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Abstract

In this paper we consider spaces of sequences which are valued in a topological spaceE and
study generalized backward shifts associated to certain selfmappings ofE. We characterize thei
universality in terms of dynamical properties of the underlying selfmappings. Applications to h
cyclicity theory are given. In particular, Rolewicz’s theorem on hypercyclicity of scalar multiple
the classical backward shift is extended.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In 1969 Rolewicz [26] was able to prove that for any scalarc with |c| > 1 (and only
for these scalars) the multiplecB of the backward shiftB on the sequence spaceslp
(1 � p < ∞) and onc0 is universal, that is, there exists some vector with dense o
The operatorB is defined as

B(x1, x2, x3, . . .) = (x2, x3, x4, . . .).
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Classical and weighted backward shift operators have been extensively studied dur
last two decades in connection with hypercyclicity and chaos, see for instance [3
14,15,18–22,27], and the references contained in them. Interest in shift operators
among other reasons, from the fact that many classical operators can be regarded
operators. For instance, the differentiation operatorDf = f ′ on the spaceH(C) of entire
functions on the complex planeC may be viewed as the weighted backward shift

D : (a0, a1, a2, . . .) �→ (a1,2a2,3a3, . . .),

as soon asH(C) is considered as the space of complex sequences(a0, a1, . . .) with
|an|1/n → 0 (n → ∞). Here the sequence of weights is 1,2,3, . . . . In [15,18,21,27],
among others, the universality of weighted backward shift operators acting on certa
quence spaces has been completely characterized. In particular, Grosse-Erdmann c
rather general sequence spaces in [15].

A. Peris [25] studied universality and chaos (in the sense of Devaney [9]; in usua
tings, chaos is equivalent to universality plus existence of a dense set of periodic
see [2]) of polynomialsP : lq → lq given byP(x1, x2, . . .) = (p(x2),p(x3), . . .), where
p :C → C is a complex polynomial. This study was extended to Köthe sequence spa
[20, Capítulo 4] for the casesp(z) = zm andp(z) = (z + 1)m − 1.

In this paper we are concerned with the dynamics of a class of (unweighted, this
backward shift operators, namely, theΦ-shifts, which contains the previously cited cas
A Φ-shift is a mapBf :S → S given by

Bf (x1, x2, . . .) := (
f (x2), f (x3), . . .

)
,

whereS is a certain subspace ofEN, E is a topological space, andf :E → E is a contin-
uous selfmap, see Section 3. We also consider the related notion ofΦ-product mapΠf .
Both kinds of maps will be completely characterized onlp spaces. Our main goal is
characterize the “wild behavior” of aΦ-shift Bf in terms of the dynamics off . This will
be done in Section 4. Finally, we provide in Section 5 some applications to the the
hypercyclic operators.

2. Universality, discrete dynamical systems and sequence spaces

The current section is devoted to fix some notation and to collect some definition
known results coming from Topological Dynamics and from elementary theory of sp
of sequences. We refer the interested reader to the excellent surveys [8,14,16] for
mary of concepts, history and statements dealing with universality and hypercyclicit

Assume thatX and Y are topological spaces and thatTn :X → Y (n ∈ N :=
{1,2,3, . . .}) is a sequence of continuous mappings. Then(Tn) is said to beuniversal
whenever there exists some elementx ∈ X whose orbit

{Tnx: n ∈ N}
under(Tn) is dense inY . In this casex is called a universal element for(Tn). Observe
that the universality of(Tn) forcesY to be separable. The sequence(Tn) is calleddensely

universalwhen the setU((Tn)) of universal elements for(Tn) is dense inX. Finally, (Tn) is
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said to betopologically transitive(in the sense of Birkhoff) provided that to every pair
nonempty open subsetsU of X andV of Y there exists somen ∈ N with Tn(U) ∩ V �= ∅.

Assume now thatX = Y and thatT :X → X is a continuous selfmapping. From t
point of view of the behaviour of the sequence(T ◦n) of its iterates—that isT ◦1 = T ,
T ◦2 = T ◦T , . . .—T can be considered as a “discrete dynamical system.” ThenT is called
universalwhenever the sequence(T ◦n) is universal; in this case the setU(T ) := U((T ◦n))
of universal elements forT is dense inX; indeed, ifx0 is universal forT thenT (and
so eachT ◦m) has dense range, hence each pointT ◦mx0 is universal. A continuous sel
mappingT is said to betopologically transitivewhenever(T ◦n) is topologically transitive
Finally, T is calledweakly mixingprovided that the mapping

T × T : (x, y) ∈ X × X �→ (T x,T y) ∈ X × X

is topologically transitive, whereX ×X is assumed to carry the product topology. Furst
berg [11, Proposition II.3] proved that in this case theJ -product mapT × T × · · · × T

(J times):(x1, . . . , xJ ) ∈ XJ �→ (T x1, . . . , T xJ ) ∈ XJ is also transitive for everyJ . And
Banks [1, Lemma 5] has shown thatT is weakly mixing if for given nonempty open subse
U1,U2,V ⊂ X there is anN ∈ N such thatT ◦N(V ) ∩ Uj �= ∅ for j = 1,2. Therefore we
have thatT is weakly mixing if and only if for given finitely many nonempty open subs
U1, . . . ,UJ ,V ⊂ X there is anN ∈ N such thatT ◦N(V ) ∩ Uj �= ∅ for j = 1, . . . , J . This
motivates the following definition, which will be used in Section 4.

Definition 2.1. Assume thatfn :E → E (n ∈ N) is a sequence of continuous selfmappin
on a topological spaceE and thata is a point inE. We say that(fn) is weakly mixing at a
if and only if for given finitely many nonempty open setsU1, . . . ,Um,V such thata ∈ V

there existsN ∈ N satisfying

fN(V ) ∩ Uj �= ∅ for all j = 1, . . . ,m.

And we say that a continuous selfmappingf :E → E is weakly mixing at awhenever its
sequence(f ◦n) of iterates is weakly mixing ata.

The following universality criterion will reveal useful in Section 4. It can be found
for instance, [14, Section 1a] (see also [13, Kapitel 1]).

