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1. Introduction and statement of the results

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω , we consider the equation with Neumann boundary
condition{−�u + αu = f (u), in Ω,

∂u

∂ν
= 0, on ∂Ω,

(1.1)

where α > 0, f satisfies f (0) = 0.
In [9], the authors have solved the case that f ′(x) exists for some special points. In this paper, we consider the more

general problem with a jumping nonlinearity at some special points, i.e., the left and the right derivatives of f at some
points are different.

Now we give the following conditions and our main results.

(a) ∃c > 0 such that

lim
�x→0

f (x + �x) − f (x)

�x
� c

(
1 + |x|β−1), x ∈ R,
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and

lim
�x→0

f (x + �x) − f (x)

�x
� −c

(
1 + |x|β−1), x ∈ R,

where 1 < β < 2∗ − 1, 2∗ = 2n/(n − 2), if n � 3, and 2∗ = ∞, if n = 1,2.
(b) ∃ sequences {ai} and {bi}, where ai,bi ∈ R , i = 1,2, . . . , which satisfy ai > 0, bi < 0 and ai ↗ +∞, bi ↘ −∞ as i → ∞.

And at the same time {ai}, {bi} satisfy

f (ai) = αai, f (bi) = αbi,

which means {ai}, {bi} are constant solution sequences of (1.1).

Let a0 = b0 = 0, f (t) < αt if t ∈ (ai,ai+1), where i is odd number, i � 1; f (t) > αt if t ∈ (ai,ai+1), where i is even
number, i � 0; f (t) < αt if t ∈ (bi+1,bi), where i is even number, i � 0; f (t) > αt if t ∈ (bi+1,bi), where i is odd number,
i � 1.

(c) f is C1 for all t 
= ai,bi , i is even number, i � 2. And f ′−(ai) 
= f ′+(ai), f ′−(bi) 
= f ′+(bi) for i even number, i � 2, where
f ′−(t), f ′+(t) denote the left and the right derivatives of f at t , respectively.

(d) Let (a,b) = ( f ′−(ai) − α, f ′+(ai) + α) for i even number, i � 2. For (a,b) ∈ R2, the problem{−�u = b(u − c)+ − a(u − c)−, in Ω,
∂u

∂ν
= 0, on ∂Ω

only has constant solution c, where (u − c)±(x) = max{±(u − c),0} and c is a constant.

And λl+1 > f ′
i−(a2k) − α > λl , λl+1 > f ′

i+(a2k) − α > λl , l � 2, k = 1,2, . . . , where

f i(t) =
{0, t < 0,

f (t), 0 � t � ai,

f (ai), t > ai,

and f ′
i−(a2k), f ′

i+(a2k) denote the left and the right derivatives of f i at a2k , respectively and λl , l � 2 are the eigenvalues of
Neumann problem of −�.

(e) ∃m > α, such that f (x) + mx is increasing, x ∈ R .

Then we have the main result of this paper:

Theorem 1.1. Suppose f satisfies (a)–(e). Then there are infinitely many nonconstant solutions of problem (1.1). Moreover, if we choose
some order intervals which have two pairs of strict constant sub–sup solutions, then there are at least two nonconstant solutions.

Furthermore, if we assume that f ′−(0) 
= f ′+(0) under conditions (a)–(e), we can have at least one sign-changing solution
which is of mountain pass type from the mountain pass theorem in order interval (see Lemma 2.8 below). When we discuss
multiple solutions of (1.1), we notice that there may be infinitely many sign-changing solutions under stronger assumptions.
In fact, if we give more assumptions, we can obtain infinitely many sign-changing solutions.

We give the following assumption:

(f) F (t) > ((μ2 + ε0)/2)t2, |t| � M , M is large enough, where μ2 is the second eigenvalue of (−� + α) and ε0 > 0.

Corollary 1.2. Under the assumptions (a)–(f) and f ′−(0) 
= f ′+(0), we can get infinitely many sign-changing solutions which are of
mountain pass type or not mountain pass type but with positive local degree.

Our technique is based on the mountain pass theorem in order interval, computing the critical groups and Fucik spec-
trum.

