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1. Introduction

Let M̃n be a complex n-dimensional Kähler manifold endowed with the complex structure J and the metric g . The Kähler
2-form ω is defined by ω(·,·) = g( J ·,·). An isometric immersion ψ : Mn → M̃n(4c) of a Riemannian n-manifold Mn into
M̃n is called Lagrangian if ψ∗ω = 0. Lagrangian submanifolds appear naturally in the context of classical mechanics and
mathematical physics. For instance, the systems of partial differential equations of Hamilton–Jacobi type lead to the study of
Lagrangian submanifolds and foliations in the cotangent bundle. Furthermore, Lagrangian submanifolds play some important
roles in supersymmetric field theories as well as in string theory.

In differential geometry of submanifolds, theorems which relate intrinsic and extrinsic curvatures always play an im-
portant role. Related with the famous Nash embedding theorem [14], the first author introduced in early 1990s a new
type of Riemannian invariants, denoted by δ(n1, . . . ,nk). He then established sharp general inequalities relating δ(n1, . . . ,nk)

and the squared mean curvature H2 for submanifolds in real space forms. Such invariants and inequalities have many nice
applications to several areas in mathematics (see [8,9] for more details).

Immersions of submanifolds which attain one of the equalities at every point were called ideal immersions. Roughly
speaking, an ideal immersion of a Riemannian manifold into a real space form is an immersion which produces the least
possible amount of tension from the ambient space.

Similar inequalities also hold for Lagrangian submanifolds of complex space forms. In [7] the first author proved that, for
any δ(n1, . . . ,nk), the equality case holds only when the Lagrangian submanifold is minimal.

In [15] Oprea improved the inequality on δ(2) for Lagrangian submanifolds in complex space forms. In this paper we
establish general inequalities which only involve the squared mean curvature and δ(n1, . . . ,nk) for Lagrangian submani-
folds in complex space forms. Also, we obtain the necessary and sufficient condition for a Lagrangian submanifold to attain
the equality for arbitrary δ(n1, . . . ,nk). Further, we provide some examples showing these new improved inequalities for La-
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grangian submanifolds are best possible. Finally, we provide some non-minimal simple examples which verify some equality
cases of the improved inequalities.

2. Preliminaries

Let M̃n(4c) be a complete, simply-connected, Kähler n-manifold with constant holomorphic sectional curvature 4c and M
an n-dimensional Lagrangian submanifold of M̃n(4c). We denote the Levi-Civita connections of M and M̃n(4c) by ∇ and ∇̃ ,
respectively.

The formulas of Gauss and Weingarten are given respectively by

∇̃X Y = ∇X Y + h(X, Y ), (2.1)

∇̃Xξ = −Aξ X + D Xξ, (2.2)

for tangent vector fields X and Y and normal vector fields ξ , where D is the normal connection. The second fundamental
form h is related to Aξ by〈

h(X, Y ), ξ
〉 = 〈Aξ X, Y 〉.

The mean curvature vector H of M is defined by

H = 1

n
trace h.

For Lagrangian submanifolds, we have (cf. [12])

D X J Y = J∇X Y , (2.3)

A J X Y = − Jh(X, Y ) = A J Y X . (2.4)

The above formulas immediately imply that 〈h(X, Y ), J Z〉 is totally symmetric. If we denote the curvature tensors of ∇ and
D by R and R D , respectively, then the equations of Gauss and Codazzi are given by〈

R(X, Y )Z , W
〉 = 〈Ah(Y ,Z) X, W 〉 − 〈Ah(X,Z)Y , W 〉 + c

(〈X, W 〉〈Y , Z〉 − 〈X, Z〉〈Y , W 〉), (2.5)

(∇h)(X, Y , Z) = (∇h)(Y , X, Z), (2.6)

where X, Y , Z , W (respectively, η and ξ ) are vector fields tangent (respectively, normal) to M; and ∇h is defined by

(∇h)(X, Y , Z) = D X h(Y , Z) − h(∇X Y , Z) − h(Y ,∇X Z). (2.7)

For an orthonormal basis {e1, . . . , en} of T p M at a point p ∈ M , we put

hA
BC = 〈

h(eB , eC ), J e A
〉
, A, B, C = 1, . . . ,n.

