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1. Introduction

In this paper we study the multiplicity of solutions to the semilinear elliptic boundary value problem

(P )
{−�u = f (x, u) in Ω,

u = 0 on ∂Ω.

Here Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω and f ∈ C1(Ω̄ × R,R) satisfies the subcritical growth
condition

∣∣ f (x, t)
∣∣ � C

(
1 + |t|p−1), x ∈ Ω, 1 < p < 2∗ =

{
2N

N−2 , N � 3,

∞, N = 1,2.

It follows that the functional,

I(u) = 1

2

∫
Ω

|∇u|2 dx −
∫
Ω

F (x, u)dx, u ∈ H1
0(Ω),

is well-defined and of C2, and the solutions of (P ) are exactly the critical points of I , where F (x, t) = ∫ t
0 f (x, s)ds and the

Sobolev space H1
0(Ω) is a Hilbert space with standard norm and inner product.

We assume that f (x,0) ≡ 0 which implies that (P ) has a trivial solution u = 0 and we are interested in the existence of
nontrivial solutions. The existence of nontrivial solutions of (P ) depends on the local properties of f or F near the origin
and infinity. In the current paper, we consider the multiplicity of nontrivial solutions of (P ) in the sense that near infinity
(P ) may be double resonant between two consecutive eigenvalues of −� in H1

0(Ω).
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Now we state the conditions and conclusions in this paper. Denoted by 0 < λ1 < λ2 < · · · < λ j < · · · the distinct eigen-
values of −� in H1

0(Ω). For j ∈ N, H1
0(Ω) can be decomposed as

H1
0(Ω) = E−

j ⊕ E j ⊕ E j+1 ⊕ E+
j ,

where

E j = Ker(−	 − λ j), E−
j =

⊕
i< j

Ei, E+
j =

⊕
i> j+1

Ei .

Any function u ∈ H1
0(Ω) can be written as

u = u− + u j + u j+1 + u+, u± ∈ E±
j , u j ∈ E j, u j+1 ∈ E j+1.

We impose on f the following global conditions.

( f1) There exists k � 2 such that

λk � lim inf|t|→∞
f (x, t)

t
� lim sup

|t|→∞
f (x, t)

t
� λk+1 uniformly for x ∈ Ω.

( f2) If ‖uk
n‖

‖un‖ → 1 as ‖un‖ → ∞, then there exist δ1, N1 > 0 such that∫
Ω

(
f (x, un) − λkun

)
uk

ndx � δ1, n � N1, x ∈ Ω.

( f3) If ‖uk+1
n ‖

‖un‖ → 1 as ‖un‖ → ∞, then there exist δ2, N2 > 0 such that∫
Ω

(
λk+1un − f (x, un)

)
uk+1

n dx � δ2, n � N2, x ∈ Ω.

The main results in this paper are the following theorems. First we consider the case that u = 0 is a local minimizer.

Theorem 1.1. Assume that ( f1)–( f3) hold and f ′
t (x,0) < λ1 . Then (P ) has at least three nontrivial solutions in which one is positive

and one is negative.

Next we consider the case that f ′
t (x,0) = λm which means the trivial solution u = 0 is degenerate or (P ) is resonant at

the origin. We need a local sign condition.

(F ±
0 ) There exists δ > 0 such that

±(
2F (x, t) − λmt2) � 0, |t| � δ, x ∈ Ω.

Moreover, we also need the following hypotheses.

( f0) There exists t0 
= 0 such that f (x, t0) = 0 for x ∈ Ω .

Theorem 1.2. Assume that ( f0)–( f3) hold and f ′
t (x,0) = λm. Then (P ) has at least four nontrivial solutions in each of the following

cases

(i) (F +
0 ) with 2 � m 
= k;

(ii) (F −
0 ) with 2 < m 
= k + 1.

As one will see below that the conclusion of Theorem 1.2 holds for f ′
t (x,0) ∈ (λm, λm+1) with m 
= k without the sign

condition (F ±
0 ). We can get more solutions for (P ) when f ′

t (x,0) := λ is very close to λm .

Theorem 1.3. Assume that ( f0)–( f3) hold. Then there is ε > 0 such that (P ) has at least six nontrivial solutions in each of the following
cases

(i) λ ∈ (λm − ε,λm) with m > 2, m 
= k,k + 1, and

( f4)
(

f (x, t) − λt
)
t > 0, |t| > 0 small, x ∈ Ω;
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(ii) λ ∈ (λm, λm + ε) with m � 2, m 
= k,k + 1, and

( f5)
(

f (x, t) − λt
)
t < 0, |t| > 0 small, x ∈ Ω.

