Available online at www.sciencedirect.com

Fournal of

SclENcE@DlRECT. MAT'HEMAT[CAL
A ANALYSIS AND
ELSEVIER J. Math. Anal. Appl. 306 (2005) 180-196 APPLICATIONS

www.elsevier.com/locate/jmaa

Backward®-shifts and universality

Luis Bernal-Gonzalez

Departamento de Analisis Matematico, Facultad de Matematicas, Avenida Reina Mercedes,
Apartado 1160, 41080 Sevilla, Spain

Received 3 April 2003
Available online 21 January 2005
Submitted by J.A. Ball

Abstract

In this paper we consider spaces of sequences which are valued in a topologicaEspade
study generalized backward shifts associated to certain selfmappings\We characterize their
universality in terms of dynamical properties of the underlying selfmappings. Applications to hyper-
cyclicity theory are given. In particular, Rolewicz’s theorem on hypercyclicity of scalar multiples of
the classical backward shift is extended.
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1. Introduction

In 1969 Rolewicz [26] was able to prove that for any scalavith |c| > 1 (and only
for these scalars) the multipleB of the backward shiftB on the sequence spacks
(1 < p < 00) and oncp is universal, that is, there exists some vector with dense orbit.
The operatoB is defined as

B(x1,x2,x3,...) = (x2, X3, X4, ...).
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Classical and weighted backward shift operators have been extensively studied during the
last two decades in connection with hypercyclicity and chaos, see for instance [3,7,12,
14,15,18-22,27], and the references contained in them. Interest in shift operators comes,
among other reasons, from the fact that many classical operators can be regarded as such
operators. For instance, the differentiation operdigr= f’ on the spacéi (C) of entire
functions on the complex plari@ may be viewed as the weighted backward shift

D:(ag, a1, az,...)— (a1, 2a2,3a3, ...),

as soon asH (C) is considered as the space of complex sequel@gsi1,...) with

la,|Y" — 0 (n — o0). Here the sequence of weights is213,.... In [15,18,21,27],

among others, the universality of weighted backward shift operators acting on certain se-
guence spaces has been completely characterized. In particular, Grosse-Erdmann considers
rather general sequence spaces in [15].

A. Peris [25] studied universality and chaos (in the sense of Devaney [9]; in usual set-
tings, chaos is equivalent to universality plus existence of a dense set of periodic points,
see [2]) of polynomialsP .1, — [, given by P(x1,x2,...) = (p(x2), p(x3),...), where
p:C — Cis acomplex polynomial. This study was extended to Kéthe sequence spaces in
[20, Capitulo 4] for the cases(z) =z andp(z) = (z+ D™ — 1.

In this paper we are concerned with the dynamics of a class of (unweighted, this time)
backward shift operators, namely, theshifts, which contains the previously cited cases.

A @-shiftisamapB:S — S given by

By(x1,x2,...) == (f(x2), f(x3),...),

wheres is a certain subspace éf', E is a topological space, anfl: E — E is a contin-

uous selfmap, see Section 3. We also consider the related notibrpodbduct mapi7 ;.

Both kinds of maps will be completely characterized/grspaces. Our main goal is to
characterize the “wild behavior” of @-shift B in terms of the dynamics of . This will

be done in Section 4. Finally, we provide in Section 5 some applications to the theory of
hypercyclic operators.

2. Universality, discrete dynamical systems and sequence spaces

The current section is devoted to fix some notation and to collect some definitions and
known results coming from Topological Dynamics and from elementary theory of spaces
of sequences. We refer the interested reader to the excellent surveys [8,14,16] for a sum-
mary of concepts, history and statements dealing with universality and hypercyclicity.

Assume thatX and Y are topological spaces and th@{:X — Y (n € N :=
{1,2,3,...}) is a sequence of continuous mappings. TI&p) is said to beuniversal
whenever there exists some elemert X whose orbit

{T,x: n e N}

under(T,) is dense inY. In this casex is called a universal element f@f;,). Observe
that the universality of7;,) forcesY to be separable. The sequeri@g) is calleddensely
universalwhen the set/ (T,,)) of universal elements fdiT},) is dense inX. Finally, (T,) is
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said to betopologically transitive(in the sense of Birkhoff) provided that to every pair of
nonempty open subsetsof X andV of Y there exists some € N with T,,(U) NV # @.
Assume now tha =Y and thatT : X — X is a continuous selfmapping. From the
point of view of the behaviour of the sequen¢g™) of its iterates—that i°1 = T,
T°2=ToT,..—T can be considered as a “discrete dynamical system.” Thiercalled
universalwhenever the sequen¢&°”) is universal; in this case the sB{(T) := U (T°"))
of universal elements forl is dense inX; indeed, ifxg is universal forT thenT (and
so eachT°™) has dense range, hence each p@ifitxg is universal. A continuous self-
mappingT is said to beopologically transitivevhenever7°") is topologically transitive.
Finally, T is calledweakly mixingorovided that the mapping

TxT:(x,y)eXx X+ (Tx,Ty)e X xX

is topologically transitive, wher& x X is assumed to carry the product topology. Fursten-
berg [11, Proposition I1.3] proved that in this case th@roduct mapl x 7' x --- x T

(J times):(x1,...,x5) € X/ — (Tx1,...,Txy) € X’ is also transitive for every. And
Banks [1, Lemma 5] has shown tH&ais weakly mixing if for given nonempty open subsets
Uy, Us, V C X there is anV e N such thatr°VN (V) n Uj # 9 for j =1,2. Therefore we
have that" is weakly mixing if and only if for given finitely many nonempty open subsets
U1,...,U;, V C X there is anV € N such thatr°N (V) nU; #@ for j=1,...,J. This
motivates the following definition, which will be used in Section 4.