Theorem 2.1. Suppose thatX, Y are topological spaces, in such a way thatX is a Baire
space andY is second-countable. Let(Tn) be a sequence of continuous mappings fromX

to Y . Then the following assertions are equivalent:

(a) The sequence(Tn) is densely universal.
(b) The sequence(Tn) is topologically transitive.

In a linear setting, that is, whenX,Y are topological vector spaces onK (:= C or the
real line R) and Tn (n ∈ N) (or T ) are linear and continuous, the wordsuniversaland
hypercyclicare synonymous. By anoperatorwe mean a continuous linear selfmapping

a topological vector space.
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By ω we denote, as usual, the space of all scalar sequencesω = K
N. It becomes a

Fréchet space (= complete metrizable locally convex space) when it is endowed with
metric

d(x, y) =
∞∑

j=1

1

2j

|xj − yj |
1+ |xj − yj | ,

wherex = (xj ) andy = (yj ). For 0< p < ∞ we consider thelp spaces

lp =
{

x = (xj ) ∈ ω:
∞∑

j=1

|xj |p < ∞
}

.

If µ(p) = p (p � 1), µ(p) = 1 (p < 1) and‖x‖p := (
∑∞

j=1 |xj |p)1/µ(p), then forp � 1
the spacelp becomes a Banach space under the norm‖ · ‖p, while for p < 1 the spacelp
is an F-space (= complete metrizable linear space) under the metricd(x, y) = ‖x − y‖p.
Recall also that the spacec0 = {x = (xj ) ∈ ω: limj→∞ xj = 0} is a Banach space when
is endowed with the norm‖x‖0 := supj∈N |xj |. Generalizations of this kind of sequenc
spaces will be considered in Section 3.

3. Φ-product maps and backward Φ-shifts

In this section and in the next oneE will denote a Hausdorff topological space, andS

will stand for a subset of the spaceEN of E-valued sequencesx = (xj ), so xj ∈ E for
all j ∈ N. For everya ∈ E we denote byσ(a) the set of sequences ending witha, that is,
σ(a) = ⋃∞

J=1 σJ (a), whereσJ (a) = {x = (xj ) ∈ EN: xj = a for all j > J }. From now
on, we will assume thatS is a standard sequence space in the sense established by th
new concept.

Definition 3.1. We define astandard sequence space(SSS) onE as a subsetS ⊂ EN

endowed with a topology such that there exists a pointa ∈ E satisfying the following four
properties:

(S1) The spaceS is Baire and second-countable.
(S2) The topology onS is stronger than that inherited from the product topology onEN.
(S3) The setσ(a) is a dense subset ofS.
(S4) For eachJ ∈ N, the topology of eachσJ (a) inherited fromS is the product topology

If S is a SSS anda ∈ E is a point satisfying (S3)–(S4), then we will saya is adistinguished
point for S. If E is a Hausdorff topological vector space, then a topological vector s
S ⊂ EN is called alinear standard sequence spaceon E whenever it satisfies (S1)–(S
for the pointa = 0.
Sometimes we will also consider the following property:
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(S4∗) GivenJ ∈ N, an open setU ⊂ S and a pointα ∈ σJ (a) ∩ U , there exist open se
U1, . . . ,UJ ,A in E such thatα ∈ ∏∞

j=1 A
(N)
j ⊂ U for all N > J , where

A
(N)
j =

{
Uj (1 � j � J ),
A (N + 1� j � N + J ),
{a} (J < j � N or j > N + J ).

(1)

Remark 3.1. Due to the presence ofU1, . . . ,UJ , (S4*) implies (S4). In (S4∗), the exis-
tence of “slidingJ -wagon trains”A × · · · × A in the projections of every neighborhoo
of each point ofσJ (a) reveals some “indifference” among the coordinates of the elem
of S when they are close toa. On the other hand, (S4) implies that for everyj ∈ N the
immersionij : t ∈ E �→ (a, a, . . . , a, t, a, a, . . .) ∈ S (wheret occurs at thej th place) is
continuous. Of course, (S2) tells us that convergence inS implies coordinatewise conve
gence.

Examples 3.2.

(1) The spacesω, lp (0 < p < ∞) andc0 are linear SSSs: suffice it to takeE = K with
the usual topology. Property (S1) for these spaces is easily checked just by takin
account that a completely metrizable separable space is Baire and second-cou
The remaining conditions are straightforward. A different example is the spaceS =
{x = (xj ) ∈ K

N: limj→∞ x2j−1 = 0 and
∑∞

j=1 |x2j | < ∞}, which becomes a Banac
space under the norm‖x‖ = supj�1 |x2j−1|+∑∞

j=1 |x2j |. All these spaces also satis
(S4∗).

(2) The direct sumS = ⊕
n∈N

K of countably many lines endowed with the inductive lim
locally convex topology is a second-countable topological vector space satisfyin
to (S4) forE = K anda = 0, but it is not a linear SSS sinceS is not a Baire space.

(3) Let S = {x = (xj ) ∈ R
N: limj→∞ jxj = 0}. ThenS becomes a separable Bana

space when it is endowed with the norm‖x‖ = supj∈N |jxj |. ThenS satisfies (S1)
to (S4) (fora = 0; no other pointa ∈ R is possible), so it is a linear SSS. But (S4∗)
fails because given a ballU = {‖x‖ < ε} then we have diam(πj (U)) � 2ε/j → 0
(j → ∞), see Remark 3.1. Here, as usual,πj denotes thej -projectionπj :x = (xn) ∈
S �→ xj ∈ E (j ∈ N).

Another family of examples of linear SSSs which are extensions ofω, c0, lp is described
as follows. Assume thatE is a separable Banach space overR or C with norm ‖ · ‖.
Consider the spaces ofE-valued sequencesω(E), c0(E), lp(E) (0 < p < ∞). They are
defined as the former spaces just by replacingK with E, and the absolute value wit
‖ · ‖. As a matter of fact, in the caseω(E) it is enough to assume thatE is a completely
metrizable separable topological space.