Now we give some remarks and comments. Resonance is a very common natural phenomenon existing in the real world
from macrocosm to microcosm. This physical phenomenon may take human serious disasters as well as great benefits if
one develops scientific technology to abstain, control and utilize it. When an model is explained by a semilinear problem,
the mathematical feature of resonance lies in the interactions between linear spectrum and the nonlinearity.

Semilinear elliptic equation with resonance has its own meanings. In population biology, for example (see [21]), this
kind of problem often arise in the study of a steady-state population density u where f (x, u)/u represents a population
dependent growth rate, and f ′(x,0) represents a growth rate in the absence of certain environmental restrictions such as
crowding.

Resonance problem have received much attention in the literature since the appearance of the pioneering paper by
Landesman and Lazer [10]. Many authors considered the complete resonance situation in the sense that

lim|t|→∞
f (x, t)

t
= λk uniformly for x ∈ Ω (1.1)

via different methods such as Minimax methods [18], Morse theory [6,16] and topological theory. The main difficulty caused
by the resonance phenomena lies in verification of the global compactness for the associated energy functional I when
minimax methods or Morse theory is applied. To ensure the global compactness, one needs to impose various conditions
on the nonlinearity f or F near infinity. When g(x, t) := f (x, t)− λkt is bounded, the global compactness of I is ensured by
the condition

lim‖v‖→∞

∫
Ω

G(x, v)dx = ±∞, v ∈ Ek, (1.2)

where G(x, t) = ∫ t
0 g(x, s)ds. These are related to the famous Landesman–Lazer resonance conditions and have been used in

[1,7,11,27]. For g unbounded, global compactness of I is guaranteed by the conditions

±g(x, t)t � 0, C1|t|r �
∣∣g(x, t)

∣∣ � C2|t|r, x ∈ Ω, |t| � R, (1.3)

where C1, C2, R > 0 and r ∈ (0,1) are constants; these conditions were first introduced in [25] (see [22] for a stronger
version). For other conditions imposed on the nonlinearity near infinity, we refer to [2,6,7,22,24,26] and references therein.
From ( f1) we regard that (P ) may be double resonant near infinity between two consecutive eigenvalues. Notice that
(1.1) is a special case of ( f1). Under the conditions ( f1)–( f3), Robinson [21] obtained, by using Leray–Schauder degree
approach, the solvability result for (P ). In [21], the existence of two nontrivial solutions was also obtained when k = 1
and f ′

t (x,0) ∈ (λm, λm+1) with m � 2, i.e., the trivial solution was nondegenerate with Morse index large than 2. This is
necessary when degree argument is involved. The results in [21] extended the early work in [9]. Under ( f1) and some
stronger conditions than ( f2) and ( f3), Su [23] proved by using Morse theory some multiplicity results for (P ) including an
interesting case that f ′

t (x,0) = λm and m = k, i.e., (P ) may be resonant around a same eigenvalue near the origin and near
infinity.

Our results Theorems 1.1 and 1.2 in the current paper extend the results in [23] and we use different methods from
that used in [21]. In Theorem 1.3, we investigate the situation when f ′

t (x,0) is very closed to an eigenvalue and get more
solutions for (P ) by combining Morse theory, minimax methods and bifurcation method. This result is completely new and
the idea was first used in [20]. With the three theorems, most situations have been studied when f ′

t (x,0) ∈ R .
The paper is organized as follows. In Section 2 we give a simple revisit to Morse theory and in Section 3 we give some

lemmas. The proofs of main results will be given in the last section.

2. Preliminaries about Morse theory

Let H be a Hilbert space and I ∈ C2(H,R) be a functional possessing the deformation properties [2] which follows from
the Palais–Smale condition ((PS) in short) or Cerami condition ((C) in short) introduced in [5]. Denote by Hq(A, B) the qth
singular relative homology group of the topological pair (A, B) with coefficients in a field F. Let u be an isolated critical
point of I with I(u) = c ∈ R. The group,

Cq(I, u) := Hq
(

Ic, Ic \ {u}), q ∈ Z,

is called the qth critical group of I at u, where Ic = {u ∈ H | I(u) � c}. Denote

K = {
u ∈ H

∣∣ I ′(u) = θ
}
.

Assume that K is a finite set. Take a < inf I(K). The critical groups of I at infinity are defined by [2]
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Cq(I,∞) := Hq
(

H, Ia), q ∈ Z.

