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1. Introduction

Consider the following second order Hamiltonian systems{
ẍ(t) − B(t)x(t) + ∇H(t, x) = 0, ∀t ∈ [0, T ],
x(0) − x(T ) = ẋ(0) − ẋ(T ) = 0,

(1.1)

where T > 0, B ∈ C(R,R
N2

) is a symmetric matrix-valued function. Let H : R × R
N → R, (t, x) → H(t, x) be measurable

in t for each x ∈ R
N and continuously differentiable in x for almost every t ∈ R, H is T -periodic in t and H(t,0) = 0,

∇H(t, x) = ∂ H(t,x)
∂x .

When B(t) ≡ 0 for all t ∈ R, the existence of periodic solutions for systems (1.1) had been extensively studied and a lot
of important existence and multiplicity results had been obtained, for example, see [1,4–8,11–14,24] and references cited
therein. Particularly, Fei [5] got the existence of 1-periodic solutions of systems (1.1) under some new superquadratic condi-
tions; Schechter [6] studied the existence of non-constant T -periodic solutions of systems (1.1) and got a new saddle point
theorem; Schechter [7] obtained non-constant T -periodic solutions of systems (1.1) with local superquadratic condition by
using linking methods; Wu [13] studied multiplicity of periodic solutions; Tao and Tang [12] researched the subharmonic
solutions; and Wang [24] obtained the existence of periodic solutions for systems (1.1) under local superquadratic condition
and other conditions. When B(t) �= 0, Zou and Li [15] studied the existence of infinitely many T -periodic solutions under
the assumption that H(t, x) was even in x; Ou and Tang [9] got the existence of homoclinic solutions; Faraci [3] studied the
existence of multiple periodic solutions; Tang and Lin [18] studied the homoclinic solutions for systems (1.1); and Xiao and
Tang [17] investigated the existence of periodic solutions for systems (1.1) with potential indefinite in sign by employing
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liking methods when H(t, x) = b(t)V ′(x). There are also some more general Hamiltonian systems which are considered in
the paper [19–21].

In 2008, He and Wu [16] had obtained some results of the nontrivial T -periodic solutions for systems (1.1) under
much weaker assumptions, which greatly generalized the corresponding results in [5]. More precisely, they established the
following two main theorems.

Theorem 1.1. (See [16].) Suppose that H satisfies the following conditions:

(H1) H(t, x)/|x|2 → +∞ as |x| → ∞ uniformly for all t.
(H2) |∇H(t, x)|/|x| → 0 as |x| → 0 uniformly for all t.
(H3) There exist constants α0 > 0 and d0 > 0 such that∣∣∇H(t, x)

∣∣ � d0
(|x|α0 + 1

)
, ∀(t, x) ∈ [0, T ] × R

N .

(H4) There exist constants β0 � α0 � 1, d′
0 > 0 and L0 > 0 such that(∇H(t, x), x

) − 2H(t, x) � d′
0|x|β0 , ∀|x| � L0, t ∈ [0, T ].

(H5)

T∫
0

H(t, x)dt � 0, ∀(t, x) ∈ [0, T ] × R
N .

And B(t) satisfies the condition:

(L1) For the smallest eigenvalue b(t) = inf|x|=1(B(t)x, x) of B(t), there exists a constant γ < 1 such that b(t)/|t|γ −1 → ∞ as
|t| → ∞.

Then there exists a nontrivial T -periodic solution of systems (1.1).

Theorem 1.2. (See [16].) Suppose that (L1), (H1)–(H4) and the following condition hold:

(H5)′ There exists a constant R1 > 0 such that
(i) H(t, x) � 0, ∀|x| � R1 , t ∈ [0, T ]; or

(ii) H(t, x) � 0, ∀|x| � R1 , t ∈ [0, T ].

If 0 is an eigenvalue of −(d2/dt2) + B(t), then there exists at least one nontrivial T -periodic solution of systems (1.1).

