [4,9].

Let (Ω,µ) be a measure space and letX denote the Banach spaceL1(Ω,µ) endowed
with the standard norm‖ · ‖. For any subspaceZ ⊂ X, we denote byZ+ the cone of
nonnegative (a.e.) elements ofZ. Let (G(t))t�0 be a strongly continuous semigroup
X. We say that(G(t))t�0 is a substochastic semigroupif, for each t � 0, G(t) � 0 and
‖G(t)‖ � 1. It is called astochasticsemigroup if additionally‖G(t)f ‖ = ‖f ‖ for f ∈ X+.

We consider two linear operators(A,D(A)) and(B,D(B)) in X, which are assume
to have the following properties:

(A.1) (A,D(A)) generates a substochastic semigroup denoted by(GA(t))t�0,
(A.2) D(B) ⊇ D(A) andBf � 0 for anyf ∈ D(B)+,
(A.3) for anyf ∈ D(A)+∫

Ω

(Af + Bf )dµ � 0. (2.1)

Let us observe that the above list yields that the operatorB(I −A)−1 is a bounded positive
operator onX [9]. In addition, the following perturbation result can be proved [4,9,10]

Theorem 2.1. Let A andB satisfy assumptions(A.1)–(A.3). Then there exists a smalle
substochastic semigroup(GK(t))t�0 generated by an extensionK ofA+B. The generator
K is characterized by

(I − K)−1f =
∞∑
n=0

(I − A)−1[B(I − A)−1]nf, ∀f ∈ X. (2.2)



12 J. Banasiak, W. Lamb / J. Math. Anal. Appl. 284 (2003) 9–30

of the
est
uation
obeys

lying

non-
is, we

p-

rly, if

ude
n

on
Proof. See [4, Theorem 2.1], where also some more constructive formulae for(GK(t))t�0
are given. ✷

The main drawback of Theorem 2.1 is that it fails to provide any characterization
domainD(K) of the generatorK. It turns out that this is not only of mathematical inter
but determines, for example, whether the solution to (1.1) satisfies the formal rate eq
for mass (1.3) and thus whether this solution is physically relevant in the sense that it
the physical laws used to construct the model.

To explain this in more detail let us first consider applications in which the under
model is formally conservative, that is∫

Ω

(A + B)f dµ = 0, ∀f ∈ D(A)+. (2.3)

In this case the desired situation is thatK = A + B since this results in [4]

d

dt

∥∥GK(t)f
∥∥= 0, ∀f ∈ D(K)+, t > 0.

As we indicated in Section 1, it is expected that the system governed by (1.1) is
conservative since, formally, there is mass loss described by (1.3). To cater for th
replace (2.3) by∫

Ω

(A + B)f dµ = −c(f ), ∀f ∈ D(A)+, (2.4)

wherec is a positive linear functional onD(A). Note that (2.4) is consistent with assum
tion (A.3). Ideally, (2.4) should lead to

d

dt

∥∥GK(t)f
∥∥= −c

(
GK(t)f

)
, ∀f ∈ D(K)+, t > 0, (2.5)

so that the semigroup yields solutions that decay in accordance with (2.4). Clea
D(K) = D(A), then(GK(t))t�0 satisfies (2.5), sinceGK(t)f ∈ D(A)+ for all t � 0 and
f ∈ D(A)+, and so

d

dt

∥∥GK(t)f
∥∥=

∫
Ω

d

dt
GK(t)f dµ =

∫
Ω

(
AGK(t)f + BGK(t)f

)
dµ

= −c
(
GK(t)f

)
.

However, as with the conservative case, the less restrictive requirement thatK = A +B

can also be physically acceptable providedc has some additional properties. These incl
cases whenc is closed onD(K) or, alternatively, whenc is a positive linear functional o
D(A)+ and(K,D(K)+) is, in a suitable sense, accessible fromD(A)+ through monotonic
sequences of functions (see Theorem 2.2). If either of these additional constraintsc is
satisfied andK = A+ B, then∫

Kf dµ = lim
n→∞

∫
(A + B)fn dµ = − lim

n→∞ c(fn) = −c(f ),
Ω Ω
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where (fn)n∈N ⊂ D(A)+ is such thatfn → f ∈ D(K)+ and (A + B)fn → Kf (and
fn ↗ f if the second assumption is satisfied). This in turn shows that iff ∈ D(K)+, then

d

dt

∥∥GK(t)f
∥∥=

∫
Ω

d

dt

(
GK(t)f

)
dµ =

∫
Ω

KGK(t)f dµ = −c
(
GK(t)f

)
, ∀t > 0,

as required.
Note, however, that ifK is a proper extension ofA + B, then (2.5) may not hold an

solutions may decay in a manner that is not accounted for by the model. This situati
been encountered in investigations into the formally conservative fragmentation p
governed by the equation

∂tu(x, t) = −xαu(x, t)+ 2

∞∫
x

yα−1u(y, t) dy, x > 0, α < 0;

see [4,14] for further details. For the model (1.1) with some special coefficients such
tering” solutions were found in [1].

The problem of determining sufficient conditions under whichK = A +B has obvi-
ously received some attention, with relevant results presented in [4,9,10]. Unfortun
it is difficult to apply these results directly to (1.1) as they were developed for form
conservative models. Therefore we devote the remainder of this section to establishi
ficient conditions more suited to the problem in hand. Since the right-hand side of
can be expressed in terms of three operators, we make the further assumption that

(A.4) A ⊆ A0 +A1, D(A) ⊆ D(A0)∩D(A1),

whereA0 andA1 are both linear operators inX. It should be noted that a similar sc
nario was examined in [10] but under the much more restrictive assumption thatA0 is the
generator of a substochastic semigroup onX andA = A0 + A1.

