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We consider here the Laguerre hypergroup (K,∗α), where K = [0,+∞[ × R and ∗α

a convolution product on K coming from the product formula satisfied by the Laguerre
functions L(α)

m (m ∈ N, α � 0). We set on this hypergroup a local central limit theorem
which consists to give a weakly estimate of the asymptotic behavior of the convolution
powers μ∗αk = μ ∗α · · · ∗α μ (k times), μ being a given probability measure satisfying
some regularity conditions on this hypergroup. It is also given a central local limit theorem
for some particular radial probability measures on the (2n + 1)-dimensional Heisenberg
group H

n .
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Our purpose is to establish on the Laguerre hypergroup (see [14], [20, pp. 243–263]) a local limit theorem similar to the
classical one (see [4,18]). The aim of such a theorem is to give a weakly asymptotic behavior for the convolution powers
μ∗k = μ ∗ · · · ∗ μ (k times), μ being a suitable given probability measure.

Note that many authors have been interested in this kind of result in different situations. One can cite for instance
[1,3,5,9–11].

The local limit theorem that we establish here states precisely that given a probability measure μ on the Laguerre
hypergroup (K,∗α), satisfying the conditions

μ
({0} × R

) = 0,

∫
K

t dμ(x, t) = 0 and
∫
K

(
1 + (

x2 + t2)(x2 + t2 + |t|))dμ(x, t) < ∞,

then there is a positive constant C (α)
μ such that for every compactly supported continuous function f : K → C, we have

lim
k→∞

[
kα+2

∫
K

f (x, t)dμ∗αk(x, t)

]
= C (α)

μ

πΓ (α + 1)

∫
K

f (x, t)x2α+1 dx dt.

This yields naturally, as it is detailed below, to a local limit theorem for some suitable radial probability measures on the
(2n + 1)-dimensional Heisenberg group.
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The technique we adopt for the proof of our local limit theorem on the Laguerre hypergroup is similar as that used in
the classical case (see [4,18]). It is based on the properties of the Fourier transform on this hypergroup and especially on
the asymptotic behaviors with respect both the direct and the dual variables of the characters belonging to the support of
the Plancherel measure γα (given below) associated to this hypergroup.

Let us recall that (K,∗α ) is a commutative hypergroup (see [14], [20, pp. 243–263]), on which the involution and the
Haar measure are respectively given by the homeomorphism (x, t) → (x, t)− = (x,−t) and the Radon positive measure
dmα(x, t) = x2α+1

πΓ (α+1)
dx dt . The unity element of (K,∗α ) is given by e = (0,0), i.e. δ(x,t) ∗α δ(0,0) = δ(0,0) ∗α δ(x,t) = δ(x,t) for all

(x, t) ∈ K.
The convolution product ∗α is defined for two bounded Radon measures μ and ν on K as follows

〈μ ∗α ν, f 〉 =
∫

K×K

T (α)
(x,t) f (y, s)dμ(x, t)dν(y, s), (1)

where α is a fixed nonnegative real number and {T (α)
(x,t)}(x,t)∈K are the translation operators on the Laguerre hypergroup,

given by

T (α)
(x,t) f (y, s) = 〈δ(x,t) ∗α δ(y,s), f 〉 =

{
α
π

∫ 1
0

∫ 2π
0 f ((ξ,η)r,θ )r(1 − r2)α−1 dθ dr, if α > 0,

1
2π

∫ 2π
0 f ((ξ,η)1,θ )dθ, if α = 0,

(2)

where (ξ,η)r,θ = (
√

x2 + y2 + 2xyr cos θ, t + s + xyr sin θ).
Note that for the particular case μ = f mα and ν = gmα , f and g being two suitable functions on K, one has μ ∗α ν =

( f ∗α g)mα , where f ∗α g is the convolution product of f and g , given by

f ∗α g(x, t) =
∫

K×K

T (α)
(−y,s) f (x, t)g(y, s)dmα(x, t). (3)

Moreover, by K. Stempak [16, pp. 249–252], the normed Lebesgue space (L1
α(K),‖ · ‖L1

α(K)) of integrable functions on K with
respect to the Haar measure dmα , endowed with the above convolution product, is a Banach commutative algebra, ‖ · ‖L1

α(K)

being the usual norm on L1
α(K) given by ‖ f ‖L1

α(K) = ∫
K

| f |dmα .
The dual (see [2, p. 46]) of Laguerre hypergroup, i.e. the space of all bounded continuous and multiplicative func-

tions χ : K → C such that χ̃ = χ where χ̃ (x, t) = χ(x,−t); (x, t) ∈ K, is given (see [12, Proposition 2.1]) by K̂ = {ϕλ,m;
(λ,m) ∈ R

∗ × N} ∪ {ϕρ;ρ � 0}, where

ϕλ,m(x, t) = e−iλt L(α)
m

(|λ|x2) and ϕρ(x, t) = jα(ρx); (x, t) ∈ K, (4)

where jα(x) = 2αΓ (α + 1)
Jα(x)

xα and L(α)
m (x) = e− x2

2 L(α)
m (x), Jα being the Bessel function of first kind and order α [21] and

L(α)
m being the Laguerre polynomial of degree m and order α [8,19].