However, we must point out that the condition (H3) contradicts with condition (H1) when 0 < α0 � 1. In fact, if 0 <

α0 � 1, from (H3), we have |H(t, x)| � d0(|x|α0+1 + |x|) for all (t, x) ∈ [0, T ] × R
N , thus H(t,x)

|x|2 → 0 (when 0 < α0 < 1) or d0

(when α0 = 1) as |x| → ∞ uniformly for all t . Therefore, (H3) holds only when α0 > 1. As is known, the following so-called
global Ambrosetti–Rabinowitz condition on H(t, x) introduced by Ambrosetti and Rabinowitz in [22] is very important in
many proofs: there is a constant μ such that

0 < μH(t, x) �
(∇H(t, x), x

)
, ∀(t, x) ∈ R × R

N\{0}, (1.2)

which implies that H(t, x) is of superquadratic growth as |x| → ∞, that is

lim|x|→∞
H(t, x)

|x|2 = ∞ uniformly for all t.

As is pointed out in [23], by (H3) the nonlinearity grows subcritically, and the condition (H4) guarantees that H(t, x) grows
non-quadratic in x as |x| → ∞ for all x ∈ R

N . In a word, the conditions (H1), (H3) and (H4) all guarantee the superquadratic
condition hold.

Motivated by the ideas of [5,7,16,24], we will use the following conditions to generalize the results of [16] in another
direction.

(H1)′ There exists a subset E0 of [0, T ] with meas(E0) > 0 such that

lim|x|→∞ inf
H(t, x)

|x|2 > 0, a.e. t ∈ E0.
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(H3)′ There exist constants α > 1 and d1 > 0 such that

∣∣∇H(t, x)
∣∣ � d1

(|x|α + 1
)
, ∀(t, x) ∈ [0, T ] × R

N .

(H4)′ There exist constants μ > 2, 0 < β < 2, L > 0 and a function a(t) ∈ L1(0, T ; R+) such that

μH(t, x) � ∇H(t, x)x + a(t)|x|β, ∀|x| � L, x ∈ R
N and a.e. t ∈ [0, T ].

Here are our main results.

Theorem 1.3. Suppose (H1)′ , (H2), (H3)′ , (H4)′ , (H5) and (L1) hold. Then there exists a nontrivial T -periodic solution of systems (1.1).

Theorem 1.4. Suppose (H1)′ , (H2), (H3)′ , (H4)′ , (L1) and the following condition (H5)′′ hold:

(H5)′′ H(t, x) � 0, ∀(t, x) ∈ [0, T ] × R
N .

Then there exists a nontrivial T -periodic solution of systems (1.1).

Theorem 1.5. Suppose (H1)′ , (H2), (H3)′ , (H4)′ , (L1) and (H5)′ hold. If 0 is an eigenvalue of −(d2/dt2) + B(t), then there exists at
least one nontrivial T -periodic solution of systems (1.1).

Remark 1.1. The condition (H1)′ is a local superquadratic condition. As far as we know, only [7,24] considered this situation.
In [7], the author obtained a new results by using linking methods. In [24], the authors studied the non-constant T -periodic
solutions by employing the generalized mountain pass theorem. When we take a(t) ≡ 0, the condition (H4)′ reduces to
(1.2), it is easy to see that (H4)′ is weaker than (1.2). From (H1)′ , we only need lim|x|→∞ inf H(t,x)

|x|2 > 0 holds in a subset E0

of [0, T ], but it is not by (H1), thus (H1)′ is weaker than (H1). There are functions that satisfy our theorems but not satisfy
those results in [5,16]. For example, let

H(t, x) = 1

6
f (t)|x|4, ∀(t, x) ∈ [0, T ] × R

N ,

where

f (t) =
{

sin 2πt
T , t ∈ [0, T

2 ],
0, t ∈ [ T

2 , T ].
Let E0 = [0, T

4 ], an easy computation shows that (H1)′ and (H4)′ hold. It is also clear that the other conditions of our
theorems hold. Therefore, H(t, x) satisfies all the conditions of our theorems, but doesn’t satisfy (H1) and (H4), thus doesn’t
satisfy the corresponding results in [5] and [16].

The remainder of this paper is organized as follows. In Section 2, some preliminary results are presented. In Section 3,
we give the proofs of our theorems.

