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Let L1
ω(G) be a Beurling algebra on a locally compact abelian group G . We look for general

conditions on the weight which allows the vanishing of continuous derivations of L1
ω(G).

This leads us to introducing vector-valued Beurling algebras and considering the translation
of operators on them. This is then used to connect the augmentation ideal to the behavior
of the derivation space. We apply these results to give examples of various classes of
Beurling algebras which are weakly amenable, 2-weakly amenable or fail to be even 2-
weakly amenable.

© 2008 Elsevier Inc. All rights reserved.

Let A be a Banach algebra, let n � 0 be an integer, and let A(n) be the nth dual module of A when n > 0, and be A
itself when n = 0. The algebra A is said to be weakly amenable if bounded derivations D : A → A∗ are inner, and it is said
to be n-weakly amenable if bounded derivations D : A → A(n) are inner. The algebra A is permanently weakly amenable if it is
n-weakly amenable for all n � 1.

The concept of weak amenability was first introduced by Bade, Curtis and Dales [1] for commutative Banach algebras,
and then was extended to the non-commutative case by B.E. Johnson [15]. It has been the object of many studies since
(see, for example, [11] and [20] and references therein). Dales, Ghahramani and Grønbæk initiated the study of n-weakly
amenable Banach algebras in [3], where they revealed many important properties of these algebras and presented some
examples of them. For instance, they showed that C∗-algebras are permanently weakly amenable; a fact that was known for
weakly amenable commutative Banach algebras [1, Theorem 1.5]. They also showed that group algebras are 2n + 1-weakly
amenable for all n > 0 (for more examples see [11,17] and [20]).

Let L1
ω(G) be a Beurling algebra on a locally compact abelian group G . One can pose the question of whether or not

L1
ω(G) is n-weakly amenable; in our case it means that each derivation from L1

ω(G) into L1
ω(G)(n) is zero. The case of

weak amenability has been studied in [1] and [13]. One major result states that l1ω(Z) is weakly amenable if and only if
infn

ω(n)ω(−n)
n = 0 [13]. From this, it can be easily deduced that l1ω(G) is weakly amenable if infn

ω(nt)ω(−nt)
n = 0 for all t ∈ G .

Now it is natural to ask under what condition on the weight ω, L1
ω(G) is 2-weakly amenable. In their recent memoir [4],

Dales and Lau have addressed this question. They show that if ω � 1 is almost invariant and satisfies infn
ω(nt)

n = 0 for all
t ∈ G , then L1

ω(G) is 2-weakly amenable [4, Theorem 13.8], and conjecture that L1
ω(G) is 2-weakly amenable if one only

assumes that infn
ω(nt)

n = 0 (t ∈ G). Ghahramani and Zabandan proved the conjecture with an additional condition which is
weaker than being almost invariant [12].

The central goal of this paper is to study systematically, for G abelian, the behavior of the derivation space of L1
ω(G)

into the dual of an arbitrary symmetric Banach L1
ω(G)-module X and to see when it vanishes. From the fundamental work
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of Grønbæk [13], this question can be reduced to studying the kernel of the multiplication map from L1
ω(G) ⊗̂ X into X .

In the case of group algebras i.e. when ω = 1, it is well known that this can be done by transferring the properties of the
augmentation ideal of L1(G) into the diagonal ideal of L1(G) ⊗̂ L1(G) ∼= L1(G × G) through the isometric isomorphism

γ : L1(G) ⊗̂ L1(G) → L1(G) ⊗̂ L1(G), γ (m)(s, t) = m(s, st), (∗)

and then deduce it for any module ([19, Theorem 1.8] and [2, Theorem 2.9.65]). However, in general, this idea cannot be
applied in its present form to the Beurling algebra L1

ω(G) because the map γ may not be well-defined if we replace L1(G)

with L1
ω(G) in (∗). Our approach is to consider a translation map similar to γ but on L1

ω(G) ⊗̂ X . This will allow us to look
directly at the kernel of the multiplication map on L1

ω(G) ⊗̂ X instead of relying on L1
ω(G) ⊗̂ L1

ω(G). However, in order to do
this, we need to consider vector-valued integration for Beurling algebras.

In Section 2, we introduce the concept of a vector-valued Beurling algebra L1
ω(G, A) and the module L1

ω(G, X), where
A is an arbitrary Banach algebra and X is a Banach left A-module. We show that L1

ω(G) ⊗̂ X ∼= L1
ω(G, X) can be regarded

isometrically as a module over L1
ω(G, A). When ω = 1, this concept has been thoroughly developed in [9, Chapter VIII] for

cross-sectional algebras to construct examples of cross-products of C∗-algebras and C∗-algebra bundles.
For the rest of the paper, we restrict ourselves to the case when G is abelian. In Sections 3 and 4, we use the idea in

Section 2 for the case where A is the Beurling measure algebra on a weight σ and X is symmetric, to define a translation
map like (∗) from L1

ωσ̃
(G) ⊗̂ X into L1

ω(G) ⊗̂ X , where σ̃ (t) = σ(−t). This, in most of the desirable cases, connects the aug-
mentation ideal of L1

ωσ̃
(G) to the kernel of the multiplication map on L1

ω(G) ⊗̂ X (Theorem 3.2). Eventually we demonstrate
that if the augmentation ideal of L1

ωσ̃
(G) is essential, or equivalently, if there is no non-zero, continuous point derivation on

the augmentation character, then the derivation space from L1
ω(G) into X vanishes (Theorem 4.5).

The reminder of this paper is devoted to investigating the weak amenability and 2-weak amenability of L1
ω(G) by apply-

ing the preceding results.
In Section 5, we shall show that L1

ω(G) is weakly amenable if inf{Ω(nt)/n | n ∈ N} = 0 for all t ∈ G , where Ω(t) :=
ω(t)ω(−t). This follows from the observation that the above assumption implies that there is no non-zero, continuous point
derivation on the augmentation character of L1

Ω(G). This result extends the result of Grønbæk and provides an alternative
proof of it.

For a weight ω � 1, let ω1(s) = lim supt→∞ ω(t+s)
ω(t) . In [12], it is shown that L1

ω(G) is 2-weakly amenable if inf{ω(nt)/n |
n ∈ N} = 0 and ω1 is bounded. In Section 6, we first show that there exits weight σω on G which is closely related to ω1.
We then show that the result in [12] mentioned above is a particular case of the fact that 2-weak amenability of L1

ω(G)

follows if there is no non-zero, continuous point derivation on the augmentation character of L1
ωσ̃ω

(G). Moreover, when

σω is bounded, there is a precise correspondence between the essentiality of the augmentation ideal of L1
ω(G) and 2-weak

amenability of L1
ω(G) (Theorem 6.4). This fact allows us to classify various classes of weights for which their corresponding

Beurling algebras are 2-weakly amenable or fail to be 2-weakly amenable. These weights, which are defined on compactly
generated abelian groups, include polynomial weights, exponential weights, and certain weights satisfying condition (S)
(Section 7). For instance, for non-compact groups, we show that a Beurling algebra of a polynomial weight of degree α
is 2-weakly amenable if and only if 0 � α < 1, whereas a Beurling algebra of an exponential weight of degree α is never
2-weakly amenable if 0 < α < 1. We extend the later result to a much larger class of symmetric weights for which the
growth is exponential. However, we give examples of families of non-symmetric weights with sharp exponential growth, for
which the Beurling algebras are 2-weakly amenable.

1. Preliminaries

Let A be a Banach algebra, and let X be a Banach A-bimodule. An operator D : A → X is a derivation if for all a,b ∈ A,
D(ab) = aD(b)+ D(a)b. For each x ∈ X , the operator adx ∈ B(A, X) defined by adx(a) = ax−xa is a bounded derivation, called
an inner derivation. Let Z1(A, X) be the linear space of all bounded derivations from A into X . When A is commutative,
a Banach A-bimodule X is symmetric if for all a ∈ A and x ∈ X , ax = xa. In this case, we say simply that X is a Banach
A-module.

Let G be a locally compact group with a fixed left Haar measure λ. The measure algebra M(G) is the Banach space of
complex-valued, regular Borel measures on G . The space M(G) is identified with the (dual) space of all continuous linear
functionals on the Banach space C0(G), with the duality specified by setting

〈μ, f 〉 =
∫
G

f (t)dμ(t)
(

f ∈ C0(G), μ ∈ M(G)
)
.