Definition 2.1. Assume thatf, : E — E (n € N) is a sequence of continuous selfmappings
on a topological spacg and thatwz is a point inE. We say that f,,) is weakly mixing at a

if and only if for given finitely many nonempty open séfs, ..., U,, V such thatz € V
there existsV € N satisfying

INOVYNU;#£9 forall j=1,...,m.

And we say that a continuous selfmappifigE — E is weakly mixing at avhenever its
sequencé f°") of iterates is weakly mixing at.

The following universality criterion will reveal useful in Section 4. It can be found in,
for instance, [14, Section 1a] (see also [13, Kapitel 1]).

Theorem 2.1. Suppose thak, Y are topological spaces, in such a way ti¥ats a Baire
space and is second-countable. LéT,) be a sequence of continuous mappings feom
to Y. Then the following assertions are equivalent

(a) The sequencéT},) is densely universal.
(b) The sequencél;,) is topologically transitive.

In a linear setting, that is, whek, Y are topological vector spaces &(:= C or the
real lineR) and 7, (n € N) (or T) are linear and continuous, the wordsiversaland
hypercyclicare synonymous. By amperatorwe mean a continuous linear selfmapping on
a topological vector space.
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By » we denote, as usual, the space of all scalar sequenceX". It becomes a
Fréchet space<{ complete metrizable locally convex space) when it is endowed with the
metric

i )_il =yl
Y= = 2J 1+|x,—y/|

wherex = (x;) andy = (y;). For 0< p < co we consider thé, spaces

o
lp= {x:(xj) € w: Z|x(,~|p <007,

j=1

If u(p)=p (p=1), u(p)=1(p <1 andllx|, := (352, |x;|")/*P, then forp >

the spacé, becomes a Banach space under the nprri,, while for p < 1 the spacé

is an F-space=t complete metrizable linear space) under the mettic y) = [lx — yll,.
Recall also that the spaeg = {x = (x;) € w: lim;_,, x; = 0} is a Banach space when it
is endowed with the normix|o := sup;cy |x;|. Generalizations of this kind of sequences
spaces will be considered in Section 3.

3. @-product maps and backward ¢-shifts

In this section and in the next orfe will denote a Hausdorff topological space, asid
will stand for a subset of the spadg' of E-valued sequences= (x;), sox; € E for
all j e N. For everya € E we denote by (a) the set of sequences ending withthat is,
o(a) =JJ2,0/(a), whereo, (a) = {x = (x;) € EN: x; =a for all j > J}. From now
on, we will assume thaf is a standard sequence space in the sense established by the next
new concept.

Definition 3.1. We define astandard sequence spa¢8SS) onE as a subses ¢ EN
endowed with a topology such that there exists a poiatE satisfying the following four
properties:

(S1) The spac§ is Baire and second-countable.

(S2) The topology orf is stronger than that inherited from the product topologyZdh
(S3) The set (a) is a dense subset 6f

(S4) For eachly € N, the topology of each; (a) inherited fromS is the product topology.

If SisaSSS and € E is a point satisfying (S3)—(S4), then we will says adistinguished
point for §. If E is a Hausdorff topological vector space, then a topological vector space
S c EN is called alinear standard sequence space E whenever it satisfies (S1)—(S4)
for the pointa = 0.

Sometimes we will also consider the following property:
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(S4°) GivenJ e N, an open setU C S and a poinx € o;(a) N U, there exist open sets
Ui,...,Uy,Ain E such thaw € ]_[711145-1\1) c U forall N > J, where

Ui A<j<)),
AV =14 (N+1<j<N+D), (1)
' {fa}] (J<j<Norj>N+1J).

Remark 3.1. Due to the presence @f1, ..., Uy, (S4*) implies (S4). In (S3), the exis-
tence of “slidingJ-wagon trains”A x --- x A in the projections of every neighborhood

of each point ob; (a) reveals some “indifference” among the coordinates of the elements
of § when they are close ta. On the other hand, (S4) implies that for evgrg N the
immersioni; :t € E+ (a,a,...,a,t,a,a,...) € S (Wheret occurs at thejth place) is
continuous. Of course, (S2) tells us that convergencgimplies coordinatewise conver-
gence.

Examples 3.2.

(1) The spaces, I, (0 < p < c0) andco are linear SSSs: suffice it to take= K with
the usual topology. Property (S1) for these spaces is easily checked just by taking into
account that a completely metrizable separable space is Baire and second-countable.
The remaining conditions are straightforward. A different example is the space
{x=(x;) e KN: lim;_ oo x2j-1=0 and)"%; x| < oo}, which becomes a Banach
space under the norfix || = sup; > q [x2j-1/+ Z?‘;l lx2;|. All these spaces also satisfy
(S49).

(2) Thedirectsun$ =, . K of countably many lines endowed with the inductive limit
locally convex topology is a second-countable topological vector space satisfying (S2)
to (S4) forE =K anda = 0, butitis not a linear SSS sinc¢kis not a Baire space.