2. Preliminaries

Now, let us give some concepts which appeared in [4].
Let X be a real Banach space with direct decomposition X = X1 ⊕ X2. Consider two sequences of subspaces X1 =⋃

n∈N X1
n and X2 = ⋃

n∈N X2
n such that X j

0 ⊂ X j
1 · · · X j , j = 1,2. For every multi-index a = (a1,a2) ∈ N2, we denote by Xa the

space X1
a1

⊕ X2
a2

. We say a � b if a1 � b1, a2 � b2.

Definition 2.1. A sequence {an} ⊂ N2 is said to be admissible if, for every a ∈ N2 there is m ∈ N such that n � m ⇒ an > a.

Definition 2.2. Let c ∈ R and ϕ ∈ C1(X,R). The functional ϕ is said to satisfy the (PS)∗ condition if every sequence {xan }
such that {an} is admissible and

xan ∈ Xan , c = supϕan (xan ) < ∞, ϕ′
an

(xan ) → 0

contains a subsequence which converges to a critical point of ϕ , where ϕa = ϕ|Xa .



360 Q. Zhang, X.H. Tang / J. Math. Anal. Appl. 369 (2010) 357–367
Definition 2.3. Let X be a Banach space with a direct sum decomposition X = X1 ⊕ X2. The function f ∈ C1(X,R) has a
local linking at 0, with respect to (X1, X2), if, for some r > 0,

f (x) � 0, ∀x ∈ X1, ‖x‖ � r,

f (x) � 0, ∀x ∈ X2, ‖x‖ � r.

The following two theorems are very useful in our proofs.

Theorem A. (See [10].) Let E be a real Banach space with E = V ⊕ X, where V is finite-dimensional. Suppose I ∈ C1(E,R) satisfies
(PS) condition and the following conditions:

(A1) There are constants ρ,α1 > 0 such that I|∂ Bρ∩X � α1 , where Bρ := {u ∈ E | ‖u‖ � ρ}, ∂ Bρ denotes the boundary of Bρ .

(A2) There is e ∈ ∂ B1 ∩ X and r0 > ρ such that if Q ≡ (Br0 ∩ V ) ⊕ {re | 0 < r < r0}, then I|∂ Q � 0.

Then I possesses a critical value c � α1 which can be characterized as

c = inf
h∈Γ

max
u∈Q

I
(
h(u)

)
,

where Γ = {h ∈ C(Q , E) | h = id on ∂ Q }.

Theorem B. (See [4].) Suppose that f ∈ C1(X,R) satisfies the following assumptions:

(B1) f has a local linking at 0 and X1 �= {0};
(B2) f satisfies (PS)∗ condition;
(B3) f maps bounded sets into bounded sets;
(B4) for every m ∈ N, f (x) → −∞ as ‖x‖ → ∞ on X1

m ⊕ X2 .

Then f has at least one nonzero critical point.

Write Lλ = Lλ([0, T ],R
N ) for 1 � λ � ∞ and denote by A the self-adjoint extension of the operator −(d2/dt2)+ B(t). Let

|A| be the absolute value of A and |A| 1
2 be the square of |A|. Let E = D(|A| 1

2 ), where D(|A| 1
2 ) denotes the domain of |A| 1

2 .
The following lemma which is due to Ding [2] (see also [9,16]) is needed in our proofs.

Lemma 2.1. Suppose that B(t) satisfies (L1). Then E is compactly embedded into L p for any 1 � p � ∞, which implies that there exists
a constant C > 0 such that

‖x‖p � C‖x‖
for all x ∈ E and all p = 1,2, β + 2,

β
β−α (when β > α), ∞.

Ding [2] pointed out that the spectrum σ(A) consists of eigenvalues numbered in

λ1 � λ2 � · · · → ∞
by Lemma 2.1 (counted in their multiplicities), and a corresponding system of eigenfunctions {ei} forms an orthogonal
basis in L2. Let n− (respectively n0) be the number of λi satisfying λi < 0 (respectively λi = 0), n̄ = n− + n0, and set
E− = span{e1, . . . , en−}, E0 = span{en−+1, . . . , en̄} = ker A, E+ = span{en̄+1, . . .}. Then E = E− ⊕ E0 ⊕ E+ . The inner product
and norm on E are the following:

(x, y) = (|A| 1
2 x, |A| 1

2 y
)

L2 + (
x0, y0)

L2 , ‖x‖2 = (x, x) = ∥∥|A| 1
2 x

∥∥2
L2 + ∥∥x0

∥∥2
L2 ,

where x = x− + x0 + x+ , y = y− + y0 + y+ ∈ E = E− ⊕ E0 ⊕ E+ . Then E is a Hilbert space.