2. Preliminaries

At first, we recall some notions and known results of the critical point theory and Morse theory. Let M be a Banach
space, J ∈ C1(M, R), the set J a = {u ∈ M | J (u) � a} is called a level set. We denote the set of all critical points by K , i.e.,
K = {u ∈ M | J ′(u) = 0}. A real number c is called a critical value of J if J−1(c) ∩ K 
= ∅. Denote Kc = {u ∈ K : J (u) = c},
c ∈ R . Assume that J ∈ C2(M, R), a critical point u is called nondegenerate if the Hessian J ′′(u) at this point has a bounded
inverse. Let u be a nondegenerate critical point of J , we call the dimension of the negative space corresponding to the
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spectral decomposition of J ′′(u), i.e., the dimension of the subspace of negative eigenvectors of J ′′(u), the Morse index of u,
and denote it by ind( J ′′(u)).

Let us use singular relative homology groups Hq(X, Y ; G) with an Abelian coefficient group G to describe the topological
difference between the topological spaces X and Y , with Y ⊂ X,q = 0,1,2, . . . . Use Hq(X; G) to stand for the qth singular
cohomology group with an Abelian coefficient group G , from now on we denote it by Hq(X). Readers are referred to [1,2],
pp. 252–257 for the definitions of Hq(X, Y ; G) and Hq(X; G).

Definition 2.1. (See [3].) Let J be a C1 function defined on M , let u be an isolated critical point of J , and let c = J (u),

Cq( J , u) = Hq
(

J c ∩ U ,
(

J c \ {u}) ∩ U ; G
)

is called the qth critical group of J at u, q = 0,1,2, . . . , where U is an isolated neighborhood of u, i.e., K ∩ U = {u}.

From the definition, we can compute the critical group of J at some special points. For example, from Section 5.1.3,
Example 1 in [3], we already know that if u is an isolated minimum point of J , then Cq( J , u) = δq0G. Next, we give the
proof of this example.

Proposition 2.2. If u is an isolated minimum point of J , then

Cq( J , u) = δq0G.

Proof. In fact, from the assumption, we conclude that

J c ∩ U = {
v ∈ M

∣∣ J (v) � c
} ∩ U = {u} ∩ U = {u}.

And by the definition of the critical group (see Definition 2.1 above), we have that

Cq( J , u) = Hq
(

J c ∩ U ,
(

J c \ {u}) ∩ U ; G
) = Hq

({u},∅; G
) = Hq

({u}; G
) =

{
G, q = 0,

0, q 
= 0,

where c = J (u), U is an isolated neighborhood of u, i.e., K ∩ U = {u}. The proposition holds. �
Proposition 2.3. (See [3].) If J ∈ C2(M, R) and u is a nondegenerate critical point of J with Morse index j, then

Cq( J , u) = δqj G.

Proof. See 5.1.3, Example 3 of Chang [3]. �
Definition 2.4 (Mountain pass point). (See [3].) If C1( J , u) 
= 0, then we call an isolated critical point u of J a mountain pass
point.

Definition 2.5. (See [9].) If any sequence {uk} ⊂ M which satisfies J (uk) → c and J ′(uk) → 0(k → ∞) has a convergent
subsequence, we say that J satisfies the (P S)c condition. If J satisfies (P S)c condition for all c ∈ R , we say that J satisfies
the (P S) condition.

Definition 2.6. (See [9].) We say that J satisfies deformation property, if ∀ε∗ > 0, ∀N , ∃ε ∈ (0, ε∗) and a continuous map
η : [0,1] × M → M , such that

(i) η(0, ·) = id,

(ii) η(t, u) = u, ∀u ∈ M \ {u ∈ M: c − ε∗ � J (u) � c + ε∗}, t ∈ [0,1],
(iii) J (η(·, u)) is nonincreasing, ∀u ∈ M ,

(iv) η(1, J c+ε \ N) ⊂ J c−ε,

where J ∈ C1(M, R), c ∈ R , N is a closed neighborhood of Kc .