The relationship between the Morse type numbers

Mq :=
∑
u∈K

rank Cq(I, u), q ∈ Z

and the Betti numbers βq := rank Cq(I,∞) is described by the following Morse inequalities [6,16].

q∑
j=0

(−1)q− j M j �
q∑

j=0

(−1)q− jβ j, q ∈ Z, (2.1)

∞∑
q=0

(−1)q Mq =
∞∑

q=0

(−1)qβq. (2.2)

Let u ∈ K be an isolated critical point of I such that I ′′(u) is a Fredholm operator and the Morse index μ(u) and the nullity
ν(u) of u are finite. The following facts are known [6,8,16].

(i) Cq(I, u) ∼= 0, q /∈ [μ(u),μ(u) + ν(u)].
(ii) If u is nondegenerate, i.e., ν(u) = 0, then Cq(I,0) ∼= δq,μ(u)F.

When u is degenerate, without additional conditions, there would be nothing known about the groups for q ∈ [μ(u),

μ(u) + ν(u)]. Recently it was discovered in [23] that the critical groups of I at a degenerate critical point u can be de-
scribed completely when I has a local linking structure at u, a concept introduced in [14] (see also [12]). We state this result
for u = 0 (in applications the origin is always a trivial critical point). Recall that I is said to have a local linking structure at
0 with respect to the direct sum decomposition H = H− ⊕ H+ if there exists r > 0 such that

I(u) > 0 for u ∈ H+, 0 < ‖u‖ � r, I(u) � 0 for u ∈ H−, ‖u‖ � r. (2.3)

Proposition 2.1. (See [23].) Let 0 be an isolated critical point of I ∈ C2(E,R) with Morse index μ0 and nullity ν0 . Assume I has a local
linking structure at 0 with respect to the decomposition H = H− ⊕ H+ and k = dim H− < ∞. If k = μ0 or k = μ0 + ν0 then

Cq(I,0) ∼= δq,kF, q ∈ Z.

When I is C1 and has a local linking structure as (2.3) with k = dim H− < ∞, it was discovered in [15] that Ck(I,0) � 0
which is crucial in obtaining the above conclusion.

3. Compactness and critical group at infinity

In this section we verify the compactness for the energy functional I corresponding to (P ) and then compute the critical
group of I at infinity. Recall that in the current paper the functional,

I(u) = 1

2

∫
Ω

|∇u|2 dx −
∫
Ω

F (x, u)dx, u ∈ H1
0(Ω) := H,

is well-defined and is of C2 with derivatives given by

〈
I ′(u), v

〉 = ∫
Ω

∇u∇v dx −
∫
Ω

f (x, u)v dx, u, v ∈ H,

〈
I ′′(u)v, w

〉 = ∫
Ω

∇v∇w dx −
∫
Ω

f ′
t (x, u)v w dx, u, v, w ∈ H .

We first verify that I possesses the compactness in the sense of Cerami [5], i.e., every sequence {un} ⊂ H such that

∣∣I(un)
∣∣ � c,

(
1 + ‖un‖)I ′(un) → 0 as n → ∞ (3.1)

has a convergent subsequence. We always use c to denote various positive constants throughout the paper.

Lemma 3.1. Assume that f satisfies ( f1)–( f3). Then the functional I satisfies (C).
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Proof. The idea of the following proof is due to Robinson in [21]. Let {un} ⊂ H satisfy (3.1). We only need to show that {un}
is bounded since f has a subcritical growth [18]. Suppose, by the way of contradiction, that ‖un‖ → ∞ as n → ∞. Setting
vn = un/‖un‖, then ‖vn‖ ≡ 1 and, up to a subsequence if necessary, we may assume that there exists v ∈ H1

0(Ω) such that

vn ⇀ v in H1
0(Ω),

vn → v in L2(Ω),

vn(x) → v(x) a.e. x ∈ Ω. (3.2)

It follows from ( f1) that there exists c such that

∣∣ f (x, t)
∣∣ � c

(
1 + |t|), t ∈ R, x ∈ Ω.

Therefore for n large enough,

| f (x, un(x))|
‖un‖ � c

(
1 + ∣∣vn(x)

∣∣) a.e. x ∈ Ω, (3.3)

and then { f (x, un)/‖un‖} is bounded in L2(Ω). By (3.1) we have that∣∣∣∣
∫
Ω

∇vn∇(vn − v)dx −
∫
Ω

f (x, un)

‖un‖ (vn − v)dx

∣∣∣∣ =
∣∣∣∣
〈

I ′(un)

‖un‖ , vn − v

〉∣∣∣∣ � ‖I ′(un)‖(1 + ‖v‖)
‖un‖ → 0 as n → ∞. (3.4)

It follows from (3.2) and (3.3) that∫
Ω

f (x, un)

‖un‖ (vn − v)dx → 0 as n → ∞.