Now we are going to motivate the new concepts provided in Definition 3.2, se
low. As seen in Section 1, Rolewicz [26] proved the universality of the backward
cB : (xj ) �→ (cxj+1) (|c| > 1) on c0 and lp (1 � p < ∞), while Grosse-Erdmann [15
Corollary 2] noted that any weighted backward shift (in particular,B itself) is univer-

sal, even chaotic, onω. Martínez and Peris [21] have recently studied backward shifts on
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Köthe echelon spacesc0(A), λp(A) (1 � p < ∞) (see [17] and [23] for definitions an
properties; they are separable Fréchet spaces and includec0, lp (1 � p < ∞) for adequate
matricesA), and in particular they characterize the universality ofB in terms of the ma-
trix A [21, Proposition 3.1]. On the other hand, Bernardes [6] showed that for givenm > 1
there is no universalm-homogeneous continuous polynomial on any Banach space; in
ticular, the shift(xj ) �→ (xm

j+1) is not universal onlp (1 � p < ∞) or c0. However, the

last mapping is universal, even chaotic, on the Fréchet spaceω = CN [24] and in fact on
some (non-Banach, of course) Köthe spacesλp(A) [20]. Furthermore, Peris [25] prove
that the (nonhomogeneous) polynomial(zj ) �→ ((zj + 1)m − 1) is universal (and chaotic
on the complex Banach spaceslp (1 � p < ∞) andc0. This is again true on certain spac
λp(A), see [20].

Definition 3.2. Suppose thatS is a SSS and thatT :S → S is a continuous selfmappin
onS.

(a) We say thatT is aΦ-product mapon S if there exists a selfmappingf :E → E such
thatT = Πf onS, whereΠf x = (f (xj )) for everyx = (xj ) ∈ EN.

(b) We say thatT is abackwardΦ-shiftonS if there exists a selfmappingf :E → E such
thatT = Bf onS, whereBf x = (f (xj+1)) for everyx = (xj ) ∈ EN.

Remarks 3.3.

(1) Observe thatBf = Πf ◦ B = B ◦ Πf , whereB is the ordinary backward shift, i.e
Bx = (xj+1) for x = (xj ). Of course, ifg is the identity onE thenΠg = the identity
onEN andBg = B. Note also that if eitherΠf is aΦ-product map orBf is a backward
Φ-shift on S thenf is continuous. Indeed,f = π1 ◦ Πf ◦ i1 = π1 ◦ Bf ◦ i2, where
i1, i2 are the 1- and 2-immersions (see Remark 3.1)—which are well-defined by
and continuous due to (S4)—andπ1 is the 1-projection, which is continuous by (S2

(2) Note that even in the case of a linear SSSS on E the mappingf :E → E may be
nonlinear, so bothΠf andBf may well be nonlinear.

It is interesting to obtain necessary and sufficient conditions forΠf (Bf , respectively)
to be well-defined on a SSSS (that is, forS to beΠf -invariant:Πf (S) ⊂ S, or respectively,
Bf -invariant:Bf (S) ⊂ S) and to be aΦ-product map or aΦ-shift (that is, continuous)
This will be carried out at least for the most usual spacesω(E), lp(E) (0 < p < ∞),
c0(E). Recall that the continuity off is a general necessary condition for the continu
of Bf . In connection with this, we remark that Wildenberg [28] discovered in 1988
absence of nontrivial functionsf :R → R for which a sequence(xj ) in R

N is summable
only if (f (xj )) (= Πf (xj ), in our terminology) is summable. Specifically, he stated
the last property holds for any sequence(xj ) if and only if there exists a constantk with
f (t) = kt in a neighborhood of the origin. Of course, this is not necessary forΠf (l1) ⊂ l1:
take, for instance,f (t) = t2. In fact, we will use an approach similar to [28, Lemma 1]

order to obtain theΠf -invariance of the spaceslp(E).
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Lemma 3.4. Let X be a topological space. Assume thata is a point in X and that
ϕ :X → [0,∞) is a function such that

(i) There is a countable basis of neighborhoods fora, anda is not an isolated point inX.
(ii) lim x→a ϕ(x) = 0 andϕ(x) > 0 for all x ∈ X \ {a}.

(iii) If (xj ) ∈ XN and limj→∞ ϕ(xj ) = 0, thenlimj→∞ xj = a.

Let us suppose thatf :X → X. Then the series
∑∞

j=1 ϕ(f (xj )) is convergent for ever
convergent series

∑∞
j=1 ϕ(xj ) if and only if there exists a constantM ∈ (0,∞) such that

ϕ
(
f (x)

)
� Mϕ(x) (2)

on some neighborhood ofa.

Proof. Assume first that (2) holds for someM ∈ (0,∞) and some neighborhoodU of a.
If (xj ) ∈ XN and

∑∞
j=1 ϕ(xj ) converges thenϕ(xj ) → 0 asj → ∞, soxj → a by (iii).

Therefore there isJ ∈ N such thatxj ∈ U for all j > J . Henceϕ(f (xj )) � Mϕ(xj )

(j > J ), so
∑∞

j=1 ϕ(f (xj )) converges due to the comparison criterion.
As for the converse, suppose, by way of contradiction, that there is not any constM

satisfying (2) on some neighborhood ofa. Let {Un: n ∈ N} be a decreasing basic sequen
of neighborhoods ofa. From (i) and (ii) there is a sequence{n(1) < n(2) < · · ·} ⊂ N and
pointsxj ∈ Un(j) \ {a} such that

0< ϕ(xj ) < 1/j2 and ϕ
(
f (xj )

)
> jϕ(xj ) (j ∈ N).

DefineN(j) to be the least integer that is� 1/(j2ϕ(xj )). ThenN(j) − 1 < 1/(j2ϕ(xj )),
soN(j)ϕ(xj ) < (1/j2) + ϕ(xj ) < 2/j2. Now consider the sequence

(yj ) = (x1, . . . , x1, x2, . . . , x2, x3, . . . , x3, . . .),

where eachxj occursN(j) times. We have that

∞∑
j=1

ϕ(yj ) =
∞∑

j=1

N(j)ϕ(xj ) <

∞∑
j=1

2

j2
< ∞.