The convolution multiplication ∗ on M(G) is defined by setting

〈μ ∗ ν, f 〉 =
∫
G

∫
G

f (st)dμ(s)dν(t)
(

f ∈ C0(G), μ,ν ∈ M(G)
)
.

We write δs for the point mass at s ∈ G; the element δe is the identity of M(G), and l1(G) is the closed subalgebra of M(G)

generated by the point masses. Then M(G) is a unital Banach algebra and L1(G), the group algebra on G , is a closed ideal in
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M(G) [2, Theorem 3.3.36]. Moreover, the dual of L1(G) can be identified with L∞(G), the Banach space of Borel measurable
essentially bounded functions on G . We let LUC(G) denote the closed subspace of L∞(G) consisting of the (equivalence
classes of) bounded left uniformly continuous functions on G .

Let G be a locally compact group with identity e. A weight on G is a continuous function ω : G → (0,∞) such that

ω(st) � ω(s)ω(t) (s, t ∈ G), ω(e) = 1.

Let X be a Banach space of measures or of equivalence classes of functions on a locally compact group G , and let
ω : G → (0,∞) be a continuous function. We define the Banach space

X(ω) := { f | ω f ∈ X},
where the norm of X(ω) is defined so that the map f 
→ ω f from X(ω) onto X is a linear isometry. In particular, we
let Mω(G) := M(G)(ω), L1

ω(G) := L1(G)(ω), l1ω(G) := l1(G)(ω), L∞
1/ω(G) := L∞(G)(1/ω), LUC1/ω(G) := LUC(G)(1/ω), and

C0,1/ω(G) := C0(G)(1/ω). When ω is a weight, with the convolution multiplication of measures, Mω(G) becomes a Ba-
nach algebra, having L1

ω(G) as a closed two-sided ideal and l1ω(G) as a closed subalgebra. Moreover, Mω(G) = L1
ω(G) = l1ω(G)

if and only if G is discrete. Also L∞
1/ω(G) is the dual of L1

ω(G), having LUC1/ω(G) and C0,1/ω(G) as Banach L1
ω(G)-submodules.

The algebras L1
ω(G) are the Beurling algebras on G . For more details see [4, Chapter 7].

2. Vector-valued Beurling algebras

Let G be a locally compact group, let ω be a weight on G , and let ωλ be the positive regular Borel measure on G defined
by

ωλ(E) =
∫
E

ω(t)dλ(t),

where E is an arbitrary λ-measurable set. It is well known that ωλ is well-defined since ω is continuous and positive.
Moreover, E ⊆ G is ωλ-measurable if and only if E is λ-measurable.

Our references for vector-valued integration theory are [5] and [6]. Let (X,‖ · ‖X ) be a Banach space, and let L1
ω(G, X) be

the set of all λ-measurable (or equivalently, ωλ-measurable) vector-valued functions f : G → X such that
∫

G ‖f(t)‖ω(t)dt <

∞ (see [5, Appendix B.11] or [6, Definition II.1.1] for the definition of vector-valued measurable functions). The functions in
L1

ω(G, X) are called Bochner ωλ-integrable since for them the Bochner integral exists. It is clear that L1
ω(G, X) is a vector

space with the standard addition and scalar multiplication. Let L1
ω(G, X) be the equivalence classes of elements in L1

ω(G, X)

with respect to the semi-norm ‖ · ‖ = ∫
G ‖ · ‖Xω(t)dt , i.e. L1

ω(G, X) := L1
ω(G, X)/ ∼ where f ∼ g if and only if ‖f − g‖ = 0.

Then L1
ω(G, X) is a Banach space with the above norm; it is called the Banach space of Bochner ωλ-integrable functions

from G into X (see [5, Appendix B.12] or [6, Section II.2] for the details). It follows from the definition of Bochner integrable
functions that the vector space of the equivalence classes of integrable simple functions from G into X , i.e. all the elements
f : G → X of the form

f(·) ∼
n∑

i=1

χAi (·)xi, Ai is λ-integrable, xi ∈ X

is dense in L1
ω(G, X) ([5, Appendix B.12] or [6, Section II.2]).

Let C00(G, X) denote the set of all continuous functions from G into X with compact support. Then, for each f ∈
C00(G, X), im f is a compact metric space, and so, it is separable. Hence f is λ-measurable from [5, Appendix B.11(c)]
or [6, Theorem II.1.2]. Moreover, C00(G, X) approximates X-valued simple functions in norm, and so, it is norm-dense in
L1
ω(G, X) (see [5, Theorem B.11(d)] for the details).

The following proposition shows that, in certain cases, there is a convolution multiplication or action on L1
ω(G, X).

Proposition 2.1. Let G be a locally compact group, let ω be a weight on G, let A be a Banach algebra, and let X be a Banach left
A-module. Then:

(i) L1
ω(G, A) becomes a Banach algebra with the convolution multiplication ∗ specified by

(f ∗ g)(s) =
∫
G

f(t)g(s − t)dt
(
f,g ∈ C00(G, A)

);
(ii) L1

ω(G, X) becomes a Banach left L1
ω(G, A)-module with the action specified by

(f ∗ g)(s) =
∫
G

f(t)g(s − t)dt
(
f ∈ C00(G, A), g ∈ C00(G, X)

)
.
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Proof. (i) Let f,g ∈ C00(G, A). It is clear that, for every s ∈ G , the map t 
→ f(t)g(s − t) belongs to C00(G, A). Hence it is
λ-measurable. Thus, by [5, Appendix B.13], the Bochner integral

∫
G f(t)g(·− t)dt exists. Moreover, similar to [18, Section 3.5],

it can be shown that the map s 
→ (f ∗ g)(s) is continuous and∫
G

∥∥(f ∗ g)(s)
∥∥

Aω(s)ds �
∫
G

∫
G

∥∥f(t)g(s − t)
∥∥

Aω(s)dt ds �
∫
G

∫
G

∥∥f(t)
∥∥

A

∥∥g(s − t)
∥∥

Aω(t)ω(s − t)ds dt = ‖f‖‖g‖.

Therefore f ∗ g ∈ L1
ω(G, A) and, by [5, Appendix B.13], ‖f ∗ g‖ � ‖f‖‖g‖. The final result follows from that of continuity and

the fact that C00(G, A) is dense in L1
ω(G, A).

The proof of (ii) is similar to that of (i). �
Let (X,‖ · ‖X ) be a Banach space, let ω be a weight on G , and let L1

ω(G) ⊗̂ X be the projective tensor product of L1
ω(G)

and X . Let f ∈ C00(G) and x ∈ X , and consider the function fx : G → X defined by

fx(t) = f (t)x (t ∈ G).

Clearly fx ∈ C00(G, X) and ‖fx‖ = ‖ f ‖‖x‖. Hence the map αX : C00(G) × X → C00(G, X) defined by

αX ( f ⊗ x) = fx
(

f ∈ C00(G), x ∈ X
)
,

is well-defined, bilinear, and ‖αX ( f ⊗ x)‖ = ‖ f ‖‖x‖. Therefore, by continuity, there is a unique operator, denoted also by
αX , from L1

ω(G) ⊗̂ X into L1
ω(G, X) such that

αX ( f ⊗ x)(t) = f (t)x
(

f ∈ C00(G), t ∈ G, x ∈ X
)
.

It is shown in [5, Proposition 3.3, p. 29] that αX is an isometric linear isomorphism.
Now suppose that A is a Banach algebra and that X is a Banach left A-module. It is well known that L1

ω(G) ⊗̂ A turns
into a Banach algebra along with the action specified by

( f ⊗ a)(g ⊗ b) = f ∗ g ⊗ ab
(

f , g ∈ L1
ω(G), a,b ∈ A

)
,

and L1
ω(G) ⊗̂ X turns into a Banach left L1

ω(G) ⊗̂ A -module with the action specified by

( f ⊗ a)(g ⊗ x) = f ∗ g ⊗ ax
(

f , g ∈ L1
ω(G), a ∈ A, x ∈ X

)
.

The following theorem shows that, through αX , the preceding actions coincide with their corresponding vector-valued
convolution ones.

