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Abstract

We consider dynamical systems arising from substitutions over a finite alphabet. We prove that such
a system is linearly repetitive if and only if it is minimal. Based on this characterization we extend var-
ious results from primitive substitutions to minimal substitutions. This includes applications to random
Schrödinger operators and to number theory.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

This paper deals with a special class of low complexity subshifts over finite alphabets, viz.
subshifts associated to substitutions.

Subshifts over finite alphabets play a role in various branches of mathematics, physics, and
computer science. Low complexity or intermediate disorder has been a particular focus of re-
search in recent years. This has been even more the case due to the discovery by Shechtman et al.
of special solids [36], later called quasicrystals, which exhibit this form of disorder [2,22,37].
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Subshifts associated to substitutions and in particular to primitive substitutions are foremost
among the models of low complexity subshifts [30,31,35].

With the recent work of Durand [17] and Lagarias and Pleasants [25] it became apparent
that a key feature to be studied in low complexity subshifts (and their higher-dimensional ana-
logue) is linear repetitivity or linear recurrence. It is known that subshifts associated to primitive
substitutions are linearly repetitive [18,38]. Thus, it is natural to ask:

(Q) Which substitution dynamical systems are linearly repetitive?

The main result of the paper answers this question. Namely, we show that a substitution dynami-
cal system is linearly repetitive if and only if it is minimal, which in turn is the case if and only if
one letter (not belonging to a particular subset of the alphabet) appears with bounded gaps. This
not only characterizes linear repetitivity but also gives an easy to handle condition to verify this
feature. This characterization and its proof give very direct methods to

(E) extend results from the framework of primitive substitutions to the framework of minimal
substitutions.

We illustrate this extension process with two types of examples. The first type is concerned
with the spectral theory of certain Schrödinger operators. The second example deals with number
theory. Details will be discussed in the corresponding sections.

The paper is organized as follows: In Section 2 we introduce the necessary notation and state
our main result, answering (Q). This result is then proved in Section 3. The following two sec-
tions give examples for (E). Section 4 is devoted to a study of Schrödinger operators associated
to minimal substitutions. An application to number theory is discussed in Section 5. Finally, in
Section 6 we study the unique decomposition property for a special class of nonprimitive substi-
tutions.

2. Notation and statement of the main result

In this section we introduce the necessary notation and present our main result.
Let A be a finite subset of R, called the alphabet. The elements of A will be called letters.

In the sequel we will use freely notions from combinatorics on words (see, e.g., [30,31]). In
particular, the elements of the free monoid A∗ over A will be called words. The length of a word
is the number of its letters; the number of occurrences of v ∈ A∗ in w ∈ A∗ will be denoted
by #v(w). Moreover, for a word u over A, we let Sub(u) denote the set of subwords of u.

We can equip A with discrete topology and AZ with product topology. A pair (Ω,T ) is then
called a subshift over A if Ω is a closed subset of AZ which is invariant under T :AZ → AZ,
(T u)(n) ≡ u(n + 1). To a subshift (Ω,T ) belongs the set W(Ω) of finite words given by
W(Ω) ≡ ⋃

ω∈Ω Sub(ω). A word v ∈W(Ω) is said to occur with bounded gaps if there exists an
Lv > 0 such that every w ∈ W(Ω) with |w| � Lv contains a copy of v. By standard arguments
(Ω,T ) is minimal (i.e., each orbit is dense) if and only if every v ∈ W(Ω) occurs with bounded
gaps. A particular strengthening of minimality is thus the condition of linear repetitivity given as
follows: The system (Ω,T ) is said to be linearly repetitive if there exists a constant CLR with

#v(w) � 1 whenever |w| � CLR|v| (1)

for v,w ∈ W(Ω).
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A special way to generate subshifts is given as follows. Consider a map S :A → A∗. By
definition of A∗, S can be uniquely extended to a morphism

S :A∗ → A∗ by setting S(a1 . . . an) ≡ S(a1) . . . S(an),

for arbitrary aj ∈ A, j = 1, . . . , n. To such an S, we can associate the set W(S) ⊂ A∗ given by

W(S) ≡ {
w ∈ A∗: w ∈ Sub

(
Sn(a)

)
for suitable a ∈ A and n ∈ N0

}
,

and the (possibly empty) set Ω(S) ⊂ AZ given by

Ω(S) ≡ {
ω ∈ AZ: Sub(ω) ⊂ W(S)

}
.