3. Proofs of theorems

The functional ϕ corresponding to (1.1) on E is given by

ϕ(x) = 1

2

T∫
|ẋ|2 dt + 1

2

T∫ (
B(t)x, x

)
dt −

T∫
H(t, x)dt, (3.1)
0 0 0
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which is continuously differentiable on E , and

(
ϕ′(x), y

) =
T∫

0

(ẋ, ẏ)dt +
T∫

0

(
B(t)x, y

)
dt −

T∫
0

(∇H(t, x), y
)

dt

for all x, y ∈ E . It follows from (3.1) that

ϕ(x) = 1

2

∥∥x+∥∥2 − 1

2

∥∥x−∥∥2 −
T∫

0

H(t, x)dt (3.2)

for all x = x− + x0 + x+ ∈ E− ⊕ E0 ⊕ E+ , and

(
ϕ′(x), y

) = (
x+, y+) − (

x−, y−) −
T∫

0

(∇H(t, x), y
)

dt (3.3)

for all x = x− + x0 + x+ , y = y− + y0 + y+ ∈ E = E− ⊕ E0 ⊕ E+ (see [2,9]).
In the following, we denote Ci (i = 0,1,2, . . .) for different positive constants.

Proof of Theorem 1.3. Step 1. We prove that ϕ satisfies the (PS) condition. For x ∈ E , let x̄ = 1
T

∫ T
0 x(t)dt , x = x̃ + x̄. It is well

known that there exists a constant C0 > 0 such that

‖x‖∞ � C0‖x‖ for all x ∈ E, (3.4)

where ‖x‖∞ = max0�t�T |x(t)|. Let {xn} ⊂ E satisfy ϕ′(xn) → 0 as n → ∞ and {ϕ(xn)} is bounded. We prove that {xn} is
a bounded sequence in E . Otherwise, going to a subsequence if necessary, we can assume that ‖xn‖ → ∞ as n → ∞. Set
yn = xn‖xn‖ , then {yn} is bounded in E . Hence, there exists a subsequence, still denoted by {yn}, such that

yn ⇀ y0 weakly in E,

yn → y0 strongly in C
(
0, T ;R

N)
.

Then, we have

ȳn → ȳ0. (3.5)

By (H3)′ , for |x| � L, one has∣∣H(t, x)
∣∣ � d1

(|x|1+α + |x|) � d1
(
L1+α + L

)
,

together with (H4)′ , one has

μH(t, x) � ∇H(t, x)x + a(t)|x|β + μd1
(
L1+α + L

)
(3.6)

for all x ∈ R
N and a.e. t ∈ [0, T ]. It follows from (3.4), (3.6), (L1) and μ > 2 that

(
μ

2
− 1

)
‖ẋn‖2

L2 = μϕ(xn) − (
ϕ′(xn), xn

) +
(

−μ

2
+ 1

) T∫
0

(
B(t)xn, xn

)
dt +

T∫
0

(
μH(t, xn) − ∇H(t, xn)xn

)
dt

� μϕ(xn) − (
ϕ′(xn), xn

) +
T∫

0

(
μH(t, xn) − ∇H(t, xn)xn

)
dt

� C1 +
T∫

0

[
a(t)|xn|β + μd1

(
L1+α + L

)]
dt

� C2 + C3‖xn‖β . (3.7)

Notice that 0 < β < 2, we have

‖ẋn‖L2 � C4‖xn‖ν + C5, (3.8)
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where 0 < ν < 1, which implies that

‖ ẏn‖L2 → 0 as n → ∞.

Together with (3.5), we have

yn → ȳ0 as n → ∞.

Hence, we obtain

y0 = ȳ0 and T | ȳ0|2 = ‖ ȳ0‖2 → 1.