It follows from (2.4) that

hA
BC = hB

AC = hC
AB . (2.8)

3. Invariants δ(n1, . . . ,nk)

Let M be a Riemannian n-manifold. Denote by K (π) the sectional curvature of M associated with a plane section
π ⊂ T p M , p ∈ M . For any orthonormal basis e1, . . . , en of the tangent space T p M , the scalar curvature τ at p is defined to
be

τ (p) =
∑
i< j

K (ei ∧ e j). (3.1)

Let L be a subspace of T p M of dimension r � 2 and {e1, . . . , er} an orthonormal basis of L. The scalar curvature τ (L) of
the r-plane section L is defined by

τ (L) =
∑
α<β

K (eα ∧ eβ), 1 � α,β � r. (3.2)

For given integers n � 3 and k � 1, denote by S(n,k) the finite set consisting of all k-tuples (n1, . . . ,nk) of integers
satisfying

2 � n1, . . . ,nk < n and n1 + · · · + nk < n.

Denote by S(n) the union
⋃

k�1 S(n,k).
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For each (n1, . . . ,nk) ∈ S(n) and each point p ∈ M , the first author introduced in [5,6] a Riemannian invariant
δ(n1, . . . ,nk)(p) defined by

δ(n1, . . . ,nk)(p) = τ (p) − inf
{
τ (L1) + · · · + τ (Lk)

}
, (3.3)

where L1, . . . , Lk run over all k mutually orthogonal subspaces of T p M such that dim L j = n j , j = 1, . . . ,k. The invariants
δ(n1, . . . ,nk) and the scalar curvature τ are very much different in nature (see [8] for a general survey on δ(n1, . . . ,nk)).

For a given (n1, . . . ,nk) ∈ S(n), let L1, . . . , Lk be mutually orthogonal subspaces of T p M with dim L j = n j , j = 1, . . . ,k.
We choose an orthonormal basis e1, . . . , em of T p M such that

L j = Span{en1+···+n j−1+1, . . . , en1+···+n j }, j = 1, . . . ,k. (3.4)

We put

�1 = {1, . . . ,n1},
. . .

�k = {n1 + · · · + nk−1 + 1, . . . ,n1 + · · · + nk},
�k+1 = {n1 + · · · + nk + 1, . . . ,n}. (3.5)

For simplicity we put

N = n1 + · · · + nk.

Throughout this paper, we shall make use of the following convention on the ranges of indices unless mentioned otherwise:

αi, βi, γi ∈ �i, i, j ∈ {1, . . . ,k};
r, s, t ∈ �k+1; u, v ∈ {N + 2, . . . ,n};
A, B, C ∈ {1, . . . ,n}. (3.6)

An n-dimensional submanifold of a Kähler n-manifold M̃n is called Lagrangian if the complex structure J of M̃n inter-
changes each tangent space T p M, p ∈ M, with the corresponding normal space T ⊥

p (M).
The first author proved in [5,6] the following optimal relationship between δ(n1, . . . ,nk) and the squared mean curvature

H2 for an arbitrary submanifold in a real space form.

Theorem A. Let Mn be an n-dimensional submanifold in a real space form Rm(c) of constant curvature c. Then, for each k-tuple
(n1, . . . ,nk) ∈ S(n), we have

δ(n1, . . . ,nk) � n2(n + k − 1 − ∑
n j)

2(n + k − ∑
n j)

H2 + 1

2

(
n(n − 1) −

k∑
j=1

n j(n j − 1)

)
c. (3.7)

The equality case of inequality (3.7) holds at a point p ∈ M if and only if, there exists an orthonormal basis {e1, . . . , em} at p, such
that the shape operators of M in Rm(ε) at p with respect to {e1, . . . , em} take the form:

Ar =

⎡⎢⎢⎢⎣
Ar

1 . . . 0
...

. . .
...

0 . . . Ar
k

0

0 μr I

⎤⎥⎥⎥⎦ , r = n + 1, . . . ,m, (3.8)

where I is an identity matrix and Ar
j is a symmetric n j × n j submatrix satisfying

trace
(

Ar
1

) = · · · = trace
(

Ar
k

) = μr .