But
∞∑

j=1

ϕ
(
f (yj )

) =
∞∑

j=1

N(j)ϕ
(
f (xj )

)
�

∞∑
j=1

1

j2ϕ(xj )
jϕ(xj ) >

∞∑
j=1

1

j
,

and the last series diverges. This contradiction proves the lemma.�
We are now ready to specify exactly whatΦ-shifts and whatΦ-product maps are well

defined operators onω(E), c0(E) andlp(E). In the following result we are assuming th
E is a completely metrizable separable topological space in the caseω(E), while E is a
separable Banach space in the casesc0(E), lp(E).
Theorem 3.5. Letf :E → E be a selfmapping onE, andp ∈ (0,∞).
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(1) The following properties are equivalent:
(i) Πf is Φ-product map onω(E).
(ii) Bf is a backwardΦ-shift onω(E).

(iii) f is continuous.
(2) The following properties are equivalent:

(i) The spacec0(E) is Πf -invariant.
(ii) The spacec0(E) is Bf -invariant.

(iii) f (0) = 0 andf is continuous at the origin.
(3) The following properties are equivalent:

(i) Πf is aΦ-product map onc0(E).
(ii) Bf is a backwardΦ-shift onc0(E).

(iii) f is continuous andf (0) = 0.
(4) The following properties are equivalent:

(i) The spacelp(E) is Πf -invariant.
(ii) The spacelp(E) is Bf -invariant.

(iii) lim supt→0
‖f (t)‖

‖t‖ < ∞.
(5) The following properties are equivalent:

(i) Πf is aΦ-product map onlp(E).
(ii) Bf is a backwardΦ-shift onlp(E).

(iii) f is continuous andlim supt→0
‖f (t)‖

‖t‖ < ∞.

In particular, Bf is a backwardΦ-shift onlp(E) if f is an operator onE.

Proof. The ordinary backward shiftB is, trivially, a well-defined continuous selfmappin
on S for each of the spacesS = ω(E), c0(E), lp(E). Then the implication (i)⇒ (ii) in
all parts (1)–(5) is evident due to the factBf = B ◦ Πf . On the other hand, the senten
“f is continuous” appearing in each part (iii) of (1), (3) and (5) follows from the
responding part (ii) together with Remark 3.3(1). The additional properties “f (0) = 0”
and “lim supt→0

‖f (t)‖
‖t‖ < ∞” respectively in (3)(iii) and (5)(iii) follow from parts (2), (4)

Thus, we will be done as soon as we prove the following implications.
(iii) ⇒ (i) of (1): It is evident becauseΠf is continuous if and only ifπj ◦ Πf is

continuous for each projectionπj :ω(E) → E; butπj ◦ Πf = f for everyj ∈ N.
(ii) ⇒ (iii) of (2): Given a sequence(xj ) ∈ c0(E) we must havef (xj+1) ∈ c0(E), that

is, f (xj+1) → 0 (j → ∞) or, that is the same,f (xj ) → 0 (j → ∞). SinceE is first-
countable this tells us thatf is continuous at the origin andf (0) = 0.

(iii) ⇒ (i) of (2): Use again that (iii) is equivalent to “(f (xj )) tends to zero for ever
sequence(xj ) tending to zero.”

(iii) ⇒ (i) of (3): Fix α = (aj ) ∈ c0(E) andε > 0. Sincef (0) = 0 andf is continuous
at the origin, there isδ0 > 0 such that‖f (t)‖ < ε/2 if ‖t‖ < δ0. On the other hand, from
the factaj → 0 (j → ∞) we deduce the existence of someJ ∈ N with ‖aj‖ < δ0/2 for all
j > J , hence‖f (aj )‖ < ε/2 (j > J ). Now, from the continuity off ata1, . . . , aJ one gets
δj > 0 (j ∈ {1, . . . , J }) such that‖f (t) − f (aj )‖ < ε whenevert ∈ E and‖t − aj‖ < δj .
Let us chooseδ := min{δ0/2, δ1, . . . , δJ }. Thenδ > 0. Suppose thatx = (xj ) in c0(E) and

‖x − α‖0 < δ. If j ∈ {1, . . . , J }, then‖xj − aj‖ < δj , therefore‖f (xj ) − f (aj )‖ < ε.



188 L. Bernal-González / J. Math. Anal. Appl. 306 (2005) 180–196

t

Finally, for j > J , we have‖xj − aj‖ < δ0/2, so‖xj‖ � ‖xj − aj‖ + ‖aj‖ < δ0. Hence
‖f (xj )‖ < ε/2 and∥∥f (xj ) − f (aj )

∥∥ �
∥∥f (xj )

∥∥ + ∥∥f (aj )
∥∥ < ε (j > J).

Thus,∥∥Πf (x) − Πf (α)
∥∥

0 = sup
j∈N

∥∥f (xj ) − f (aj )
∥∥ � ε,

which proves the continuity off atα. But α was arbitrary, so the implication is proved.
(ii) ⇒ (iii) of (4): Apply Lemma 3.4 onX = E, a = 0, ϕ(x) = ‖x‖p. Take into accoun

that, trivially,
∑∞

j=1 ϕ(f (xj )) converges if and only if
∑∞

j=1 ϕ(f (xj+1)) does.
(iii) ⇒ (i) of (4): Apply again Lemma 3.4.
(iii) ⇒ (i) of (5): By the “limsup” condition and (4),Πf is a selfmapping onlp(E). As

for the continuity, fixα = (aj ) ∈ lp(E) andε > 0. By hypothesis, there areM,δ0 ∈ (0,∞)

such that‖f (t)‖ � M‖t‖ whenever‖t‖ < δ0. Sinceaj → 0 asj → ∞, we can findJ ∈ N

with ‖aj‖ < δ0/2 for all j > J , so ‖f (aj )‖ � M‖aj‖ (j > J ). The numberJ can be
chosen such that, in addition,

∞∑
j=J+1

‖aj‖p <
εµ(p)

3Mp2p(1+ 2p)
.

Due to the continuity off at eachaj , it is possible to findδj > 0 satisfying that

∥∥f (t) − f (aj )
∥∥ <

(
εµ(p)

3J

)1/p

whenever‖t − aj‖ < δj .

Now, let us choose

δ := min

{(
δ0

2

)p/µ(p)

, δ
p/µ(p)

1 , δ
p/µ(p)

2 , . . . , δ
p/µ(p)
J ,

ε

(3Mp4p)1/µ(p)

}
> 0.