Adopting the approach used in [10], we denote byE the set of all measurable functio
defined onΩ taking values in the extended set of real numbers (that is, infinity is allo
as the value of a function). ClearlyX ⊂ E. We define the subsetF ⊂ E by the follow-
ing condition:f ∈ F if and only if for every nonnegative and nondecreasing sequen
functions(fn)n∈N satisfying supn fn = |f | we have supn(I − A)−1fn ∈ X.

Before proceeding any further we adopt the following assumption onB.

(A.5) f ∈ D(B) if and only if f + = max{f,0}, f− = max{−f,0} both belong to
D(B). Moreover, if (f ′

n)n∈N, (f ′′
n)n∈N are two nondecreasing sequences of

ments ofD(A)+ satisfying supn f
′
n = supn f

′′
n , almost everywhere, then supn Bf

′
n =

supn Bf
′′
n a.e.

ThroughB we construct another subset ofE, sayG, defined as the set of all functionsf ∈ X

such that for any nonnegative, nondecreasing sequence(fn)n∈N of elements ofD(B) such
that supn fn = |f |, we have supn Bfn < +∞ almost everywhere. It is easy to check th
D(A) ⊆ G ⊆ X ⊆ F ⊆ E. A consequence of assumptions (A.1)–(A.5) is that we can de
mappingsB : G+ → E+ andL : F+ → X+ by
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Bf := sup
n

Bfn, ∀f ∈ G+, (2.6)

Lf := sup
n

(I − A)−1fn, ∀f ∈ F+, (2.7)

where 0� fn � fn+1 for anyn ∈ N, and supn fn = f . Precisely speaking, the correctne
of the definition ofL follows from the fact, proved in [11], that, as defined,L is a restriction
of the so-called Sobolev tower extension ofR(1,A); see [8].

We extend the mappingsL andB ontoF andG, respectively, by linearity. The relatio
betweenL and the extension ofR(1,A) yields easily the result that

Lf ∈ D(A) if and only if f ∈ X, (2.8)

which was established in [10, Lemma 2] by a different method.
Recalling that we denoted byK the generator of the full semigroup constructed

Voigt’s method, leth ∈ D(K). Theng = (I −K)h ∈ X and soLg = (I −A)−1g ∈ D(A) ⊆
D(B) which implies thatBLg = BLg. Consequently, from (2.2), we obtain

h =
∞∑
k=0

L(BL)kg. (2.9)

Following [10], for any giveng ∈ X and arbitraryn ∈ N we write

fn =
n∑

k=0

(BL)kg (2.10)

and

hn = Lfn. (2.11)

By (2.2), (hn)n∈N converges toh in X. However, for positiveg we can consider limits
of both sequences,(fn)n∈N and(hn)n∈N, in the sense of monotonic convergence alm
everywhere, asL andB are positive operators. Denoting the respective limits byf and
h, it follows thath ∈ X+ andLf = h. We can now prove a more general version of [
Theorem 2].

Theorem 2.2. Let assumptions(A.1)–(A.5)be satisfied and letc be the positive functiona
defined by(2.4). Moreover, for arbitraryg ∈ X+, let h,hn and fn be defined by(2.9),
(2.10)and(2.11).

(a) The real sequence(c(hn))n∈N is convergent.
(b) If we have

− lim
n→∞ c(hn) �

∫
Ω

Khdµ, (2.12)

thenK = A+ B.
(c) If c is of the form

c(f ) =
∫

lf dµ, f ∈ D(A),
Ω
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Ω

Kudµ= −c(u). (2.13)

Proof. (a) Sincehn ∈ D(A) ⊆ D(A0)∩ D(A1), we can write

fn = (I − A0 − A1)hn, (2.14)

and so

‖fn‖ = ‖hn‖ −
∫
Ω

A0hn dµ−
∫
Ω

A1hn dµ

= ‖hn‖ +
∫
Ω

Bhn dµ−
∫
Ω

(A0hn +A1hn + Bhn) dµ

= ‖hn‖ + ‖Bhn‖ + c(hn). (2.15)

Noting that

Bhn = BLfn =
n∑

k=0

(BL)k+1g = fn+1 − g = fn + (BL)n+1g − g, (2.16)

we obtain

‖Bhn‖ = ‖fn‖ + ∥∥(BL)n+1g
∥∥− ‖g‖. (2.17)

Combining (2.17) with (2.15) produces

‖g‖ = ‖hn‖ + c(hn) + ∥∥(BL)n+1g
∥∥, (2.18)

and therefore(c(hn))n∈N is bounded. From the positivity ofc and the definition ofhn we
deduce that(c(hn))n∈N is also nondecreasing and hence is convergent.

(b) It follows from (a) and (2.18) that(‖(BL)n+1g‖)n∈N is convergent. Moreover, a
g = h− Kh, we have

‖g‖ = ‖h‖ −
∫
Ω

Khdµ. (2.19)

Consequently, from (2.18), (2.19) and assumption (2.12), we obtain

lim
n→∞

∥∥(BL)n+1g
∥∥= ‖g‖ − ‖h‖ − lim

n→∞ c(hn) = −
∫
Ω

Khdµ− lim
n→∞ c(hn) � 0.