The same result holds for a Lagrangian submanifolds in a complex space form M̃n(4c) of constant holomorphic sectional
curvature 4c. More precisely, we have
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Theorem B. Let Mn be an n-dimensional Lagrangian submanifold in a complex space form M̃n(4c) of constant holomorphic sectional
curvature 4c. Then, for each k-tuple (n1, . . . ,nk) ∈ S(n), we have

δ(n1, . . . ,nk) � n2(n + k − 1 − ∑
n j)

2(n + k − ∑
n j)

H2 + 1

2

(
n(n − 1) −

k∑
j=1

n j(n j − 1)

)
c. (3.9)

The equality case of inequality (3.7) holds at a point p ∈ M if and only if, there exists an orthonormal basis {e1, . . . , em} at p, such
that the shape operators of M in M̃n(4c) at p with respect to {e1, . . . , em} take the form of (3.8).

Remark 3.1. It was proved in [7] that every Lagrangian submanifold of a complex space form M̃n(4c) that satisfies the
equality case of inequality (3.9) identically for some k-tuple (n1, . . . ,nk) ∈ S(n) is minimal; extending a result in [10,11]
on δ(2).

4. A general inequality for Lagrangian submanifolds

Theorem 4.1. Let Mn be an n-dimensional Lagrangian submanifold of a complex space form M̃n(4c). Then, for any k-tuple
(n1, . . . ,nk) ∈ S(n), we have

δ(n1, . . . ,nk) � n2{(n − ∑k
i=1ni + 3k − 1) − 6

∑k
i=1(2 + ni)

−1}
2{(n − ∑k

i=1ni + 3k + 2) − 6
∑k

i=1(2 + ni)
−1} H2 + 1

2

{
n(n − 1) −

k∑
i=1

ni(ni − 1)

}
c. (4.1)

The equality sign holds at a point p ∈ Mn if and only if there is an orthonormal basis {e1, . . . , en} at p such that with respect to this
basis the second fundamental form h takes the following form

h(eαi , eβi ) =
∑
γi

hγi
αiβi

J eγi + 3δαiβi

2 + ni
λ J eN+1,

ni∑
αi=1

hγi
αiαi = 0,

h(eαi , eα j ) = 0, i �= j,

h(eαi , eN+1) = 3λ

2 + ni
Jeαi , h(eαi , eu) = 0,

h(eN+1, eN+1) = 3λ J eN+1, h(eN+1, eu) = λ J eu,

h(eu, ev) = λδuv JeN+1, N = n1 + · · · + nk, (4.2)

for i, j = 1, . . . ,k; u, v = N + 2, . . . ,n and λ = 1
3 hN+1

N+1N+1 .

Proof. Let (n1, . . . ,nk) ∈ S(n) and let L1, . . . , Lk be mutually orthogonal subspaces of T p M with dim L j = n j , j = 1, . . . ,k.
We choose an orthonormal basis {e1, . . . , en} at a point p ∈ M which satisfies (3.4). Since

τ =
n∑

A=1

∑
B<C

(
hA

B BhA
C C − (

hA
BC

)2)
, (4.3)

τ (Li) =
∑

A

∑
αi<βi

(
hA
αiαi

hA
βiβi

− (
hA
αiβi

)2)
, (4.4)

we have

τ −
k∑

i=1

τ (Li) =
∑

A

∑
r<s

(
hA

rrhA
ss − (

hA
rs

)2) +
∑
A,i

∑
αi ,r

(
hA
αiαi

hA
rr − (

hA
αi r

)2) +
∑

A

∑
i< j

∑
αi ,α j

(
hA
αiαi

hA
α jα j

− (
hA
αiα j

)2)
�

∑
A

{∑
r<s

hA
rrhA

ss +
∑

i

∑
αi ,r

hA
αiαi

hA
rr +

∑
i< j

∑
αi ,α j

hA
αiαi

hA
α jα j

}
−

∑
i

∑
αi ,s

(
hαi

ss
)2 −

∑
B �=r

n∑
r=N+1

(
hr

B B

)2
,

(4.5)

with the equality sign holding if and only if

hαi
α jα�

= h
α j
αiβi

= hr
αiα j

= hαi
st = hr

st = 0 (4.6)

for distinct i, j, � ∈ {1, . . . ,k} and distinct r, s, t ∈ �k+1.
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For a given i ∈ {1, . . . ,k} and a given γi ∈ �i , we have