Assume thatx = (xj ) ∈ lp(E) and ‖x − α‖p < δ. Then‖xj − aj‖ < δ0/2, so‖xj‖ <

‖aj‖ + (δ0/2), whence‖xj‖ < δ0 for all j > J and, consequently,‖f (xj )‖ � M‖xj‖
(j > J ). In addition,‖xj − aj‖ < δj (j ∈ {1, . . . , J }), therefore‖f (xj ) − f (aj )‖p <

εµ(p)/3J (1 � j � J ). We recall that(b + c)p � 2p(bp + cp) for all p ∈ (0,∞) and all
b, c � 0, see for instance [10, p. 57]. Finally, we estimate:∥∥Πf (x) − Πf (α)

∥∥µ(p)

p

=
∞∑

j=1

∥∥f (xj ) − f (aj )
∥∥p

�
J∑

j=1

∥∥f (xj ) − f (aj )
∥∥p +

∞∑
j=J+1

(∥∥f (xj )
∥∥ + ∥∥f (aj )

∥∥)p

�
J∑∥∥f (xj ) − f (aj )

∥∥p + 2p

∞∑ ∥∥f (xj )
∥∥p + 2p

∞∑ ∥∥f (aj )
∥∥p
j=1 j=J+1 j=J+1
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J∑

j=1

∥∥f (xj ) − f (aj )
∥∥p + 2pMp

∞∑
j=J+1

‖xj‖p + 2pMp

∞∑
j=J+1

‖aj‖p

�
J∑

j=1

∥∥f (xj ) − f (aj )
∥∥p + 2pMp

∞∑
j=J+1

(
2p‖xj − aj‖p + 2p‖aj‖p

)

+ 2pMp

∞∑
j=J+1

‖aj‖p

�
J∑

j=1

∥∥f (xj ) − f (aj )
∥∥p + 4pMp‖x − α‖µ(p)

p + 2p
(
1+ 2p

)
Mp

∞∑
j=J+1

‖aj‖p

< J · εµ(p)

3J
+ 4pMp · εµ(p)

3Mp4p
+ 2p

(
1+ 2p

)
Mp · εµ(p)

3Mp2p(1+ 2p)
= εµ(p).

Thus,‖Πf (x) − Πf (α)‖p < ε whenever‖x − α‖p < δ, which establishes the continui
of Πf . �

4. Universality of Φ-product maps and of Φ-shifts

This section is devoted to providing necessary conditions and sufficient condition
Φ-product mapΠf or a backwardΦ-shift Bf to be universal on a given SSS. Such con
tions will be expressed in terms of the dynamical properties of the underlying functif ,
that is, in terms of the behavior of its sequence(f ◦n) of iterates.

To start with, we establish a necessary condition for universality onlp(E) andc0(E).

Recall that “lim supt→0
‖f (t)‖

‖t‖ < ∞” is necessary forΠf andBf to be well-defined oper

ators onlp(E). The point is that such limsup must not be too small.

Proposition 4.1. Assume thatE is a separable Banach space, thatp ∈ (0,∞), and that
f :E → E is continuous and satisfieslim supt→0

‖f (t)‖
‖t‖ < ∞ (and satisfiesf (0) = 0,

respectively). If either Πf or Bf is universal onlp(E) (on c0(E), respectively), then

lim supt→0
‖f (t)‖

‖t‖ � 1.

Proof. If we follow a way of contradiction and assume that lim supt→0 ‖f (t)‖/‖t‖ < 1,
then we obtain easily that for every vectorx = (xj ) in some ball centered at the origin ofS,
the orbit ofx underΠf or Bf is bounded, so nondense. This is a contradiction becaus
setU(T ) of universal elements of a continuous selfmappingT is dense ifT is universal.
The details are left to the interested reader.�

Observe that as a consequence of Proposition 4.1 iff :E → E is an operator on a
separable Banach spaceE andBf is hypercyclic onlp(E) (1 � p < ∞) or onc0(E) then
‖f ‖ � 1. In fact, we can say a little more: it must be‖f ‖ > 1 because‖Πf ‖ = ‖Bf ‖ =

‖f ‖ and a hypercyclic operator on a normed space cannot be nonexpansive.
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We saw in Section 3 that the continuity off is a necessary condition forBf to be a
backwardΦ-shift on a SSS. We establish in the next result that the denseness of the
of f is necessary for the universality ofBf . This condition becomes sharp for the larg
spaceω(E). As for Πf , the universality off itself is necessary.

Theorem 4.2. Suppose thatfn :E → E (n ∈ N) andf :E → E are continuous and thatS
is aSSSonE. We have:

(a) If Bf :S → S is a universal backwardΦ-shift, thenf has dense range.
(b) If E is a completely metrizable separable topological space andf has dense range

thenBf :ω(E) → ω(E) is a universal backwardΦ-shift.
(c) If (Πfn) is a universal sequence ofΦ-product maps onS, then the sequence(fn) is

universal onE. In particular, if Πf :S → S is a universalΦ-product map, thenf is
universal onE.

Proof. (a) Assume thatBf is universal onS, and fix a pointy ∈ E. From (S3), the poin
y = (y, a, a, a, . . .) is in S for somea ∈ E. By universality, there is a point(xj ) ∈ S and a
sequence(nk) of positive integers such that the sequence((f ◦nk (xj+nk

))j∈N) converges to
(y, a, a, . . .) in S ask → ∞. From (S2),f ◦nk (x1+nk

) → y, hencef (f ◦nk−1(x1+nk
)) → y,

which proves thaty is in the closure off (E). But y was arbitrary, sof (E) is dense.
(b) From Theorem 3.5,Bf is in fact a backwardΦ-shift on ω(E). Recall thatω(E)

is a second-countable Baire space. In order to apply Theorem 2.1, takeX := ω(E) =: Y ,
Tn := Bn

f . Let us try to check the Birkhoff transitivity property. Fix nonempty open sub

U , V of ω(E). Then there existJ ∈ N and nonempty open subsetsU1, . . . ,UJ ,V1, . . . , VJ

in E such that

U1 × · · · × UJ × E × E × · · · ⊂ U and V1 × · · · × VJ × E × E × · · · ⊂ V.