Lemma 2.7 (First deformation theorem). (See [16].) If J ∈ C1(M, R) satisfies (P S)c condition for all c ∈ R, N is a closed neighborhood
of Kc � K ∩ J−1(c), ∀ε > 0, then there is a continuous map η : [0,1] × M → M and ε ∈ (0, ε), such that

(i) η(0, ·) = id,

(ii) η(t, u) = u, ∀u ∈ M \ J−1[c − ε, c + ε], t ∈ [0,1],
(iii) η(t, ·) : M → M is homeomorphism, ∀t ∈ [0,1],
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(iv) η(1, J c+ε \ N) ⊂ J c−ε,

(v) J (η(t, u)) is nonincreasing, ∀u ∈ M, t ∈ [0,1],

where J c+ε = {u ∈ M | J (u) � c + ε} is a level set.

Proof. See Theorem 2.2 of [16]. �
Consider the functional

J (u) = 1

2

∫
Ω

|∇u|2 dx + α

2

∫
Ω

u2 dx −
∫
Ω

F (u)dx,

where F (u) = ∫ u
0 f (s)ds. From the variational point of view, solutions of (1.1) are the critical points of J defined on

W 1,2(Ω). Let [u1, u2] = {u ∈ X | u1 � u � u2, x ∈ Ω} be the order interval in X = {u ∈ C1(Ω) | ∂u
∂ν = 0, x ∈ ∂Ω}.

From the deformation theorem (see Lemma 2.7 above), we know that J satisfies deformation property when J satisfies
(P S) condition.

Let E be a Hilbert space and P E ⊂ E a closed convex cone such that X is densely embedded to E . Assume that P =
X ∩ P E , P has nonempty interior Ṗ and any order interval is bounded.

Then J : E → R satisfies the following assumptions (see [9]):

( J1) J ∈ C2(E, R) and satisfies (P S) condition in E and deformation property in X .
( J2) ∇ J = id − K E , where K E : E → E is compact. K E (X) ⊂ X and the restriction K = K E |X : X → X is of class C1 and

strongly preserving, i.e., u � v ⇔ u − v ∈ Ṗ .
( J3) J is bounded from below on any order interval in X .

Lemma 2.8 (Mountain pass theorem in order intervals). (See [11].) Suppose J satisfies ( J1)–( J3) and {v1, v2}, {ω1,ω2} are two
pairs of strict sub–sup solutions of ∇ J = 0 in X with v1 < ω2 , [v1, v2] ∩ [ω1,ω2] = ∅. Then J has a mountain pass point u0 ,
u0 ∈ [v1,ω2]\([v1, v2]∪[ω1,ω2]). More precisely, let v0 be the maximal minimizer of J in [v1, v2] and ω0 be the minimal minimizer
of J in [ω1,ω2]. Then v0 � u0 � ω0 . Moreover, C1( J , u0), the critical group of J at u0 , is nontrivial.

Proof. See Theorem 1.3 of Li and Wang [11]. �
Remark 2.9. Lemma 2.8 still holds if J ∈ C1(E, R), K is of class C0 and J has infinitely many isolated critical points.

This was known from the results in Li and Wang [12,11].

Now, let us recall some notions and known results on Fucik spectrum (see Perera and Schechter [13] and Definition 2.10
below).

Consider the problem⎧⎨
⎩

−�u = b(u − c)+ − a(u − c)−, in Ω,

∂u

∂ν
= 0, on ∂Ω,

(2.1)

from the variational point of view, solutions of (2.1) are the critical points of the functional

I(u) = I(u,a,b) =
∫
Ω

|∇u|2 − a
[
(u − c)−

]2 − b
[
(u − c)+

]2
, u ∈ X =

{
C1(Ω)

∣∣∣ ∂u

∂ν
= 0

}

where c is a constant and Ω ∈ Rn is a bounded domain with smooth boundary ∂Ω and (u − c)±(x) = max{±(u − c),0}.
Recall that Fucik spectrum of −� is the set of those points (c,d) ∈ R2 for which the problem{−�u = du+ − cu−, in Ω,

u = 0, on ∂Ω
(2.2)

has nontrivial solutions (see Perera and Schechter [13]).