0 �
k∑

j=1

n∑
r∈�k+1

( ∑
α j∈� j

hγi
α jα j − 3hγi

rr

)2

+ 3
∑
r<s

(
hγi

rr − hγi
ss
)2 + 3

∑
�< j

( ∑
α�∈��

hγi
α�α�

−
∑

α j∈� j

hγi
α jα j

)2

= (n − N + 3k − 3)
∑

j

( ∑
α j

hγi
α jα j

)2

− 6
∑

j

∑
α j ,r

hγi
α jα j h

γi
rr − 6

∑
r<s

hγi
rr hγi

ss

− 6
∑
�< j

hγi
α�α�

∑
α j∈� j

hγi
α jα j + 3(n − N + 3k − 1)

∑
r

(
hγi

rr
)2

= (n − N + 3k − 3)
(
hγi

11 + · · · + hγi
nn
)2 − 2(n − N + 3k)

×
{ ∑

r<s

hγi
rr hγi

ss +
k∑

j=1

∑
α j ,r

hγi
α jα j h

γi
rr +

∑
�< j

hγi
α�α�

hγi
α jα j −

∑
s

(
hγi

ss
)2

}
.

Thus we find

∑
r<s

hγi
rr hγi

ss +
k∑

j=1

∑
α j,r

hγi
α jα j h

γi
rr +

∑
�< j

hγi
α�α�

hγi
α jα j −

∑
s

(
hγi

ss
)2 � n − N + 3k − 3

2(n − N + 3k)

(
hγi

11 + · · · + hγi
nn
)2

, (4.7)

with the equality holding if and only if∑
α j∈� j

hγi
α jα j = 3hγi

ss , j = 1, . . . ,k, s ∈ �k+1. (4.8)

Since

n − N + k − 1

n − N + k + 2
<

n − N + 3k − 1 − 6
∑k

i=1(2 + ni)
−1

n − N + 3k + 2 − 6
∑k

i=1(2 + ni)
−1

,

we get from (4.7) that

∑
r<s

hγi
rr hγi

ss +
k∑

j=1

∑
α j,r

hγi
α jα j h

γi
rr +

∑
�< j

hγi
α�α�

hγi
α jα j −

∑
s

(
hγi

ss
)2

� n − N + 3k − 1 − 6
∑k

i=1(2 + ni)
−1

2{n − N + 3k + 2 − 6
∑k

i=1(2 + ni)
−1}

(
n∑

A=1

hγi
A A

)2

, (4.9)

with the equality sign holding if and only if, for each i ∈ {1, . . . ,k}, we have∑
α j∈� j

hγi
α jα j = 3hγi

ss = 0, j = 1, . . . ,k, s ∈ �k+1. (4.10)

Let us put

w = 2

3

{
n − N + 3k + 2 −

k∑
j=1

6

2 + n j

}
.

Since

k∑
i=1

ni

2 + ni
= k −

k∑
i=1

2

2 + ni
,

∑
j �=i

n j

2 + n j
= k −

∑
j

2

2 + n j
− ni

2 + ni
,

we find for each t ∈ {N + 1, . . . ,n} that
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0 �
∑

i

∑
r �=t

2 + ni

3ni

( ∑
αi

ht
αiαi

− 3ni

2 + ni
ht

rr

)2

+
∑

i

∑
αi<βi

w

ni

(
ht
αiαi

− ht
βiβi

)2

+
∑
i< j

(√
(2 + ni)n j√
(2 + n j)ni

∑
αi

ht
αiαi

−
√

(2 + n j)ni√
(2 + ni)n j

∑
α j

ht
α jα j

)2

+
∑
r<s

r,s �=t

(
ht

rr − ht
ss

)2

+ 1

3

∑
r �=t

(
ht

tt − 3ht
rr

)2 +
∑

i

ni

2 + ni

(
ht

tt − 2 + ni

ni

∑
αi

ht
αiαi

)2

=
∑

i

{
(n − N + 2)