Sincef has dense range and is continuous, we have thatf ◦J has also dense range. Fro
this, we derive the existence of pointst1, . . . , tJ ∈ E such thatf ◦J (tj ) ∈ Vj (j = 1, . . . , J ).
Choose any pointsyj ∈ Uj (j = 1, . . . , J ) and any pointt ∈ E. Consider the sequenc
x = (xj ) ∈ ω(E) defined as

xj =
{

yj (1� j � J ),
tj−J (J < j � 2J ),
t (j > 2J ).

It is clear thatx ∈ U . Finally,TJ x = BJ
f x = (f ◦J (xj+J )), butf ◦J (xj+J ) = f ◦J (tj ) ∈ Vj

for j = 1, . . . , J , so

TJ x ∈ V1 × · · · × VJ × E × E × · · · ⊂ V.

Consequently,TJ (U) ∩ V �= ∅, as required.
(c) This is due to the following facts: the projectionπ1 is continuous and surjectiv

(by (S3)),π1 ◦ Πfn = fn ◦ π1 and(Πf )◦n = Πf ◦n for all n ∈ N. �
Now, we focus our attention on the searching of conditions on the functionf that guar-
antee the universality ofBf andΠf on general SSSs. A local weakly mixing condition
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will be imposed in the following theorem on a sequence of selfmappings fixing the d
guished point.

Theorem 4.3. Assume thatfn :E → E (n ∈ N) is a sequence of selfmappings for which
mappingsTn :x = (xj ) ∈ S �→ (fn(xj+n)) ∈ S are well-defined and continuous, whereS is
a SSSon E satisfying(S4∗) for some distinguished pointa ∈ E. Suppose thatfn(a) = a

for all n ∈ N and that(fn) is weakly mixing ata. Then(Tn) is densely universal.

Proof. Observe first that, in a similar way to the case ofBf , everyfn must be continuous
see Remark 3.3(1).

Our aim is to apply Theorem 2.1. ChooseX := S =: Y . Observe thatX is Baire and
that Y is second-countable by (S1). Consequently, our goal is, given a pair of none
open setsU, V of S, to find a sequencex = (xj ) ∈ U and a positive integerN such that
TNx ∈ V . From (S3),U ∩ σ(a) �= ∅ �= V ∩ σ(a). Therefore there existJ ∈ N and points
a1, . . . , aJ , b1, . . . , bJ ∈ E with α ∈ U andβ ∈ V , where

α := (a1, . . . , aJ , a, a, a, . . .) and β := (b1, . . . , bJ , a, a, a, . . .).

First of all, let us prove the following claim: There are in factinfinitely manyN ∈ N

with fN(A) ∩ Uj �= ∅ for all j = 1, . . . ,m, whereA,U1, . . . ,Um are prescribed nonemp
open sets witha ∈ A. Indeed, chooseN1 ∈ N such that eachfN1(A) ∩ Uj (j ∈ {1, . . . ,m})
is not empty. IfE has only one point, namelya, then the claim is trivial. IfE has at
least two points then, sinceE is Hausdorff, there areb ∈ E and open subsetsA0, B ⊂ E

with a ∈ A0, b ∈ B andA0 ∩ B = ∅. Recall that eachfn is continuous. Hence there ex
open subsetsAn (n = 1, . . . ,N1) in E with a ∈ An andAn ⊂ A such thatfn(An) ⊂ A0;
we have used thatfn(a) = a for all n. DefineÃ := A1 ∩ · · · ∩ AN1. ThenÃ is an open
subset containing the pointa andfn(Ã) ⊂ A0 for all n ∈ {1, . . . ,N1}. In addition,Ã ⊂ A.
Hencefn(Ã) ∩ B = ∅ for n = 1, . . . ,N1. By hypothesis, there existsN2 ∈ N (necessarily
N2 > N1) with fN2(Ã) ∩ Uj �= ∅ for all j ∈ {0,1, . . . ,m}, whereU0 := B. Therefore

fN2(A) ∩ Uj �= ∅ (
j ∈ {1, . . . ,m}),

which proves the claim because in the same way we would obtainN1 < N2 < N3 < · · ·
such thatfNk

(A) ∩ Uj �= ∅ for all j ∈ {1, . . . ,m} and allk ∈ N.
Now we recover our first goal and fixU , V , α, β as before. Sinceα ∈ σJ (a) ∩ U , from

(S4∗) it can be extracted the existence of finitely many open setsU1, . . . ,UJ ,A in E for
which α ∈ ∏∞

j=1 A
(N)
j ⊂ U (N > J), whereA

(N)
j is defined by (1). In addition, there a

open setsV1, . . . , VJ in E such thatβ ∈ V1 × · · · × VJ × {a} × {a} × · · · ⊂ V . By the
just-proved claim, a positive integerN can be chosen in such a way thatN > J and

fN(A) ∩ Vj �= ∅ (j = 1, . . . , J ).

Hence there existJ points t1, . . . , tJ in A satisfyingfN(tj ) ∈ Vj (j = 1, . . . , J ). Let us
definex = (xj ) ∈ EN as

xj =
{

αj (1 � j � J ),
tj−N (N + 1� j � N + J ),

a (J < j � N or j > N + J ).



192 L. Bernal-González / J. Math. Anal. Appl. 306 (2005) 180–196

not

e
se
sult

nder

d

on

.

Thenx ∈ ∏∞
j=1 A

(N)
j , sox ∈ U . Finally,

TNx = (
fN(xN+j )

) = (
t1, . . . , tJ , fN(a), fN(a), fN(a), . . .

)
= (t1, . . . , tJ , a, a, a, . . .) ∈ V1 × · · · × VJ × {a} × {a} × {a} × · · · ⊂ V,

which concludes the proof.�
Remark 4.4. The sufficient condition for universality furnished in the last theorem may
be necessary at all. Indeed, if for instanceE = R andS = ω, then the identityf :x ∈ R �→
x ∈ R has dense range and is continuous, soB = Bf is universal by Theorem 4.2, but th
sequence(fn) = (f ◦n) is clearly not weakly mixing ata = 0. Nevertheless, the conver
holds forc0 and for thelp spaces. In fact, we will be able to obtain a more general re
for SSSs (see Theorem 4.5 below) under the further condition that the “center” ofS has
neighborhoods with projections which are as “uniformly small” as desired, that is, u
the condition

(S5) Given an open subsetV ⊂ E containinga, there exists an open subsetU ⊂ S with
(a, a, a, . . .) ∈ U such thatπj (U) ⊂ V for all j ∈ N.