(3) Let S ={x =(x)) € RN: lim;~ jxj = 0}. ThenS becomes a separable Banach
space when it is endowed with the notma| = SUpPe 17Xl Then S satisfies (S1)
to (S4) (fora = 0; no other pointz € R is possible), so it is a linear SSS. But (34
fails because given a ball = {||x|| < ¢} then we have diax;(U)) < 2¢/j — 0
(j — o00), see Remark 3.1. Here, as usugl,denotes thg-projectionrs; : x = (x,) €
S x;eE (jeN).

Another family of examples of linear SSSs which are extensions af, [, is described
as follows. Assume thak is a separable Banach space oleor C with norm || - ||.
Consider the spaces @-valued sequences(E), co(E), [,(E) (0 < p < 00). They are
defined as the former spaces just by repladibgvith E, and the absolute value with
|l - Il. As a matter of fact, in the case(E) it is enough to assume thatis a completely
metrizable separable topological space.

Now we are going to motivate the new concepts provided in Definition 3.2, see be-
low. As seen in Section 1, Rolewicz [26] proved the universality of the backward shift
¢B:(x;) = (cxj41) (Jc] > 1) onco andl, (1< p < oo), while Grosse-Erdmann [15,
Corollary 2] noted that any weighted backward shift (in particuBitself) is univer-
sal, even chaotic, om. Martinez and Peris [21] have recently studied backward shifts on
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Kothe echelon spaceg(A4), 1,(4) (1< p < oo) (see [17] and [23] for definitions and
properties; they are separable Fréchet spaces and ingJuge(l < p < oo) for adequate
matricesA), and in particular they characterize the universalityBoiih terms of the ma-
trix A [21, Proposition 3.1]. On the other hand, Bernardes [6] showed that for giverd
there is no universak-homogeneous continuous polynomial on any Banach space; in par-
ticular, the shift(x;) — (x;"+1) is not universal ori, (1< p < o0) or cg. However, the
last mapping is universal, even chaotic, on the Fréchet spae&€™ [24] and in fact on
some (non-Banach, of course) Kéthe spacg&) [20]. Furthermore, Peris [25] proves
that the (nonhomogeneous) polynomia)) — ((z; + 1™ — 1) is universal (and chaotic)
on the complex Banach spadgq1 < p < co) andcp. This is again true on certain spaces
Ap(A), see [20].

Definition 3.2. Suppose thaf is a SSS and thdf : S — S is a continuous selfmapping
ons.

(a) We say thaf" is a®-product mapon S if there exists a selfmappingj: E — E such
thatT = [Ty on S, wherelTyx = (f (x;)) for everyx = (x;) € EN.

(b) We say that’ is abackward® -shifton S if there exists a selfmapping: E — E such
that7 = By on S, whereB rx = (f(x;+1)) for everyx = (x;) € EN.

Remarks 3.3.

(1) Observe thaBy =I1y o B = B o I1y, whereB is the ordinary backward shift, i.e.,
Bx = (xj41) for x = (x;). Of course, ifg is the identity onE thenIT, = the identity
on EN andB, = B. Note also that if eithefT ; is a®-product map oB  is a backward
@-shift on S then f is continuous Indeed, f = w1 0 IT¢ 0 i1 = w1 0 By o ip, Where
i1, i2 are the 1- and 2-immersions (see Remark 3.1)—which are well-defined by (S3)
and continuous due to (S4)—and is the 1-projection, which is continuous by (S2).

(2) Note that even in the case of a linear S$8n E the mappingf : E — E may be
nonlinear, so botl7 ; and By may well be nonlinear.

It is interesting to obtain necessary and sufficient conditiongfer(B s, respectively)
to be well-defined on a SSS(that is, forS to belT ¢-invariant:I7,(S) C S, or respectively,
By-invariant: B¢ (S) C S) and to be a®-product map or ab-shift (that is, continuous).
This will be carried out at least for the most usual spao€g), /,(E) (0 < p < 00),
co(E). Recall that the continuity of is a general necessary condition for the continuity
of By. In connection with this, we remark that Wildenberg [28] discovered in 1988 the
absence of nontrivial functiong:R — R for which a sequencex;) in RY is summable
only if (f(x;)) (=1II¢(x;), in our terminology) is summable. Specifically, he stated that
the last property holds for any sequen@e) if and only if there exists a constaktwith
f (@) =kt in aneighborhood of the origin. Of course, this is not necessarfffar,) C /1:
take, for instancef (1) = ¢2. In fact, we will use an approach similar to [28, Lemma 1] in
order to obtain theT ¢-invariance of the spacés(E).
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Lemma 3.4. Let X be a topological space. Assume that is a point in X and that
¢: X — [0, 00) is a function such that

(i) There is a countable basis of neighborhoodsdpanda is not an isolated point ik .
(i) limy_,e(x)=0andg(x) > 0forall x € X \ {a}.
(iii) If (x;) € XN andlim ;o ¢(x;) =0, thenlim ;oo x; = a.

Let us suppose that: X — X. Then the seriei?"zlq)(f(xj)) is convergent for every
convergent serieE?"zlw(xj) if and only if there exists a constamt € (0, co) such that

o(f () < Mo(x) 2
on some neighborhood of

Proof. Assume first that (2) holds for sonié € (0, co) and some neighborhodd of a.
If (x;) € X" and) %2, ¢(x;) converges them(x;) — 0 asj — oo, S0x; — a by (ii).
Therefore there is/ € N such thatx; € U for all j > J. Henceo(f(x;)) < Mo(x;)
(G>J), sozgilw(f(xj)) converges due to the comparison criterion.