So from (3.5), it is easy to see that

(vn, vn − v) =
∫
Ω

∇vn∇(vn − v)dx → 0 as n → ∞.

Hence ‖vn‖ → ‖v‖ as n → ∞. So vn → v in H1
0(Ω) and ‖v‖ = 1.

By (3.2)–(3.4) and ( f1), there is some function p ∈ L2(Ω) with

λk � p(x) � λk+1, a.e. x ∈ Ω

such that

f (x, un)

‖un‖ ⇀ pv in L2(Ω), n → ∞. (3.5)

It follows that for all ϕ ∈ H1
0(Ω),∫

Ω

∇vϕ dx −
∫
Ω

pvϕ dx = 0.

Therefore v is a nontrivial solution of the linear problem{−�v = pv in Ω,

v = 0 on ∂Ω.

By a unique continuation property and the maximum principle, we see either p ≡ λk or p ≡ λk+1.

If p ≡ λk , then v ∈ Ek and ‖uk
n‖

‖un‖ → 1 as n → ∞. Using (3.1), we obtain that

∫
Ω

(
f (x, un) − λkun

)
uk

n dx = −〈
I ′(un), uk

n

〉
� ‖un‖∥∥I ′(un)

∥∥ → 0 as n → ∞,

which contradicts to ( f2). If p ≡ λk+1, we will get a conclusion contradicting to ( f3). The proof is completed. �
Now we compute the critical groups of the functional I at infinity. We first recall a homotopy result on critical group

which is a slight generalization of that in [17].
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Proposition 3.2. Let H be Hilbert space and {It ∈ C1(H,R) | t ∈ [0,1]} a family of functionals such that I ′t and ∂t It are locally Lipschitz
continuous. Assume I0 and I1 satisfy (C). If there exist a ∈ R and δ > 0 such that

It(u) � a ⇒ (
1 + ‖u‖)∥∥I ′t(u)

∥∥ � δ, t ∈ [0,1],
then

Cq(I0,∞) = Cq(I1,∞), q ∈ Z. (3.6)

In particular, if there exists R > 0 such that

inf
t∈[0,1],‖u‖>R

(
1 + ‖u‖)∥∥I ′t(u)

∥∥ > 0, inf
t∈[0,1],‖u‖�R

It(u) > −∞,

then (3.7) holds.

Proof. For completeness, we sketch out the proof. Let η(t, u) be the flow generated by the Cauchy problem⎧⎨
⎩ η̇ = − ∂t It(η(t, u))

‖I ′t(η(t, u))‖2
I ′t
(
η(t, u)

)
,

η(0, u) = u ∈ Ia
0.

Then

d

dt
It
(
η(t, u)

) = 〈
I ′t
(
η(t, u)

)
, η̇

〉 + ∂t It
(
η(t, u)

) = 0.

Hence,

It
(
η(t, u)

) = I0
(
η(0, u)

) = I0(u).

In particular, since It(η(t, u)) � a, this flow exists for t ∈ [0,1]. It can be reversed by replacing It with I1−t . Thus η(1, ·) is
a homeomorphism of Ia

0 onto Ia
1. It follows that

Cq(I0,∞) = Hq
(

H, Ia
0

) ∼= Hq
(

H, Ia
1

) = Cq(I1,∞), q ∈ Z.

Lemma 3.3. Assume that f satisfies ( f1)–( f3). Then

Cq(I,∞) ∼= δq,μ∞F, μ∞ = dim E−
k+1.

Proof. Define the family of functionals It : H1
0(Ω) → R, t ∈ [0,1] as follows:

It(u) = 1

2

∫
Ω

|∇u|2 dx − 1 − t

4
λk

∫
Ω

u2 dx − 1 − t

4
λk+1

∫
Ω

u2 dx − t

∫
Ω

F (x, u)dx.

Firstly, we want to show that there exists R > 0 such that

inf
t∈[0,1],‖u‖>R

(
1 + ‖u‖)∥∥I ′t(u)

∥∥ > 0.

If not, then there exist {un} ⊂ H1
0(Ω) and tn ∈ [0,1] such that

‖un‖ → ∞ and
(
1 + ‖un‖)I ′tn

(un) → 0 as n → ∞.

Let vn = un/‖un‖. Similar to the proof of Lemma 3.1, we may assume that there exists v ∈ H1
0(Ω) such that (3.2) holds.