Theorem 2.2. Let G be a locally compact group, let ω be a weight on G, let A be a Banach algebra, and let X be a Banach A-module.
Then:

(i) for every u ∈ L1
ω(G) ⊗̂ A and v ∈ L1

ω(G) ⊗̂ X,

αX (uv) = αA(u) ∗ αX (v);
(ii) αA is an isometric algebraic isomorphism from L1

ω(G) ⊗̂ A onto L1
ω(G, A).

Proof. (i) It suffices to show that, for every f , g ∈ C00(G), a ∈ A and x ∈ X ,

αX ( f ∗ g ⊗ ax) = αA( f ⊗ a) ∗ αX (g ⊗ x).

Let s ∈ G . Then

αX ( f ∗ g ⊗ ax)(s) = ( f ∗ g)(s)ax = ax

∫
G

f (t)g(s − t)dt =
∫
G

[
f (t)a

][
g(s − t)x

]
dt =

∫
G

αA( f ⊗ a)(t)αX (g ⊗ x)(s − t)dt

= [
αA( f ⊗ a) ∗ αX (g ⊗ x)

]
(s).

This completes the proof.
(ii) Follows from (i) by replacing X with A. �
Let X be a Banach left L1

ω(G)-module, and let ω � 1. Let π X
ω : L1

ω(G) ⊗̂ X → X and φX
ω : L1

ω(G) ⊗̂ X → X be the normed-
decreasing operators specified by

π X
ω ( f ⊗ x) = f x, φX

ω( f ⊗ x) =
[∫

f (t)dt

]
x

(
f ∈ L1

ω(G), x ∈ X
)
.

G
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When there is no risk of ambiguity, we write π instead of π X
ω and φ instead of φX

ω .
There is a vector-valued analogue of the above maps. However we need some introduction before defining them.
We recall that, if A is a Banach algebra, then a Banach left A-module X is essential if it is the closure of A X = span{ax |

a ∈ A, x ∈ X}. Suppose that A has a bounded approximate identity. Then, by Cohen’s factorization theorem [2, Corol-
lary 2.9.26], X = A X , and so, A has a bounded left approximate identity for X .

Let X be an essential Banach left L1
ω(G)-module. Then the action of L1

ω(G) on X can be extended to Mω(G) [4, The-
orem 7.14] so that for every x ∈ X , the mapping t 
→ δt x from G into X is continuous. The following lemma allows us to
construct the vector-valued version of π X

ω .

Lemma 2.3. Let X be an essential Banach left L1
ω(G)-module. Then, for every f ∈ L1

ω(G, X), the mapping t 
→ δt[f(t)] from G into X is
Bochner λ-integrable.

Proof. Since there is M > 0 such that ‖δt[f(t)]‖ � Mω(t)‖f(t)‖ (t ∈ G) and f ∈ L1
ω(G, X), it suffices to show that the mapping

t 
→ δt[f(t)] from G into X is λ-measurable. By [6, Definition II.2.1], there is a sequence of integrable simple functions {fn}
from G into X such that

lim
n→∞

∫
G

∥∥fn(t) − f(t)
∥∥dλ = 0.

Without loss of generality (by going to subsequences), this implies that limn→∞ ‖fn(t) − f(t)‖ = 0 λ-almost everywhere.
Therefore

lim
n→∞

∥∥δt
[
fn(t)

] − δt
[
f(t)

]∥∥ � Mω(t) lim
n→∞

∥∥fn(t) − f(t)
∥∥ = 0

λ-almost everywhere. Hence we have the result if we show that for every x ∈ X and a λ-measurable set E with λ(E) < ∞,
the mapping

t 
→ δt
[
χE(t)x

] = χE(t)δt x

from G into X is λ-measurable. Since λ(E) is finite, there is a sequence of compact sets {Kn} such that Kn ⊂ E for all
n ∈ N and λ(E \ ⋃∞

n=1 Kn) = 0. On the other hand, X is essential so that the mapping t 
→ δt x is continuous. Hence each
{δt x | t ∈ Kn} is a compact metric space, and so, it is separable. Thus{

δt x
∣∣∣ t ∈

∞⋃
n=1

Kn

}
is separable. Hence, by [6, Theorem II.1.2], the mapping t 
→ δt[χE(t)x] is λ-measurable. �

Let X be an essential Banach left L1
ω(G)-module, and let Π X

ω : L1
ω(G, X) → X and Φ X

ω : L1
ω(G, X) → X be the norm-

decreasing operators defined by

Π X
ω (f) =

∫
G

δt
[
f(t)

]
dt, Φ X

ω(f) =
∫
G

f(t)dt

for every f ∈ L1
ω(G, X). When there is no risk of ambiguity, we write Π instead of Π X

ω and Φ instead of Φ X
ω .

The following proposition establishes the relationship between the above maps.

Proposition 2.4. Let G be a locally compact group, let ω,σ � 1 be weights on G, and let X be an essential Banach left L1
σ (G)-module.

Then:

(i) π = Π ◦ αX ;
(ii) φ = Φ ◦ αX ;

(iii) for every f ∈ L1
ω(G, L1

σ (G)) and g ∈ L1
ω(G, X),

Π X
ω (f ∗ g) = Π

L1
σ (G)

ω (f)Π X
ω (g) and Φ X

ω(f ∗ g) = Φ
L1
σ (G)

ω (f)Φ X
ω(g).

Proof. (i) Since X is essential, the action of L1
σ (G) on X can be extended to Mσ (G) and X becomes a unital Banach Mσ (G)-

module [4, Theorem 7.14]. Now to prove our result, it suffices to show that, for every f ∈ C00(G) and x ∈ X ,

π( f ⊗ x) = Π
(
αX ( f ⊗ x)

)
.
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We have

π( f ⊗ x) =
∫
G

f (t)δt x dt =
∫
G

δt
[

f (t)x
]

dt =
∫
G

δt
[
αX ( f ⊗ x)(t)

]
dt = Π

(
αX ( f ⊗ x)

)
.

(ii) Let f ∈ C00(G) and x ∈ X . Then

φ( f ⊗ x) =
[∫

G

f (t)dt

]
x =

∫
G

αX ( f ⊗ x)(t)dt = Φ
(
αX ( f ⊗ x)

)
.

The final result follows from the continuity.
(iii) It is straightforward to check that, for every u ∈ L1

ω(G) ⊗̂ L1
σ (G) and v ∈ L1

ω(G) ⊗̂ X ,

π X
ω (uv) = π

L1
σ (G)

ω (u)π X
ω (v) and φX

ω(uv) = φ
L1
σ (G)

ω (u)φX
ω(v).

Thus the result follows from parts (i), (ii) and Theorem 2.2(i). �
The following corollary is an immediate consequence of Proposition 2.4.

Corollary 2.5. Let G be a locally compact group, let ω � 1 be a weight on G, and let X be an essential Banach left L1
ω(G)-module.

Then:

(i) αX (kerπ) = kerΠ ;
(ii) αX (kerφ) = kerΦ.

3. Translation of operators

Throughout the rest of this paper, we let G be a locally compact abelian group and all modules be symmetric. Let ω be
a weight on G . We shall consider the following auxiliary weight on G:

ω̃(t) = ω(−t) (t ∈ G).

In this section, we show how can we transfer information from kerΦ X
ωσ̃

to kerΠ X
ω .

Theorem 3.1. Let ω and σ be weights on G, and let X be an essential Banach L1
σ (G)-module. Then there is an operator

ΛX : L1
ωσ̃

(G, X) → L1
ω(G, X) such that:

(i) for every f ∈ C00(G, X), ΛX (f)(t) = δ−t[f(t)];
(ii) ΛX is a norm-decreasing linear map with dense range;

(iii) if σ = 1, then ΛX is an isometric isomorphism on L1
ω(G, X);

(iv) for every f ∈ L1
ωσ̃

(G, L1
σ (G)) and g ∈ L1

ωσ̃
(G, X),

ΛX (f ∗ g) = ΛL1
σ (G)(f) ∗ ΛX (g).

Proof. By [4, Theorem 7.44], we can assume that σ � 1. Let f ∈ C00(G, X) and define ΛX (f)(t) := δ−t[f(t)] for every t ∈ G .
Clearly ΛX (f) ∈ C00(G, X). Let ‖ · ‖ωσ̃ and ‖ · ‖ω denote the norms on L1

ωσ̃
(G, X) and L1

ω(G, X), respectively. Then∥∥ΛX (f)
∥∥
ω

=
∫
G

∥∥ΛX (f)(t)
∥∥ω(t)dt =

∫
G

∥∥δ−t
[
f(t)

]∥∥ω(t)dt �
∫
G

∥∥f(t)
∥∥‖δ−t‖ω(t)dt =

∫
G

∥∥f(t)
∥∥σ(−t)ω(t)dt = ‖f‖ωσ̃ .