As for the converse, suppose, by way of contradiction, that there is not any cobstant
satisfying (2) on some neighborhoodwfLet {U,,: n € N} be a decreasing basic sequence
of neighborhoods ofi. From (i) and (ii) there is a sequenge(1l) < n(2) <---} c Nand
pointsx; € Uy(jy \ {a} such that

0<o(x)) <1//% and ¢(f(x))> je;) (jeN).

Define N(j) to be the least integer that}sl/(jzw(xj)). ThenN(j) — 1< 1/(j2(p(x]‘)),
SON(je(x;) < /7% + p(xj) < 2/j2. Now consider the sequence

(yj):(xlv"'vxlvx27"'7-x25-x3’""-x31"')s

where eacly; occursN (j) times. We have that

o o0 o0 2
D o)=Y N <) — <oo.
Jj=1 j=1 =1’
But
De(foN) =D Nie(fxn) =) Erentidils =
j=1 j=1 j=1 JoPxj j=1 J
and the last series diverges. This contradiction proves the lemma.
We are now ready to specify exactly whtshifts and whatp -product maps are well-
defined operators aa(E), co(E) andl,(E). In the following result we are assuming that

E is a completely metrizable separable topological space in the«w@sg while E is a
separable Banach space in the cageg), [, (E).

Theorem 3.5. Let f : E — E be a selfmapping o, and p € (0, c0).
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(1) The following properties are equivalent
(i) 1y is @-product map onw(E).
(i) By is a backward®-shift onw (E).
(iii) f is continuous.
(2) The following properties are equivalent
(i) The spaceq(E) is I1¢-invariant.
(if) The spaceq(E) is By-invariant.
(i) f(0) =0and f is continuous at the origin.
(3) The following properties are equivalent
(i) Iy is a®-product map org(E).
(i) By is a backward®-shift onco(E).
(iii) f is continuous ang (0) = 0.
(4) The following properties are equivalent
(i) The spacé, (E) is IT¢-invariant.
(i) The spacé,(E) is By-invariant.
(iii) limsup,_, o 1401 < oo,
(5) The following properties are equivalent
(i) Iy is ad-product map ori,(E).
(i) By is a backward®-shift oni,(E).

(iii) f is continuous antimsup,_, o 10!

< .

In particular, By is a backward®-shift on/,(E) if f is an operator onk.

Proof. The ordinary backward shif® is, trivially, a well-defined continuous selfmapping
on S for each of the space$ = w(E), co(E), I,(E). Then the implication (i}= (i) in

all parts (1)—(5) is evident due to the faBy = B o IT;. On the other hand, the sentence
“ f is continuous” appearing in each part (iii) of (1), (3) and (5) follows from the cor-
responding part (ii) together with Remark 3.3(1). The additional properif&8)“= 0"

and *limsup_, o 1401 < oo” respectively in (3)(iii) and (5)(iii) follow from parts (2), (4).
Thus, we will be done as soon as we prove the following implications.

(iify = (i) of (1): It is evident becauséls is continuous if and only ifr; o IT; is
continuous for each projection; : w(E) — E; butx; o ITy = f for everyj € N.

(i) = (iii) of (2): Given a sequenceéx;) € co(E) we must havef (xj41) € co(E), that
is, f(xj4+1) = 0 (j — o0) or, that is the samef (x;) — 0 (j — o0). SinceE is first-
countable this tells us that is continuous at the origin anfl(0) = 0.

(i) = (i) of (2): Use again that (iii) is equivalent ta( f (x;)) tends to zero for every
sequencex ;) tending to zero.”

(iity = (i) of (3): Fix « = (a;) € co(E) ande > 0. Sincef(0) =0 and f is continuous
at the origin, there i8g > 0 such that| / (¢)|| < &/2 if ||7]| < 8o. On the other hand, from
the facta; — 0 (j — oo) we deduce the existence of sothe N with ||a;|| < 80/2 for all
j>J,hencd| f(a;)|l <e&/2(j > J). Now, from the continuity off atay, ..., a; one gets
8;>0(je{l,...,J}) suchthat| f(r) — f(a;)|l <& whenever € E and||t —a;| <3;.
Let us choosé := min{8p/2, 81, ..., 8,}. Thens > 0. Suppose that = (x;) in cg(E£) and
[x —allo<é. If je{l,...,J}, then|lx; —a;| <3§;, therefore| f(x;) — f(a))| < e.
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Finally, for j > J, we havellx; —a;|| < 8o0/2, sO|lx;|l < llx; —ajll + lla;ll < 8o. Hence
I f(xj)ll <e/2and

lfep) = fa@p|<|rap|+]rfa@p]<e G>.
Thus,

17700 = Ao =sup| f(xj) = flap] <e.
je

which proves the continuity of ate. But«a was arbitrary, so the implication is proved.

(i) = (iii) of (4): Apply Lemma 3.40nX = E,a =0, ¢(x) = ||x||?. Take into account
that, trivially, Z?il(p(f(x]')) converges if and only iE?il(ﬂ(f(XjJrl)) does.

(i) = (i) of (4): Apply again Lemma 3.4.