Noting that {tn} is bounded and∣∣∣∣
〈

I ′tn
(un)

‖un‖ , vn − v

〉∣∣∣∣ �
‖I ′tn

(un)‖(1 + ‖v‖)
‖un‖ → 0 as n → ∞,

we have vn → v in H1
0(Ω) and v 
= 0. Since { f (x, un)/‖un‖} is bounded in L2(Ω) by (3.3), we may also assume that there

exists p ∈ L2(Ω) with λk � p(x) � λk+1 for a.e. x ∈ Ω such that

f (x, un)

‖un‖ ⇀ pv, in L2(Ω).

Suppose that tn → t0. With the same argument in Lemma 3.1, we know that v 
= 0 is a nontrivial solution of
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{−	v = ζ(t0)v, in Ω,

v = 0, on ∂Ω,

where ζ(t0) = 1−t0
2 λk + 1−t0

2 λk+1 + t0 p and satisfies λk � ζ(t0) � λk+1. Using a unique continuation property and the maxi-
mum principle, we have either ζ(t0) ≡ λk or ζ(t0) ≡ λk+1. In both case we have that t0 = 1, i.e., tn → 1 as n → ∞. Therefore
we have that

either
‖uk

n‖
‖un‖ → 1 or

‖uk+1
n ‖

‖un‖ → 1.

It follows from ( f2) or ( f3) that either∫
Ω

(
f (x, un) − λkun

)
uk

n dx � δ1 > 0, n > N1

or ∫
Ω

(
λk+1un − f (x, un)

)
uk+1

n dx � δ2 > 0, n > N2.

However, for n large enough,∫
Ω

(
f (x, un) − λkun

)
uk

n dx = 1 − tn

2tn
(λk − λk+1)

∥∥uk
n

∥∥2
L2(Ω)

+ o(1)

or ∫
Ω

(
λk+1un − f (x, un)

)
uk+1

n dx = 1 − tn

2tn
(λk − λk+1)

∥∥uk+1
n

∥∥2
L2(Ω)

+ o(1).

These are contradictions since λk < λk+1.
It is obvious that

inf
t∈[0,1],‖u‖�R

It(u) > −∞.

Furthermore, I0 obviously satisfies (C) and so does I1 by Lemma 3.1. Therefore from Proposition 3.2, we have

Cq(I,∞) = Cq(I1,∞) ∼= Cq(I0,∞), ∀q ∈ Z. (3.7)

Noticing that

I0(u) = 1

2

∫
Ω

|∇u|2 dx − 1

4
(λk + λk+1)

∫
Ω

u2 dx,

we see that u = 0 is a unique critical point of I0 and is nondegenerate with Morse index μ∞ = dim E−
k+1. Therefore, we

have that

Cq(I0,∞) ∼= Cq(I0,0) ∼= δq,μ∞F.

It follows from (3.8) that

Cq(I,∞) ∼= δq,μ∞F.

The proof is completed. �
4. Proofs of the main results

In this section we give the proofs of the main results in this paper and give more comments. Our approaches will be the
combination of Morse theory, Minimax methods and cut-off techniques. To this purpose, we need the following compactness
lemmas for the functional corresponding to cut-off functions.

Lemma 4.1. (See [23].) Let the function g ∈ C(Ω̄ × R) be such that g(x, t) = 0 for t < 0, and satisfy, for k � 2,

λk � lim inf
t→+∞

g(x, t)

t
� lim sup

t→+∞
g(x, t)

t
� λk+1 uniformly for x ∈ Ω. (4.1)

Then the functional,
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J (u) = 1

2

∫
Ω

|∇u|2 dx −
∫
Ω

G(x, u)dx,

satisfies the (PS) condition, where G(x, t) = ∫ t
0 g(x, s)ds.

Lemma 4.2. (See [23].) Let the function g ∈ C(Ω̄ × R) be such that g(x, t) = 0 for t > 0, and satisfy, for k � 2,

λk � lim inf
t→−∞

g(x, t)

t
� lim sup

t→−∞
g(x, t)

t
� λk+1 uniformly for x ∈ Ω. (4.2)

Then the functional,

J (u) = 1

2

∫
Ω

|∇u|2 dx −
∫
Ω

G(x, u)dx,

satisfies the (PS) condition, where G(x, t) = ∫ t
0 g(x, s)ds.

The proofs of the above two lemmas were referred to [23]. The ideas of the proofs were from [7] for the case that (1.1)
holds.

From now on we prove Theorems 1.1–1.3.