Identifying K̂ and (R∗ ×N)∪[0,+∞[, the Fourier transform of a bounded Radon measure μ on the Laguerre hypergroup
is then, by [2, p. 80], the function defined on (R∗ × N) ∪ [0,+∞[ by

F (μ)(λ,m) =
∫
K

ϕ−λ,m(x, t)dμ(x, t) and F (μ)(ρ) =
∫
K

jα(ρx)dμ(x, t).

The Fourier transform of a suitable function f : K → C, is given by F ( f ) = F ( f dmα), so that

F ( f )(λ,m) =
∫
K

f (x, t)ϕ−λ,m(x, t)dmα(x, t) and F (μ)(ρ) =
∫
K

f (x, t) jα(ρx)dmα(x, t).

The Laguerre Plancherel measure γα , associated to Laguerre hypergroup is, by [12, Remark 2.3], supported on R
∗ × N and

is given by∫
R∗×N

F (λ,m)dγα(λ,m) =
∑
m�0

L(α)
m (0)

∫
R

F (λ,m)|λ|α+1 dλ. (5)

Note that for α = n − 1, n being a positive integer, the functions (z, t) 
→ ϕλ,m(‖z‖, t) are spherical functions of the Gelfand
pair (G,U(Cn)), where G = U(Cn) � H

n is the semi-direct product of the unitary group U(Cn) by the (2n + 1)-dimensional
Heisenberg group H

n = C
n × R with the multiplication law (z, t)(z′, t′) = (z + z′, t + t′ − �(z1z′

1 + · · · + znz′
n)).

Moreover, the translation operators {T (α)
(x,t)}(x,t)∈K can be derived from the ordinary convolution of radial functions on H

n

(see [17]). More precisely, if F and G are two integrable and radial functions on H
n , such that F (z, t) = f (‖z‖, t) and
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G(z, t) = g(‖z‖, t); ‖z‖ = √|z1|2 + · · · + |zn|2, then (see [14, p. 338]) we have F � G(z, t) = 2πn+1 f ∗α g(‖z‖, t), � being the
ordinary convolution product on the Heisenberg group H

n .
Let us now consider a radial probability measure on H

n taking the form dν(z, t) = f (‖z‖, t)dz dt , where dz dt is the
usual Lebesgue measure or still the Haar measure on the (2n + 1)-dimensional Heisenberg group H

n . A straightforward
computation shows that for each suitable function G : H

n → C, we have∫
Hn

G(z, t)dν�k(z, t) =
∫
K

( ∫
U(Cn)

G(xω, t)dσ(ω)

)
dμ∗n−1k(x, t), for all k ∈ N

∗, (6)

where σ is the usual Haar measure on U(Cn) normalized such that σ(U(Cn)) = 1, μ being the probability measure on the
Laguerre hypergroup (K,∗n−1); dμ(x, t) = 2πn+1 f (x, t)dmn−1(x, t).

Assume further that the measure ν satisfies the condition

ν
({0} × R

) = 0,

∫
Hn

t dν(z, t) = 0 and
∫
Hn

(
1 + (‖z‖2 + t2)(‖z‖2 + t2 + |t|))dν(z, t) < ∞,

then we can assert, thanks to the local limit theorem on the Laguerre hypergroup (K,∗n−1), that there is a positive constant
C̃ (n−1)

μ such that for every compactly supported continuous function G : K → C, we have

lim
k→∞

[
kα+2

∫
Hn

G(z, t)dν�k(z, t)

]
= C̃ (n−1)

μ

∫
Hn

G(z, t)dz dt,

or equivalently

lim
k→∞

[
kα+2

∫
Hn

G(z, t)F �k(z, t)dz dt

]
= C̃ (n−1)

μ

∫
Hn

G(z, t)dz dt.

This can be regarded as a central local limit theorem on the (2n + 1)-dimensional Heisenberg group H
n .

Note that in [5], it is proven a local limit theorem for compactly supported probability measures on the three-
dimensional Heisenberg group. One can see also [15] for other limit theorems on the Heisenberg group.

2. Preliminaries

Throughout subsequently, μ will designate a fixed regular probability measure on the Laguerre hypergroup.
We shall, in this section, summarize all the results and tools we need for the proof of our main theorem.

Proposition 2.1. Suppose that∫
K

t dμ = 0 and ρμ =
∫
K

(
1 + (

x2 + |t|)2 + t2(x2 + |t|))dμ < ∞, (7)

then

F (μ)(λ,m) = 1 − σμ

α + 1
ξ

(α)
λ,m + (

ξ
(α)
λ,m

)2 R̃α
μ(λ,m), (8)

with ∣∣R̃α
μ(λ,m)

∣∣ � 4
(
1 + ξ

(α)
λ,m

)
ρμ, (9)

where ξ
(α)
λ,m = |λ|αm, αm = m + α+1

2 and σμ = ∫
K

x2 dμ(x, t).