2 + ni

3ni
− w

ni
+

∑
j �=i

(2 + ni)n j

(2 + n j)ni

}( ∑
αi

ht
αiαi

)2

− 2
∑

i

∑
αi

ht
αiαi

ht
rr +

{
n − N + 1 +

∑
i

3ni

2 + ni

}∑
r �=t

(
ht

rr

)2 + w
∑

i

∑
αi

(
ht
αiαi

)2 − 2
∑
i< j

ht
αiαi

ht
α jα j

− 2
∑
r<s

r,s �=t

ht
rrht

ss +
{

n − N − 1

3
+

∑
i

ni

2 + ni

}(
ht

tt

)2 − 2ht
tt

∑
r �=t

ht
rr − 2ht

tt

∑
i

( ∑
αi

ht
αiαi

)2

= 1

3

{
n − N + 3k − 1 −

∑
i

6

2 + ni

}( ∑
αi

ht
αiαi

)2

− 2
∑

i

∑
αi

ht
αiαi

ht
rr

+
{

n − N + 3k + 1 −
∑

i

6

2 + ni

}∑
r �=t

(
ht

rr

)2 − 2ht
tt

∑
i

( ∑
αi

ht
αiαi

)2

− 2
∑
i< j

ht
αiαi

ht
α jα j

− 2
∑
r<s

r,s �=t

ht
rrht

ss − 2ht
tt

∑
r �=t

ht
rr + w

∑
i

∑
αi

(
ht
αiαi

)2 + 1

3

{
n − N + 3k − 1 −

∑
i

6

2 + ni

}(
ht

tt

)2

= w

{
n − N + 3k − 1 − 6

∑k
i=1(2 + ni)

−1

2{n − N + 3k + 2 − 6
∑k

i=1(2 + ni)
−1}

(
n∑

A=1

ht
A A

)2

−
∑
r<s

ht
rrht

ss

−
∑
i< j

∑
αi ,α j

ht
αiαi

ht
α jα j

−
∑

i

∑
αi ,r

ht
αiαi

ht
rr +

∑
s �=t

(
ht

ss

)2 +
∑

i

∑
αi

(
ht
αiαi

)2

}
.

Hence, we obtain∑
r<s

ht
rrht

ss +
∑

i

∑
αi ,r

ht
αiαi

ht
rr +

∑
i< j

∑
αi ,α j

ht
αiαi

ht
α jα j

−
∑
B �=t

(
ht

B B

)2

� n − N + 3k − 1 − 6
∑k

i=1(2 + ni)
−1

2{n − N + 3k + 2 − 6
∑k

i=1(2 + ni)
−1}

(
n∑

A=1

hr
A A

)2

, (4.11)

with equality holding if and only if

ht
tt = (2 + ni)h

t
αiαi

= 3ht
ss, i = 1, . . . ,k, N + 1 � s �= t � n. (4.12)

Thus, by combining (4.5), (4.9) and (4.11), we obtain inequality (4.1).
Equality in (4.1) implies that the inequalities (4.5), (4.9) and (4.11) become equalities. Thus, we have∑

α j∈� j

hγi
α jα j = 3hγi

ss = 0, j = 1, . . . ,k, s ∈ �k+1, (4.13)

ht
tt = (2 + ni)h

t
αiαi

= 3ht
ss, i = 1, . . . ,k, N + 1 � s �= t � n, (4.14)

hαi
α jα�

= h
α j
αiβi

= hr
αiα j

= hαi
st = hr

st = 0 (4.15)

for distinct i, j, � ∈ {1, . . . ,k} and distinct r, s, t ∈ �k+1.
It follows from (4.10) that the mean curvature vector lies in Span{eN+1, . . . , en}. Thus, we may choose eN+1 in the

direction of H . Then we conclude that conditions (4.13)–(4.15) are equivalent to (4.2) due to the totally symmetry of h. �
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Remark 4.1. When k = 1 and n1 = 2, inequality (4.1) is due to Oprea [15] (see also [13]). The equality case for this special
case have been investigated rather detailed in [1–3].

5. Lagrangian graphs attaining the equality at a point

Consider the product E
n ×E

n of two Euclidean n-spaces equipped with the Euclidean metric and the natural coordinates
(x1, . . . , xn, y1, . . . , yn). The product E

n × E
n has a natural complex structure J defined by

J
∂

∂xi
= ∂

∂ yi
, J

∂

∂ yi
= − ∂

∂xi
, i = 1, . . . ,n.

We denote the pair (En × E
n, J ) by Cn , which is known as the complex Euclidean n-space.

Consider the graph in Cn = (En × E
n, J ) of a smooth map f : D → E

n defined on an open domain D ⊂ E
n . Then the

graph is a Lagrangian submanifold of Cn if and only if the matrix (
∂ f i

∂x j
) is a symmetric matrix. In particular, if D is simply

connected, then there exists a function F : D → R with f = ∇ F . Therefore, the Lagrangian graph takes the form

L(x1, . . . , xn) = (x1, . . . , xn, Fx1 , . . . , Fxn ), Fxi = ∂ F

∂xi
, i = 1, . . . ,n. (5.1)

The next result shows that, for each k-tuple (n1, . . . ,nk) ∈ S(n), (4.1) is sharp.