This shows that

lim
n→∞

∥∥(BL)n+1g
∥∥= 0, ∀g ∈ X+, (2.20)

and, by linearity, we conclude that (2.20) is also valid for anyg ∈ X. The final statemen
Kh = (A + B)h follows as in [10, Theorem 2] or by invoking the general result [15, T
orem 3.1].
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(c) If u ∈ D(K)+, thenu = (I − K)−1g = (I − K)−1(g+ − g−), whereg ∈ X and
g+, g− ∈ X+. Writing h± = (I − K)−1g±, we obtainu = h+ − h−. Bothh+ andh− can
be achieved by monotonic sequences(h±

n)n∈N, defined as in (2.9) withg±, respectively.
Both sequences are inD(A)+ and converge inX to h±, respectively. Moreover, by com
bining (2.14) and (2.16), we get(A+B)h±

n = h±
n + (BL)n+1g± −g±, so that by (2.20) and

K = A + B, (A+B)h±
n → Kh± in X. Thus, passing to the limit in

∫
Ω
Kh±

n dµ = −c(h±
n )

we obtain, by the monotone convergence theorem,
∫
Ω Kh± dµ = −c(h±), where the right-

hand limit is finite. Finally, for arbitraryu ∈ D(K)+ we obtain∫
Ω

Kudµ=
∫
Ω

Kh+ dµ−
∫
Ω

Kh− dµ = −c(h+ − h−) = −c(u). ✷

3. The transport semigroup

As a first step toward applying the theory of Section 2 to Eq. (1.1), we now esta
the existence of a strongly continuous semigroup(GA(t))t�0 associated with the transpo
equation

∂tu(x, t) = ∂x
[
r(x)u(x, t)

]− a(x)u(x, t), t > 0, x > 0,

u(0, x)= g(x). (3.1)

Throughout we shall assume that the functionsr anda satisfy the following conditions:

(C.1) r is strictly positive on(0,∞) and absolutely continuous on any compact subinte
of (0,∞),

(C.2) a ∈ L1,loc(0,∞) and is nonnegative almost everywhere on(0,∞).

Note that the possible singularities ofr allowed here make it rather difficult to apply d
rectly the fairly general theory of first-order equations developed in [16] and subse
papers. Thus we have decided for a straightforward approach that is presented belo

In the sequel, any function that is absolutely continuous on all compact subinterv
(0,∞) will be said to be locally absolutely continuous (abbreviated to l.a.c.). Since
and (C.2) imply that 1/r, a/r ∈ L1,loc(0,∞), their respective antiderivativesR andQ,
given by

R(x) :=
x∫

x0

1

r(s)
ds, Q(x) :=

x∫
x0

a(s)

r(s)
ds

(for fixed x0 > 0), are both l.a.c. Consequently,R + Q is bounded on any compact subi
terval of(0,∞), and, since the exponential function is uniformly Lipschitz on any (fix
compact subinterval, it follows thateλR+Q is also l.a.c. for any fixed constantλ. Other
immediate consequences of (C.1) and (C.2) are thatR is strictly increasing (and henc
invertible) on(0,∞), andQ is nondecreasing on(0,∞). DefinemR , MR , mQ andMQ by
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lim
x→0

R(x) = mR, lim
x→∞R(x) = MR,

lim
x→0

Q(x) = mQ, lim
x→∞Q(x) = MQ.

We note thatmR andmQ can be finite or−∞, while MR andMQ can be finite or+∞.
Clearly, MR > mR and MQ � mQ, and the images ofR and Q are (mR,MR) and
(mQ,MQ), respectively.

As the total mass in the system at timet is given byM(t) = ∫∞
0 xu(x, t) dx, we refor-

mulate (3.1) as the ACP

du

dt
(t) = A

[
u(t)

]
, t > 0,

u(0) = g, (3.2)

posed in the Banach spaceX := L1([0,∞), x dx), whereA is given formally byAf =
(d/dx)(rf ) − af . More precisely, we define

Af := A0f + A1f, f ∈ D(A) ⊆ D(A0)∩ D(A1),

whereA0f := (d/dx)(rf ), A1f := −af , and

D(A0) :=
{
f ∈ X: rf is l.a.c. and

d

dx
(rf ) ∈ X

}
,

D(A1) := {f ∈ X: af ∈ X}.
Our main result in this section is to identify a domain,D(A), for A, so that(A,D(A))

generates a substochastic semigroup onX.
By direct integration, we find that the general solution to the differential equation

λf (x)+ a(x)f (x)− d

dx

(
r(x)f (x)

)= 0, λ > 0,

is given byf (x) = Cfλ(x), where

fλ(x) = eλR(x)+Q(x)

r(x)
= e(λ−1)R(x)f1(x). (3.3)

For some choices ofr anda (e.g., forr(x) = xp with p > 2 anda bounded and inte
grable), a routine calculation shows that‖fλ‖ is finite. In such cases,fλ ∈ D(A0)∩D(A1)

and therefore(λI − A,D(A0) ∩ D(A1)) is not invertible forλ > 0 and consequentl
(A,D(A0) ∩ D(A1)) cannot be the generator of aC0-semigroup. Thus, our first aim
to determine the domainD(A) of A for which (λI − A,D(A)) is invertible for allλ > 0
and all functionsr anda satisfying (C.1) and (C.2).