Proof. From [13, Proposition 7] we deduce that for every (λ,m) ∈ R × N and (x, t) ∈ K we have

ϕλ,m(x, t) = 1 + iλt − ξ
(α)
λ,m

α + 1
x2 + (

ξ
(α)
λ,m

)2 Rα
λ,m(x, t), (10)

with ∣∣Rα
λ,m(x, t)

∣∣ � 4
(
1 + ξ

(α)
λ,m

)(
1 + [

x2 + |t|]2 + t2[x2 + |t|]). (11)

The result follows by a straightforward calculation. �
Corollary 2.1. If μ satisfies the condition (7), the following properties hold:
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1. There exists ημ > 0 such that for each k ∈ N
∗ and (λ,m) ∈ R × N; ξ

(α)
λ,m < kημ , we have

∣∣∣∣F (μ)

(
λ

k
,m

)∣∣∣∣k

� exp

(
− σμ

2(α + 1)
ξ

(α)
λ,m

)
. (12)

2. For any (λ,m) ∈ R × N we have

lim
k→∞

(
F (μ)

(
λ

k
,m

))k

= exp

(
− σμ

α + 1
ξ

(α)
λ,m

)
. (13)

Proof. The relation (8) can be written

F (μ)

(
λ

k
,m

)
= 1 − ξ

(α)
λ,m

k
Φμ

(
λ

k
,m

)
, (14)

where

Φμ(λ,m) = σμ

α + 1
− ξ

(α)
λ,m R̃α

μ(λ,m). (15)

Now, by using the relation (9) we get

ξ
(α)
λ,m

k

∣∣∣∣Φμ

(
λ

k
,m

)∣∣∣∣ � σμ

α + 1

ξ
(α)
λ,m

k
+ 4

(
ξ

(α)
λ,m

k

)2(
1 + ξ

(α)
λ,m

k

)
ρμ. (16)

Then there exists βμ > 0 such that

ξ
(α)
λ,m

k

∣∣∣∣Φμ

(
λ

k
,m

)∣∣∣∣ � 1

2
, for

ξ
(α)
λ,m

k
� βμ, (17)

and consequently 
(F (μ)( λ
k ,m)) � 1

2 > 0, for
ξ

(α)
λ,m
k � βμ , so that

(
F (μ)

(
λ

k
,m

))k

= exp

(
k log

(
1 − ξ

(α)
λ,m

k
Φμ

(
λ

k
,m

)))
, for

ξ
(α)
λ,m

k
� βμ, (18)

where z 
→ log(z) is the principal value of the logarithm, z ∈ C \ ]−∞,0].
By using the usual development log(1 + z) = z + zψ(z); limz→0 ψ(z) = 0, we deduce that for

ξ
(α)
λ,m
k � βμ , we have

(
F (μ)

(
λ

k
,m

))k

= exp

(
−ξ

(α)
λ,mΦμ

(
λ

k
,m

)
− ξ

(α)
λ,mΦμ

(
λ

k
,m

)
ψ

(
− ξ

(α)
λ,m

k
Φμ

(
λ

k
,m

)))
. (19)

Suppose further σμ > 0, we get

(
F (μ)

(
λ

k
,m

))k

= exp

(
− σμ

α + 1
ξ

(α)
λ,m

(
1 + Ψμ

(
λ

k
,m

)))
, for

ξ
(α)
λ,m

k
� βμ, (20)

where

Ψμ

(
λ

k
,m

)
= −α + 1

σμ

ξ
(α)
λ,m

k
R̃α

μ

(
λ

k
,m

)
+ α + 1

σμ
Φμ

(
λ

k
,m

)
ψ

(
− ξ

(α)
λ,m

k
Φμ

(
λ

k
,m

))
.

Now, thanks to (9) and (16), there is γμ > 0 such that

∣∣∣∣
(
Ψμ

(
λ

k
,m

))∣∣∣∣ �
∣∣∣∣Ψμ

(
λ

k
,m

)∣∣∣∣ <
1

2
, for

ξ
(α)
λ,m

k
� γμ,

and consequently

−
(

1 + 

(

Ψμ

(
λ

k
,m

)))
� 1

2
, for

ξ
(α)
λ,m

k
� γμ.
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Using the relation (20) we deduce∣∣∣∣F (μ)

(
λ

k
,m

)∣∣∣∣k

� exp

(
− σμ

2(α + 1)

)
, for

ξ
(α)
λ,m

k
� min(βμ,γμ). (21)

To obtain the inequality (12) for σμ > 0, it suffices then to chose ημ = min(βμ,γμ).
On the other hand, it is easy to see that σμ = 0 if and only if μ(K \ {0}) = 0 or equivalently μ({0} × R) = 1. Thus if

σμ = 0, then F (μ) ≡ 1, since φλ,m(0, t) = L(α)
m (0) = 1 for all (λ,m) ∈ R × N. The inequality (12) is then obviously satisfied

for this case.