Proof of Theorem 1.1. By f ′
t (x,0) < λ1, a direct computation shows that u = 0 is a local minimizer of I and then

Cq(I,0) ∼= δq,0F. (4.3)

It follows from Lemma 3.3 that

Cq(I,∞) ∼= δq,μ∞F. (4.4)

Therefore by Morse theory, I has a critical point u∗ satisfying

Cμ∞
(

I, u∗) � 0. (4.5)

From (4.3) and (4.5) we see that u∗ 
= 0.
Set f +(x, t) = f (x, t) for t � 0, f +(x, t) = 0 for t < 0 and let F +(x, t) = ∫ t

0 f +(x, s)ds. Then the critical points of

I+(u) = 1

2

∫
Ω

|∇u|2 dx −
∫
Ω

F +(x, u)dx, u ∈ H

are exactly solutions of the problem

(
P+) {−�u = f +(x, u), in Ω,

u = 0, on ∂Ω,

and the nonnegative solutions (P+) are solutions of (P ). By Lemma 4.1, we see that I+ ∈ C2−0(H,R) satisfies the (PS) con-
dition. Moreover, it follows from f ′

t (x,0) < λ1 and ( f1) that I+ has a mountain pass geometry. Indeed, a direct calculation
shows that there exist ρ > 0, τ > 0 such that

I+(u) � τ , u ∈ H with ‖u‖ = ρ,

and

I+(tϕ) → −∞ as t → +∞,

where ϕ is the first eigenfunction of −� with zero Dirichlet boundary data. By Mountain Pass Theorem [18], I+ has a
critical point u+ . By the maximum principle u+ > 0 and hence is a critical point of I . Furthermore, by using the results
in [6] and [16] and the critical group property for a mountain pass point [6], we have

Cq
(

I, u+) ∼= δq,1F. (4.6)

A same argument shows that I has a nontrivial critical point u− < 0 with

Cq
(

I, u−) ∼= δq,1F. (4.7)

As k � 2 which implies μ∞ � 2, by comparing the critical groups, we see that u± and u∗ are three nontrivial critical points
of I . This completes the proof. �
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Remark 4.3. (i) According to Gromoll–Meyer’s result [8], it always holds that μ(u∗) � μ∞ � μ(u∗) + ν(u∗). Therefore, by
Shifting theorem [6,16] and Morse inequality (2.1) and (2.2), we can get the conclusion that (P ) has at least four nontrivial
solutions in the cases that μ(u∗) = μ∞ or μ(u∗) + ν(u∗) = μ∞ or μ(u∗) > 2.

(ii) The conclusion of Theorem 1.1 is still true if f ′
t (x, t) = λ1 and 2F (x, t) � λ1t2 for |t| small. See [26] for details.

Now we prove Theorem 1.2. We denote μ0 = dim E−
m and ν0 = dim Em. It follows from f ′

t (x,0) = λm that u = 0 is a
degenerate critical point of I with Morse index μ0 and nullity ν0. In order to apply Proposition 2.1, we need the following
lemma about the local linking.

Lemma 4.4. (See [12,23].) Assume f ′
t (x,0) = λm and (F +

0 ) (or (F −
0 )). Then I has a local linking (2.3) at 0 with respect to the decom-

position H = H+ ⊕ H− where H− = E−
m+1 (or H− = E−

m).

Proof of Theorem 1.2. We give the proof for the case (i). The procedure consists of three steps.
Step 1. Now u = 0 is an isolated critical point with Morse index μ0 and nullity ν0. By Lemma 4.4 and Proposition 2.1, we

get that

Cq(I,0) ∼= δq,μ0+ν0 F, q ∈ Z. (4.8)

As in the proof of Theorem 1.1, I has a critical point u∗ with

Cμ∞
(

I, u∗) � 0. (4.9)

Notice that m 
= k implies μ∞ 
= μ0 + ν0, it follows that u∗ 
= 0.
Step 2. We may assume that t0 > 0 in ( f0). We will find a local minimizer for I by a cut-off technique which is motivated

by [7].
Define

f̃ (x, t) =
{0 t < 0,

f (x, t) t ∈ [0, t0],
0 t > t0

and

Ĩ(u) = 1

2

∫
Ω

|∇u|2 dx −
∫
Ω

F̃ (x, u)dx, u ∈ H,

where F̃ (x, t) = ∫ t
0 f̃ (x, s)ds. Since Ĩ is coercive and weakly lower semi-continuous [18], there is a minimizer u0 of Ĩ . By the

maximum principle, u0 = 0 or 0 < u0(x) < t0 for all x ∈ Ω and ∂u0
∂n |∂Ω < 0. By assumption f ′

t (x,0) = λm and m � 2, 0 is not
a minimizer. In addition, u0 is a local minimizer of I in the C1

0(Ω̄) topology. By [4], u0 is a local minimizer of I in H1
0(Ω)

topology, therefore

Cq(I, u0) ∼= δq,0F, q ∈ Z. (4.10)

Step 3. Define f̂ (x, t) = f (x, t + u0(x)) − f (x, u0(x)), x ∈ Ω , t ∈ R and consider the equation

( P̂ )

{
−�v = f̂ (x, v), in Ω,

v = 0, on ∂Ω,

and the corresponding energy functional

Î(v) = 1

2

∫
Ω

|∇v|2 dx −
∫
Ω

F̂ (x, v)dx, u ∈ H .