Lemma 3.1. For eachλ > 0, let

I (λ) :=
∞∫

0

xfλ(x) dx = ‖fλ‖, (3.4)

wherefλ is given by(3.3).
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(a) If MR = ∞, thenI (λ) = ∞ for all λ > 0.
(b) If I (λ) < +∞ for someλ > 0, thenMR < ∞.
(c) I (λ) < ∞ for anyλ > 0 if and only ifI (1) < ∞.
(d) For anyg ∈ D(A0)∩ D(A1) andMR < +∞,

lim
x→∞

g(x)

fλ(x)
= 0 if and only if lim

x→∞
g(x)

f1(x)
= 0.

(e) If I (λ) = ∞, then

lim
x→∞

g(x)

fλ(x)
= 0.

Proof. (a) and (b). Sincex exp(λR(x) + Q(x)) is positive and increasing, we obtain

I (λ) �
∞∫

x0

xfλ(x) dx � x0e
λR(x0)+Q(x0)

∞∫
x0

dx

r(x)
= x0e

λR(x0)+Q(x0)MR,

from which both (a) and (b) follow immediately.
(c) and (d). IfMR < ∞, then

lim
x→∞ e(λ−1)R(x) = e(λ−1)MR ∈ (0,∞), (3.5)

and therefore for anyy > 0
∞∫
y

xfλ(x) dx < ∞ if and only if

∞∫
y

xf1(x) dx < ∞.

Since, for anyλ > 0,
y∫

0

xfλ(x) dx = 1

λ

y∫
0

xeQ(x) d

dx

(
eλR(x)

)
dx � y

λ
eQ(y)

(
eλR(y) − eλmR

)
, (3.6)

we obtain (c). The result stated in (d) also follows directly from (3.3) and (3.5).
(e) LetI (λ) = ∞ and letg ∈ D(A0)∩ D(A1). Then, fory > 0,

∞∫
y

e−λR(x)−Q(x) d

dx

(
r(x)g(x)

)
dx < ∞. (3.7)

Furthermore,rg ande−λR−Q are l.a.c. and so the left-hand side of (3.7) can be integr
by parts to produce

[
e−λR(x)−Q(x)r(x)g(x)

]∞
y

−
∞∫
y

d

dx

(
e−λR(x)−Q(x)

)
r(x)g(x) dx

= lim
x→∞

g(x)

fλ(x)
− g(y)

fλ(y)
+

∞∫ (
λ + a(x)

)
g(x) dx, (3.8)
y
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from which we deduce that

lim
x→∞

g(x)

fλ(x)
= L< ∞.

SupposeL �= 0. Then there existC > 0 andy > 0 such that|g(x)|/fλ(x) � C for all x � y,
in which case

∞∫
y

xfλ(x) dx =
∞∫
y

x
∣∣g(x)∣∣ fλ(x)|g(x)| dx � 1

C

∞∫
0

x
∣∣g(x)∣∣dx < ∞.

Thus, it follows from (3.6) thatI (λ) < ∞, contrary to the assumption onI (λ). ✷
The results given in the previous lemma suggest that we defineD(A) ⊆ D(A0)∩D(A1)

by

D(A) :=
{
D(A0) ∩D(A1) if I (1) = +∞,{
g ∈ D(A0)∩ D(A1): lim

x→∞
g(x)
f1(x)

= 0
}

if I (1) < +∞, (3.9)

wheref1 andI (1) are given by (3.3) and (3.4), respectively. Note that(λI − A,D(A)) is
invertible and that the condition

lim
x→∞

g(x)

f1(x)
= 0, ∀g ∈ D(A), (3.10)

is always satisfied, irrespective of whetherMR andI (1) are finite or infinite.

Lemma 3.2. For eachλ > 0, letR(λ) be defined by

(
R(λ)g

)
(x) :=

∞∫
x

Gλ(x, y)
g(y)

r(y)
dy, g ∈ X, x > 0, (3.11)

whereGλ(x, y)= fλ(x)/fλ(y). ThenR(λ) is the resolvent ofA.

Proof. Forg ∈ X andλ > 0 we have, by Tonelli’s theorem,

∥∥R(λ)g
∥∥�

∞∫
0

∞∫
x

xGλ(x, y)|g(y)|
r(y)

dy dx =
∞∫

0

y|g(y)|
r(y)

( y∫
0

xGλ(x, y)

y
dx

)
dy

� 1

λ

∞∫
0

y
∣∣g(y)∣∣dy = 1

λ
‖g‖, (3.12)

where the last inequality follows, by (3.6), from
y∫

0

xGλ(x, y)

y
dx = 1

yfλ(y)

y∫
0

xfλ(x) dx � 1

λ
.

HenceR(λ) is a bounded operator onX with ‖R(λ)‖ � 1/λ.
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Next we note that
∞∫

0

a(x)x
∣∣(R(λ)g

)
(x)
∣∣dx �

∞∫
0

y
∣∣g(y)∣∣

(
1

yr(y)fλ(y)

y∫
0

xa(x)fλ(x) dx

)
dy.