Consequently, |xn| → ∞ as n → ∞ uniformly for a.e. t ∈ [0, T ]. From (H1)′ and (H5), we get

lim|xn|→∞ inf

∫ T
0 H(t, xn)dt

‖xn‖2
�

∫ T
0 [lim|xn|→∞ inf H(t, xn)]dt

‖xn‖2
�

∫
E0

[
lim|xn|→∞ inf

H(t, xn)

|xn|2 |yn|2
]

dt

=
∫
E0

[
lim

n→∞ inf
H(t, xn)

|xn|2 |y0|2
]

dt > 0. (3.9)

From (3.2)–(3.4) and (3.6), we have

(
μ

2
− 1

)(∥∥x+
n

∥∥2 − ∥∥x−
n

∥∥2) = μϕ(xn) − (
ϕ′(xn), xn

) +
T∫

0

(
μH(t, xn) − ∇H(t, xn)xn

)
dt

� C1 +
T∫

0

[
a(t)|xn|β + μd1

(
L1+α + L

)]
dt

� C2 + C3‖xn‖β .

Notice that μ > 2, we obtain

∥∥x+
n

∥∥2 − ∥∥x−
n

∥∥2 � 2C2

μ − 2
+ 2C3

μ − 2
‖xn‖β . (3.10)

By the boundedness of ϕ(xn) and (3.10), we have

ϕ(xn)

‖xn‖2
=

1
2 (‖x+

n ‖2 − ‖x−
n ‖2)

‖xn‖2
−

∫ T
0 H(t, xn)dt

‖xn‖2
�

C2
μ−2

‖xn‖2
+

C3
μ−2‖xn‖β

‖xn‖2
−

∫ T
0 H(t, xn)dt

‖xn‖2
,

which together with 0 < β < 2 implies that

lim|xn|→∞ inf

∫ T
0 H(t, xn)dt

‖xn‖2
= 0.

This contradicts with (3.9). Thus, {xn} is bounded in E . Hence, there exists a constant C6 > 0 such that

‖xn‖ � C6 for all n. (3.11)

Going if necessary to a subsequence, we can assume that

xn ⇀ x in E. (3.12)

It follows from Lemma 2.1 that

xn → x in L2(0, T ;R
N)

as n → ∞. (3.13)

From (H2), there is δ > 0 such that∣∣∇H(t, x)
∣∣ � |x| for all t ∈ [0, T ] and |x| � δ. (3.14)

Choose a positive integer k0 such that

C6√ � 1
δ. (3.15)
2k0 + 3 2
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It follows from (L1) that there exists δ1 > 1 such that(
k0 + 1√
2k0 + 1

2C6

δ

)2

� b(s) for all |s| � δ1 − 1. (3.16)

It follows from Hölder’s inequality, (3.11), (3.15) and (3.16) that

|xn| =
∣∣∣∣∣

t+1∫
t

[−ẋn(s)(t + 1 − s)k0+1 + xn(s)(k0 + 1)(t + 1 − s)k0
]

ds

∣∣∣∣∣
� 1√

2k0 + 3

( t+1∫
t

∣∣ẋn(s)
∣∣2

ds

) 1
2

+ k0 + 1√
2k0 + 1

( t+1∫
t

∣∣xn(s)
∣∣2

ds

) 1
2

� 1√
2k0 + 3

‖xn‖ + k0 + 1√
2k0 + 1

( ∫
|s|�δ1−1

∣∣xn(s)
∣∣2

ds

) 1
2

� 1√
2k0 + 3

C6 + k0 + 1√
2k0 + 1

( ∫
|s|�δ1−1

(B(s)xn(s), xn(s))

b(s)
ds

) 1
2

� 1

2
δ + k0 + 1√

2k0 + 1

‖xn‖
(inf|s|�δ1−1 b(s))

1
2

� 1

2
δ + k0 + 1√

2k0 + 1

C6

(inf|s|�δ1−1 b(s))
1
2

� δ (3.17)

for all n ∈ N and all |t| � δ1. Hence, by (3.14), (3.17) and Hölder’s inequality, one has∣∣∣∣∣
T∫

0

(∇H(t, xn) − ∇H(t, x), x+
n − x+)

dt

∣∣∣∣∣
�

T∫
0

(∣∣∇H(t, xn)
∣∣ + ∣∣∇H(t, x)

∣∣)∣∣x+
n − x+∣∣dt �

∫
|t|�δ1

(|xn| + |x|)∣∣x+
n − x+∣∣dt + 2C7

∫
|t|�δ1

∣∣x+
n − x+∣∣dt

�
(
2δT

1
2 + 2(2δ1)

1
2 C7

)∥∥x+
n − x+∥∥

L2 � C8
∥∥x+

n − x+∥∥
L2 .