For Ω(S) to be nonempty, it is necessary and sufficient that there exists an e ∈ A with∣∣Sn(e)
∣∣ → ∞, n → ∞. (2)

Without loss of generality we can then assume (after possibly removing some letters from A)
that

for all a ∈ A there exists an n ∈ N with #a

(
Sn(e)

)
� 1. (3)

Finally, one needs that finite and infinite words associated to S are compatible in the sense that

W(S) = W
(
Ω(S)

)
. (4)

Definition 2.1. (Ω(S),T ) is called a substitution dynamical system if there exists a distinguished
symbol e ∈ A such that (2)–(4) hold.

Remark 1.

(a) The conditions (2)–(4) are clearly met if the powers Sn(e) converge to a fixpoint of S for
n → ∞ (i.e., |Sn(e)| → ∞, n → ∞, and Sn(e) is a prefix of Sn+1(e) for every n ∈ N). This
is the usual way to generate a substitution dynamical system.

(b) As brought to our attention by H. Yuasa, conditions (2) and (3) together do not imply (4), as
can be seen by considering S : {0,1} → {0,1}, 0 �→ 10, 1 �→ 1. This is an example of what is
called “quasi-primitive substitution” in [41], where a further study of such substitutions can
be found.

As mentioned in the introduction, a special class of substitution dynamical systems (Ω(S),T )

known to be linearly repetitive are those coming from primitive S. Here, S is called primitive if
there exists an r ∈ N with #a(S

r(b)) � 1 for arbitrary a, b ∈ A. Our main result characterizes
all S with linearly repetitive (Ω(S),T ).

Theorem 1. Let (Ω(S),T ) be a substitution dynamical system. Then the following are equiva-
lent:

(i) There exists an e ∈ A satisfying (2) and (3) which occurs with bounded gaps.
(ii) (Ω(S),T ) is minimal.

(iii) (Ω(S),T ) is linearly repetitive.



D. Damanik, D. Lenz / J. Math. Anal. Appl. 321 (2006) 766–780 769
Remark 2.

(a) Condition (i) can be easily checked in many concrete cases. For example, it can immediately
be seen to be satisfied in the examples of de Oliveira and Lima [34]. Thus, their examples
are linearly repetitive and the whole theory developed below applies.

(b) As primitive substitutions can easily be seen to satisfy (i), the theorem contains the well
known result (see, e.g., [38]) that these systems are linearly repetitive.

(c) Existence of an arbitrary a ∈ A occurring with bounded gaps is not sufficient for minimality,
as can be seen by considering the example S : {0,1} → {0,1}∗, 0 �→ 101 and 1 �→ 1.

As discussed above, linear repetitivity implies minimality. Moreover, it also implies unique
ergodicity as shown by Durand [17] (see [27] for a different proof as well). Thus, we obtain the
following corollary.

Corollary 1. Let (Ω(S),T ) be as above. If e ∈ A satisfying (2) and (3) occurs with bounded
gaps, then (Ω(S),T ) is uniquely ergodic and minimal.

Remark 3.

(a) A different way of stating the corollary would be to say that for a substitution dynamical sys-
tem, minimality is equivalent to strict ergodicity. Note that unique ergodicity is not sufficient
for minimality, as can be seen by considering the example in Remark 1(c).

(b) By Remark 1(a), the corollary applies to the examples of [34] and we recover their Proposi-
tion 1.

3. Linearly repetitive substitutions

This section is devoted to a proof of Theorem 1. It turns out that the hard part in the proof is
the implication (ii) ⇒ (iii). Its proof will be split into several parts. The key issue is to study the
growth of |Sn(a)| for n → ∞ and a ∈ A. This will be done by relating S :A → A∗ to a suitable
other substitution S̃ :C → C∗, which can be shown to be primitive if (ii) is satisfied. As growth
properties are well known for primitive substitutions, we obtain the desired results by comparing
the growth behavior of S and S̃.

For notational convenience, we will say that (Ω(S),T ), with distinguished letter e ∈ A, satis-
fies the bounded gap condition if

(BG) e satisfies (2) and (3) and occurs with bounded gaps.

Our first result gives some immediate consequence of (BG).

Lemma 3.1. Let (Ω(S),T ) be a substitution dynamical system with distinguished letter e that
satisfies (BG). Then (Ω(S),T ) is minimal.