Theorem 5.1. For each k-tuple (n1, . . . ,nk) ∈ S(n), there exists a non-minimal Lagrangian submanifold in Cn which satisfies the
equality case of (4.1) at a point.

Proof. For a given nonzero real number λ, let us consider the Lagrangian graph M in Cn defined by (5.1) with

F =
k∑

i=1

3λ

2(2 + ni)

∑
αi∈�i

x2
αi

xN+1 + λ

2

n∑
r=N+1

xN+1x2
r , N =

k∑
i=1

ni . (5.2)

Then

e1 = (1,0, . . . ,0), . . . , en = (
0, . . . ,0,

n-th︷︸︸︷
1 ,0, . . . ,0

)
(5.3)

form an orthonormal basis of To(M) at o = (0, . . . ,0). It is easy to verify that the coefficients of the second fundamental
form h of the Lagrangian graph satisfies

hC
AB = ∂3 F

∂xA∂xB∂xC
, A, B, C = 1, . . . ,n.

Thus, we find from (5.2) that, at the point o given by (x1, . . . , xn) = (0, . . . ,0), the second fundamental form satisfies

h(eαi , eβi ) = 3δαiβi

2 + ni
λ J eN+1,

h(eαi , eα j ) = 0, i �= j, i, j = 1, . . . ,k,

h(eαi , eN+1) = 3λ

2 + ni
Jeαi ,

h(eαi , eu) = 0,

h(eN+1, eN+1) = 3λ J eN+1,

h(eN+1, eu) = λ J eu,

h(eu, ev) = λδuv JeN+1, u, v = N + 2, . . . ,n, (5.4)

at the point o. Consequently, by Theorem 4.1, we conclude that M is a non-minimal Lagrangian graph satisfies the equality
case of inequality (4.1) at the point o. �
Remark 5.1. Theorem 5.1 shows that the constants in (4.1) cannot be improved.
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6. Minimality

Theorem 6.1. Let Mn be an n-dimensional Lagrangian submanifold of a complex space form M̃n(4c). Then for any integer
n1 ∈ [2,n − 1] we have

δ(n1) � n2{n1(n − n1) + 2n − 2}
2{n1(n − n1) + 2n + 3n1 + 4} H2 + 1

2

{
n(n − 1) − n1(n1 − 1)

}
c. (6.1)

Moreover, if Mn satisfies the equality case of (6.1) for some n1 � n − 2, then Mn is a minimal submanifold of M̃n(4c).

Proof. Inequality (6.1) is special case of inequality (4.1) with k = 1. Now, let us assume that M satisfies the equality case of
(6.1) identically on M . Then, according to Theorem 4.1, there exists a local orthonormal frame {e1, . . . , en} such that

h(eα, eβ) =
n1∑

γ =1

hγ
αβ J eγ + 3λδαβ

2 + n1
J en1+1,

n1∑
α=1

hβ
αα = 0,

h(eα, en1+1) = 3λ

2 + n1
J eα, h(eα, ev) = 0,

h(en1+1, en1+1) = 3λ J en1+1,

h(en1+1, ev) = λ J e j,

h(eu, ev) = λδi j J en1+1, (6.2)

for some functions hγ
αβ and λ, where α,β = 1, . . . ,n1; u, v = n1 + 2, . . . ,n.

To prove this theorem, we take the same approach as in [1,2]. So now assume that n � n1 +2 and that M has no minimal
points, i.e. λ is nowhere zero. In this case J en1+1 is a multiple of the mean curvature vector implying that λ is a globally
defined differentiable function. In accordance to [1,2] we denote by T the vector field corresponding to en+1, which is also
a globally defined differentiable vector field, and by D1 the distribution spanned by T .

At each point, A J T has three distinct eigenvalues of multiplicity 1, n1 and n − n1 − 1 with eigenvalues given respectively
by

λ1 = 3λ, λ2 = 3λ

2 + n1
, λ3 = λ. (6.3)

Let D2 and D3 be distributions of dimension n1 and n − n1 − 1 corresponding to λ2 and λ3, respectively.
From [2] with λ1, λ2, λ3 given above, we have the following lemma.