It remains finally to prove the relation (13). Let so (λ,m) be fixed in R × N and let kλ,m ∈ N, chosen such that
ξ

(α)
λ,m
k � βμ

for all k � kλ,m . Using the relation (19), we get(
F (μ)

(
λ

k
,m

))k

= exp

(
− σμ

α + 1
ξ

(α)
λ,m +

(
ξ

(α)
λ,m

k

)2

R̃α
μ

(
λ

k
,m

)
− ξ

(α)
λ,mΦμ

(
λ

k
,m

)
ψ

(
− ξ

(α)
λ,m

k
Φμ

(
λ

k
,m

)))
.

Taking into account (9) and (16) we obtain the relation (13), which finishes the proof. �
Lemma 2.1.

1. Let jα be the modified Bessel function defined on R by

jα(x) =
{

2αΓ (α + 1)
Jα(x)

xα , if x �= 0,

1, if x = 0,

Jα being the Bessel function of first kind and order α [21], then | jα(x)| < jα(0) = 1, for all x ∈ R \ {0}.
2. |L(α)

m (x2)| < L(α)
m (0) = 1, for all x ∈ R \ {0}.

Proof. 1. By [19], the function jα possesses the following integral representation

jα(x) = 2Γ (α + 1)√
πΓ (α + 1/2)

1∫
0

(
1 − t2)α−1/2

cos xt dt; x ∈ R. (22)

Let now x ∈ R such that | jα(x)| = 1, so

1 � 2Γ (α + 1)√
πΓ (α + 1/2)

1∫
0

(
1 − t2)α−1/2| cos xt|dt � 2Γ (α + 1)√

πΓ (α + 1/2)

1∫
0

(
1 − t2)α−1/2

dt = 1,

and therefore
∫ 1

0 (1 − t2)α−1/2[1 − | cos xt|]dt = 0, so that 1 − | cos xt| = 0 for each t ∈ [0,1] or equivalently | cos y| = 1 for
each y ∈ [0, |x|] which implies obviously that x = 0, and the property 1 is proved.

2. Since ϕ1,m(x,0) = L(α)
m (x2) for every x ∈ R, then by using the product formula T (α)

(x,t)ϕ1,m(y, s) = ϕ1,m(x, t)ϕ1,m(y, s),
we get

[
L(α)

m
(
x2)]2 =

{
α
π

∫ 1
0

∫ 2π
0 L(α)

m (2x2[1 + rα cos θ])r(1 − r2)α−1 dθ dr, if α > 0,

1
2π

∫ 2π
0 L(α)

m (2x2[1 + rα cos θ])dθ, if α = 0,
(23)

where rα = (χ{0} + rχ]0,+∞[)(α).

Let x ∈ R such that |L(α)
m (x2) = 1, so by a similar reasoning as in the previous property we get |L(α)

m (2x2[1 + rα cos θ])| =
L(α)

m (0) = 1 for each (θ, rα), and consequently |L(α)
m (y])| = 1 for each y ∈ [0,4x2]. Thus necessarily x = 0, since the set of

zeros of the Laguerre polynomial L(α)
m is finite, and the proof is achieved. �

Proposition 2.2. Assume μ({0} × R) = 0, then for every η > 0 and A >
2η

α+1 , there is aA,η
μ ∈ ]0,1[ such that∣∣F (μ)(λ,m)

∣∣ � aA,η
μ , for all (λ,m) ∈ (R × N)A,η, (24)

where (R × N)A,η = {(λ,m) ∈ R × N; |λ| � A and ξ
(α)
λ,m � η}.

Proof. Since limx→0+ μ([0, x] × R) = μ({0} × R) = 0 and limX→∞ μ([X,∞[ × R) = μ(∅) = 0, then for all ε > 0, there is
ωμ,ε,ρμ,ε > 0 such that μ([0,ωμ,ε] × R) + μ([ωμ,ε + ρμ,ε,∞[ × R) < ε, and so
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∣∣F (μ)(λ,m)
∣∣ < ε +

∫
[ωμ,ε,ωμ,ε+ρμ,ε ]×R

∣∣L(α)
m

(|λ|x2)∣∣dμ(x, t), for all (λ,m) ∈ R × N. (25)

Now, by the relation (5.5) given in [16, p. 489], a simple calculation shows that for all m ∈ N and λ, x ∈ R such that
|λ|mx2 > 0 we have

L(α)
m

(|λ|x2) =
(

m!mα

Γ (m + α + 1)

) 1
2

jα
(
2x

√|λ|m ) + ε
(α)
m (x

√|λ|)
√

m(|λ|mx2)
2α+1

4

, (26)

where (ε
(α)
m )m�1 denotes a sequence of real-valued functions uniformly bounded on each interval [0,b]; b > 0, so that there

is c A,η
μ,ε > 0 such that∫

[ωμ,ε,ωμ,ε+ρμ,ε]×R

∣∣∣∣ ε
(α)
m (x

√|λ|)
√

m(|λ|mx2)
2α+1

4

∣∣∣∣dμ(x, t) <
c A,η
μ,ε√
m

, for all (λ,m) ∈ (R × N)A,η; m ∈ N
∗, (27)

because off |λ|m � 2η
α+3 for all (λ,m) ∈ (R × N)A,η; m ∈ N

∗ .
Combining the relations (25)–(27), we deduce that there is mα ∈ N such that

∣∣F (μ)(λ,m)
∣∣ < 2ε +

(
m!mα

Γ (m + α + 1)

) 1
2
∫
K

∣∣ jα
(
2x

√|λ|m )∣∣dμ(x, t), (28)

for all (λ,m) ∈ (R × N)A,η; m > mα .