Proof. It suffices to show that Sn(e) occurs with bounded gaps for arbitrary but fixed n ∈ N.
Set M ≡ max{|Sn(a)|: a ∈ A}. By (BG), there exists κ > 0 such that every word in W(S) with
length exceeding κ contains e. Consider an arbitrary w ∈ W(S) with |w| � (3 + κ)M . Now,
w is contained in Sn(a1 . . . as) with suitable aj ∈ A, j = 1, . . . , s with a1 . . . as ∈ W(S). By
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assumption on |w| and definition of κ , we infer that w contains Sn(al)S
n(al+1) . . . Sn(al+κ) for

a suitable l. By definition of κ , we infer that w contains Sn(e) and the proof is finished. �
We will now introduce the substitution S̃. Let

B ≡
{
a ∈ A: lim sup

n→∞
∣∣Sn(a)

∣∣ < ∞
}
.

Note that S maps B∗ into itself. Now let C ≡ A \ B , and define

S̃ :C → C∗ by S̃(x) ≡ S̃(x),

where for an arbitrary word w ∈ A∗ we define w̃ to be the word obtained from w by removing
every element of B . As B is invariant under S, we infer that

S̃n(x̃) = S̃n(x)

for arbitrary x ∈ W(S) and n ∈ N. This will be used repeatedly in the sequel. Our next aim is to
show that S̃ is primitive if (BG) is satisfied. We need two preparatory lemmas.

Lemma 3.2. Let (Ω(S),T ) satisfy (BG) with distinguished element e. Then the following are
equivalent for a ∈ A:

(i) |Sn(a)| → ∞, n → ∞.
(ii) e is contained in Sk(a) for a suitable k ∈ N.

Proof. (i) ⇒ (ii). This is clear as e occurs with bounded gaps by (BG).
(ii) ⇒ (i). By (ii), Sn(e) is a subword of Sk+n(a) for every n ∈ N. Now, (i) follows as e

satisfies (2) by (BG). �
Lemma 3.3. Let (Ω(S),T ) satisfy (BG) with distinguished element e. Then, there exists m ∈ N

such that Sn(e) contains every letter of A for every n � m.

Proof. By (BG) and (2), there exists r ∈ N such that Sn(e) contains e whenever n � r . By (3),
for every a ∈ A, there exists n(a) ∈ N such that Sn(a)(e) contains a. Then m = r + ∑

a∈A n(a)

has the desired properties. �
We can now show that S̃ is primitive, if (BG) holds.

Lemma 3.4. Let (Ω(S),T ) satisfy (BG). Then, S̃ :C → C∗ is primitive.

Proof. For c ∈ C, we can choose by Lemma 3.2 a number n(c) ∈ N such that Sn(c)(c) contains e.
Moreover, by Lemma 3.3, there exists m such that Sn(e) contains every letter of A whenever
n � m. Let N ≡ m + ∑

c∈C n(c). Then, for every c ∈ C, SN(c) contains every letter of A. In

particular, for each c ∈ C, the word S̃N (c) = S̃n(c) contains every letter of C and primitivity of
S̃ is proved. �

As S̃ is primitive, for c ∈ C, the behavior of |S̃n(c)| for large n ∈ N is rather explicit. The next
lemma allows us to compare this behavior with the behavior of |Sn(c)|.
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Lemma 3.5. Let (Ω(S),T ) satisfy (BG). There exist constants L > 0 and N ∈ N with

1

L
� |S̃n(ṽ)|

|Sn(v)| � 1

for arbitrary n � N and v ∈W(S) containing at least one letter of C.

Proof. The inequality |S̃n(ṽ)| � |Sn(v)| is obvious. To show the other inequality, note that, by
(BG), there exists a constant κ such that every word with length exceeding κ contains a copy of e.
This implies, |ṽ| � κ−1|v|−2 for arbitrary v ∈ W(S). Applying this inequality to S̃n(ṽ) = S̃n(v),
we find∣∣S̃n(ṽ)

∣∣ � 1

κ

∣∣Sn(v)
∣∣ − 2.

By definition of C, there exists N ∈ N with∣∣Sn(c)
∣∣ � 4κ for all c ∈ C and n � N .

Thus,
∣∣S̃n(ṽ)

∣∣ = ∣∣S̃n(v)
∣∣ � 1

κ

∣∣Sn(v)
∣∣ − 2 � 1

2κ

∣∣Sn(v)
∣∣

for arbitrary n � N and v ∈W(S) containing at least one letter of C. �
The key technical result in this section is the following proposition.