Hence ΛX can be extended to a norm-decreasing linear operator from L1
ωσ̃

(G, X) into L1
ω(G, X). Moreover, it is easy to see

that ΛX (C00(G, X)) = C00(G, X). Hence the image of ΛX is dense in L1
ω(G, X) i.e. (i) and (ii) hold.

For (iv), let f ∈ C00(G, L1
σ (G)), g ∈ C00(G, X), and s ∈ G . Then[

ΛL1
σ (G)(f) ∗ ΛX (g)

]
(s) =

∫
G

ΛL1
σ (G)(f)(t)ΛX (g)(s − t)dt =

∫
G

[
δ−t ∗ f(t)

][
δt−sg(s − t)

]
dt =

∫
G

[
δ−t ∗ f(t) ∗ δt−s

]
g(s − t)dt

=
∫
G

[
δ−s ∗ f(t)

]
g(s − t)dt =

∫
G

δ−s
[
f(t)g(s − t)

]
dt = δ−s

∫
G

f(t)g(s − t)dt = δ−s
[
(f ∗ g)(s)

]
= ΛX (f ∗ g)(s).

The final result follows from continuity.
Finally, (iii) follows since ‖ΛX (f)‖ω = ‖f‖ω if σ = 1. �
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Theorem 3.2. Let ω and σ be weights on G such that ω � 1, ω � σ , ωσ̃ � 1, and let X be an essential Banach L1
σ (G)-module. Then

ΛX (kerΦ X
ωσ̃

) is dense in kerΠ X
ω . If, in addition, σ = 1, then ΛX (kerΦ X

ω) = kerΠ X
ω .

Proof. For simplicity, we set Π := Π X
ω and Φ := Φ X

ωσ̃
. We first note that, by [4, Theorem 7.44], we can assume that σ � 1.

Thus X becomes a unital Banach Mσ (G)-module ([4, Theorem 7.14] or [2]). Also, from σ � ω, it follows easily that X is
both a unital Banach Mω(G)-module and an essential Banach L1

ω(G)-module. Now let f ∈ kerΦ . Then

Π
[
(ΛX )(f)

] =
∫
G

δt
[
ΛX (f)(t)

]
dt =

∫
G

δt
[
δ−t f(t)

]
dt =

∫
G

[δt ∗ δ−t ]f(t)dt

∫
G

δef(t)dt

∫
G

f(t)dt = 0.

Hence ΛX (kerΦ) ⊆ kerΠ .
Now suppose that f ∈ kerΠ and ε > 0. There is g ∈ C00(G, X) such that ‖f − g‖ < ε . Let U be a compact neighborhood

of e, and let {ei}i∈I be a bounded approximate identity in L1
ω(G) for X . It is well known that {ei}i∈I can be chosen such that

{ei}i∈I ⊂ C00(G) and supp ei ⊆ U (i ∈ I). (1)

Let M > 0 be an upper bound for {ei}i∈I . Define, by induction on n, xn ∈ X and en ∈ {ei}i∈I such that

x0 := Π(g), ‖xn − enxn‖ < 2−nε and xn+1 := xn − enxn. (2)

We first observe that, for each n ∈ N, ‖xn‖ < 2−n+1ε . Also

‖x0‖ = ∥∥Π(g)
∥∥ = ∥∥Π(f − g)

∥∥ �
∥∥f − g

∥∥ < ε.

Hence
∞∑

n=0

‖en‖‖xn‖ � Mε + M
∞∑

n=1

2−n+1ε = 3Mε.

Thus, if we put h = αX {∑∞
n=0 en ⊗ xn}, then from (1),

h ∈ C00(G, X) and ‖h‖ < 3Mε. (3)

Moreover, from Proposition 2.4(i) and (2),

Π(h) = Π

[
αX

( ∞∑
n=0

en ⊗ xn

)]
=

∞∑
n=0

enxn =
∞∑

n=0

(xn − xn+1) = x0 = Π(g).

Hence g − h ∈ kerΠ ∩ C00(G, X). Thus if we put m(t) = δt(g − h)(t), then it follows that m ∈ kerΦ and ΛX (m) = g − h.
Therefore

g − h ∈ ΛX (kerΦ).

Finally, from (3), we have∥∥f − (g − h)
∥∥ � ‖f − g‖ + ‖h‖ � ε + 3Mε = (1 + 3M)ε.

Hence ΛX (kerΦ) is dense in kerΠ .
When σ = 1, by Theorem 3.1(iii), ΛX is an isometry on L1

ω(G, X). Thus ΛX (kerΦ X
ω) is norm-closed. Therefore it is the

same as kerΠ X
ω . �

4. The space of derivations and the augmentation ideal

Let A be a Banach algebra, and let ϕ be a character on the Banach algebra A (i.e. ϕ is a non-zero multiplicative linear
functional on A). Then C is a Banach A-module for the product defined by

a · z = z · a = ϕ(a)z (a ∈ A, z ∈ C);
this one-dimensional module is denoted by Cϕ . A derivation from A into Cϕ is called a point derivation at ϕ; it is a linear
functional d on A such that

d(ab) = d(a)ϕ(b) + ϕ(a)d(b) (a,b ∈ A).

It is well known that if A is weakly amenable, then there is no non-zero continuous point derivation on A [2, Theorem
2.8.63(ii)], i.e. Z1(A,Cϕ) = {0} for every non-zero multiplicative linear functional ϕ on A. However the converse is not
true! For example, if S is the group of rotations of R

3, then by [16, Corollary 7.3], the Fourier algebra A(S) is not weakly
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amenable but we know that it has no non-zero continuous point derivation [10, Proposition 1]. Other examples include
suitable Lipschitz algebras and Beurling algebras [1].

Our purpose in this section is to show that for Beurling algebras a weaker version of the converse is true. We start by
considering the following well-known character on Mω(G), and the point derivations on it.

Definition 4.1. Let ω be a weight on G such that ω � 1. Then the map ϕω
0 : Mω(G) → C defined by

ϕω
0 (μ) = μ(G),

is the augmentation character on Mω(G) and its kernel in L1
ω(G) is the augmentation ideal of L1

ω(G).

We will show that not having continuous non-zero point derivations on the augmentation character will determine
derivation spaces for a large class of modules. The following lemma indicates the relationship between the augmentation
ideal and the kernel of φX

ω .

Lemma 4.2. Let ω � 1 and σ be weights on G, let X be a Banach L1
σ (G)-module, and let I0 be the augmentation ideal of L1

ω(G). Let
ι ⊗ idX : I0 ⊗̂ X → L1

ω(G) ⊗̂ X be the norm-decreasing linear operator specified by

ι ⊗ idX ( f ⊗ x) = f ⊗ x ( f ∈ I0, x ∈ X).

Then ι ⊗ idX is a bi-continuous algebraic isomorphism from I0 ⊗̂ X onto kerφX
ω .

Proof. It is clear that ι ⊗ idX (I0 ⊗̂ X) ⊆ kerφX
ω . On the other hand, let u = ∑∞

n=1 fn ⊗ xn ∈ kerφX
ω . Fix g ∈ C00(G) with∫

G g(t)dt = 1, and consider the continuous projection P : L1
ω(G) → I0 defined by

P ( f ) = f − g

∫
G

f dt
(

f ∈ L1
ω(G)

)
.

Since φX
ω(u) = 0, we have

u =
∞∑

n=1

P ( fn) ⊗ xn +
∞∑

n=1

(
g

∫
G

fn(t)dt ⊗ xn

)

=
∞∑

n=1

P ( fn) ⊗ xn +
∞∑

n=1

(
g ⊗

[∫
G

fn(t)dt

]
xn

)

=
∞∑

n=1

P ( fn) ⊗ xn + g ⊗
∞∑

n=1

[∫
G

fn(t)dt

]
xn

=
∞∑

n=1

P ( fn) ⊗ xn + g ⊗ φX
ω(u)

=
∞∑

n=1

P ( fn) ⊗ xn.