Lemma 6.1. We have

(2 + n1)∇λ − n1λ∇T T ∈ D⊥
2 , (6.4)

3∇λ − λ∇T T ∈ D⊥
3 , (6.5)

n1λ∇V T − (∇λ)V − 2 + n1

3
Jh(V ,∇T T ) ∈ D⊥

2 , (6.6)

λ∇W T − (T λ)W − Jh(W ,∇T T ) ∈ D⊥
3 , (6.7)

(2 + n1)∇V T − (1 − n1)∇T V ∈ D⊥
3 , (6.8)

3n1∇W T + (1 − n1)∇T W ∈ D⊥
2 , (6.9)

(1 − n1)λ∇V W + (2 + n1) Jh(V ,∇T W ) ∈ D⊥
2 , (6.10)

(1 − n1)λ∇V W + 3(W λ)V + (2 + n1) Jh(V ,∇W T ) ∈ D⊥
2 , (6.11)

(1 − n1)λ∇W V − (2 + n1) Jh(W ,∇T V ) ∈ D⊥
3 , (6.12)

(1 − n1)λ∇W V − (2 + n1)(V λ)W − (2 + n1) Jh(W ,∇V T ) ∈ D⊥
3 , (6.13)

T
(〈

h(V , Ṽ ), J V ∗〉) − 3V λ

2 + n1

〈
Ṽ , V ∗〉 = σ

(〈
h(V , Ṽ ), J∇T V ∗〉) − 〈

h
(

Ṽ , V ∗), J∇V T
〉
, (6.14)

T
(〈

h(W , W̃ ), J W ∗〉) − (W λ)
〈
W̃ , W ∗〉 = σ

(〈
h(W , W̃ ), J∇T W ∗〉) − 〈

h
(
W̃ , W ∗), J∇W T

〉
, (6.15)〈

h(V , Ṽ ), J∇W W̃
〉 = 〈

h(W , W̃ ), J∇V Ṽ
〉
, (6.16)

18n1(W λ)V − (1 + 2n1)(2 + n1)

n1∑
〈∇T W , eα〉 Jh(V , eα) ∈ D⊥

2 , (6.17)

α=1



B.-Y. Chen, F. Dillen / J. Math. Anal. Appl. 379 (2011) 229–239 237
2(2 + n1)(V λ)W − n1(1 + 2n1)

n−n1−1∑
u=1

〈∇T V , eu〉 Jh(W , eu) ∈ D⊥
3 , (6.18)

2(1 − n1)

2 + n1
(T λ)〈V , Ṽ 〉〈W , W̃ 〉 = 3n1(1 + 2n1)

(1 − n1)(2 + n1)λ

〈
h(W , W̃ ), J W̃

〉〈V , Ṽ 〉

+ (2 + n1)
2(1 + 2n1)

9n1(1 − n1)λ

〈
h(V , Ṽ ), J Ṽ

〉〈W , W̃ 〉, (6.19)

for vector fields V , Ṽ , V ∗ in D2 and W , W̃ , W ∗ in D3 respectively, where σ in (6.14) and (6.15) denotes cyclic summation over
V , Ṽ , V ∗ and W , W̃ , W ∗ , respectively.

We choose a local orthonormal frame {e1, . . . , en1 , T , en1+2, . . . , en} such that T ∈ D1, e1, . . . , en1 ∈ D2 and en1+2, . . . , en ∈
D3.

In order to determine the connection coefficients of M as in [2]. We use the following notations: α,β,γ ∈ {1, . . . ,n1}
and t, u, v ∈ {n1 + 2, . . . ,n}. We let

(i) Tα denote the D3 component of ∇T eα ,
(ii) V̄ denote the D2 component of ∇λ,

(iii) W̄ denote the D3 component of ∇λ.