Proposition 3.6. Let (Ω(S),T ) satisfy (BG). Let V be a finite subset of W(S) all of whose
elements contain at least one letter of C. Then there exist θ > 0 and λ(V ),ρ(V ) > 0 with

λ(V )θn �
∣∣Sn(v)

∣∣ � ρ(V )θn

for arbitrary n ∈ N and v ∈ V .

Proof. Set Ṽ ≡ {ṽ: v ∈ V }. As S̃ is primitive by Lemma 3.4, there exist θ > 0 and constants
κ1, κ2 > 0 with κ1 � θ−n|S̃n(c)| � κ2 for arbitrary c ∈ C and n ∈ N. As V is finite and every
v ∈ V contains at least one letter of C, this shows existence of ν1, ν2 > 0 with

ν1 � |S̃n(ṽ)|
θn

� ν2

for every ṽ ∈ Ṽ . Therefore, by Lemma 3.5, there exist μ1,μ2 > 0 and N ∈ N with

μ1θ
n �

∣∣Sn(v)
∣∣ � μ2θ

n

for arbitrary n � N and v ∈ V . Adjusting the constants to it in the remaining finitely many cases,
we conclude the proof. �

With these preparations out of the way, we are now ready to prove Theorem 1.

Proof of Theorem 1. The implications (iii) ⇒ (ii) ⇒ (i) are obvious. The implication (i) ⇒ (ii)
is given in Lemma 3.1.

It remains to prove (ii) ⇒ (iii). We will use the notion of return word introduced recently
by Durand [16]. Recall that x ∈ W(S) is called a return word of v ∈ W(S) if xv ∈ W(S),
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xv begins with v, and #v(xv) = 2. Let e ∈ A satisfying (BG) be fixed. Such an e exists by
minimality. Let V be the set of return words of e. As e satisfies (BG), V is a finite set. Let
U ≡ {z1z2: z1, z2 ∈ V, z1z2 ∈W(S)}. As V is finite, so is U . By the minimality assumption (ii),
there exists G > 0 such that every word in W(S) with length exceeding G contains every word
of U . By Proposition 3.6, there exist θ,λ(V ),ρ(V ) > 0 with

λ(V )θn �
∣∣Sn(v)

∣∣ � ρ(V )θn (5)

for all v ∈ V and n ∈ N. Define

CLR ≡ (3 + G)θρ(V )λ(V )−1.

We will show linear repetitivity of (Ω(S),T ) with this constant. Thus, let w ∈ W(S) be given
and consider an arbitrary u ∈ W(S) with |u| � CLR|w|. We have to show that u contains a copy
of w. To do so, we will show the following:

• w is contained in Sn(z0) with suitable n ∈ N and z0 ∈ U ,
• u contains all words of the form Sn(z) with z ∈ U .

Here are the details: Let n ∈ N be given with

λ(V )θn−1 � |w| < λ(V )θn. (6)

Combining this inequality with (5), we see that

|w| � ∣∣Sn(v)
∣∣ for every v ∈ V . (7)

Choose x = eye ∈ W(S) such that w is a subword of Sn(eye). Partitioning eye according to
occurrences of e, we can write eye = x1 . . . xke with xj ∈ V , j = 1, . . . , k. By (7), and since w is
a subword of Sn(x1) . . . Sn(xk)S

n(e), we then infer that w is in fact a subword of Sn(z1z2) with
z1, z2 ∈ V and z1z2 ∈ U . Let us now turn our attention to u. By |u| � CLR|w|, |w| � λ(V )θn−1

and the definition of CLR, we infer

(3 + G)ρ(V )θn � |u|. (8)

Of course, as discussed above for w, we can also exhibit u as a subword of Sn(x1 . . . xk)S
n(e)

with xj ∈ V , j = 1, . . . , k and x1 . . . xk ∈ W(S). By (5) and (8), we then conclude that u must
contain a word of the form Sn(v) with |v| � G. By definition of G, the word v then contains z1z2.
Thus, u contains Sn(z1z2) which contains w. This finishes the proof. �
4. The associated Schrödinger operators

In this section we discuss applications to Schrödinger operators.
Recall that to a given subshift (Ω,T ) over A ⊂ R, we can associate the family (Hω)ω∈Ω of

selfadjoint operators Hω :	2(Z) → 	2(Z), ω ∈ Ω acting by

(Hωu)(n) ≡ u(n + 1) + u(n − 1) + ω(n)u(n). (9)