Since

y∫
0

xa(x)fλ(x) dx =
y∫

0

xeλR(x) d

dx

(
eQ(x)

)
dx

� yeλR(y)
(
eQ(y) − emQ

)
� yr(y)fλ(y),

we deduce that‖A1R(λ)g‖ � ‖g‖ for eachg ∈ X andλ > 0, and soR(λ)X ⊆ D(A1).
Now observe that, forg ∈ X,

r(x)
(
R(λ)g

)
(x) = eλR(x)+Q(x)

∞∫
x

e−λR(y)−Q(y)g(y) dy,

and botheλR+Q and the integral (as a function of its lower limit) are absolutely continu
and bounded on any compact subinterval of(0,∞). ThereforerR(λ)g is l.a.c. Moreover,

A0R(λ)g = d

dx

(
rR(λ)g

)= (λI − A1)R(λ)g − g, ∀g ∈ X, (3.13)

so thatR(λ)X ⊆ D(A0) and henceR(λ)X ⊆ D(A0) ∩ D(A1) for all λ > 0. If I (1) = ∞,
we deduce immediately thatR(λ)X ⊆ D(A). If I (1) < ∞, then

∣∣∣∣ (R(λ)g)(x)

fλ(x)

∣∣∣∣�
∞∫
x

e−λR(y)−Q(y)
∣∣g(y)∣∣dy � e−λR(x)−Q(x)

x

∞∫
x

y
∣∣g(y)∣∣dy → 0

asx → ∞ and againR(λ)X ⊆ D(A) for all λ > 0.
Finally, it follows from (3.13) that

(λI − A)R(λ)g = (λI − A0 −A1)R(λ)g = (λI − A1)R(λ)g − A0R(λ)g = g,

∀g ∈ X.

Also, for g ∈ D(A), integration by parts yields

(
R(λ)A0g

)
(x)=

∞∫
x

Gλ(x, y)

r(y)

d

dy

(
r(y)g(y)

)
dy

= [
Gλ(x, y)g(y)

]∞
x

−
∞∫
x

r(y)g(y)
d

dy

(
Gλ(x, y)

r(y)

)
dy

= fλ(x) lim
y→∞

g(y) − g(x)

fλ(y)
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+ fλ(x)

∞∫
x

(
λ + a(x)

)
e−λR(y)−Q(y)g(y) dy

= (
R(λ)(λI − A1)g

)
(x)− g(x).

Consequently,

R(λ)(λI − A0 − A1)g = −R(λ)A0g + R(λ)(λI − A1)g = g, ∀g ∈ D(A),

and the theorem is proved.✷
Theorem 3.1. The operator(A,D(A)) is the infinitesimal generator of a strongly conti
uous positive semigroup of contractions, say(GA(t))t�0, onX.

Proof. This follows immediately from Lemma 3.2, the positivity ofR(λ) and the Hille–
Yosida theorem. ✷

To complete our analysis of (3.2), we now find an explicit formula for(GA(t))t�0. If
we define

Y (t, x) := R−1(R(x)+ t
)
, x > 0, 0 � t <MR − R(x),

then direct integration of (3.1) leads to the solution

u(x, t) = e(
∫ t

0 (r
′−a)(Y (s,x)) ds)g

(
Y (t, x)

)= eQ(x)r(Y (t, x))g(Y (t, x))

eQ(Y (t,x))r(x)
, (3.14)

where the second equation in (3.14) is obtained by using the identities

d

ds
ln r
(
Y (s, x)

)= r ′(Y (s, x))

r(Y (s, x))

dY

ds
= r ′(Y (s, x)

)
and

t∫
0

a
(
Y (s, x)

)
ds =

Y (t,x)∫
x

a(σ )

r(σ )
dσ = Q

(
Y (t, x)

)− Q(x). (3.15)

If MR is finite, then (3.14) is not defined for allt > 0. To enable a semigroup to be defin
in such cases we must find a suitable extension beyond the stipulated limits oft . To do this,
we observe thatY (t, x) approaches+∞ asR(x) + t approachesMR and thus, by (3.9)
u(x, t) converges to zero (at least forg ∈ D(A)). Thus a reasonable candidate for
semigroup is

[
Z(t)g

]
(x)=

{
eQ(x)r(Y (t,x))g(Y (t,x))

eQ(Y (t,x))r(x)
for R(x)+ t <MR,

0 forR(x)+ t � MR.
(3.16)

Theorem 3.2. For anyg ∈ X, the function(t, x) → [Z(t)g](x) is a representation of th
semigroup(GA(t))t�0 in the sense that, for almost anyt > 0 andx > 0,[

GA(t)g
]
(x)= [

Z(t)g
]
(x).

If g ∈ D(A), then the equality holds for anyt � 0 andx > 0.



22 J. Banasiak, W. Lamb / J. Math. Anal. Appl. 284 (2003) 9–30

e

a

ls are

we

strong
Proof. Let us fixg ∈ X. For any fixedx > 0, the functiont → [Z(t)g](x) is clearly mea-
surable and has Laplace transform

∞∫
0

e−λt
[
Z(t)g

]
(x) dt =

MR−R(x)∫
0

e−λt+Q(x)−Q(Y(t,x))r(Y (t, x))g(Y (t, x))

r(x)
dt

= eλR(x)+Q(x)

r(x)

∞∫
x

e−λR(z)−Q(z)g(z) dz, (3.17)

where the change of variablesz = Y (t, x) = R−1(R(x) + t) has been used to obtain th
last formula. On the other hand, from Theorem 3.1 we have, for anyg ∈ X,

∞∫
0

e−λtGA(t)g dt = (λI − A)−1g = R(λ)g in X.