(iity = (i) of (5): By the “limsup” condition and (4){1 is a selfmapping of,(E). As
for the continuity, fixx = (a;) € 1,(E) ands > 0. By hypothesis, there ad, 5o € (0, co)
such that| £ (1)|| < M||t]| whenevel|t|| < §o. Sincea; — 0 asj — oo, we can find/ e N
with |la;|| < 80/2 for all j > J, so| f(aj)|l < Mlla;ll (j > J). The numberJ can be
chosen such that, in addition,

eh(p)

1P S
2,V = sy

Due to the continuity off at eachy;, it is possible to find; > 0 satisfying that

e (p)

1/p
i ) whenevel|t —a;|| < §;.

lf@) = f@pl < (

Now, let us choose

8o\ /P p/n(p) op/u(p) p/i(p) €
5_m|n{<2> , 01 , 05 yees 07 ,W > 0.

Assume thatc = (x;) € [,(E) and ||x — |, < 8. Then|x; —a;|l < do/2, so|lx;|l <
lla;ll + (80/2), whence|x;|| < 6o for all j > J and, consequentlyj f (x;)|| < M||x;||
(j > J). In addition, ||x; — a;|l < 8; (j € {1,...,J}), therefore| f(x;) — f(apIl? <
eMP) 137 (1< j < J). We recall that(b + ¢)? < 2P (b? + ¢P) for all p € (0, o0) and all
b, c > 0, see for instance [10, p. 57]. Finally, we estimate:

[1770) = @57

Z | fexp)— flap|”

J 00

<Y lrap=r@pl”+ 30 (Irapl+[r@pl)”
j=1 j=J+1

J

< fan = fa@p)” +2v Z | reep]? +2r Z | f@p]”

j=1 j=J+1 j=J+1
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J

<N fap = fap|” +2rmr Z lx; 117 + 27 MP Z llaj 117

j=1 j=J+1 j=J+1

~

< e = fap)” +2rmr Z (2l1xj —ajll” + 27 a;||)

j=1 j=J+1
o0
+2PMP Y |
j=J+1

J 00
<Y fap = f@p||” + A MPx —aly P + 201+ 2)MP S gyl

j=1 j=J+1
<J- W)+4P p 2 +2P(14+27)M? - L_gmm

3Mpr4r 3Mp2r(1+ 2r)

Thus, |[[Tf(x) — T (@), < ¢ whenever|x — «||, < &, which establishes the continuity
of Iy, O

4. Universality of @-product mapsand of @-shifts

This section is devoted to providing necessary conditions and sufficient conditions for a
@ -product mag’1; or a backwardp-shift B¢ to be universal on a given SSS. Such condi-
tions will be expressed in terms of the dynamical properties of the underlying fungtion
that is, in terms of the behavior of its sequernigé™) of iterates.

To start with, we establish a necessary condition for universaliti, 6f) andco(E).

Recall that “limsup_, ”m)” < 00" is necessary forT; and B to be well-defined oper-

ators o/, (E). The point is that such limsup must not be too small.

Proposition 4.1. Assume thaf is a separable Banach space, that (0, co), and that

fiE — E is continuous and satisfieansup_, o 4] < oo (and satisfiesf (0) = 0,

respectively. If either 17y or By is universal on/,(E) (on cg(E), respectively, then

t
limsup_,o L2l > 1.

Proof. If we follow a way of contradiction and assume that limsyg|l f () |l/llz]] < 1,

then we obtain easily that for every vecios (x;) in some ball centered at the origin f

the orbit ofx under/T; or B is bounded, so nondense. This is a contradiction because the
setU (T) of universal elements of a continuous selfmappihg dense ifT is universal.

The details are left to the interested readen

Observe that as a consequence of Proposition 4/1: i — E is an operator on a
separable Banach spageand B is hypercyclic or,(E) (1< p < 00) or onco(E) then
Il £l > 1. In fact, we can say a little more: it must B¢ || > 1 becausd|/1¢| = || By| =
|| 1l and a hypercyclic operator on a normed space cannot be nonexpansive.
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We saw in Section 3 that the continuity gfis a necessary condition f&; to be a
backward®-shift on a SSS. We establish in the next result that the denseness of the range
of f is necessary for the universality 8f;. This condition becomes sharp for the largest
spacew (E). As for IT, the universality off itself is necessary.

Theorem 4.2. Suppose that,, : E — E (n e N) and f : E — E are continuous and thaf
isaSSSon E. We have

(a) If By :S — S is a universal backwara-shift, thenf has dense range.

(b) If E is a completely metrizable separable topological space Arths dense range,
thenBy . w(E) — w(E) is a universal backward -shift.

(c) If (I1y,) is a universal sequence df-product maps orf, then the sequenag,) is
universal onE. In particular, if I7;: S — S is a universal®-product map, thery is
universal onE.

Proof. (a) Assume thaB/ is universal onS, and fix a pointy € E. From (S3), the point
y=(y,a,a,a,...)isin S for somea € E. By universality, there is a poirik;) € S and a
sequencény) of positive integers such that the sequeig€* (x;1,)) jen) COnverges to
(y,a,a,...)in S ask — co. From (S2),f°" (x14n,) — ¥, hencef (£ (x14n,)) — v,
which proves thay is in the closure off (E). But y was arbitrary, sgf (E) is dense.