Moreover, we have

∥∥x+
n − x+∥∥2 = (

ϕ′(xn) − ϕ′(x), x+
n − x+) +

T∫
0

(∇H(t, xn) − ∇H(t, x), x+
n − x+)

dt

�
∥∥ϕ′(xn)

∥∥∥∥x+
n − x+∥∥ − (

ϕ′(x), x+
n − x+) + C8

∥∥x+
n − x+∥∥

L2

�
∥∥ϕ′(xn)

∥∥∥∥C6 + x+∥∥ − (
ϕ′(x), x+

n − x+) + C8
∥∥x+

n − x+∥∥
L2

for all n, which implies that x+
n → x+ in E as n → ∞ by (3.12) and (3.13). From (3.13) and the equivalence of the norms

on the finite-dimensional subspace E− ⊕ E0, we obtain that x0
n → x0 and x−

n → x− in E as n → ∞, which implies that
xn → x in E as n → ∞. Hence {xn} has a convergent subsequence, which shows that the (PS) condition holds.

Step 2. We claim that there exist ρ > 0 and α1 > 0 such that

ϕ(x) � α1, ∀x ∈ ∂ Bρ ∩ E+.

From (H2), for any ε > 0, there exists δ2 > 0 such that∣∣H(t, x)
∣∣ � ε|x|2, ∀t ∈ [0, T ], ∀|x| � δ2. (3.18)

By (H3)′ , we have∣∣H(t, x)
∣∣ � d1

(|x|1+α + |x|), ∀(t, x) ∈ [0, T ] × R
N ,
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which together with (3.18) implies that there exists a constant M > 0 such that∣∣H(t, x)
∣∣ � ε|x|2 + M|x|1+α, ∀(t, x) ∈ [0, T ] × R

N . (3.19)

Hence, it follows from Lemma 2.1 and (3.19) that

T∫
0

∣∣H(t, x)
∣∣dt �

T∫
0

(
ε|x|2 + M|x|1+α

)
dt � ε‖x‖2

L2 + M‖x‖1+α
L1+α � εC2‖x‖2 + MC1+α‖x‖1+α. (3.20)

For any x ∈ E1 = E+ , by (3.20), we obtain

ϕ(x) = 1

2
‖x‖2 −

T∫
0

H(t, x)dt � 1

2
‖x‖2 − εC2‖x‖2 − MC1+α‖x‖1+α.

Taking ε = 1
4C2 and noticing that 1 + α > 2, we can find a constant ρ > 0 small enough such that

ϕ(x) � 1

4
ρ2 − MC1+αρ1+α � 1

16
ρ2 ≡ α1 > 0 for all x ∈ E1 = E+ with ‖x‖ = ρ.

Step 3. Let e ∈ E+ with ‖e‖ = 1. By (H1)′ , there exist constants L1 > 0, M1 > 0 such that

H(t, x) � M1|x|2 for all |x| � L1, x ∈ R
N and a.e. t ∈ E0. (3.21)

For |x| � L1 and a.e. t ∈ E0, from (H3)′ , we get∣∣H(t, x)
∣∣ � d1

(|x|1+α + |x|) � d1
(|L1|1+α + |L1|

) := C9. (3.22)

Thus, it follows from (3.21) and (3.22) that

H(t, x) � M1|x|2 − C9 for all x ∈ R
N and a.e. t ∈ E0. (3.23)