SinceX is a space of type L [17, pp. 68–71], andt → GA(t)g is continuous, there is
measurable representation(GA(t)g)(x) for which we have for almost allx > 0

∞∫
0

e−λt
(
GA(t)g

)
(x) dt =

[ ∞∫
0

e−λtGA(t)g dt

]
(x) = [

R(λ)g
]
(x)

= eλR(x)+Q(x)

r(x)

∞∫
x

e−λR(z)−Q(z)g(z) dz. (3.18)

As both [GA(t)g](x) and [Z(t)g](x) are clearly locally integrable with respect tot on
[0,∞) for almost anyx > 0, and the abscissae of convergence of the Laplace integra
equal to 0, from [18, Theorem 1.7.3] we infer that[

GA(t)g
]
(x)= [

Z(t)g
]
(x), for a.a.t > 0, x > 0, (3.19)

so that[Z(t)g](x) is a representative ofGA(t)g.
If g ∈ D(A), then, from the definition ofD(A0) and the strict positivity ofr, we obtain

thatg is continuous on(0,∞) so that, by the discussion preceding (3.16),[Z(t)g](x) is
continuous int ∈ (0,∞) for anyx > 0. On the other hand, forg ∈ D(A), GA(t)g is a dif-
ferentiableX-valued function so that, by [17, Theorem 3.4.2], a representative[GA(t)g](x)
can be selected to be continuous int for anyx > 0. Repeating the previous argument
obtain the validity of (3.19) for anyt > 0 andx > 0. The extension tot = 0 can be done
by continuity asg(Y (t, x)) is continuous att = 0 providedx > 0. ✷

From Theorems 3.1 and 3.2 we can state immediately that the ACP (3.2) has a
solutionu : [0,∞) → X+, given byu(t) := GA(t)g = Z(t)g, for all g ∈ D(A)+. By fur-
ther restrictingg to be an absolutely continuous function with support in[0,N], N < ∞, it
is possible to show by direct, but lengthy, calculations thatu(x, t) := [Z(t)g](x) satisfies
the initial value problem (3.1) for almost allt > 0 andx > 0.
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4. The semigroup for the fragmentation equation with mass loss

Having established the existence of a substochastic semigroup(GA(t))t�0 associated
with the reduced initial-value problem (3.1), we now turn our attention to the full m
loss fragmentation equation (1.1) and show that this can be analysed using the
described in Section 2. As in Section 3, we express the problem as an ACP in the
X = L1([0,∞), x dx). In this case, the abstract problem takes the form

du

dt
(t) = A

[
u(t)

]+ B
[
u(t)

]
, t > 0,

u(0) = g. (4.1)

Throughout,A ⊆ A0 + A1 is defined as in the previous section, whileB is given by

(Bf )(x) :=
∞∫
x

a(y)b(x|y)f(y) dy, f ∈ D(B), (4.2)

whereb satisfies (1.2) andD(B) = D(A) = {f ∈ X: af ∈ X}.

Lemma 4.1. For anyf ∈ D(A) we have

∞∫
0

(Af + Bf )x dx = −c(f ), (4.3)

where

c(f ) =
∞∫

0

r(x)f (x) dx +
∞∫

0

λ(x)a(x)f (x)x dx. (4.4)

Proof. Let f ∈ D(A). Thenf = (I − A)−1g for someg ∈ X and, as in (3.13), we obtai

(
A0(I − A)−1g

)
(x) = 1+ a(x)

r(x)
eR(x)+Q(x)

∞∫
x

e−R(y)−Q(y)g(y) dy − g(x).

Now

∞∫
0

(
1+ a(x)

r(x)
eR(x)+Q(x)

∞∫
x

e−R(y)−Q(y)g(y) dy

)
x dx

=
∞∫

0

e−R(y)−Q(y)g(y)

( y∫
0

1+ a(x)

r(x)
eR(x)+Q(x)x dx

)
dy,

where
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,

stic
y∫
0

1+ a(x)

r(x)
eR(x)+Q(x)x dx =

y∫
0

x
d

dx
eR(x)+Q(x) dx

= yeR(y)+Q(y) −
y∫

0

eR(x)+Q(x) dx.

Hence

∞∫
0

A0(I − A)−1gx dx =
∞∫

0

g(y)y dy −
∞∫

0

e−R(y)−Q(y)g(y)

( y∫
0

eR(x)+Q(x) dx

)
dy

−
∞∫

0

g(y)y dy

= −
∞∫

0

eR(x)+Q(x)

( ∞∫
x

e−R(y)−Q(y)g(y) dy

)
dx

= −
∞∫

0

r(x)
(
(I − A)−1g

)
(x) dx.

SinceD(A) ⊆ D(A0)∩D(A1), it follows that(I −A)−1g ∈ D(A0)∩D(A1) and therefore
using (1.2), we deduce that

∞∫
0

(Af + Bf )x dx =
∞∫

0

(A0f + A1f + Bf )x dx

= −
∞∫

0

r(x)
(
(I − A)−1g

)
(x) dx −

∞∫
0

xa(x)
(
(I −A)−1g

)
(x) dx

+
∞∫

0

x

( ∞∫
x

a(y)b(x|y)f(y) dy
)
dx

= −
∞∫

0

r(x)f (x) dx −
∞∫

0

λ(x)a(x)f (x)x dx = −c(f ). ✷

Theorem 4.1. Letr anda satisfy(C.1)and(C.2). Then there exists a smallest substocha
semigroup, say(GK(t))t�0, generated by an extensionK of A +B.