(b) From Theorem 3.5B is in fact a backwardp-shift on o (E). Recall thatw (E)
is a second-countable Baire space. In order to apply Theorem 2.1Xtakes(E) =: Y,
T, := B}. Let us try to check the Birkhoff transitivity property. Fix nonempty open subsets
U,V of w(E). Then there exisf € N and nonempty open subséts, ..., Uy, V1,...,Vy
in E such that

U x-+xUxExXxEx---cU and Vix---xVyxEXEx---CV.

Since f has dense range and is continuous, we havefthhhas also dense range. From
this, we derive the existence of poimis. .., t; € E such thatf‘”(tj) eV,(j=1...,)).
Choose any points; € U; (j =1,...,J) and any point € E. Consider the sequence
x = (x;) € w(F) defined as

yj A<j<)),

xj: Z‘j,] (J<J<2J),

t (J > 2J).
It is clear thatx € U. Finally, Ty x = B;x = (f° (xjr)), but £/ (xj1) = £/ t)) € V;
forj=1,...,J,s0

T;ixeVix---xVyxExXEx---CV.

ConsequentlyT; (U) NV # @, as required.
(c) This is due to the following facts: the projectian is continuous and surjective
(by (S3)),m10 s, = fpomand(ITz)*" =y foralln e N. O

Now, we focus our attention on the searching of conditions on the fungtitwat guar-
antee the universality aB; and Iy on general SSSs. A local weakly mixing condition
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will be imposed in the following theorem on a sequence of selfmappings fixing the distin-
guished point.

Theorem 4.3. Assume thaf,, : E — E (n € N) is a sequence of selfmappings for which the
mappingsT,, :x = (x;) € S — (fu(x;44)) € S are well-defined and continuous, whefés

a SSSon E satisfying(S4*) for some distinguished poiate E. Suppose thaf, (a) = a

for all n € N and that( f,,) is weakly mixing at:. Then(T},) is densely universal.

Proof. Observe first that, in a similar way to the caseBgf, every f, must be continuous,
see Remark 3.3(1).

Our aim is to apply Theorem 2.1. ChooX¥e= S =: Y. Observe tha¥ is Baire and
thatY is second-countable by (S1). Consequently, our goal is, given a pair of nonempty
open setd/, V of S, to find a sequence = (x;) € U and a positive integeN such that
Tyx € V. From (S3),U No(a) # @ # V No(a). Therefore there exist € N and points
ai,...,ay,b1,...,by € Ewitha € U andp € V, where

a:=(a1,...,ay,a,a,a,...) and B:=(b1,...,bj,a,a,a,...).

First of all, let us prove the following claim: There are in fagtinitely manyN € N
with fy(A)NU; #@forall j=1,...,m,whereA, Uy, ..., U, are prescribed nonempty
open sets witlx € A. Indeed, choos#; € N such that eaclfy, (A)NU; (j €{1,...,m})
is not empty. IfE has only one point, namely, then the claim is trivial. IfE has at
least two points then, sincg is Hausdorff, there aré € E and open subsetég, B C E
with a € Ag, b € B andAg N B = . Recall that eacly, is continuous. Hence there exist
open subsetd,, n=1,...,N1) in E witha € A, andA, C A such thatf,,(A,) C Ag;
we have used thaf, (a) = a for all n. DefineA := A;N---N Ay,. ThenA is an open
subset containing the pointand f, (A) C Ag for alln € {1, ..., N1}. In addition,A C A.
Hencef,(A)N B =@ forn =1, ..., N1. By hypothesis, there existé, € N (necessarily,
Nz > Np) with fn,(A)NU; #@forall j €{0,1,...,m}, whereUp := B. Therefore

A NU;#9 (jefl,....m}),

which proves the claim because in the same way we would obfaia No < N3 < ---
such thatfy, (A)NU; #@forall j €{1,...,m}andallk e N.

Now we recover our first goal and fiX, V, «, 8 as before. Since € o;(a) N U, from
(S4) it can be extracted the existence of finitely many open 8ets.., Uy, A in E for
whicha € ]‘[?‘;1 A;N) cU (N >1J), WhereAi.N) is defined by (1). In addition, there are
open setsVy, ..., Vy in E such that € V1 x --- x Vj x {a} x {a} x --- C V. By the
just-proved claim, a positive integdf can be chosen in such a way tht- J and

ANV #£G (j=1,...,J).

Hence there exist pointsry,...,t; in A satisfying fv(t;) € V; (j =1,...,J). Letus
definex = (x;) € EN as

aj  A<j<D),

Xj=11tj—-N (N+1<j<N+),
a (J<j<Norj>N+J).



192 L. Bernal-Gonzélez / J. Math. Anal. Appl. 306 (2005) 180-196

Thenx € [152; A", sox € U. Finally,

Tnx = (fnGne)) = (11, ... ts, fn(@), fa(a), fr(a),...)

=(t1,...,ty,a,a,a,..)eVix---xVyxla} x{a} x{a} x---CV,

which concludes the proof.O

Remark 4.4. The sufficient condition for universality furnished in the last theorem may not
be necessary at all. Indeed, if for instarice= R andS = w, then the identityf : x e R —

x € R has dense range and is continuousBse By is universal by Theorem 4.2, but the
sequence f,) = (f°") is clearly not weakly mixing at = 0. Nevertheless, the converse
holds forcg and for thel,, spaces. In fact, we will be able to obtain a more general result
for SSSs (see Theorem 4.5 below) under the further condition that the “cent&rhas
neighborhoods with projections which are as “uniformly small” as desired, that is, under
the condition

(S5) Given an open subsEtC E containinga, there exists an open subgétc S with
(a,a,a,...)eU suchthatr;(U) C V forall j eN.