Let us now show that there exists c̃ A,η
μ ∈ ]0,1[ such that∫

K

∣∣ jα
(
2x

√|λ|m )∣∣dμ(x, t) < c̃ A,η
μ , for all (λ,m) ∈ (R × N)A,η, m ∈ N

∗. (29)

Since 2
√|λ|m �ηα = 2

√
2η

α+3 for all (λ,m) ∈ (R×N)A,η , m∈N
∗ , it suffices then to show that supρ�ηα

∫
K
| jα(ρx)|dμ(x, t) < 1.

Indeed, thanks to the well-known Riemann–Lebesgue Lemma we deduce from the relation (22) that limρ→∞ jα(ρx) = 0, for
any x > 0. But for all x ∈ R we have | jα(ρx)| � 1, so by applying Lebesgue Theorem we get limρ→∞

∫
K

| jα(ρx)|dμ(x, t) = 0,

so that there is Ã > ηα such that
∫

K
| jα(ρx)|dμ(x, t) < 1

2 , for all ρ � Ã. Now, by continuity of the function ρ 
→∫
K

| jα(|ρ|x)|dμ(x, t), there exists ρ0 ∈ [ηα, Ã] such that

max
ρ∈[ηα, Ã]

∫
K

∣∣ jα(ρx)
∣∣dμ(x, t) =

∫
K

∣∣ jα(ρ0x)
∣∣dμ(x, t).

To obtain the relation (29) it remains to show that
∫

K
| jα(ρ0x)|dμ(x, t) < 1 or equivalently

∫
K

| jα(ρ0x)|dμ(x, t) �= 1, since
we already have

∫
K

| jα(ρ0x)|dμ(x, t) �
∫

K
dμ(x, t) = 1.

Indeed, let us assume that
∫

K
| jα(ρ0x)|dμ(x, t) = 1, thus

∫
K
(1 − | jα(ρ0x)|)dμ(x, t) = 0, so that μ({(x, t) ∈ K;

| jα(ρ0x)| �= 1}) = 0. This implies, by Lemma 2.1.1, that μ(]0,∞[ × R) = 0 which is impossible since μ(]0,∞[ × R) =
μ(K) − μ({0} × R) = μ(K) = 1, and the relation (29) is proved. The relation (28) becomes then

∣∣F (μ)(λ,m)
∣∣ < 2ε + c̃ A,η

μ

(
m!mα

Γ (m + α + 1)

) 1
2

, for all (λ,m) ∈ (R × N)A,η; m > mα. (30)

Now, using the well-known Stirling’s formula, we easily verify that limm→∞ c̃ A,η
μ ( m!mα

Γ (m+α+1)
)

1
2 = c̃ A,η

μ , so that there is m̃α ∈ N,
such that∣∣F (μ)(λ,m)

∣∣ < 3ε + c̃ A,η
μ , for all (λ,m) ∈ (R × N)A,η; m > m̃α. (31)

This implies, since ε can be arbitrarily chosen in ]0,1[, that there is c̃ A,η
1,μ ∈ ]0,1[ and m̃1,α ∈ N, such that∣∣F (μ)(λ,m)

∣∣ < c̃ A,η
1,μ, for all (λ,m) ∈ (R × N)A,η; m > m̃1,α. (32)

To finish the proof, we have to show finally that for each m � m̃1,α , there exists bA,η
μ (m) ∈ ]0,1[ such that |F (μ)(λ,m)| �

bA,η
μ (m), for all λ ∈ R; η

αm
� |λ| � A, where αm = m + α+1

2 .

Indeed, by continuity on R of the function λ 
→ ∫
K

|L(α)
m (|λ|x2)|dμ(x, t), there exists for all m � m̃1,α , a real λm such that

|λm| ∈ [ η
, A] and
αm
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sup
η

αm
�|λ|�A

∫
K

∣∣L(α)
m

(|λ|x2)∣∣dμ(x, t) =
∫
K

∣∣L(α)
m

(|λm|x2)∣∣dμ(x, t).

Now, since |λm| > 0 and |L(α)
m (|λ0|x2)| � 1 for all (x, t) ∈ K, we deduce by a similar reasoning as above (for the proof of∫

K
| jα(ρ0x)|dμ(x, t) < 1), that

∫
K

|L(α)
m (|λ0|x2)|dμ(x, t) < 1, which finishes the proof. �

We will use in the sequel the following notations

• M+
b (K): The space of regular bounded and positive measures on K.