Proof. This follows immediately from Theorem 2.1 and Lemma 4.1, as−c(f ) � 0 for
f ∈ D(A)+. ✷
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Our final aim is to obtain a complete characterization of the generatorK by using Theo-
rem 2.2 to show thatK = A+ B. In view of Theorem 2.2(c) and the comments made a
Theorem 2.1, this will then lead to

d

dt

∥∥GK(t)f
∥∥= −c(f ), ∀f ∈ D(A)+,

wherec is defined by (4.4), thus providing a rigorous justification of the mass-loss
equation (1.3).

We start with an auxiliary result that specifies some results of Section 2 in the p
context.

Lemma 4.2. In the setting of this section, leth = (I − K)−1g with g ∈ X+, and definefn
andhn via (2.10)and(2.11), respectively. Then we have

lim
n→∞

∞∫
0

A0hnx dx = − lim
n→∞

∞∫
0

r(x)hn(x) dx = −
∞∫

0

r(x)(Lf )(x) dx. (4.5)

Consequently,rLf is integrable with respect to the Lebesgue measuredx. Similarly

lim
n→∞

∞∫
0

λ(x)a(x)hn(x)x dx =
∞∫

0

λ(x)a(x)(Lf )(x)x dx, (4.6)

so thatλaLf is integrable with respect to the measurex dx.

Proof. Recalling the notation (2.10) and (2.11), sincefn ∈ X+, hn ∈ D(A) ⊂ D(A0), and,
as in Lemma 4.1,

∞∫
0

A0Lfnx dx = −
∞∫

0

r(x)(Lfn)(x) dx.

Now, from the definition,Lfn converges monotonically almost everywhere toh = Lf and
therefore(rLfn)n∈N is a nondecreasing sequence converging almost everywhere torLf .
From the monotone convergence theorem

lim
n→∞

∞∫
0

r(x)(Lfn)(x) dx =
∞∫

0

r(x)(Lf )(x) dx,

and, by (4.4), we see that this limit does not exceed the limit of(c(hn))n∈N which, from
Theorem 2.2(a), is known to be finite.

The second part follows in the same way.✷
Theorem 2.2 is not immediately useful as we know neitherK nor h. To circumvent

this difficulty we could try an approach that has proved successful in previous inve
tions, such as [4,10,11]. However, this would require a substantially stronger conditio
(2.12) holds for the maximal extension ofA+B, that is, for all positiveh for which an ex-
pression on the right-hand side of (1.1) defines an integrable function. It turns out tha
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a condition is too crude for our purposes. Instead, we use the result below which fo
from a simple observation that, having obtained some necessary properties of fun
from D(K) in the previous lemma, we need only test (2.12) on functions that have
properties. This leads to the following more convenient condition.

Theorem 4.2. Let

−
∞∫

0

r(x)(Lf )(x) dx −
∞∫

0

λ(x)a(x)(Lf )(x)x dx

�
∞∫

0

(Lf )(x)x dx +
∞∫

0

(−f (x)+ (BLf )(x)
)
x dx (4.7)

for all functionsf ∈ F+ which are such that the productsrLf andxλaLf are both inte-
grable with respect to the Lebesgue measuredx, and−f + BLf ∈ X. ThenK = A + B.

Proof. SinceKh = h − g, whereh = Lf andBh = f − g, we can write

Kh = Lf − f + BLf. (4.8)

Moreover, if f ∈ F is such that (4.8) holds, then the right-hand side is integrable (
respect to the measurex dx). SinceLf ∈ X, we see that it is enough to restrict our atte
tion to functionsf satisfying−f + BLf ∈ X. Substituting (4.8) and using (4.4) in (2.1
gives (4.7). Also, from Lemma 4.2 it follows that it is enough to consider functions
which the indicated products are integrable.✷

To be able to apply Theorem 4.2, we require the following lemma.

Lemma 4.3. If f ∈ F+ and

(C.3) limx→0+ r(x)/x < +∞ and limx→0+ a(x) < ∞,

thenf ∈ L1([0, α], x dx) for anyα < +∞.

Proof. Since(I − A)−1 is an integral operator with a positive kernel, it follows from t
monotone convergence theorem thatL is the same integral operator, but now defined
those measurable functions for which the integral is finite almost everywhere and d
an integrable function. Consequently, from Lemma 3.2 and (3.11),Lf ∈ X is given by

(Lf )(x) =
∞∫
x

G1(x, y)f (y)

r(y)
dy, (4.9)

and so, applying Tonelli’s theorem, we obtain
∞∫
(Lf )(x)x dx =

∞∫
yf (y)

(
1

yr(y)

y∫
xG1(x, y) dx

)
dy.
0 0 0
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The function

ψ(y) := 1

yr(y)

y∫
0

xG1(x, y) dx

is continuous, strictly positive and finite for ally ∈ (0,∞). Moreover, by l’Hospital’s the-
orem

lim
y→0+ ψ(y) = lim

y→0+
y

r(y)+ y(1+ a(y))
= lim

y→0+
1

r(y)/y + 1+ a(y)
> 0

provided assumption (C.3) is satisfied and so the stated result follows.✷
Theorem 4.3. Let r anda satisfy assumptions(C.1)–(C.3). Then the generatorK of the
substochastic semigroup(GK(t))t�0 of Theorem4.1satisfiesK = A+ B.