Definition 2.10. The set Σ is denoted by the points (a,b) ∈ R2 for which (2.1) has nonconstant solutions, we call Σ the
Fucik spectrum of −� with Neumann boundary problem.

Denote by 0 = λ1 < λ2 < · · · the distinct Neumann eigenvalues of −� on Ω . It was shown in Schechter [14] and Gar-
buza [6] that Σ has two strictly decreasing curves Cl , Cl passing through the (λl, λl) such that the region Il in the square
1 2 1
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Q l = (λl−1, λl+1)
2 below the lower curve Cl1 and the region Il2 above the upper curve Cl2 are free of Σ , while the points on

the curves are in Σ . We denote by IIl the regions between the curves, then the points in IIl may or may not belong to Σ .
Denote by Il = Il1 ∪ I(l−1)2 .

If (a,b) doesn’t belong to Σ , c is the constant solution of (2.1), i.e, c is an isolated critical point of I , then from the
definition of critical group (see Definition 2.1 above), we have the Cq(I, c) defined, q = 0,1,2, . . . .

Now, we give some results relative to the computation of the critical groups when (a,b) falls in certain parts of Q l .

Lemma 2.11. (See [4,13].) Let (a,b) ∈ Q l \ Σ and let dl denote the dimension of the subspace Nl spanned by the eigenfunctions
corresponding to λ1, . . . , λl .

(i) If (a,b) ∈ Il , then

Cq(I, c) =
{

Z , q = dl−1,

0, q 
= dl−1.

(ii) If (a,b) ∈ IIl , then Cq(I, c) = 0 for q � dl−1 or for q � dl .

In particular, Cq(I, c) = 0 for all q when λl is a simple eigenvalue.

Proof. See Theorem 1 of Dancer [4]. �
We observe that when (a,b) ∈ IIl and λl is a multiple eigenvalue, the above theorem doesn’t determine Cq(I, c) for

dl−1 < q < dl . Let K p denote the set of critical points of I p = I(·, p) and K̂ p = {u ∈ K p: ‖u‖ = 1}. Recall that Γp is the
set of (a,b) ∈ R2 \ Σ for which there is a curve γ = (γ1, γ2) ∈ C([0,2]) ∩ C1([0,1]), γ (0) = p = (p1, p2), γ (2) = (a,b), for
p ∈ Q l ∩ Cl2 , such that

(1) γ ((0,2]) ∩ Σ = ∅,

(2) γ ′
1, γ

′
2 � 0 on [0,1],

(3) γ (0) + γ ′(0) = γ (1) (see Definition 1.2 of Perera and Schechter [13]).

It was shown in [13] that if γ intersects Σ only at p = (p1, p2) and a � p1, b � p2, we can take γ to be the line segment
joining p = (p1, p2) and (a,b). Then we have IIl ⊂ Γp when the region IIl is free of Σ .

Lemma 2.12. (See [13].) If p ∈ Q l ∩ Cl2 , and (a,b) ∈ Γp , then

Cq(I, c) ∼=
{

Hdl−q−1(K̂ p), q 
= dl−1,

H0(K̂ p)/Z , q = dl−1.

Proof. See Theorem 1.3 of Perera and Schechter [13]. �
Moreover, set Al = I − λl(−�)−1, let Nl−1, E(λl), Ml denote the negative, zero and positive subspaces of Al , respectively,

and for p, let I p = I(·, p),

I p(v + ω0) = inf
ω∈Ml

I p(v + ω), v ∈ Nl, (2.3)

I p(v0 + ω) = sup
v∈Nl−1

I p(v + ω), ω ∈ Ml−1. (2.4)

It was shown in Schechter [15] that there are continuous and positive homogeneous functions

τl : Nl → Ml, γl−1 : Ml−1 → Nl−1

such that ω0 = τl(v), v0 = γl−1(ω) are the unique solutions of (2.3), (2.4), respectively.
Let

Tl = {
v + τl(v): v ∈ Nl

}
,

Rl−1 = {
γl−1(ω) + ω: ω ∈ Ml−1

}
,

Sl = Tl ∩ Rl−1, Ŝl = {
u ∈ Sl: ‖u‖ = 1

}
.