For instanceco(E) andl,(E) (0 < p < oo) satisfy (S5) (witha = 0) for any Banach
spacek, while w (E) does not satisfy it for any metrizable spate

Theorem 4.5. If S is a SSSon E satisfying (S5) for the distinguished point a and
fniE - E (n e N) is a sequence of selfmappings such thiatx = (x;) € S —
(fu(xj+n)) € S (n € N) is a densely universal sequence of continuous selfmappings on
then(f,) is weakly mixing at.

Proof. Let us fix an open sét C E containing the distinguished poiat Fix also finitely
many nonempty open set$; C E (j =1,...,J). Since (S5) holds foss, we get the
existence of an open subsgtC S containing(a, a, a, ...) such thatr;(U) C V for all

J € N. Since(Ty) is densely universal, there must be at least one elementx;) ¢ U

which is universal for7;,). The setW :=U; x --- x Uy x E x E x --- is open inS by

(S2), therefore there exists a positive integyesuch thatfyx € W, that is,(fy (xj4+n)) €

Ui x---xUjx E x E x---.Inother words,

INGjen)elU; (G=1,...,J).
But everyx; y belongs toV, hencelU; N fy (V) #@ for 1< j < N, as required. O

Theorem 4.6. Let S be aSSSand Ty, : S — S (n € N) be a sequence d@f-product maps.
We have

a) If (I1¢,) is densely universal then, for all € N, the sequencq f, x --- x
In
fu:E? — E’},>1 is transitive.
(b) If f,(a) =aforall n e Nandthe sequendef, x --- x f,: E/ — Ef}n>1 is transitive
forall J €N, then(I1,) is densely universal.
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Proof. (a) Fix J € N and nonempty open subsets B of E/. We must show that
(fy x -+ x fn)(A)N B # @ for someN. There exist nonempty open subséts ..., Uy,
Vi,...,Vy of E such thatUy x --- x Uy C A andVy x --- x V; C B. Hence it is
enough to find anV with fy(U;)NV; #@ forall j =1,...,J. From (S2) the sets
U=Uyx---xUxExEx--)nSandV:=Vix---xV;xExEx--)NSare
open inS. By hypothesis and Theorem 2.1 together with (S1), the sequénge is tran-
sitive, so there exist&/ e N such thatlT ¢, (U) NV # @. Pick an elemeny = (y1, y2,...)
in such intersection. Thene V and there isc = (x1, x2,...) € U with fy(x;) = y; for
all jeN.Hencex; eU;,y; e V;andfy(x;) =y; (j=1,...,J), which proves (a).

(b) This time we fix nonempty open subséfs V of S. Again by Theorem 2.1 and
(S1) it should be shown the existence of Anwith 7, (U) NV # @. Due to (S3),
the setso(a) N U ando(a) NV are nonempty, sa;(a) NU # 0 # oy(a) NV for
someJ € N. Now (S4) comes to our help, yielding the existence of nonempty open sets
Ui, ...,Uy, Vi,...,Vyin E with

Upx - x Uy x{a} x{a} x---Coy@NnU and
Vix--xVyx{ayx{a})x---Coj@nV.

By hypothesis, there exist§ € N such thatfy (U;) N V; #0 (j =1, ..., J). Pick points
xjeUj,yj=fn&x))eV; (j=1...,J). Thenx ;= (x1,...,x5,a,a,...) €oy(a) N
UcUandy:=(1,...,ys,a,a,...)€oy(@ NV cCV.Finally,

Mk = (NG, ... NG, fyv(@), fn@,...)=01.....ys.a.a,..) =7

because every, fixesa. O

We remark that in Theorem 4.6(a) only properties (S1)—(S2) of an SSS are used; in
particular, it also holds for the spaép, . K, see Example 3.2(2).

Roughly speaking, the following corollary shows that under soft conditions on a SSS
the universality of the backwardi-shifts and of thep -product maps becomes completely
characterized in terms of the dynamical properties of their underlying selfmappings.

Corollary 4.7. We have the following

(a) Assume thaB,:S — S is a @-shift on aSSSS satisfying(S4*) with distinguished
pointa, in such a way thayf (a) = a and f is weakly mixing at that point. TheB; is
universal.

(b) Assume thaB;:S — S is a universal®-shift on aSSSS which satisfies property
(S5) Theny is weakly mixing at the distinguished point.

(c) Assume thafly:S — S is a @-product map on &8SSS with distinguished poing,
in such a way thaif (a) = a and f is weakly mixing. Thefl s is universal.

(d) Assume thafl;:S — S is a universal®-product map on &SS Then f is weakly
mixing.

(e) Suppose thaE is a separable Banach space, thit=1,(E) or co(E) (0 < p < 00)
and thatf : E — E is continuous. In addition, we assutira sup,_,q || f (OIl/l]] < oo
if $=1,(E), and f(0) =0if S =cg(E). Then thed-product T (the @-shift By,
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respectivelyis universal onS if and only if f is weakly mixingweakly mixing at the
origin, respectively.