Assume furthermore that (Ω,T ) is minimal, uniquely ergodic, and aperiodic (i.e., T kω 
= ω

for every k 
= 0 and ω ∈ Ω). Denote the unique T -invariant probability measure by μ. Such
operators have attracted a lot of attention in recent years (see, e.g., [10,40] for reviews and below
for literature concerning special classes). They arise in the quantum mechanical treatment of
(one-dimensional) quasicrystals. The theoretical study of physical features (e.g., conductance) is
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accordingly performed by investigating the spectral theory of such families. It turns out that the
spectral theory of these families is rather interesting. Namely, they exhibit features such as

• purely singular continuous spectrum,
• Cantor spectrum of Lebesgue measure zero,
• anomalous transport.

In the study of these and related properties, two classes of examples have received particular
attention. These are Sturmian models (and more generally circle maps) [5,8,11–14,23,39] and
operators associated to primitive substitutions [3,4,6,7,9,28,29]. The aim of this section is to
extend the theory from primitive substitutions to minimal substitutions, thereby giving a precise
sense to (E) in this case.

For linearly repetitive systems it was recently shown by one of the authors [28] that their
spectrum is a Cantor set if they are not periodic. Thus, we obtain the following result as an
immediate corollary to Theorem 1 above and Corollary 2.2 of [28].

Theorem 2. Let (Ω(S),T ) be an aperiodic minimal substitution dynamical system. Then, there
exists a Cantor set Σ ⊂ R of Lebesgue measure zero with σ(Hω) = Σ for every ω ∈ Ω , where
σ(Hω) denotes the spectrum of Hω.

Remark 4.

(a) If the subshift is periodic, it is well known that the spectrum is a finite union of (nondegener-
ate) closed intervals. Hence, in this case it is neither a Cantor set nor does it have Lebesgue
measure zero.

(b) This theorem contains, in particular, the corresponding result for primitive substitutions ob-
tained in [28] (see also [29] for a different proof).

(c) The theorem covers all the examples discussed in [34].

Next we state our result on singular continuous spectrum.

Theorem 3. Let (Ω(S),T ) be a minimal substitution dynamical system. If there exists u ∈W(S)

starting with e ∈ C such that uuue ∈ W(S), then the operators (Hω) have purely singular con-
tinuous spectrum for μ-almost every ω ∈ Ω .

Remark 5. This also covers all the examples studied by de Oliveira and Lima in [34].

The proof of purely singular continuous spectrum has two ingredients. The first is a proof of
absence of absolutely continuous spectrum. This follows by results of Kotani [24] and is in fact
valid for every ω ∈ Ω by results of Last and Simon [26]. Alternatively, this follows by Theorem 2
(whose proof, however, uses Kotani theory [24]). The second ingredient is a proof of absence of
eigenvalues. This is based on the so-called Gordon argument going back to [20]. Various variants
of this argument have been used in the study of (9) (see [10] for a recent overview). We use it in
the following form [10,15,23].
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Lemma 4.1. Let (Ω,T ) be a uniquely ergodic subshift over A. Let (nk) be a sequence in N with
nk → ∞, k → ∞. Set

Ω(k) ≡ {ω ∈ Ω: ω(−nk + l) = ω(l) = ω(nk + l), 0 � l � nk − 1}.
If lim supk→∞ μ(Ω(k)) > 0, then μ-almost surely, Hω has no eigenvalues.

The lemma reduces the proof of absence of eigenvalues to establishing the occurrence of
sufficiently many cubes. For primitive substitutions, occurrence of many cubes follows from
occurrence of one word of the form uuue, where e is the first letter of u. This was shown by one
of the authors in [9] (see [8] as well). It turns out that this line of reasoning can be carried over
to minimal substitutions. Namely, we have the following result.

Lemma 4.2. Let (Ω(S),T ) be a minimal substitution dynamical system. Let u ∈ W(S)

be given starting with e ∈ C such that uuue belongs to W(S). Set nk ≡ |Sk(u)|. Then,
lim supk→∞ μ(Ω(nk)) > 0.