We also have the following conclusion:
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Lemma 2.13. (See [13].)

Cq(I, c) ∼=
{

Hdl−q−1( Ŝ+
l ), q 
= dl−1,

H0( Ŝ+
l )/Z , q = dl−1,

where Ŝ+
l = {u ∈ Ŝl: I(u) > 0}, for (a,b) ∈ IIl \ Σ .

Proof. See Theorem 1.6 of Perera and Schechter [13]. �
3. The proof of the main results

Consider the equation⎧⎨
⎩

−�u + αu = f i(u), in Ω,

∂u

∂ν
= 0, on ∂Ω,

(3.1)

where

f i(t) =
⎧⎨
⎩

0, t < 0,

f (t), 0 � t � ai,

f (ai), t > ai

is a truncation function, the corresponding functional

J i(u) = 1

2

∫
Ω

|∇u|2 dx + α

2

∫
Ω

u2 dx −
∫
Ω

Fi(u)dx,

where Fi(u) = ∫ u
0 f i(s)ds.

We notice that f i(t) ∈ C0(R, R) and J i ∈ C1(E, R). We can discuss a similar case for bi .
Li [8] shows that J i(u) satisfies coercive condition on E = W 1,2(Ω). So if J ′

i(u) = u − Kiu, u ∈ E , where Ki is a compact
operator, then J i satisfies (P S) condition in E and deformation property in X .

Next, we give the relation of the solutions of (3.1) and the solutions of (1.1), i.e., Lemma 3.2 below. In order to prove
Lemma 3.2, we firstly give the weak maximum principle.

Lemma 3.1 (Weak maximum principle). (See [5].) Assume u ∈ C2(U ) ∩ C(U ) and

c ≡ 0 in U .

(I) If Lu � 0 in U , then

max
U

u = max
∂U

u.

(II) If Lu � 0 in U , then

min
U

u = min
∂U

u,

where U ⊂ Rn is open and bounded, L is elliptic operator having the nondivergence form

Lu = −
n∑

i, j=1

aijuxi x j +
n∑

i=1

biuxi + cu,

the coefficients ai j , bi , c are continuous.

Proof. See Section 6.4.1, Theorem 1 in Evans [5]. �
Lemma 3.2. If ui(x) is a solution of (3.1), then ui(x) is also a solution of (1.1) and satisfies 0 � ui(x) � ai , i = 1,2, . . . .

Proof. Suppose the conclusion is false. Now, consider the domain Ui = {x ∈ Ω | ui(x) < 0}, then we have{−�u = f i(u) − αu � 0, in Ui,

u = 0, on ∂Ui,

where −�u = f i(u) − αu = 0 − αu = −αu � 0, x ∈ Ui by the definition of f i(u).
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By the maximum principle (see Lemma 3.1 above), we have ui(x) � 0 in Ui . It is a contradiction, so it follows that Ui = ∅,
i.e., ui(x) � 0. Similarly, we consider V i = {x ∈ Ω | ui(x) > ai}, we have the equation{−�u = f i(u) − αu � 0, in V i,

u = 0, on ∂V i,

where −�u = f i(u) − αu = f (ai) − αu � f (ai) − αai = 0, x ∈ V i by the definition of f i(u). By the maximum principle, we
can conclude that ui(x) � ai in V i . It is a contradiction, so we have that V i = ∅, i.e., ui(x) � ai . From the above discussion,
we have that 0 � ui(x) � ai , i = 1,2, . . . and f i(u) = f (ui), so ui(x) is a solution of (1.1). This completes the proof of the
lemma. �

From the above discussion, by applying Lemma 3.2, we know that in order to prove the main result of Theorem 1.1 we
only need to prove that (3.1) has infinitely many nonconstant solutions under the assumptions (a)–(e) and (3.1) has two
nonconstant solutions in every order interval.

Theorem 3.3. Assume that fi satisfies (a)–(e), then there are infinitely many nonconstant solutions of (3.1). Moreover, if there exist
some order intervals which have two pairs of strict constant sub–sup solutions, then there are at least two nonconstant solutions.