Let M2 = ∫
E0

|e|2 dt , M3 = ∫
E0

|x|2 dt , choose M1 sufficiently large such that M1M2 > 1
2 , by (3.23), we have

ϕ(re + x) = 1

2

(
r2 − ∥∥x−∥∥2) −

T∫
0

H(t, re + x)dt � 1

2

(
r2 − ∥∥x−∥∥2) −

∫
E0

H(t, re + x)dt

� 1

2

(
r2 − ∥∥x−∥∥2) −

∫
E0

M1|re + x|2 dt + C9T = 1

2

(
r2 − ∥∥x−∥∥2) − M1r2

∫
E0

e2 dt − M1

∫
E0

x2 dt + C9T

= 1

2

(
r2 − ∥∥x−∥∥2) − M1M2r2 − M1M3 + C9T

for all r > 0 and x ∈ E− ⊕ E0. Hence, we obtain

ϕ(re + x) � 0, either r � r1 or M3 � r2, (3.24)

where r1 =
√

2C9 T
2M1 M2−1 , r2 = C9 T

M1
.

Since E− ⊕ E0 is finite-dimensional, there exists M4 > 0 such that

‖x‖L2 � M4‖x‖ for all x ∈ E− ⊕ E0. (3.25)

Notice that

‖x‖ � 1

M4
‖x‖L2 = 1

M4

( T∫
0

|x|2 dt

) 1
2

� 1

M4

( ∫
E0

|x|2 dt

) 1
2

dt � 1

M4
r

1
2
2 ,

thus (3.24) holds for all ‖x‖ � 1
M4

r
1
2
2 := r3 whenever x ∈ E− ⊕ E0. Let

Q = {re | 0 � r � r1} ⊕ {
x ∈ E− ⊕ E0

∣∣ ‖x‖ � r3
}
. (3.26)
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Then we have ∂ Q = Q 1 ∪ Q 2 ∪ Q 3, where

Q 1 = {
x ∈ E− ⊕ E0

∣∣ ‖x‖ � r3
}
, Q 2 = r1e ⊕ {

x ∈ E− ⊕ E0
∣∣ ‖x‖ � r3

}
,

Q 3 = {re | 0 � r � r1} ⊕ {
x ∈ E− ⊕ E0

∣∣ ‖x‖ = r3
}
.

By (3.24), one has

ϕ(x) � 0, ∀x ∈ Q 2 ∪ Q 3.

It follows from (H5) that ϕ(x) � 0 for all x ∈ E− ⊕ E0, which implies that

ϕ(x) � 0, ∀x ∈ Q 1.

Hence, we have

ϕ(x) � 0, ∀x ∈ ∂ Q .

Consequently, the proof of Theorem 1.3 is complete by Theorem A. �
Proof of Theorem 1.4. In fact, the proof of Theorem 1.4 is similar to the proof of Theorem 1.3, we omit the detail here. �
Proof of Theorem 1.5. We only consider the case (i). The other case is similar.

(1) We claim that ϕ has a local linking at zero with respect to (X1, X2), where X1 = E+ and X2 = E0 ⊕ E− . Indeed, for
x ∈ X1, by (3.20), we have

ϕ(x) � 1

2
‖x‖ − εC2‖x‖2 − MC1+α‖x‖1+α.

Let ε = 1
4C2 > 0, noting that 1 + α > 2, we can choose a constant ρ0 > 0 such that

ϕ(x) � 0, ∀x ∈ X1 with ‖x‖ � ρ0.

It follows from the equivalence of the norms on the finite-dimensional subspace E0 that there exists a constant M5 > 0
such that

‖x‖L∞ � M5‖x‖, ‖x‖ � M5‖x‖L1 , ∀x ∈ E0. (3.27)

Let x = x0 + x− ∈ X2 satisfying ‖x‖ � ρ1 = R1
2M5

, where R1 is the same in (H5)′ . Let

Ω1 =
{

t ∈ [0, T ]: ∣∣x−∣∣ � R1

2

}
, Ω2 =

{
t ∈ [0, T ]: ∣∣x−∣∣ >

R1

2

}
.

Then, by (3.27) we have

∣∣x0
∣∣ �

∥∥x0
∥∥

L∞ � M5
∥∥x0

∥∥ � M5‖x‖ � R1

2
for all t ∈ [0, T ].

On the one hand, one has

|x| � ∣∣x0
∣∣ + ∣∣x−∣∣ � R1 for all t ∈ Ω1.

Hence, from (H5)′ , we have∫
Ω1

H(t, x)dt � 0.