• Cc(K): The space of compactly supported continuous functions f : K → C.
• L1

α(K): The Lebesgue space of integrable functions on K with respect to the Haar measure mα .
• L1

α(R × N): The Lebesgue space of integrable functions on R × N with respect to the measure γα .
• Hα(K): The space of continuous functions h ∈ L1

α(K) such that F (h) ∈ L1
α(R × N) and there exists Ah > 0 such that

F (h)(λ,m) = 0, for any |λ| � Ah and m ∈ N. (33)

Proposition 2.3.

1. The positive function defined on K by

h0(x, t) = e−x2
(

sin t

t

)2

+ e−πx2
(

sinπt

πt

)2

(34)

belongs to Hα(K) and we have

F (h0)(λ,m) = F0(λ,m) + 1

π2
F0

(
λ

π
,m

)
, for all (λ,m) ∈ R × N, (35)

where F0(λ,m) = 2α−1(2−|λ|)m+1

(2+|λ|)m+α+1 χ[−2,+2](λ), χ[−2,+2] being the characteristic function of the interval [−2,+2].
2. Let h ∈ Hα(K) then ϕ−λ,mh ∈ Hα(K), for all (λ,m) ∈ R × N.

Proof. 1. It is clear that h0 ∈ Ł1
α(K) and the relation (35) can be obtained by a straightforward computation via the classical

formula

F0(χ[−1,+1] ∗0 χ[−1,+1])(λ) = (
F0(χ[−1,+1])(λ)

)2 =
(

sin λ

λ

)2

, for all λ ∈ R,

where χ[−2,+2] denotes the characteristic function of the interval [−1,+1], F0 and ∗0 being respectively the usual Fourier
transform and convolution product on R.

It remains to show that F (h0) ∈ L1
α(R × N), but by the variables changing λ 
→ πλ one can easily see that

‖F0(
λ
π ,m)‖L1

α(R×N) = πα+2‖F0(λ,m)‖L1
α(R×N) so that it suffices to verify that ‖F0(λ,m)‖L1

α(R×N) < ∞. Indeed, by a sim-
ple computation we obtain

∥∥F0(λ,m)
∥∥

L1
α(R×N)

= 2α+2
∞∑

m=0

Lα
m(0)

1∫
0

(
1 − u

1 + u

)m+1 uα+1

(1 + u)α
du

= 2α+2
∞∑

m=0

Lα
m(0)

1∫
0

(
1 − 2u

1 + u

)m+1( u

1 + u

)α

u du.

Now, by the variable changing u 
→ v = 2u
1+u and the well-known formula

∫ 1
0 (1 − x)m+1xα+1 dx = B(m + 2,α + 2) =

Γ (m+2)Γ (α+2)
Γ (m+α+4)

, one easily gets

1∫
0

(
1 − 2u

1 + u

)m+1( u

1 + u

)α

u du = 2

1∫
0

(1 − v)m+1
(

v

2

)α v

(2 − v)3
dv � 2

Γ (m + 2)Γ (α + 2)

Γ (m + α + 4)
,

and since Lα
m(0) = Γ (m+α+1) we deduce
m!Γ (α+1)
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∥∥F0(λ,m)
∥∥

L1
α(R×N)

� 2α+3
∞∑

m=0

Lα
m(0)

Γ (m + 2)Γ (α + 2)

Γ (m + α + 4)

� 2α+3(α + 1)

∞∑
m=0

m + 1

(m + α + 3)(m + α + 2)(m + α + 1)
,

which obviously shows that ‖F0(λ,m)‖L1
α(R×N) < +∞, and the property 1 is proved.

2. By [7], for each ((λ,m), (ξ, p)) ∈ (R × N)2; λ + ξ �= 0, we have the following dual product formula

ϕλ,m(x, t)ϕξ,p(x, t) =
∞∑

k=0

C (α)

k

(
(λ,m), (ξ, p)

)
ϕλ+ξ,k(x, t), for all (x, t) ∈ K, (36)

where

C (α)

k

(
(λ,m), (ξ, p)

) = Lα
k (0)

Γ (α + 1)

∞∫
0

L(α)
m

( |λ|x
|λ + ξ |

)
L(α)

p

( |ξ |x
|λ + ξ |

)
L(α)

k (x)xα dx. (37)

Note that if furthermore λξ > 0, then C (α)

k ((λ,m), (ξ, p)) = 0 for all k � m + n + 1. Indeed, for this case we have |λ + ξ | =
|λ| + |ξ |, so that by [6] we get

L(α)
m

( |λ|x
|λ + ξ |

)
L(α)

p

( |ξ |x
|λ + ξ |

)
= L(α)

m

( |λ|x
|λ| + |ξ |

)
L(α)

p

( |ξ |x
|λ| + |ξ |

)
=

m+n∑
k=0

C̃ (α)

k L(α)

k (x), for all x � 0, (38)

where (C̃ (α)

k )0�k�m+n is a sequence of nonnegative numbers.