Proof. As already mentioned, the proof is modelled after [9]. As uuue occurs in W(S), so does
Sk(uuue) for k ∈ N. Of course, Sk(u) begins with Sk(e). Thus, each occurrence of Sk(uuue) =
Sk(u)Sk(u)Sk(u)Sk(e) gives rise to |Sk(e)| occurrences of cubes and we infer

μ
(
Ω(nk)

)
� μ(ΩSk(uuue)) × ∣∣Sk(e)

∣∣, (10)

where we set Ωv ≡ {ω ∈ Ω: ω(1) . . .ω(|v|) = v} for v ∈ W(S). By Proposition 3.6, there exist
λ,ρ > 0 and θ > 0 with∣∣Sk(uuue)

∣∣ � ρθk and λθk �
∣∣Sk(e)

∣∣, (11)

for every k ∈ N. By Corollary 1, (Ω(S),T ) is uniquely ergodic and therefore

μ(ΩSk(uuue)) = lim|x|→∞
#Sk(uuue)(x)

|x| .

Moreover, by Theorem 1, (Ω(S),T ) is linearly repetitive with some constant CLR. Combining
these estimates, we infer

μ
(
Ω(nk)

)
� lim|x|→∞

#Sk(uuue)(x)

|x|
∣∣Sk(e)

∣∣ � 1

CLR|Sk(uuue)|
∣∣Sk(e)

∣∣ � λ

CLR ρ
.

This finishes the proof. �
Proof of Theorem 3. By the discussion following the theorem, it suffices to show almost sure
absence of point spectrum. This is an immediate consequence of the preceding two lemmas. �
Remark 6. There is another approach to proving absence of eigenvalues which is based on palin-
dromes, rather than cubes. Concretely, Ω is said to be palindromic if W(Ω) contains arbitrarily
long palindromes. Hof et al. prove in [21] that if Ω is minimal and palindromic, then for a dense
Gδ-set of ω ∈ Ω , the operator Hω has empty point spectrum. This gives another method to prove
absence of eigenvalues for minimal substitution Hamiltonians in cases where Lemma 4.2 does
not apply, but where sufficiently many palindromes occur.
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5. Fixed points of linearly repetitive substitutions

In this section we discuss an application of the results above to number theory.
Recall that every z ∈ (0,1) has a binary expansion

z =
∞∑

n=1

an

2n

with an ∈ {0,1}. For algebraic numbers, this binary expansion is expected to be a “random se-
quence.” Of course, there are various ways to give a precise meaning to “random sequence.” One
particular way is that this binary expansion should not be a fixed point of a substitution (see
[1] for further discussion). The question whether such a binary expansion can be a fixed point
has thus attracted attention, and the most general result so far has been obtained by Allouche
and Zamboni [1]. Namely, they show that a binary expansion which is a fixed point of either
a primitive substitution or a substitution of constant length (i.e., the images of letters all have
equal length) can only belong to a rational or transcendental number. We can prove the following
result, merely assuming minimality:

Theorem 4. Suppose S : {0,1} → {0,1}∗ satisfies (BG) (i.e., S induces a minimal, linearly repet-
itive dynamical system). If u ∈ {0,1}N is an aperiodic fixed point of S and z ∈ (0,1) is given
by

z =
∞∑

n=1

un

2n
,

then z is transcendental.

Proof. For primitive S, the assertion was shown in [1]. Let us consider the case where S is
nonprimitive. Then the alphabet B is not empty and we have either S(0) = 0 or S(1) = 1. Let us
discuss the case S(1) = 1, the other case can be treated in an analogous way. From (BG) we can
infer that S(0) contains both 0 and 1 and it begins and ends with 0. By aperiodicity, S(0) cannot
be equal to 01k0 with k � 1. That is, either S(0) has the form

S(0) = 01k0w0 (12)

for some suitable word w, possibly empty, and suitable k � 1, or S(0) has the form

S(0) = 00w0 (13)

for some word w containing 1 as a factor.
We first consider the case where S(0) is given by (12). Then

S2(0) = 01k0w01k01k0w0S(w)01k0w0,

where we let S(ε) = ε for definiteness. We see that u contains the word 01k01k0 and hence, for
some prefix p,

u = p01k01k0 . . . .

Now define

Un = Sn(p), Vn = Sn
(
01k

)
, V ′

n = Sn(0).
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Observe that we have

|Vn| → ∞ as n → ∞ (14)

by (BG),

lim sup
n→∞

|Un|
|Vn| < ∞ (15)

by Proposition 3.6, and

lim inf
n→∞

|V ′
n|

|Vn| > 0, (16)

again by Proposition 3.6. We can now conclude the proof in this case by applying [19, Proposi-
tion 1] since (14)–(16) provide exactly the necessary input for an application of this proposition.