Hence u ∈ ι ⊗ idX (I0 ⊗̂ X). Thus ι ⊗ idX (I0 ⊗̂ X) = kerφX
ω . Moreover, P ⊗ idX is the right inverse of ι ⊗ idX , i.e. ι ⊗ idX is

one-to-one. The bi-continuity follows from the open mapping theorem. �
Theorem 4.3. Let ω and σ be weights on G such that ω � 1, ω � σ , ωσ̃ � 1, and let X be an essential Banach L1

σ (G)-module.
Suppose that Z1(L1

ωσ̃
(G),Cϕωσ̃

0
) = {0}. Then:

(i) kerΦ X
ωσ̃

is an essential Banach kerΦ
L1
σ (G)

ωσ̃
-module;

(ii) kerΠ X
ω is an essential Banach kerΠ

L1
σ (G)

ω -module.

Proof. It follows from Proposition 2.4(iii) that kerΦ X
ωσ̃

is a Banach kerΦ
L1
σ (G)

ωσ̃
-module. Thus it remains to show the essen-

tiality.
Let I0 be the augmentation ideal of L1

ωσ̃
(G). Since L1

ωσ̃
(G) has no non-zero continuous point derivations at ϕωσ̃

0 ,
I2
0 := I0 I0 is dense in I0 [2, Proposition 1.8.8]. Hence, from the essentiality of X ,

I0 ⊗̂ X = [(
I0 ⊗̂ L1

σ (G)
)
(I0 ⊗̂ X)

]−
.
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Therefore, by Lemma 4.2, if we apply ι ⊗ idX to both sides of the above equality, we have

kerφX
ωσ̃ = [

kerφ
L1
σ (G)

ωσ̃
kerφX

ωσ̃

]−
.

The final result follows from applying αX to both sides of the preceding equality and using Theorem 2.2(i) and Corollary
2.5(ii).

(ii) It follows from part (i), Theorem 3.1(iv), and Theorem 3.2. �
Let A be a Banach algebra, and X be a Banach A-bimodule. There are Banach A-bimodule actions on A ⊗̂ X specified by

a · (b ⊗ x) = ab ⊗ x, (b ⊗ x) · a = b ⊗ xa (a,b ∈ A, x ∈ X).

Corollary 4.4. Let ω and σ be weights on G such that ω � 1, ω � σ , ωσ̃ � 1, and let X be an essential Banach L1
σ (G)-module.

Suppose that Z1(L1
ωσ̃

(G),Cϕωσ̃
0

) = {0}. Then

kerπ X
ω = span

{
f · u − u · f

∣∣ f ∈ L1
ω(G), u ∈ kerπ X

ω

}
.

Proof. From Theorem 4.3(ii), Theorem 2.2(i), and Proposition 2.4(i), we have

kerπ X
ω = [

kerπ
L1
σ (G)

ω kerπ X
ω

]−
.

Hence it suffices to show that[
kerπ

L1
σ (G)

ω kerπ X
ω

]− = span
{

f · u − u · f
∣∣ f ∈ L1

ω(G), u ∈ kerπ X
ω

}
. (1)

Let {ei}i∈I be a bounded approximate identity in L1
ω(G) for L1

ω(G), L1
σ (G), and X . For every f ∈ L1

ω(G) and u ∈ kerπ X
ω ,

f · u − u · f = lim
i→∞

( f ⊗ ei − ei ⊗ f )u ∈ [
kerπ

L1
σ (G)

ω kerπ X
ω

]−
.

Hence “⊇” follows in (1).

Conversely, let m ∈ kerπ X
ω and v = ∑∞

n=1 fn ⊗ gn ∈ kerπ
L1
σ (G)

ω . We have

(ei ⊗ ei)v =
∞∑

n=1

ei fn ⊗ ei gn

=
∞∑

n=1

[
(ei ⊗ gn)( fn ⊗ ei − ei ⊗ fn + ei ⊗ fn)

]
=

∞∑
n=1

[
(ei ⊗ gn)( fn ⊗ ei − ei ⊗ fn)

] + e2
i ⊗

∞∑
n=1

fn gn

=
∞∑

n=1

[
(ei ⊗ gn)( fn ⊗ ei − ei ⊗ fn)

] + ei ⊗ π
L1
σ (G)

ω (v)

=
∞∑

n=1

[
(ei ⊗ gn)( fn ⊗ ei − ei ⊗ fn)

]
.

However, it is straightforward to check that, for each n ∈ N, m · gn ∈ kerπ X
ω and

lim
i→∞

[
(ei ⊗ gn)( fn ⊗ ei − ei ⊗ fn)

]
m = fn · [m · gn] − [m · gn] · fn.

Hence

vm = lim
i→∞

(ei ⊗ ei)vm

= lim
i→∞

∞∑
n=1

[
(ei ⊗ gn)( fn ⊗ ei − ei ⊗ fn)

]
m

(�)=
∞∑

n=1

lim
i→∞

[
(ei ⊗ gn)( fn ⊗ ei − ei ⊗ fn)

]
m

=
∞∑

fn · [m · gn] − [m · gn],

n=1
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where the last term belongs to span{ f · u − u · f | f ∈ L1
ω(G), u ∈ kerπ X

ω }. We note that the equality (�) happends since, for
each i ∈ N,

∞∑
n=1

∥∥(ei ⊗ gn)( fn ⊗ ei − ei ⊗ fn)
∥∥

is uniformly bounded by 2M2 ∑∞
n=1 ‖gn‖‖ fn‖ where M = sup{‖ei‖ | i ∈ I}. �

Theorem 4.5. Let ω and σ be weights on G such that ω � 1, ω � σ , ωσ̃ � 1. Suppose that Z1(L1
ωσ̃

(G),Cϕωσ̃
0

) = {0}. Then, for any

Banach L1
σ (G)-module X, every continuous derivation from L1

ω(G) into X is zero.

Proof. First consider the case X = X∗ , where X is an essential Banach L1
σ (G)-module.

Let D : L1
ω(G) → X∗ be a bounded derivation. Define the bounded operator D̃ : L1

ω(G) ⊗̂ X → C specified by

D̃( f ⊗ x) = 〈
D( f ), x

〉 (
f ∈ L1

ω(G), x ∈ X
)
.

We first claim that

D̃ = 0 on kerπ X
ω . (1)

A straightforward calculation shows that, for all f , g,h ∈ L1
ω(G) and x ∈ X ,

D̃
[

f · (gh ⊗ x − g ⊗ hx) − (gh ⊗ x − g ⊗ hx) · f
] = 0.

On the other hand, from Corollary 4.4,

kerπ X
ω = span

{
f · u − u · f

∣∣ f ∈ L1
ω(G), u ∈ kerπ X

ω

}
.

Hence (1) follows if we show that

kerπ X
ω = span

{
gh ⊗ x − g ⊗ hx

∣∣ g,h ∈ L1
ω(G), x ∈ X

}
. (2)

Let u = ∑∞
n=1 fn ⊗ xn ∈ kerπ X

ω . Let {ei}i∈I be a bounded approximate identity in L1
ω(G) for both L1

ω(G) and X . Then

ei · u =
∞∑

n=1

(ei fn ⊗ xn − ei ⊗ fnxn + ei ⊗ fnxn)

=
∞∑

n=1

(ei fn ⊗ xn − ei ⊗ fnxn) + ei ⊗
∞∑

n=1

fnxn

=
∞∑

n=1

(ei fn ⊗ xn − ei ⊗ fnxn) + ei ⊗ π X
ω (u)

=
∞∑

n=1

(ei fn ⊗ xn − ei ⊗ fnxn).

Thus (2) follows since ei · u → u as i → ∞. Hence, since D is a derivation, for all g ∈ L1
ω(G) and x ∈ X ,〈

D(g), x
〉 = D̃(g ⊗ x) = lim

i→∞
D̃(g ⊗ xei) = lim

i→∞
〈ei D(g), x〉 = lim

i→∞
[〈

D(ei g), x
〉 − 〈

D(ei)g, x
〉]

= lim
i→∞ D̃(ei g ⊗ x − ei ⊗ gx) = 0,

where the final equality follows from (1). Hence D = 0.
The general case follows by adapting an argument similar to the one made in the proof of [2, Theorem 2.8.63(iii)]. �

5. Weak amenability

In this section, we present our main results on weak amenibility. We first recall that if ω is a weight on G such that

ω � 1, then the strong operator topology on Mω(G) is defined as follows: a net {μα} converges to μ (μα
s.o.−→ μ) if and only

if μα ∗ f → μ ∗ f in norm for every f ∈ L1
ω(G). From [4, Lemma 13.5], both L1

ω(G) and l1ω(G) are s.o. dense in Mω(G).
The following proposition gives a sufficient condition on ω so that L1

ω(G) has no non-zero continuous point derivation.
This has been indicated in various references for particular cases but we have not seen it in its general form, so it seems
worthwhile to provide a complete proof of it.
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Proposition 5.1. Let ω be a weight on G such that ω � 1. Then

(i) Z1(L1
ω(G),Cϕω

0
) = {0} whenever Z1(l1ω(G),Cϕω

0
) = {0}.