Proof. The results (a)—(e) are direct consequences of Theorems 3.5, 4.3, 4.5, 4.6 and of
the fact that, for a single selfmappirfy on a topological space, the universality Bf
implies the dense universality of the seque€é€”) of its iterates. Only part (c) needs
some further explanation: Singeis weakly mixing, by [11, Proposition 11.3] one gets that

for everyJ € N the mappingf x --- x f:E’/ — E’ is transitive. But this is the same as

the transitivity of the sequenc€” x --- x f": EY — E’ (n € N), hence Theorem 4.6(b)
applies. O

5. Applicationsto hypercyclicity theory

Here we obtain two examples of hypercyclic operators and of hypercyclic sequences of
operators on linear SSSs as a consequence of some preceding results.

Firstly, we get the following rather general statement that extends Rolewicz’s theorem.
This is just the cas& =K, S =1, (1< p < 00) 0rcg, f = the identity onK.

Theorem 5.1. Let be prescribed a Banach spagk a surjective operatorf on E and a
linear SSSS on E satisfying(S4*) for a = 0. Let Ug be the open unit ball of. Then the
scalar multiplerBy : S — S of the backwardp-shift B is hypercyclic whenever

1
supla > 0: f(Ug) DaUg}

A > =

Proof. The Open Mapping Theorem together with the boundednegsgqfarantees that
€ (0,00). If |A] > u, then f(Ug) D aUg for somewx € (0, co) with |Ax| > 1. Therefore
M) (Ug) D (Ax)"Ug for all n € N. Let us fix an open se¥ C E with 0 V and
finitely many nonempty open seté, ..., Uy in E. Pick pointst; e U; (j =1,...,J).
ThenV D BUg for someg > 0. Since the sef := {11, ...,t;} is finite and|Ax| > 1,
there isN € N such that8 (Aa)Y Ug O F. Hence, trivially,(Af)°N (V) N U, # @ for every
jef{l,...,J}. Thenif is weakly mixing at the origin, so Corollary 4.7(a) applies with
a =0 if we take into account tha; ; = ABy. O

We finish with a result (Theorem 5.2) that relates the hypercyclicity @f-product
map to the so-called Hypercyclicity Criterion, which is the condition (b) in Theorem 5.2.
Such criterion is a well-known sufficient condition for hypercyclicity, see [5,7,14]. We
will assume thatS is a complete linear SSS on an F-spdteHencesS is a separable
F-space (due to (S1), because second-countable is equivalent to metrizable plus separa-
ble) and, from (S4)F is also separable. The following concept was introduced by the
author in [4]: a sequencef,,) of operators onE is calledalmost-commutingvhenever
My ool fu (fin @) — fin(fn(@))] =0 for everym € N and every € E.
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Theorem 5.2. Suppose thaf is a complete lineaBSSon an F-spacé:. Assume thatf,,)
is a sequence of operators dn such that(/7s,) defines a sequence of operators $in
Consider the following properties

(a) The sequenc@Ty,) is densely hypercyclic.

(b) There exist dense subséfs and Y of E and an increasing sequen¢e;) C N satis-
fying the following two conditionsf;, (t) — 0 (k — oo) for all r € Xg; for anyt € Yy
there is a sequenadgy) in E such thatuy — 0 and f,,, (ux) — t (k — 00).

(c) The sequencg, x f,: E?— E? (n € N) is hypercyclic.

Then we have the following

(A) Properties(a) and(b) are equivalent.
(B) If (f») is almost-commuting, thega)—(c)are equivalent.

Proof. (A) We are assuming thatl7,,) is densely hypercyclic. From Theorem 4.6(a),

the sequencéf, x --- x f,:E’ — E’},>1 is transitive (so densely hypercyclic by
Theorem 2.1) for all/ € N. Then Theorem 2.2 of [5] applies and one obtains that (b)
holds. Conversely, assume that (b) is satisfied. Again by [5, Theorem 2.2] the sequence
{fu x -+ x fu: E? — E7},>1 is densely hypercyclic (so transitive) for alle N. Since

fn(0) =0 for all » we have that/Ty,) is densely hypercyclic by Theorem 4.6(b).

(B) We have already obtained that (a) and (b) are equivalent. On the other hand, if
(a) holds, then by Theorem 4.6(a) (fér= 2) we get again the transitivity (so the dense
hypercyclicity, hence the single hypercyclicity) of the sequeinex f,: E? — EZ},@l.
Conversely, if this sequence is hypercyclic, then Theorem 3.3 of [5] guarantees that (b) is
satisfied. O

Of course, part (B) applies to a single operafoon E since any two iterateg®”,
f°™ clearly commute. Other conditions @#i,) which are equivalent to the Hypercyclic-
ity Criterion can be seen in [5] and [7]. Observe also that the transitivifyfipfx --- x
fuiE?Y — E7},>1 for all J € Nis stronger than the property that,) is weakly mixing
at the origin. Hence, in view of Theorem 4.3 and of the proof of Theorem 5.2, we have
that the sequendd, :x = (x;) € S (fu(xj4x)) € S}ux1is hypercyclic if (b) and (S9
(with a = 0) are satisfied. In particular if is an operator orE then under the latter two
conditions (withf,, = f°" for all n € N) the @-shift By is hypercyclic onS.

Remark 5.3. As for a nicenonlinearexample, we point out that some arguments similar

to those presented in the proofs of Theorems 4.3 and 4.5 allowed Peris to show in [25] that
a polynomialP :1, — I, given by P(x1, x2,...) = (p(x2), p(x3), ...)—wherep:C — C

is a complex polynomial withp(0) = O of degree strictly greater that one—is universal if
and only if 0 belongs to the Julia set pf
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