Let us now consider the case where S(0) is given by (13). Then S2(0), and hence u, contains
the factor 03. Therefore, u = p000 . . . , so we can set Un = Sn(p), Vn = V ′

n = Sn(0) and then
conclude as above. �

By the same argument one can prove the following extension; see the note added in proof
of [1] for the necessary additional input (namely, a result of Mahler [32]).

Theorem 5. If z ∈ (0,1) has a base b expansion (b ∈ N and > 1) which is given by an aperiodic
fixed point of a substitution on a two-letter alphabet which satisfies (BG), then z is transcenden-
tal.

6. Unique decomposition property

In this section we study questions concerning unique decomposition for nonprimitive minimal
aperiodic substitutions. For primitive substitutions, such a unique decomposition property has
been shown by Mossé [33] (for a study of the higher-dimensional case, we refer to [38]). We are
not able to treat the general case but rather restrict our attention to a two-letter alphabet. This
case has attracted particular attention recently in the work of de Oliveira and Lima [34]. Thus,
we can assume (and will assume throughout this section) that A = {a, b} and

|S(a)| > 1 and S(b) = b. (17)

For w ∈W(S), an equation

w = z0z1 . . . znzn+1

is called a 1-partition if z1, . . . , zn ∈ {S(a), b}, z0 is a suffix of an element in {S(a), b} and zn+1
is a prefix of an element in {S(a), b}. Similarly, a 1-partition of ω ∈ Ω(S) consists of a sequence
(En) ⊂ Z with

· · · < E−2 < E−1 < E0 < E1 < E2 < · · · and lim
n→∞En = ∞, lim

n→−∞En = −∞,

such that ω(En) . . .ω(En+1 − 1) ∈ {S(a), b}. We will prove the following theorem.

Theorem 6. Let (Ω(S),T ) be a minimal, aperiodic, nonprimitive substitution dynamical system
over {a, b} obeying the normalization condition (17). Then, every ω ∈ Ω(S) admits a unique
1-partition. More precisely, there exist L ∈ N and words w1, . . . ,wk such that the 1-partition
{Ej } of ω consists of exactly those E with ω(E − L) . . .ω(E + L) ∈ {wj : j = 1, . . . , k}.
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To prove this result, we need some preparation. The proof of Theorem 6 appears at the end of
this section.

Lemma 6.1. Let (Ω(S),T ) be a minimal, aperiodic, nonprimitive substitution dynamical system
over {a, b} obeying the normalization condition (17). Then S(a) is neither a prefix of bS(a) nor
a suffix of S(a)b. In particular, two 1-partitions of a finite v which both start with S(a) (end with
S(a)) must agree up to a suffix (prefix) of length at most |S(a)b|.
Proof. The second statement follows immediately from the first. So assume the first statement
is wrong. Then, S(a) = bl with a suitable l ∈ N and periodicity of (Ω(S),T ) follows. �
Lemma 6.2. Let (Ω(S),T ) be a minimal, aperiodic, nonprimitive substitution dynamical system
over {a, b} obeying the normalization condition (17). Set

L0 ≡ max
{∣∣vn

∣∣: v subword of S(a) and vn ∈ W(S)
}
.

If v with |v| > 2|S(a)|+L0 admits a 1-partition beginning with S(a)S(a), then every 1-partition
of v starts with S(a)S(a).

Proof. Assume the contrary. By Lemma 6.1, there exists then a 1-partition v = z0z1z2 . . . znzn+1
of v with 0 < |z0| < |S(a)| and z1 = S(a). This gives S(a) = vr with a primitive v and r ∈ N suit-
able. By definition of L0, both this 1-partition of v and the 1-partition beginning with S(a)S(a)

contain blocks of the form b. Consider the leftmost of these blocks. Then, we obtain that v is a
suffix of vb and thus, v = bl . This in turn yields the contradiction S(a) = br|b|. �

It will be convenient to treat the two cases, where S(a) does or does not contain the word aa,
separately.

We first consider the case where aa is a subword of S(a) and prove uniqueness of decompo-
sitions under this assumption.

Proposition 6.3. Let (Ω(S),T ) be a minimal, aperiodic, nonprimitive substitution dynamical
system over {a, b} obeying the normalization condition (17). Suppose that aa occurs in S(a).
Then, there exists an L ∈ N such that all 1-partitions of v ∈ W(S) induce the same 1-partition
on v(L) . . . v(|v| − L).