(ii) Suppose that, for every t ∈ G, inf{ω(nt)/n | n ∈ N} = 0. Then Z1(L1
ω(G),Cϕω

0
) = {0}.

Proof. (i) Let d : L1
ω(G) → C be a continuous point derivations at ϕω

0 . By [2, Theorem 2.9.53] and [4, Theorem 7.14], there is

a unique extension of d to a continuous derivation d̃ : Mω(G) → C; the action of Mω(G) on C is defined by

μ · z = z · μ = μ(G)z
(
μ ∈ Mω(G), z ∈ C

)
.

Moreover, d̃ is continuous with respect to the strong operator topology on Mω(G). Clearly the restriction of d̃ to l1ω(G)

belongs to Z1(l1ω(G),Cϕω
0
). Therefore d̃ = 0 on l1ω(G). However, l1ω(G) is dense in Mω(G) with respect to the strong operator

topology. Hence d̃ = 0, and so d = 0.
(ii) Take d ∈Z1(l1ω(G),Cϕω

0
) and t ∈ G . For every n ∈ N, d(δnt) = n[δ(n−1)t · d(δt)] = nd(δt). Hence∥∥d(δt)

∥∥ � ‖d‖‖δnt‖n = ‖d‖ω(nt)/n.

Thus, from the hypothesis, d(δt) = 0, i.e. d = 0.
The final result follows from part (i). �
We note that for any weight ω on G , its symmetrization is the weight defined by Ω(t) := ω(t)ω(−t) (t ∈ G). We can now

use Theorem 4.5 to present a class of weakly amenable Beurling algebras. This has been already established, by N. Groen-
baek, for Beurling algebras on discrete abelian groups [13].

Theorem 5.2. Let ω be a weight on G such that, for every t ∈ G, inf{Ω(nt)/n | n ∈ N} = 0. Then L1
ω(G) is weakly amenable.

Proof. Let R
+• := (0,∞) be the group of positive real numbers with respect to multiplication. By [4, Theorem 7.44], there is

a continuous character (i.e. a non-zero group homomorphism) χ : G → R
+• such that ω1 := ω/χ is a weight on G , ω1 � 1,

and L1
ω(G) is isometrically isomorphic to L1

ω1
(G). Therefore it suffices to show that L1

ω1
(G) is weakly amenable. Since χ is

a group homomorphism, for every t ∈ G ,

ω1(t)ω̃1(t) = ω(t)ω̃(t) = Ω(t).

On the other hand, by Proposition 5.1, there is no non-zero continuous point derivation on L1
Ω(G) at ϕΩ

0 . Hence, from
Theorem 4.5, every continuous derivation from L1

ω1
(G) into any Banach L1

ω1
(G)-module is zero, i.e. L1

ω1
(G) is weakly

amenable. �
We would like to point out that the condition in Proposition 5.1 is not necessary for vanishing of Z1(L1

ω(G),Cϕω
0
).

Indeed, in Theorem 7.6, we will present examples of Beurling algebras with sharp growing weights which have no non-zero
continuous point derivations.

6. 2-Weak amenability

Let ω � 1 be a weight on G . Define the function ω1 on G by

ω1(s) = lim sup
t→∞

ω(t + s)

ω(t)
= inf

{
sup

{
ω(t + s)

ω(t)
: t /∈ K

} ∣∣∣ K is a compact subset of G

}
.

It is clear that ω1 is a sub-additive function on G such that ω1 � ω and ωω̃1 � 1. However, we do not know whether or
not ω1 is continuous. Nevertheless we have the following lemma:

Lemma 6.1. Let ω � 1 be a weight on G, and let ω1 be as above. Then:

(i) ω1 is measurable;
(ii) there is a weight on G, denoted by σω , and positive real numbers M and N such that

Mω1(t) � σω(t) � Nω1(t) (t ∈ G).

In particular, σω is bounded if and only if ω1 is bounded.
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Proof. (i) Let r > 0, Gr := {x ∈ G | ω1(x) < r} and s ∈ Gr . There is a compact subset K of G and 0 < r1 < r such that

sup

{
ω(t + s)

ω(t)
: t /∈ K

}
< r1. (1)

Let U be a compact neighborhood of the identity in G satisfying

sup
{
ω(s1): s1 ∈ U

}
r1 < r. (2)

This is possible because ω is continuous and ω(e) = 1. Now take s1 ∈ U . From (1) and the fact that ω is sub-additive, we
have

sup

{
ω(t + s + s1)

ω(t)
: t /∈ K

}
� sup

{
ω(t + s)

ω(t)
: t /∈ K

}
ω(s1) < r1ω(s1).

Hence it follows from (2) that

sup

{
ω(t + s + s1)

ω(t)
: t /∈ K , s1 ∈ U

}
� sup

{
ω(s1): s1 ∈ U

}
r1 < r.

This implies that ω1(s + s1) < r for all s1 ∈ U i.e. s + U ⊆ Gr . Thus Gr is open. Hence ω1 is measurable.
(ii) It follows from (i) and [18, Definition 3.7.1 and Theorem 3.7.5]. �
The importance of σω is presented in the following lemma in which we show that a certain Banach L1

ω(G)-module
can be regarded as an L1

σω
(G)-module. This interesting phenomenon helps us to connect the space of derivations into the

second dual of L1
ω(G) to the behavior of the augmentation ideal of L1

ωσω
(G). Indeed, we will see in Theorem 6.4 that, for the

case when σω is bounded, this gives us a precise correspondence between continuous point derivations at ϕω
0 and 2-weak

amenability of L1
ω(G).

We recall from [4, p. 77] that L∞
1/ω(G), as the dual of L1

ω(G), is a Banach Mω(G)-module. In particular, for each f ∈
L∞

1/ω(G), we have

f · δt = δt · f = δ−t ∗ f (t ∈ G).

Moreover, LUC1/ω(G) = L1
ω(G)L∞

1/ω(G).

Lemma 6.2. Let ω � 1 be a weight on G, and let Xω = LUC1/ω(G)/C0,1/ω(G). Then the standard action of G on Xω extends continu-
ously to an action of Mσω (G) on Xω . In particular, Xω is a unital Banach Mσω (G)-module and an essential Banach L1

σω
(G)-module.

Proof. For simplicity, put σ = σω .
By Lemma 6.1, there is M > 0 such that ω1 � M−1σω . We first show that for every t ∈ G and x ∈ Xω ,

‖δt · x‖ � M−1‖x‖σ(t). (1)

Let ε > 0. There is a compact set Ft in G such that, for every s /∈ Ft , ω(s+ t)/ω(s) � M−1σ(t)+ε . Pick a continuous function
ft on G with compact support such that

0 � ft � 1, ft = 1 on Ft . (2)

Let q : LUC1/ω(G) → Xω be the natural quotient map, and let x = q(g) where g ∈ LUC1/ω(G). Since δt · g − (1 − ft)(δt · g) =
ft(δt · g) ∈ C0,1/ω(G),

‖δt · x‖ = ∥∥q(δt · g)
∥∥ �

∥∥(1 − ft)(δt · g)
∥∥

1/ω
.

On the other hand, from (2),∥∥(1 − ft)(δt · g)
∥∥

1/ω
� sup

{ |(δt · g)(s)|
ω(s)

∣∣∣ s /∈ Ft

}
= sup

{ |g(s + t)|
ω(s)

∣∣∣ s /∈ Ft

}
= sup

{ |g(s + t)|
ω(s + t)

ω(s + t)

ω(s)

∣∣∣ s /∈ Ft

}
� ‖g‖1/ω

(
M−1σ(t) + ε

)
.
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Therefore

‖δt · x‖ � ‖g‖1/ω

(
M−1σ(t) + ε

)
,

and so, (1) follows since ‖x‖ = inf{‖g‖1/ω | q(g) = x} and ε was arbitrary.
Now suppose that μ ∈ Mω(G). By [4, Proposition 7.15], the map

s 
→ δs · x, G → Xω

is continuous. Hence it is |μ|-measurable. Moreover, from (1),∫
G

‖δs · x‖d|μ| � M−1
∫
G

‖x‖σ(s)d|μ| = M−1‖x‖‖μ‖σ .