By using the orthogonality of the sequence (L(α)

k )k∈N on R with respect to the measure xα dx, we deduce easily from (37)

and (38) that in the case λξ > 0, we effectively have C (α)

k ((λ,m), (ξ, p)) = 0 for all k � m + n + 1.

Note also that, by [7], for all ((λ,m), (ξ, p)) ∈ (R∗ × N)2; λ + ξ �= 0, the sequence (C (α)

k ((λ,m), (ξ, p)))k∈N satisfies the
following properties

(i) C (α)

k ((λ,m), (ξ, p)) � 0, for every k ∈ N.

(ii)
∑∞

k=0 C (α)

k ((λ,m), (ξ, p)) = 1.

(iii) |ξ |α+1L(α)
p (0)C (α)

k ((λ,m), (ξ, p)) = |λ + ξ |α+1L(α)

k (0)C (α)
p ((−λ,m), (ξ + λ,k)), for every k ∈ N.

Let now h ∈ Hα(K) and (λ,m) ∈ R
∗ × N. It is clear that ϕ−λ,mh ∈ L1

α(K), since |ϕ−λ,m(x, t)| � 1 for all (x, t) ∈ K. On the
other hand by using the dual product formula (36) we deduce by a straightforward computation that for all (ξ, p) ∈ R

∗ × N

we have

F (ϕ−λ,mh)(ξ, p) =
∫
K

hϕ−λ,mϕ−ξ,p dmα =
∫
K

[
h

∞∑
k=0

C (α)

k

(
(λ,m), (ξ, p)

)
ϕ−(λ+ξ),k

]
dmα

=
∞∑

k=0

C (α)

k

(
(λ,m), (ξ, p)

) ∫
K

hϕ−(λ+ξ),k dmα =
∞∑

k=0

C (α)

k

(
(λ,m), (ξ, p)

)
F (h)(λ + ξ,k). (39)

It follows that F (ϕ−λ,mh)(ξ, p) = 0 for all (ξ, p) ∈ R × N such that |ξ | � |λ| + Ah . Moreover, from the last relation (39)
together with the properties (i), (ii) and (iii) we get

∥∥F (ϕ−λ,mh)
∥∥

L1
α(R×N)

�
∞∑

p=0

∞∑
k=0

∫
R

L(α)
p (0)C (α)

k

(
(λ,m), (ξ, p)

)
F (h)(λ + ξ,k)|ξ |α+1 dξ

�
∞∑

p=0

∞∑
k=0

∫
R

L(α)

k (0)C (α)
p

(
(−λ,m), (ξ + λ,k)

)
F (h)(λ + ξ,k)|λ + ξ |α+1 dξ

�
∞∑

k=0

∫
R

L(α)

k (0)F (h)(λ + ξ,k)|λ + ξ |α+1 dξ

�
∥∥F (h)

∥∥
L1
α(R×N)

< ∞, (40)

which achieves the proof. �
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Theorem 2.1. Let (μk)k be a sequence in M+
b (K) such that limk→∞〈μk,h〉 = 0 for every h ∈ Hα , then the sequence (μk)k converges

vaguely to 0, that is limk→∞〈μk,h〉 = 0 for every h ∈ Cc(K).

Proof. Remark first that the positive function h0 given in the previous Proposition 2.3 is bounded on K, so that for every
k ∈ N, the measure νk = h0μk belongs to M+

b (K). Moreover, since ϕ−λ,mh0 ∈ Hα(K) and 〈μk,ϕ−λ,mh0〉 = 〈νk,ϕ−λ,m〉 =
F (νk)(λ,m) for all (λ,m) ∈ R × N and k ∈ N, we get

lim
k→∞

F (νk)(λ,m) = 0, for all (λ,m) ∈ R × N,

and consequently the sequence (νk)k converges vaguely to 0, by virtue of Lévy-continuity theorem (see [13]).
This gives the result, since for all h ∈ Cc(K) and k ∈ N, one readily has h

h0
∈ Cc(K) and 〈μk,h〉 = 〈νk,

h
h0

〉. �
3. Local central limit theorem on KKK

Theorem 3.1. Suppose that

(i) μ({0} × R) = 0.
(ii)

∫
K

t dμ = 0 and
∫

K
(1 + [x2 + |t|]2 + t2[x2 + |t|])dμ < ∞.

Then the sequence ( kα+2

C (α)
μ

μ∗αk)k converges vaguely on K to the Haar measure mα , where C (α)
μ = ∫

R×N
e− |λ|αm

α+1 σμ dγα(λ,m).

Proof. We shall use the last Theorem 2.1. Let so h ∈ Hα(K) then by the Fourier Laguerre inversion formula (see
[14, Theorem II.3]), we have

h =
∫

R×N

F (h)(λ,m)ϕλ,m dγα(λ,m).