Proof. According to (b), we can conclude that {ai} are all positive constant solutions of (3.1). Assume i is large enough and
i is an even number, from assumption (b), we infer that {a2k−1} are local minima, k = 1,2, . . . , i

2 . So we get u2k−1 and u2k−1

a strict sub-solution and sup-solution pair for (3.1), satisfying u2k−1 < a2k−1 < u2k−1 for each k, k = 1,2, . . . , i
2 .

Now, we study the order interval [u1, u3] in X which includes two sub-order intervals [u1, u1] and [u3, u3].
We infer that J i(u) satisfies deformation properties and is bounded from below on [u1, u3], so we get a mountain pass

point u1 ∈ [u1, u3] \ ([u1, u1] ∪ [u3, u3]) according to the mountain pass theorem in order interval (see Lemma 2.8 above).
From the definition of mountain pass point (see Definition 2.4 above), we have that C1( J i, u1) is nontrivial.

From assumption (c), we know that the left and the right derivatives of f i at a2 are different. We consider the problem⎧⎨
⎩

−�u = f i(u) − αu, in Ω,

∂u

∂ν
= 0, on ∂Ω,

(3.2)

where f i ∈ C(Ω × R) and as u → a2k we have

f i(u) − αu = (
f ′

i+(a2k) − α
)
(u − a2k)

+ − (
f ′

i−(a2k) − α
)
(u − a2k)

− + ◦(u − a2k).

We take a = f ′
i−(a2k) − α, b = f ′

i+(a2k) − α, then from assumption (d) and the definition of Σ (see Definition 2.10 above),
we know that (a,b) doesn’t belong to Σ .

From Lemma 2.11, we know that if (a,b) ∈ Il , l 
= 2, we have

Cq( J i,a2) =
{

Z , q = dl−1,

0, q 
= dl−1,

and

Cq( J i,a2k) =
{

Z , q = dl−1,

0, q 
= dl−1,
k = 2,3, . . . ,

i

2
− 1,

then if l 
= 2, we have Cq( J i,a2) � Cq( J i, u1), where i is an even number, so u1 
= a2.
If (a,b) ∈ IIl , l � 1, then from Lemma 2.13, we have

Cq( J i,a2) ∼=
{

Hdl−q−1( Ŝ+
l ), q 
= dl−1,

H0( Ŝ+
l )/Z , q = dl−1,

for (a,b) ∈ IIl \ Σ . If l = 2, then dl−1 = d1 = 1, so for q = 1, we have C1( J i,a2) ∼= H0( Ŝ+
2 )/Z . Furthermore, for a point p, we

have

Hq(p; G) ∼=
{

Z , q = 0,

0, q 
= 0.

Then we have Cq( J i,a2) ∼= 0 � Cq( J i, u1), so u1 
= a2. If l > 2, then dl−1 > 1, and from Lemma 2.11, we have for q = 1 that
C1( J i,a2) ∼= 0. Then we have Cq( J i,a2) � Cq( J i, u1), so u1 
= a2.

Similar to the previous discussion, applying the mountain pass theorem in order interval to [u3, u5] which contains two
sub-order intervals [u3, u3] and [u5, u5], we get a mountain pass point u2 and prove that u2 
= a4 from Lemmas 2.11, 2.12
and 2.13.
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We let the procedure go on. . . . So i
2 − 1 mountain pass points are available which are nonconstant solutions of (3.1),

where i is large enough and i is an even number. Then we have infinitely many nonconstant positive solutions of (3.1) by
the arbitrariness of i.

We can discuss the similar case for bi and get infinitely many nonconstant negative solutions.
Now, we discuss the solutions in [u1, u3] more deeply. Since u1 is a mountain pass point, for the Leray–Schauder degree

of id − K i , we have the computing formula

deg
(
id − K i, B(u1, r),0

) = −1,

where r > 0 is small enough, K i = K i
E |X = (−� + (m + α)id)−1 f ∗

i |X : X → X is of class C0 and strongly preserving, f ∗
i (u) =

f i(u) + mu (see Hofer [7]). Then according to the Poincaré–Hopf formula for C1 case (see [10]) and the computation of
Cq( J i,a2), we have

index( J i,a2) = (−1)l.