On the other hand, one has

|x| � ∣∣x0
∣∣ + ∣∣x−∣∣ � R1

2
+ ∣∣x−∣∣ � 2

∣∣x−∣∣ for all t ∈ Ω2.

It follows from (3.19) and the above inequality that∣∣H(t, x)
∣∣ � ε|x|2 + M|x|1+α � 4ε

∣∣x−∣∣2 + 21+αM
∣∣x−∣∣1+α

for all t ∈ Ω2 and all x ∈ X2 with ‖x‖ � ρ1, which implies that
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∣∣∣∣
∫
Ω2

H(t, x)dt

∣∣∣∣ � 4ε

∫
Ω2

∣∣x−∣∣2
dt + 21+αM

∫
Ω2

∣∣x−∣∣1+α
dt � 4ε

∥∥x−∥∥2
L2 + 21+αM

∣∣x−∣∣1+α

L1+α

� 4C2ε
∥∥x−∥∥2 + (2C)1+αM

∣∣x−∣∣1+α
.

Let ε = 1
16C2 , we obtain

ϕ(x) = −1

2

∥∥x−∥∥2 −
T∫

0

H(t, x)dt � −1

2

∥∥x−∥∥2 + 4C2ε
∥∥x−∥∥2 + (2C)1+α M

∣∣x−∣∣1+α

� −1

4

∥∥x−∥∥2 + (2C)1+α M
∣∣x−∣∣1+α

for all x ∈ X2 with ‖x‖ � ρ1, which implies that

ϕ(x) � 0, ∀x ∈ X2 with ‖x‖ � ρ2,

where ρ2 = min{ρ0,ρ1} is small enough.
(2) We claim that ϕ satisfies the (PS)∗ condition. Let

X1
n = span{en̄+1, . . . , en̄+n}, X2

n = X2 = span{e1, . . . , en̄}, n ∈ N,

then X j = ⋃
n∈N X j

n , j = 1,2. Let {xan } be a sequence such that {an} is admissible and satisfying

xan ∈ Xxan
, c = supϕan(xan ) < ∞, ϕ′

an
(xan ) → 0.

In a similar way to the proof of Step 1 in Theorem 1.3, we can prove that {xan } is a bounded sequence, and then by a
standard argument, {xan } has a convergent subsequence. We omit the detail here.

(3) We claim that for every m ∈ N , ϕ(x) → −∞ as ‖x‖ → ∞ on x ∈ X1
m ⊕ X2. Since X1

m and X2 are finite-dimensional,
we can choose M6 > 0 sufficiently large such that

‖x‖ � M6

( ∫
E0

|x|2 dt

) 1
2

for all x ∈ X1
m ⊕ X2. (3.28)

By (H1)′ , there exists M7 > 0 such that

H(t, x) � M2
6|x|2 − M7 for all x ∈ R

N and a.e. t ∈ E0. (3.29)

Hence, it follows from (3.28) and (3.29) that

ϕ(x) = 1

2

(∥∥x+∥∥2 − ∥∥x−∥∥2) −
T∫

0

H(t, x)dt

� 1

2

(∥∥x+∥∥2 − ∥∥x−∥∥2) −
∫
E0

H(t, x)dt

� 1

2

(∥∥x+∥∥2 − ∥∥x−∥∥2) − M2
6

∫
E0

|x|2 dt + M2T

� 1

2

(∥∥x+∥∥2 − ∥∥x−∥∥2) − M2
6

(
1

M2
6

∥∥x+∥∥2 + 1

M2
6

∥∥x0
∥∥2

)
+ M2T

� −1

2

∥∥x+∥∥2 − 1

2

∥∥x−∥∥2 − ∥∥x0
∥∥2 + M2T

� −1

2
‖x‖2 + M2T

for x ∈ X1
m ⊕ X2 and a.e. t ∈ E0, which implies that

ϕ(x) → −∞ as ‖x‖ → ∞ on x ∈ X1
m ⊕ X2.

By the definition of ϕ and (3.19), we know that ϕ satisfied the condition (B3) of Theorem B, thus all the conditions in
Theorem B are satisfied. Consequently, the proof of Theorem 1.5 is complete by Theorem B. �
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