A simple calculation shows that if v is a positive critical point of Î then u0 + v is a critical point of I , and moreover
Cq( Î, v) = Cq(I, u0 + v).

Furthermore define

f̂ +(x, t) =
{

f̂ (x, t), t � 0,

0, t < 0,

and consider the equation

(
P̂+) {

−�v = f̂ +(x, v) in Ω,

v = 0 on ∂Ω,

and its energy functional
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Î+(v) = 1

2

∫
Ω

|∇v|2 dx −
∫
Ω

F̂ +(x, v)dx,

where F̂ +(x, t) = ∫ t
0 f̂ +(x, s)ds. By ( f1), we see that f̂ satisfies

λk � lim inf
t→+∞

f̂ (x, t)

t
� lim sup

t→+∞
f̂ (x, t)

t
� λk+1 uniformly for x ∈ Ω.

It follows from Lemma 4.1 that Î+ satisfies the (PS) condition. Since u0 > 0 is a local minimizer of I , v = θ is a strictly local
minimizer of Î+ . By ( f1), we can also get

Î+(tϕ) → −∞, as t → +∞,

as that in the proof of Theorem 1.1. Now applying the mountain pass lemma, we have that Î+ has a critical point v+ , and
by the maximum principle, v+ > 0 and then is a critical point of Î . By the same argument as that in [6,23], we have

Cq
(

Î, v+) ∼= δq,1F, q ∈ Z.

Hence u+ = u0 + v+ > u0 is a critical point of I satisfying

Cq
(

I, u+) ∼= δq,1F, q ∈ Z. (4.11)

In a similar way, we have that I has a critical point u− < u0 satisfying

Cq
(

I, u−) ∼= δq,1F, q ∈ Z. (4.12)

Finally by comparing the critical groups and by using the condition m,k � 2 with m 
= k, u∗, u0 and u± are four nontrivial
critical points of I in which two are positive. The proof is completed. �
Remark 4.5. (i) In Theorem 1.2 we assume that μ0,μ∞ � 2. The conclusion of Theorem 1.2 is valid if u = 0 is degenerate
with Morse index μ0 and nullity ν0 satisfying μ∞ /∈ [μ0,μ0 + ν0] without other conditions near the origin.

(ii) The conclusion of Theorem 1.2 is valid provided f ′
t (x,0) := λ ∈ (λm, λm+1) and 2 � m 
= k, that is, u = 0 is a nonde-

generate critical point of I with Morse index μ0 = dim E−
m+1 � 2. We will use this result in the proof of Theorem 1.3.

(iii) Although we know the Morse index μ(u∗) and nullity ν(u∗) of I at u∗ are finite, in general, we do not know them
exactly. It would be interesting to give certain conditions that can be used to control these indices. Anyway, (P ) will has a
fifth nontrivial solution if μ(u∗) = μ∞ or μ(u∗) + ν(u∗) = μ∞ . It is the case for the spatial dimension N = 1. See [13].

Proposition 4.6. (See [18, Theorem 11.35].) Let H be Hilbert space and I ∈ C2(H,R) with

∇ I(u) = Lu + T (u),

where L ∈ L(H, H) is symmetric and T (u) = o(‖u‖) as ‖u‖ → 0. Consider the operator equation

Lu + T (u) = λu. (4.13)

Let μ ∈ σ(L) be an isolated eigenvalue of finite multiplicity. Then either

(i) (μ,0) is not an isolated solution of (4.13) in {μ} × E, or
(ii) there is an one-sided neighborhood Λ of μ such that for all λ ∈ Λ \ {μ}, (4.13) has at least two distinct nontrivial solutions, or

(iii) there is a neighborhood Λ of μ such that for all λ ∈ Λ \ {μ}, (4.13) has at least one nontrivial solution.

Now we apply Proposition 4.6 to get two solutions of (P ) and meanwhile give the estimates of their Morse indices and
nullities.