Therefore the Bochner integral μ · x = ∫
G δs · x dμ is well-defined and ‖μ · x‖ � M−1‖x‖‖μ‖σ [5, Appendix B.12].

The essentiality of Xω follows simply because Xω is the closure of C00(G) · Xω . �
Theorem 6.3. Let ω � 1 be a weight on G. Suppose that

Z1(L1
ωσ̃ω

(G),C
ϕ

ωσ̃ω
0

) = {0}.

Then L1
ω(G) is 2-weakly amenable.

Proof. Let D : L1
ω(G) → L1

ω(G)∗∗ be a bounded derivation, and let

Xω = LUC1/ω(G)/C0,1/ω(G).

By the first paragraph in the proof of [4, Theorem 13.1], im D ⊆ (C0,1/ω(G))⊥ , where

C0,1/ω(G)⊥ = {
M ∈ L1

ω(G)∗∗ ∣∣ M = 0 on C0,1/ω(G)
}
.

Hence D can be regarded as a bounded derivation from L1
ω(G) into C0,1/ω(G)⊥ = [L∞

1/ω(G)/C0,1/ω(G)]∗ .

On the other hand, since L1
ω(G) has a bounded approximate identity, by a result of Johnson [2, Corollary 2.9.27],

Z1
[

L1
ω(G),

( L∞
1/ω(G)

C0,1/ω(G)

)∗]
=Z1

[
L1
ω(G),

( L1
ω(G)L∞

1/ω(G)

C0,1/ω(G)

)∗]
=Z1[L1

ω(G), X∗
ω

] = 0,

where the last equality follows from Lemma 6.2 and Theorem 4.5. We note that, by Lemma 6.1, there are M, N > 0 such
that N−1σω � ω and ωσ̃ω � M . Hence one can easily verify that Theorem 4.5 is valid for ω and σω . �
Theorem 6.4. Let ω � 1 be a weight on G. Suppose that σω is bounded. Then Z1(L1

ω(G),Cϕω
0
) = {0} if and only if L1

ω(G) is 2-weakly
amenable.

Proof. “⇒” Since σω is bounded, L1
ω(G) is a dense subalgebra of L1

ωσ̃ω
(G). Hence L1

ωσ̃ω
(G) has no non-zero continuous

point derivation at ϕωσ̃
0 , and so, the result follows from Theorem 6.3.

“⇐” Let X := Xω be as in Theorem 6.3. By [12, Proposition 2.2], X∗ is a L1
ω(G)-submodule of L1

ω(G)∗∗ . Thus, by hypo-
thesis,

Z1[L1
ω(G), X∗] = 0. (1)

On the other hand, by Lemma 6.2 and the fact that σω is bounded, X is an essential Banach L1(G)-module. Therefore from
the argument presented in the proof of Corollary 4.4 (Eq. (1)) and Theorem 4.5 (Eq. (2)) we have[

kerπ L1(G)
ω kerπ X

ω

]− = span
{

f · u − u · f
∣∣ f ∈ L1

ω(G), u ∈ kerπ X
ω

}
⊆ kerπ X

ω

= span
{

gh ⊗ x − g ⊗ hx
∣∣ g,h ∈ L1

ω(G), x ∈ X
}
.

We claim that

kerπ X
ω = [

kerπ L1(G)
ω kerπ X

ω

]−
. (�)

Let T ∈ (L1
ω(G) ⊗̂ X)∗ such that T = 0 on kerπ L1(G)

ω kerπ X
ω . Hence, for every f , g,h ∈ L1

ω(G) and x ∈ X ,
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T
[

f · (gh ⊗ x − g ⊗ hx) − (gh ⊗ x − g ⊗ hx) · f
] = 0.

Thus if we let T̂ : L1
ω(G) → X∗ be the bounded operator defined by〈̂

T ( f ), x
〉 = T ( f ⊗ x)

(
f ∈ L1

ω(G), x ∈ X
)
,

then a simple calculation shows that

T̂ ( f gh) − f T̂ (gh) − T̂ ( f g)h + f T̂ (g)h = 0
(

f , g,h ∈ L1
ω(G)

)
. (2)

Let BL1
ω(G)(L1

ω(G), X∗) be the (Banach) space of all L1
ω(G)-module morphisms from L1

ω(G) into X∗ . Define the bounded

operator D : L1
ω(G) → BL1

ω(G)(L1
ω(G), X∗) by

D( f )(g) = T̂ ( f g) − f T̂ (g)
(

f , g ∈ L1
ω(G)

)
. (3)

From (2), it is easy to verify that D is well-defined. Moreover, upon setting

〈 f · S, x〉 = 〈S · f , x〉 = 〈S, f x〉,
the space BL1

ω(G)(L1
ω(G), X∗) becomes a Banach L1

ω(G)-module and D becomes a bounded derivation from L1
ω(G) into

BL1
ω(G)(L1

ω(G), X∗). However, since L1
ω(G) has a bounded approximate identity, BL1

ω(G)(L1
ω(G), X∗) is isometric with X∗ as

Banach L1
ω(G)-module. Thus, from (1), D = 0. Therefore, from (3), T̂ ( f g) = f T̂ (g). So T vanishes on

span
{

gh ⊗ x − g ⊗ hx
∣∣ g,h ∈ L1

ω(G), x ∈ X
} = kerπ X

ω .

Thus (�) holds. Hence, by Theorem 2.2(i) and Corollary 2.5(i),

kerΠ X
ω = [

kerΠ
L1(G)
ω kerΠ X

ω

]−
.

However, from Theorem 3.1(iii), ΛX is invertible, and so, by Theorem 3.2,

kerΦ X
ω = Λ−1

X

(
kerΠ X

ω

) = [
Λ−1

L1(G)

(
kerΠ

L1(G)
ω

)
Λ−1

X

(
kerΠ X

ω

)]− = [
kerΦ

L1(G)
ω kerΦ X

ω

]−
.

Therefore, by Corollary 2.5(ii),

kerφX
ω = [

kerφ
L1(G)
ω kerφX

ω

]−
.

It follows from Lemma 4.2 that

I0 ⊗̂ X = [(
I0 ⊗̂ L1(G)

)
(I0 ⊗̂ X)

]−
.

Hence I0 = I2
0.

This completes the proof. �
Remark 6.5. Let {L1

ωi
(Gi)}n

i=1 be a finite set of Beurling algebras, and let ω := ω1 × · · · × ωn be the function on G :=
G1 × · · · × Gn defined by

ω(t1, . . . , tn) =
n∏

i=1

ωi(ti) (0 � i � n, ti ∈ Gi, 1 � i � n).

It is well known that ω is a weight on G so that L1
ω(G) is algebraically isomorphic with

⊗̂n
i=1L1

ωi
(Gi) [14, Proposi-

tion 1.2]. Now suppose that, for each i, ωi � 1, σωi is bounded, and L1
ωi

(Gi) is 2-weakly amenable. Then L1
ω(G) is 2-weakly

amenable. Indeed, since σω is bounded, by the preceding theorem, it suffices to show that Z1(L1
ω(G),Cϕω

0
) = {0}. How-

ever from our assumption and Theorem 6.4, Z1(L1
ωi

(Gi),Cϕω
0
) vanishes for each i. Therefore it can be easily shown that

Z1(L1
ω(G),Cϕω

0
) = {0}: this follows from the fact that ϕω

0 = ⊗n
i=1 ϕ

ωi
0 .

We finish this section with the following corollary, which was obtained in [12] by a different method.

Corollary 6.6. Let ω � 1 be a weight on G. Suppose that σω is bounded and inf{ω(nt)/n | n ∈ N} = 0. Then L1
ω(G) is 2-weakly

amenable.