Proof. By Lemma 6.2, all occurrences of the word S(a)S(a) in 1-partitions of v which begin
before the L0-th position in v are uniquely determined. In particular, they occur at the same
places in all 1-partitions. By Lemma 6.1, the 1-partitions must then agree to the right and to the
left of such an occurrence up to a boundary term of length not exceeding |S(a)b|. Thus, it suffices
to show existence of a 1-partition of v containing the blocks S(a)S(a) if v is long enough. This,
however, is clear by the assumption that aa occurs in S(a) and minimality of (Ω(S),T ), as
every v is contained in a word of the form Sn(a) = S(Sn−1(a)). �

Next we turn to the case where S(a) does not contain aa as a factor.

Lemma 6.4. Let (Ω(S),T ) be a minimal, aperiodic, nonprimitive substitution dynamical system
over {a, b} obeying the normalization condition (17). Suppose that aa does not occur in S(a).
Let w ∈W(S) be given with

w = S(a)br1S(a)br2S(a) · · ·S(a)brnS(a) = xS(a)bs1S(a)bs2S(a) · · ·S(a)bsuy
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with suitable r1, . . . , rn ∈ N, s1, . . . , su ∈ N and x, y ∈ W(S) with |x| < |S(a)| and |y| � |S(a)|.
Then, u = n and r1 = s1 = r2 = s2 = · · · = sn = rn.

Proof. By minimality, S(a) begins and ends with a. As aa does not occur in S(a), we have

S(a) = abk1a . . . abkl a

with suitable k1, . . . , kl ∈ N. If |x| = 0, the statement now follows easily. Otherwise, we have x =
abk1a . . . abkj with j < l suitable. Consider the blocks of consecutive b′s appearing in w. Such a
block will be referred to as b-block. By w = S(a)br1 . . . , we infer that br1 is the (l +1)st b-block
appearing in w. By w = xS(a) . . . , we then infer that br1 occurs in S(a) as the (l + 1 − j)th
b-block. Similarly, considering the occurrence of br2 in w = S(a)br1S(a)br2 . . . , we infer that
br2 is the (2l + 2)th b-block appearing in w. On the other hand, by w = xS(a)bs1S(a) . . . , we
see that br2 is the j + l + 1 + t th b-block in w, where t − 1 is the relative number of b-blocks
occurring in S(a) before br2 . This yields

2l + 2 = j + l + 1 + t,

and we infer t = l + 1 − j . Thus, br1 and br2 occur in the corresponding S(a) blocks at the same
relative positions. This yields immediately r1 = r2.

Denote the relative position of br1 = br2 in S(a) by p. Thus, p = |S(a)| − |x| + 1 by w =
S(a)br1 . . . = xS(a) . . . . Now, consider the absolute position h of br2 in w. Then,

h = 2
∣∣S(a)

∣∣ + r1 + 1 = |x| + ∣∣S(a)
∣∣ + s1 + p.

Putting this together, we infer r1 = s1. Now, the assertion follows easily by repeating this reason-
ing. �
Proposition 6.5. Let (Ω(S),T ) be a minimal, aperiodic, nonprimitive substitution dynamical
system over {a, b} obeying the normalization condition (17). Suppose that aa does not oc-
cur in S(a). Then, there exists L ∈ N such that all 1-partitions of v ∈ W(S) induce the same
1-partition on v(L) . . . v(|v| − L).

Proof. As (Ω(S),T ) is minimal and aperiodic, for every v ∈ W(S), there exists an Nv ∈ N such
that vn ∈W(S) implies n � Nv . Let

N = sup{Nv: v = S(a)br , 1 � r � Nb}.
Since the supremum is taken over a finite set, N < ∞.

Let L = (N + 2)(|S(a)| + Nb). Assume that there exists a w ∈ W(S) admitting two
1-partitions inducing two different 1-partitions of w(L) . . .w(|w| − L). By Lemma 6.4, we infer
existence of 1 � r � Nb and an (N + 1)st power of v = S(a)br in W(S), which contradicts the
definition of N . �
Proof of Theorem 6. Let ω ∈ Ω be given. Uniqueness of the 1-partition is clear from Propo-
sitions 6.3 and 6.5. Existence of a 1-partition follows by standard compactness-type arguments
but can also be shown as follows: For n ∈ N, set vn ≡ ω(−n) . . .ω(n). Then each vn admits a
1-partition as it is contained in Sl(a) with a suitable l. These 1-partitions are compatible due to
the previous proposition. Thus, they easily induce a 1-partition of ω. These considerations and
the previous proposition also imply the last statement of the theorem. �
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