Lemma 4.7. Let f satisfies f ′
t (x,0) = λ. Then there exists ε > 0 such that (P ) has at least two nontrivial solutions uλ

i (i = 1,2) in each
of the following cases

(i) λ ∈ (λ� − ε,λ�) with � � 1 and

( f4)
(

f (x, t) − λt
)
t > 0, |t| > 0 small, x ∈ Ω;

(ii) λ ∈ (λ�, λ� + ε) with � � 1 and

( f5)
(

f (x, t) − λt
)
t < 0, |t| > 0 small, x ∈ Ω.
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Furthermore, the Morse indices μ(uλ
i ) and nullities ν(uλ

i ) of uλ
i satisfy

dim E−
� � μ

(
uλ

i

)
� μ

(
uλ

i

) + ν
(
uλ

i

)
� dim E−

�+1. (4.14)

Proof. We can rewrite (P ) as{−�u = λu + h(x, u) in Ω,

u = 0 on ∂Ω,
(4.15)

where h(x, t) = f (x, t) − λt . We have h(x,0) = h′(x,0) = 0. Hence for any λ lies in a finite interval, we have that for v ∈ H,〈
T (u), v

〉 = −
∫
Ω

h(x, u)v dx = o
(‖u‖)‖v‖, u ∈ H, ‖u‖ → 0.

Moreover, every eigenvalue λ j of −� in H1
0(Ω) gives rise to a bifurcation point (λ j,0) of (4.15). Using the arguments in [20]

we can verify that the case (ii) of Proposition 4.6 occurs under the given conditions ( f4) or ( f5). Therefore for λ is very
close to λ� , (P ) has two bifurcation solutions uλ

i (i = 1,2) which are nontrivial and satisfy∥∥uλ
i

∥∥ → 0, λ → λ�. (4.16)

By standard elliptic regularity theory, we have that∥∥uλ
i

∥∥
C → 0, λ → λ�. (4.17)

Therefore from f ′
t (x,0) = λ we get that there is ε > 0 such that

λ�−1 < f ′
t

(
x, uλ

i (x)
)
< λ�+1 uniformly for x ∈ Ω, |λ − λ�| < ε. (4.18)

Notice that for φ ∈ H,〈
I ′′

(
uλ

i

)
φ,φ

〉 = ∫
Ω

|∇φ|dx −
∫
Ω

f ′
t

(
x, uλ

i (x)
)
φ2 dx.

We get by using (4.18) that〈
I ′′

(
uλ

i

)
v, v

〉 = ∫
Ω

|∇v|2 dx −
∫
Ω

f ′
t (x, ui)v2 dx < 0, 0 
= v ∈ E−

� , i = 1,2,

〈
I ′′

(
uλ

i

)
w, w

〉
> 0, 0 
= w ∈ E+

� , i = 1,2.

Therefore (4.14) holds. This completes the proof. �
Now we give

Proof of Theorem 1.3. We only consider the case (i). As m > 2, when f ′
t (x,0) := λ ∈ (λm−1, λm), u = 0 is a nondegenerate

critical point of I with Morse index μ0 := dim E−
m � 2. By Theorem 1.2 and Remark 4.5(ii), I have four nontrivial critical

points with their critical groups given by (4.9)–(4.12), respectively. By ( f4) and Lemma 4.7(i), as λ ∈ (λm − ε,λm), I have
two nontrivial critical points uλ

i (i = 1,2) with their Morse indices satisfying (4.14) with � replaced by m. Therefore,

Cq
(

I, uλ
i

) = 0, q /∈ [
dim E−

m,dim E−
m+1

]
, i = 1,2. (4.19)

Finally the assumptions on m and k imply that 2 � μ∞ /∈ [dim E−
m,dim E−

m+1] and hence the six nontrivial solutions we
found above are different. The proof is completed. �
Remark 4.8. In Theorem 1.3, if we do not make the assumption ( f0), then we can get the existence of three nontrivial
solutions for (P ). This result is also new, to our knowledge.

We conclude the paper with further remarks. In it we get the existence of multiple solutions for elliptic boundary
value problem with double resonance near infinity between two eigenvalues λk and λk+1. The solutions are given by the
variational approach combining Morse theory with Minimax methods, bifurcation method and elliptic techniques. Duo to
this reason we need higher regularity for the nonlinearity f which to be of C1 in u. One may examine further the topological
property of the solutions such as Morse index or critical group in order to find one more solution as we mentioned in
Remark 4.5(iii). One may also examine the qualitative property such as the nodal property. One question is that whether
some of our approach could be adapted to the situation that f is continuous. Another interesting question is that whether
one could allow the situation that f (x, u)/u may oscillate between λk and λk+� for � > 1 for large |u|.

Some of our results may be extended to semilinear problems on unbounded domains or the entire space RN with a
compact linear operator. The modal is the problem −�u + V (x)u = f (x, u), x ∈ RN where V is coercive from that the linear
operator (−� + V ) is compact [3,19] and the same results of Theorem 1.1 hold.
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