It follows〈
μ∗αk,h

〉 = ∫
K

h(x, t)dμ∗αk(x, t) =
∫
K

( ∫
R×N

F (h)(λ,m)ϕλ,m(x, t)dγα(λ,m)

)
dμ∗αk(x, t)

=
∫

R×N

( ∫
K

ϕλ,m(x, t)dμ∗αk(x, t)

)
F (h)(λ,m)dγα(λ,m)

=
∫

R×N

F
(
μ∗αk)(λ,m)F (h)(λ,m)dγα(λ,m). (41)

But by the relation (II.11) in [14, p. 346], we have F (μ∗αk)(λ,m) = [F (μ)(λ,m)]k , so〈
μ∗k,h

〉 = ∫
R×N

[
F (μ)(λ,m)

]k F (h)(λ,m)dγα(λ,m). (42)

Let now η > 0 then by the variables changing λ 
→ λ̃ = kλ; (k ∈ N
∗), we obtain∫

{ξ (α)
λ,m�η}×N

[
F (μ)(λ,m)

]k F (h)(λ,m)dγα(λ,m) = 1

kα+2

∫
{ξ (α)

λ̃,m
�kη}×N

[
F (μ)

(
λ̃

k
,m

)]k

F (h)

(
λ̃

k
,m

)
dγα(λ̃,m). (43)

On the other hand, by Corollary 2.1 together with the inequality |F (h)| � ‖h‖L1
α(K) (see [14, p. 346]), one can choose η > 0

such that for all k ∈ N
∗ and (λ̃,m) ∈ R × N; (ξ

(α)

λ̃,m
< kη) we have∣∣∣∣[F (μ)

(
λ̃

k
,m

)]k

F (h)

(
λ̃

k
,m

)∣∣∣∣ � exp

(
− σμ

2(α + 1)
ξ

(α)

λ̃,m

)
‖h‖L1

α(K). (44)

In addition, by continuity of the function ζ 
→ F (h)(ζ,m) and by using again Corollary 2.1, we deduce that for all (λ̃,m) ∈
R × N, we have

lim

(
F (μ)

(
λ̃

,m

))k

F (h)

(
λ̃

,m

)
= exp

(
− σμ

ξ
(α)

λ̃,m

)
F (h)(0,m). (45)
k→∞ k k α + 1
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But σμ > 0 since otherwise μ({0} × R) = 1, which contradicts the hypothesis. Thus, by a straightforward computation we
get ∫

R×N

exp

(
− σμ

2(α + 1)
ξ

(α)

λ̃,m

)
=

∞∑
k=0

L(α)
m (0)

∫
R

exp

(
−σμ|λ̃|αm

2(α + 1)

)
|λ̃|α+1 dλ̃

=
[ ∞∫

0

exp(−ζ )ζα+1 dζ

] ∞∑
k=0

(
2(α + 1)

σμ|ζ |αm

)α+2

L(α)
m (0)

= Γ (α + 2)

∞∑
k=0

(
2(α + 1)

σμ(m + α+1
2 )

)α+2

L(α)
m (0) < ∞, (46)

because off L(α)
m (0) = Γ (m+α+1)

m!Γ (α+1)
∼ mα

Γ (α+1)
(m → ∞) by Stirling’s formula.

Hence by applying Lebesgue Theorem we deduce from (43)–(46) that

lim
k→∞

[
kα+2

∫
{ξ (α)

λ,m�η}×N

[
F (μ)(λ,m)

]k F (h)(λ,m)dγα(λ,m)

]
=

∫
R×N

exp

(
−σμ|λ̃|αm

α + 1

)
F (h)(0,m)dγα(λ̃,m)

=
∫

R×N

exp

(
−σμ|λ̃|αm

α + 1

)( ∫
K

h(x, t)dmα(x, t)

)
dγα(λ̃,m)

= C (α)
μ

∫
K

h(x, t)dmα(x, t), (47)

where C (α)
μ = ∫

R×N
exp(−σμ|λ̃|αm

α+1 )dγα(λ̃,m) = Γ (α + 2)( α+1
σμ

)α+2 ∑∞
k=0

L(α)
m (0)

(m+ α+1
2 )α+2 .

To obtain the result it remains to show that

lim
k→∞

kα+2
∫

{ξ (α)
λ,m>η}×N

[
F (μ)(λ,m)

]k F (h)(λ,m)dγα(λ,m) = 0. (48)

Indeed, since h ∈ Hα(K) then there exists Ah > 0 such that F (h)(λ,m) = 0 for all |λ| � Ah and m ∈ N, so that∫
{ξ (α)

λ,m>η}×N

[
F (μ)(λ,m)

]k F (h)(λ,m)dγα(λ,m) =
∫

{ η
αm

<|λ|�Ah}×N

[
F (μ)(λ,m)

]k F (h)(λ,m)dγα(λ,m). (49)

It follows, by Proposition 2.2, that there is a ∈ ]0,1[ such that

kα+2
∫

{ξ (α)
λ,m>η}×N

[
F (μ)(λ,m)

]k F (h)(λ,m)dγα(λ,m) � kα+2ak
∫

R×N

∣∣F (h)(λ,m)
∣∣dγα(λ,m), (50)

which finishes the proof, since
∫

R×N
|F (h)(λ,m)|dγα(λ,m) = ‖F (h)‖L1

α(R×N) < ∞ for every h ∈ Hα(K). �
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