For instance,c0(E) and lp(E) (0 < p < ∞) satisfy (S5) (witha = 0) for any Banach
spaceE, while ω(E) does not satisfy it for any metrizable spaceE.

Theorem 4.5. If S is a SSSon E satisfying (S5) for the distinguished point a an
fn :E → E (n ∈ N) is a sequence of selfmappings such thatTn :x = (xj ) ∈ S �→
(fn(xj+n)) ∈ S (n ∈ N) is a densely universal sequence of continuous selfmappingsS,
then(fn) is weakly mixing ata.

Proof. Let us fix an open setV ⊂ E containing the distinguished pointa. Fix also finitely
many nonempty open setsUj ⊂ E (j = 1, . . . , J ). Since (S5) holds forS, we get the
existence of an open subsetU ⊂ S containing(a, a, a, . . .) such thatπj (U) ⊂ V for all
j ∈ N. Since(Tn) is densely universal, there must be at least one elementx = (xj ) ∈ U

which is universal for(Tn). The setW := U1 × · · · × UJ × E × E × · · · is open inS by
(S2), therefore there exists a positive integerN such thatTNx ∈ W , that is,(fN(xj+N)) ∈
U1 × · · · × UJ × E × E × · · · . In other words,

fN(xj+N) ∈ Uj (j = 1, . . . , J ).

But everyxj+N belongs toV , henceUj ∩ fN(V ) �= ∅ for 1� j � N , as required. �
Theorem 4.6. LetS be aSSSandΠfn :S → S (n ∈ N) be a sequence ofΦ-product maps
We have:

(a) If (Πfn) is densely universal then, for allJ ∈ N, the sequence{fn × · · · ×
fn :EJ → EJ }n�1 is transitive.

(b) If fn(a) = a for all n ∈ N and the sequence{fn ×· · ·×fn :EJ → EJ }n�1 is transitive

for all J ∈ N, then(Πfn) is densely universal.
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Proof. (a) Fix J ∈ N and nonempty open subsetsA, B of EJ . We must show tha
(fN × · · ·× fN)(A)∩B �= ∅ for someN . There exist nonempty open subsetsU1, . . . ,UJ ,

V1, . . . , VJ of E such thatU1 × · · · × UJ ⊂ A and V1 × · · · × VJ ⊂ B. Hence it is
enough to find anN with fN(Uj ) ∩ Vj �= ∅ for all j = 1, . . . , J . From (S2) the set
U := (U1 × · · · × UJ × E × E × · · ·) ∩ S andV := (V1 × · · · × VJ × E × E × · · ·) ∩ S are
open inS. By hypothesis and Theorem 2.1 together with (S1), the sequence(Πfn) is tran-
sitive, so there existsN ∈ N such thatΠfN

(U) ∩ V �= ∅. Pick an elementy = (y1, y2, . . .)

in such intersection. Theny ∈ V and there isx = (x1, x2, . . .) ∈ U with fN(xj ) = yj for
all j ∈ N. Hencexj ∈ Uj , yj ∈ Vj andfN(xj ) = yj (j = 1, . . . , J ), which proves (a).

(b) This time we fix nonempty open subsetsU, V of S. Again by Theorem 2.1 an
(S1) it should be shown the existence of anN with ΠfN

(U) ∩ V �= ∅. Due to (S3),
the setsσ(a) ∩ U and σ(a) ∩ V are nonempty, soσJ (a) ∩ U �= ∅ �= σJ (a) ∩ V for
someJ ∈ N. Now (S4) comes to our help, yielding the existence of nonempty open
U1, . . . ,UJ ,V1, . . . , VJ in E with

U1 × · · · × UJ × {a} × {a} × · · · ⊂ σJ (a) ∩ U and

V1 × · · · × VJ × {a} × {a} × · · · ⊂ σJ (a) ∩ V.

By hypothesis, there existsN ∈ N such thatfN(Uj ) ∩ Vj �= ∅ (j = 1, . . . , J ). Pick points
xj ∈ Uj , yj = fN(xj ) ∈ Vj (j = 1, . . . , J ). Then x̃ := (x1, . . . , xJ , a, a, . . .) ∈ σJ (a) ∩
U ⊂ U andỹ := (y1, . . . , yJ , a, a, . . .) ∈ σJ (a) ∩ V ⊂ V . Finally,

ΠfN
x̃ = (

fN(x1), . . . , fN(xJ ), fN(a), fN(a), . . .
) = (y1, . . . , yJ , a, a, . . .) = ỹ

because everyfn fixesa. �
We remark that in Theorem 4.6(a) only properties (S1)–(S2) of an SSS are us

particular, it also holds for the space
⊕

n∈N
K, see Example 3.2(2).

Roughly speaking, the following corollary shows that under soft conditions on a
the universality of the backwardΦ-shifts and of theΦ-product maps becomes complete
characterized in terms of the dynamical properties of their underlying selfmappings.

Corollary 4.7. We have the following:

(a) Assume thatBf :S → S is a Φ-shift on aSSSS satisfying(S4∗) with distinguished
pointa, in such a way thatf (a) = a andf is weakly mixing at that point. ThenBf is
universal.

(b) Assume thatBf :S → S is a universalΦ-shift on aSSSS which satisfies propert
(S5). Thenf is weakly mixing at the distinguished point.

(c) Assume thatΠf :S → S is a Φ-product map on aSSSS with distinguished pointa,
in such a way thatf (a) = a andf is weakly mixing. ThenΠf is universal.

(d) Assume thatΠf :S → S is a universalΦ-product map on aSSS. Thenf is weakly
mixing.

(e) Suppose thatE is a separable Banach space, thatS = lp(E) or c0(E) (0 < p < ∞)

and thatf :E → E is continuous. In addition, we assumelim supt→0 ‖f (t)‖/‖t‖ < ∞

if S = lp(E), andf (0) = 0 if S = c0(E). Then theΦ-productΠf (the Φ-shift Bf ,
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respectively) is universal onS if and only iff is weakly mixing(weakly mixing at the
origin, respectively).