Furthermore, for minimum points a1, a3,

Cq( J i,a1) ∼= δq0G, Cq( J i,a3) ∼= δq0G.

From the additivity of Leray–Schauder degree and Theorem 1.1 in [11], we can get

1 = deg
(
id − K i, [u1, u3],0

)
= deg

(
id − K i, [u1, u1],0

) + deg
(
id − K i, [u3, u3],0

) + deg
(
id − K i, B(a2, r),0

) + deg
(
id − K i, B(u1, r),0

)
= 1 + 1 + (−1)l + (−1).

So we have (−1)l = 0. It is impossible. From the above discussion, we conclude that there must exist another critical point
u∗

1 ∈ [u1, u3], which satisfies u∗
1 
= u1 and is nonconstant.

Similarly, we can discuss the order interval [u3, u5], we get another critical point u∗
2 
= u2. We let the procedure go on. . . .

This completes the proof of Theorem 3.3. �
Thus, we prove that the conclusion of Theorem 1.1 holds.

Proof of Corollary 1.2. See Theorem 3.5 of Li and Li [8]. �
Remark 3.4. In Theorem 1.1, we can deal with the case in which (a,b) ∈ Il , l > 2, and (a,b) ∈ IIl , l � 1, but, when (a,b) ∈ I2,
then

Cq( J i,a2) =
{

Z , q = 1
0, q 
= 1

= Cq( J i, u1),

we cannot distinguish u1 from a2, then there may not nonconstant solutions.

Remark 3.5. Let the following assumption holds:

(f)′
∫
Ω

F (u)dx > ((μ2 + ε0)/2)
∫
Ω

u2 dx, as ‖u‖ � M , u ∈ E2, where E2 = {u ∈ E | u = k1e1 + k2e2}, e1, e2 are the first and
the second eigenfunctions of (−� + α) with Neumann boundary, respectively, ∀k1,k2 ∈ R , ‖e1‖ = ‖e2‖ = 1, ε0 > 0 and
M is large enough.

Then under (a)–(c) and (f)′ , we can obtain infinitely many nonconstant positive, negative and sign-changing solutions
of (1.1).

As a matter of fact, we can infer (f)′ from (f).

Corollary 3.6. Moreover, (1.1) has infinitely many nonconstant negative energy solutions {uk}, which are of mountain pass type, if
(a)–(e) hold and J (a2k) → −∞ or J (b2k) → −∞ as k → +∞.

Proof. Assume that J (a2k) → −∞ as k → +∞. Let c = infγ ∈Γ maxγ (I)∩S J (u(t)), where Γ = {γ ∈ C(I, W ) | γ (0) = a2k−1,
γ (1) = a2k+1}, and I = [0,1], S = W \(W1 ∪W2), W = [u2k−1, u2k+1], W1 = [u2k−1, u2k−1], W2 = [u2k+1, u2k+1], c∗ = J (a2k),
k = 1,2, . . . . We discuss the problem in W which has two minimum points a2k−1 and a2k+1. We have that a2k−1 and a2k+1
are in the same radial direction A = {ke1 | k ∈ R}, e1 is the first eigenvalue function of (−� + α) with Neumann boundary.
In fact, e1 is a constant. We conclude that c∗ � c (see Corollary 3.4 of Li and Li [9]). Furthermore, if (c), (d) hold, then c∗ > c.
In fact, if c∗ = c, then c∗ = maxu∈γ ∗(I)∩S J (u) = infγ ∈Γ maxγ (I)∩S J (u(t)) = J (a2k), where γ ∗ is a special path between a2k−1
and a2k+1, which is a path of radial direction A = {ke1 | k ∈ R}, e1 is the first eigenvalue function of (−�+α) with Neumann
boundary. So a2k is a mountain pass point. But according to the assumptions (c) and (d) and Lemma 2.11, we know that
C1( J ,a2k) = 0 (l 
= 2), i.e., a2k is not of mountain pass type. This is a contradiction. We draw the conclusion. �
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