Proof. Let f ∈ F+ satisfy the assumptions of Theorem 4.2, so that in particular−f +
BLf ∈ X. By Lemma 4.3 we see thatf ∈ L1([0, α], x dx) for any finiteα > 0 and conse
quentlyBLf ∈ L1([0, α], x dx) for anyα ∈ (0,∞). Hence

∞∫
0

(−f (x)+ (BLf )(x)
)
x dx = lim

α→+∞

α∫
0

(−f (x)+ (BLf )(x)
)
x dx, (4.10)

where
α∫

0

(−f (x)+ (BLf )(x)
)
x dx = −

α∫
0

f (x)x dx +
α∫

0

(BLf )(x)x dx.

In an analogous manner toL, the operatorB is defined by the same formula asB and
therefore, interchanging the order of integration and using (1.2), we obtain

α∫
0

(BLf )(x)x dx =
α∫

0

( ∞∫
x

a(y)b(x|y)(Lf)(y) dy
)
x dx

=
α∫

0

a(y)(Lf )(y)y dy −
α∫

0

a(y)(Lf )(y)λ(y)y dy + Rα, (4.11)

whereRα := ∫∞
α

∫ α

0 a(y)b(|y)(Lf)(y)x dx dy. By assumption,yλaLf is integrable so
that

lim
α→∞

α∫
0

a(y)(Lf )(y)λ(y)y dy =
∞∫

0

a(y)(Lf )(y)λ(y)y dy < ∞, (4.12)

and so we focus on the first integral in (4.11). Using (4.9) we obtain
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α∫
0

a(y)(Lf )(y)y dy = −
α∫

0

(
eR(y)+Q(y)

r(y)

∞∫
y

e−R(z)−Q(z)f (z) dz

)
y dy

+
α∫

0

(
1+ a(y)

)(eR(y)+Q(y)

r(y)

∞∫
y

e−R(z)−Q(z)f (z) dz

)
y dy,

(4.13)

where clearly

lim
α→+∞

α∫
0

(
eR(y)+Q(y)

r(y)

∞∫
y

e−R(z)−Q(z)f (z) dz

)
y dy =

∞∫
0

(Lf )(y)y dy < +∞.

Interchanging the order of integration in the second integral in (4.13) yields

α∫
0

e−R(z)−Q(z)f (z)

( z∫
0

(1+ a(y))y

r(y)
eR(y)+Q(y) dy

)
dz+ Sα, (4.14)

where

Sα :=
∞∫
α

α∫
0

(1+ a(y))y

r(y)
eR(y)+Q(y)−R(z)−Q(z)f (z) dy dz.

Since

z∫
0

1+ a(y)y

r(y)
eR(y)+Q(y) dy =

z∫
0

y
d

dy
eR(y)+Q(y) dy

= zeR(z)+Q(z) −
z∫

0

eR(y)+Q(y) dy,

it follows that
α∫

0

e−R(z)−Q(z)f (z)

( z∫
0

(1+ a(y))y

r(y)
eR(y)+Q(y) dy

)
dz

=
α∫

0

f (z)z dz −
α∫

0

e−R(z)−Q(z)f (z)

( z∫
0

eR(y)+Q(y) dy

)
dz. (4.15)

Now, by Lemma 4.2 and Tonelli’s theorem,

lim
α→∞

α∫
e−R(z)−Q(z)f (z)

( z∫
eR(y)+Q(y) dy

)
dz
0 0
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n

=
∞∫

0

e−R(z)−Q(z)f (z)

( z∫
0

eR(y)+Q(y) dy

)
dz

=
∞∫

0

eR(y)+Q(y)

( ∞∫
y

e−R(z)−Q(z)f (z) dz

)
dy =

∞∫
0

r(x)(Lf )(x) dx < ∞.

Substituting into (4.11) and using (4.4), we obtain

∞∫
0

(−f (x)+ (BLf )(x)
)
x dx = lim

α→+∞(Rα + Sα)−
∞∫

0

(Lf )(y)y dy − c(Lf )

and soRα + Sα must have a finite nonnegative limit asα → ∞. Therefore

∞∫
0

(Lf )(x)x dx +
∞∫

0

(−f (x)+ (BLf )(x)
)
dx � −c(Lf ),

and the result follows from Theorem 4.2.✷
Corollary 4.1. Let r anda satisfy(C.1)–(C.3). Then, for anyf ∈ D(K)+,

d

dt

∥∥GK(t)f
∥∥= −

∞∫
0

r(x)
[
GK(t)f

]
(x) dx −

∞∫
0

λ(x)a(x)
[
GK(t)f

]
(x)x dx.

Proof. This follows from Theorem 2.2(c) and (4.4).✷
To conclude, we consider the case whena andr do not satisfy (C.3) and show, by mea

of a simpler argument, that the generatorK coincides withA + B providedλ is suitably
constrained.

Theorem 4.4. Let a andr satisfy(C.1)–(C.2)and suppose that for someλ0 > 0 we have
λ0 � λ(y) � 1 for all y � 0. Then

D(K) = D(A) = D(A0)∩D(A1). (4.16)

Proof. Let Lf = h, whereh ∈ D(K). From Lemma 4.2 and the assumption onλ we see
thataLf ∈ X. Moreover, from Tonelli’s theorem we obtain, as in (4.11),

∞∫
0

(BLf )(x)x dx =
∞∫

0

a(y)(Lf )(y)y dy −
∞∫

0

a(y)(Lf )(y)λ(y)y dy.

Therefore,BLf ∈ X which leads, via (4.8), tof ∈ X. If we now apply (2.8), then we obtai
h = Lf ∈ D(A) which yields the stated result.✷
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