Proof. By Proposition 5.1, there is no non-zero continuous point derivation on L1
ω(G) at ϕω

0 . Hence the result follows from
the preceding theorem. �
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7. Weights on compactly generated abelian groups

Let G be a compactly generated (abelian) group. Then, by the Structure Theorem,

G ∼= R
k × Z

m × T (�)

where k,m ∈ N ∪ {0} and T is a compact (abelian) group. Therefore we can define a continuous sub-additive function on G
by

|t| = ‖t1‖,
where t = (t1, t2) ∈ G , t1 ∈ R

k ×Z
m , and ‖ · ‖ is the Euclidean norm on R

k+m . We can use this function to construct different
weights on G .

For α � 0, let

ω(t) = (
1 + |t|)α (t ∈ G).

It is easy to see that ω is a weight on G; it is called polynomial of degree α. The following theorem is a generalization of [4,
Theorem 13.2 and 13.9].

Theorem 7.1. Let G be a non-compact, compactly generated group, and let ω and σ be polynomial weights of degree α and β ,
respectively. Then:

(i) if α � β and α + β < 1, then, for any Banach L1
σ (G)-module X, every continuous derivation from L1

ω(G) into X is zero;

(ii) L1
ω(G) is weakly amenable if and only if α < 1/2;

(iii) L1
ω(G) is 2-weakly amenable if and only if α < 1.

Proof. (i) follows from Theorem 4.5 and Proposition 5.1(ii).
For (ii), if α < 1/2, then from part (i), L1

ω(G) is weakly amenable. Conversely, suppose that α � 1/2. Since G is not
compact, it has a copy of R or Z as a direct sum. Hence there is a continuous algebraic homomorphism from L1

ω(G) onto
either L1

ω|R (R) or l1ω|Z (Z). However, neither of these algebras are weakly amenable ([4, Theorem 7.43] and [2, Corollary

5.6.19]). Hence L1
ω(G) is not weakly amenable.

Finally, for (iii), it is easy to see that lim supt→∞ ω(t+s)
ω(t) = 1. Hence, by Theorem 6.4, it suffices to show that there is no

non-zero continuous point derivation on L1
ω(G) at ϕω

0 if and only if α < 1. The “if” part follows from Proposition 5.1(ii) and
the “only if” part follows from the fact that, for α � 1, the Fourier transform of the elements of L1

ω|R (R) and l1ω|Z (Z) are

continuously differentiable [4, Theorem 13.2 and 13.9]. This gives us a non-zero continuous point derivation on L1
ω(G). �

Another family of weights that are considered on compactly generated groups are the exponential weights. A weight ω
is said to be exponential of degree α, 0 � α � 1, if there exists C > 0 such that

ω(t) = eC |t|α (t ∈ G).

By our method, we can investigate the question of 2-weak amenability for these families of Beurling algebras.

Theorem 7.2. Let G be a non-compact, compactly generated group, and let ω be an exponential weight of degree α. Then L1
ω(G) is not

2-weakly amenable if 0 < α < 1.

Proof. It is easy to see that, for 0 < α < 1, lim supt→∞ ω(t+s)
ω(t) is bounded by 1. Also a similar argument to that presented in

Theorem 7.1(iii) gives us a non-zero continuous point derivation on L1
ω(G). Hence the result follows from Theorem 6.4. �

Remark 7.3. (i) We note that the result of the preceding theorem holds, with the same argument, for weights of the form
ω(t) = eρ(|t|) , where ρ is a positive increasing sub-additive function which belongs to the Lipschitz algebra on R

+ = (0,∞)

with the degree 0 < α < 1.
(ii) We would like to point out that the result of Theorem 7.2 is not true in general when α = 1. Indeed, it is demon-

strated in [4, Theorem 13.3] that for ω(n) = e|n| , l1ω(Z) is 2-weakly amenable.

Theorem 7.2 can be generalized to a larger class of weights. Let q : R
+ → R

+ be a decreasing continuous function such
that

lim q(r) = 0 and lim rq(r) = ∞.

r→+∞ r→+∞
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Then the function ω : G → [1,∞) given by

ω(t) = e|t|q(|t|) (t ∈ G)

is a weight on G . All weights constructed as above belong to a family of weights that satisfy a so-called condition (S). This
condition is defined in order to get the symmetry of certain weighted group algebras on non-abelian groups. We refer the
reader to [7] and [8] for more details.

Theorem 7.4. Let G be a non-compact, compactly generated group, and let q and ω be as above. Suppose that rq(r) � ln(1 + r) for
sufficiently large r. Then L1

ω(G) is not 2-weakly amenable.

Proof. Let t, s ∈ G with |t| > |s|, and put r = |t| − |s|. Then |t − s| � r, and so, from the fact that q is decreasing,

|t|q(|t|) − |t − s|q(|t − s|) �
[
r + |s|]q

(
r + |s|) − rq(r) = r

[
q
(
r + |s|) − q(r)

] + |s|q(
r + |s|) � |s|q(

r + |s|) = |s|q(|t|).
Hence

lim sup
t→∞

ω(t + s)

ω(t)
= lim sup

t→∞
ω(t)

ω(t − s)
� lim sup

t→∞
e|s|q(|t|) = 1,

since limt→∞ q(|t|) = 0. Therefore σω is bounded. On the other hand, by hypothesis, ω(x) � 1 + |x| outside a compact set.
Thus the result follows in a similar way to Theorem 7.2. �

Some examples of such weights are presented in [7, Example 1.7]. They are, for instance, given by

(i) ω(t) = eC |t|α = e
|t| C

|t|1−α , C > 0, 0 < α < 1,

(ii) ω(t) = e
|t|∑∞

n=1
cn

1+|t|αn , 0 < αn < 1, {αn} decreasing to 0,
∑∞

n=1 cn < ∞,

(iii) ω(t) = eC |t|
ln(e+|t|) ,

(iv) ω(t) = e
C |t|

(ln(e+|t|))k ,k > 0.

In Theorem 7.1, we gave examples of 2-weakly amenable Beurling algebras over (symmetric) polynomial weights. Now we
will present a family of non-symmetric weights on R and Z for which the Beurling algebras are 2-weakly amenable and, at
one side, they have a much faster growth. Let 0 � α < 1/2 and define the functions ωR and ωZ on R and Z, respectively,
as follows:

ωR(t) = 1 if t � 0 and ωR(t) = e|t|α if t < 0;
ωZ(n) = 1 if n � 0 and ωZ(n) = e|n|α if n < 0.

It is straightforward to verify that ωR and ωZ are weights.

Proposition 7.5. Let α, ωR and ωZ be as above. Then:

(i) l1ωZ
(Z) is 2-weakly amenable;

(ii) L1
ωR

(R) is 2-weakly amenable.

Proof. (i) It is easy to see that, lim supn→∞ ωZ(n+m)
ωZ(n)

= 1. On the other hand, l1ωZ
(Z) is a commutative regular semisimple

Banach algebra on T = {z ∈ C | |z| = 1}. It is shown in [21] that, since

lim sup
n→+∞

lnω(−n)/
√

n = 0,

singeltons in T are sets of spectral synthesis for l1ωZ
(Z). Thus there are no non-zero continuous point derivations on l1ωZ

(Z).
Hence the result follows from Theorem 6.4.

(ii) Since σωR
is bounded, by Theorem 6.4 and Proposition 5.1(i), it suffices to show that

Z1(l1ωR
(R),C

ϕ
ωR

0

) = {0}.

Let d ∈Z1(l1ωR
(R),C

ϕ
ωR

0
). For every r ∈ R

+ , let 〈r〉 be the discrete additive subgroup of R generated by r. Clearly the closed

subalgebra Ar of l1ωR
(R) generated by the restriction to 〈r〉 is algebraically isomorphic to l1ωZ

(Z). Thus, from (i), d = 0 on Ar ,
and so, d(δr) = d(δ−r) = 0. Hence d = 0. �
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The preceding theorem and Remark 6.5 can be routinely employed to construct fast growing weights on compactly
generated groups for which the Beurling algebras are 2-weakly amenable. For each 1 � i � k and 1 � j � m, let 0 � αi < 1/2
and 0 � β j < 1/2, and let ωαi and ωβ j be the weights on R and Z associated, as in Proposition 7.5, with αi and β j ,
respectively. Put

ω =
k∏

i=1

ωαi ×
m∏

j=1

ωβ j .

By the identification (�), ω defines a weight on G .

Theorem 7.6. Let G be a compactly generated group, and let ω be as above. Then L1
ω(G) is 2-weakly amenable.
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