Proof. The results (a)–(e) are direct consequences of Theorems 3.5, 4.3, 4.5, 4.6
the fact that, for a single selfmappingT on a topological space, the universality ofT

implies the dense universality of the sequence(T ◦n) of its iterates. Only part (c) need
some further explanation: Sincef is weakly mixing, by [11, Proposition II.3] one gets th
for everyJ ∈ N the mappingf × · · · × f :EJ → EJ is transitive. But this is the same
the transitivity of the sequencef ◦n ×· · ·×f ◦n :EJ → EJ (n ∈ N), hence Theorem 4.6(b
applies. �

5. Applications to hypercyclicity theory

Here we obtain two examples of hypercyclic operators and of hypercyclic sequen
operators on linear SSSs as a consequence of some preceding results.

Firstly, we get the following rather general statement that extends Rolewicz’s the
This is just the caseE = K, S = lp (1� p < ∞) or c0, f = the identity onK.

Theorem 5.1. Let be prescribed a Banach spaceE, a surjective operatorf on E and a
linear SSSS on E satisfying(S4∗) for a = 0. LetUE be the open unit ball ofE. Then the
scalar multipleλBf :S → S of the backwardΦ-shiftBf is hypercyclic whenever

|λ| > µ := 1

sup{α > 0: f (UE) ⊃ αUE} .

Proof. The Open Mapping Theorem together with the boundedness off guarantees tha
µ ∈ (0,∞). If |λ| > µ, thenf (UE) ⊃ αUE for someα ∈ (0,∞) with |λα| > 1. Therefore
(λf )◦n(UE) ⊃ (λα)nUE for all n ∈ N. Let us fix an open setV ⊂ E with 0 ∈ V and
finitely many nonempty open setsU1, . . . ,UJ in E. Pick pointstj ∈ Uj (j = 1, . . . , J ).
ThenV ⊃ βUE for someβ > 0. Since the setF := {t1, . . . , tJ } is finite and|λα| > 1,
there isN ∈ N such thatβ(λα)NUE ⊃ F . Hence, trivially,(λf )◦N(V ) ∩ Uj �= ∅ for every
j ∈ {1, . . . , J }. Thenλf is weakly mixing at the origin, so Corollary 4.7(a) applies w
a = 0 if we take into account thatBλf = λBf . �

We finish with a result (Theorem 5.2) that relates the hypercyclicity of aΦ-product
map to the so-called Hypercyclicity Criterion, which is the condition (b) in Theorem
Such criterion is a well-known sufficient condition for hypercyclicity, see [5,7,14].
will assume thatS is a complete linear SSS on an F-spaceE. HenceS is a separable
F-space (due to (S1), because second-countable is equivalent to metrizable plus
ble) and, from (S4),E is also separable. The following concept was introduced by
author in [4]: a sequence(fn) of operators onE is calledalmost-commutingwhenever

limn→∞[fn(fm(t)) − fm(fn(t))] = 0 for everym ∈ N and everyt ∈ E.
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Theorem 5.2. Suppose thatS is a complete linearSSSon an F-spaceE. Assume that(fn)

is a sequence of operators onE such that(Πfn) defines a sequence of operators onS.
Consider the following properties:

(a) The sequence(Πfn) is densely hypercyclic.
(b) There exist dense subsetsX0 andY0 of E and an increasing sequence(nk) ⊂ N satis-

fying the following two conditions: fnk
(t) → 0 (k → ∞) for all t ∈ X0; for any t ∈ Y0

there is a sequence(uk) in E such thatuk → 0 andfnk
(uk) → t (k → ∞).

(c) The sequencefn × fn :E2 → E2 (n ∈ N) is hypercyclic.

Then we have the following:

(A) Properties(a)and(b) are equivalent.
(B) If (fn) is almost-commuting, then(a)–(c)are equivalent.

Proof. (A) We are assuming that(Πfn) is densely hypercyclic. From Theorem 4.6(
the sequence{fn × · · · × fn :EJ → EJ }n�1 is transitive (so densely hypercyclic b
Theorem 2.1) for allJ ∈ N. Then Theorem 2.2 of [5] applies and one obtains that
holds. Conversely, assume that (b) is satisfied. Again by [5, Theorem 2.2] the seq
{fn × · · · × fn :EJ → EJ }n�1 is densely hypercyclic (so transitive) for allJ ∈ N. Since
fn(0) = 0 for all n we have that(Πfn) is densely hypercyclic by Theorem 4.6(b).

(B) We have already obtained that (a) and (b) are equivalent. On the other ha
(a) holds, then by Theorem 4.6(a) (forJ = 2) we get again the transitivity (so the den
hypercyclicity, hence the single hypercyclicity) of the sequence{fn × fn :E2 → E2}n�1.
Conversely, if this sequence is hypercyclic, then Theorem 3.3 of [5] guarantees tha
satisfied. �

Of course, part (B) applies to a single operatorf on E since any two iteratesf ◦n,
f ◦m clearly commute. Other conditions on(fn) which are equivalent to the Hypercycli
ity Criterion can be seen in [5] and [7]. Observe also that the transitivity of{fn × · · · ×
fn :EJ → EJ }n�1 for all J ∈ N is stronger than the property that(fn) is weakly mixing
at the origin. Hence, in view of Theorem 4.3 and of the proof of Theorem 5.2, we
that the sequence{Tn :x = (xj ) ∈ S �→ (fn(xj+n)) ∈ S}n�1 is hypercyclic if (b) and (S4∗)
(with a = 0) are satisfied. In particular iff is an operator onE then under the latter tw
conditions (withfn = f ◦n for all n ∈ N) theΦ-shift Bf is hypercyclic onS.

Remark 5.3. As for a nicenonlinearexample, we point out that some arguments sim
to those presented in the proofs of Theorems 4.3 and 4.5 allowed Peris to show in [2
a polynomialP : lq → lq given byP(x1, x2, . . .) = (p(x2),p(x3), . . .)—wherep :C → C

is a complex polynomial withp(0) = 0 of degree strictly greater that one—is universa

and only if 0 belongs to the Julia set ofp.
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