To show that λ is constant, first we observe that (6.4) gives

(2 + n1)V λ = n1λ〈V ,∇T T 〉 for V ∈ D2. (6.20)

On the other hand, by taking V ∗ = Ṽ = eα in (6.14) and summing up on α and by using (2.8) and (6.2), we have
3n1

2 + n1
V λ = −2

∑
α

〈
h(V , eα), J∇T eα

〉
= −2

∑
α,β

〈
h(V , eα),ω

β
α(T ) J eβ

〉 − 2
∑
α

ωn1+1
α (T )

〈
h(V , eα), J T

〉
= 2

〈
h(V , T ), J

( ∑
α

ωα
n1+1(T )eα

)〉
= 2

〈
h(V , T ), J∇T T

〉 = 6λ

2 + n1
〈V ,∇T T 〉. (6.21)

By combining this with (6.20), we obtain

V λ = 〈V ,∇T T 〉 = 0 for V ∈ D2. (6.22)

Similarly, it follows from (6.2), (6.4) and (6.15) that

W λ = 〈W ,∇T T 〉 = 0 for W ∈ D3. (6.23)

Since 〈∇T T , T 〉 = 0, (6.22) and (6.23) imply that ∇T T = 0. Hence, it follows from (6.4) and (6.5) that ∇λ = 0, i.e., λ is
constant.

Next, we claim that

∇D2 D2 ⊂ D2, ∇D3 D3 ⊂ D3. (6.24)

To prove this, first we observe from ∇T T = 0 that we have

〈∇T W , T 〉 = −〈W ,∇T T 〉 = 0. (6.25)

Thus, it follows from (6.17) that

0 =
∑
α

〈∇T W , eα〉〈 Jh(V , eα), V ∗〉 = −〈
h
(
V , V ∗), J∇T W

〉
. (6.26)

Now, from (6.2) and (6.13), we find

0 = (1 − n1)λ
〈∇W V , W ∗〉 + (2 + n1)

〈
h(W ,∇V T ), J W ∗〉

= (n1 − 1)λ
〈
V ,∇W W ∗〉 + (2 + n1)

〈
h
(
W , W ∗), J (∇V T )

〉
= (n1 − 1)λ

〈
V ,∇W W ∗〉. (6.27)

Thus, we have ∇D D3 ∈ D⊥ .
3 2
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On the other hand, it follows from (6.7) that〈
T ,∇W W ∗〉 = −〈∇W T , W ∗〉 = 0. (6.28)

Therefore, we find ∇D3 D3 ⊂ D3. Similarly, we have ∇D2 D2 ⊂ D2. This proves the second claim.
Since n � n1 + 2, locally there exists a unit vector field W ∈ D3. Because n1 � 2, there is a unit vector field V ∈ D2 such

that

−〈∇T V , W 〉 = 〈V ,∇T W 〉 = 0. (6.29)

Combining this with (6.8) and (6.9) gives

〈∇V W , T 〉 = 〈∇W V , T 〉 = 0. (6.30)

From (6.24) and (6.30), we have

∇D2 D3 ⊂ D3, ∇D3 D2 ⊂ D2, ∇T D2 ⊂ D2, ∇T D3 ⊂ D3. (6.31)

Consequently, after applying (6.24) and (6.31) we find〈
R(V , W )W , V

〉 = 〈∇V ∇W W , V 〉 − 〈∇W ∇V W , V 〉 − 〈∇[V ,W ]W , V 〉 = 0. (6.32)

On the other hand, it follows from the equation of Gauss and (6.2) that〈
R(V , W )W , V

〉 = 3λ2

2 + n1
+ c. (6.33)

Eqs. (6.32) and (6.33) imply that c < 0, since λ �= 0.
For c < 0, it follows from (6.24) and (6.31) that 〈R(W , T )T , W 〉 = 0. On the other hand, it follows from (6.2) that

〈R(W , T )T , W 〉 = 3λ2. Thus, again we find that λ = 0 which gives a contradiction. �
Remark 6.1. Theorem 6.1 extends a result of [3].

7. Non-minimal Lagrangian submanifolds satisfying the equality

A Lagrangian submanifold of Cn without totally geodesic points is called a Lagrangian H-umbilical submanifold if its second
fundamental form takes the following simple form (cf. [4]):

h(ē1, ē1) = ϕ J ē1, h(ē j, ē j) = μ J ē1, j > 1, (7.1)

h(ē1, ē j) = μ J ē j, h(ē j, ēk) = 0, 2 � j �= k � n

for some functions ϕ,μ with respect to a suitable orthonormal local frame field {ē1, . . . , ēn}. Such submanifolds are the
simplest Lagrangian submanifolds next to the totally geodesic ones.

Let G : Nn−1 → E
n be an isometric immersion of a Riemannian (n − 1)-manifold into the Euclidean n-space E

n and let
F : I → C∗ be a unit speed curve in C∗ = C − {0}. We may extend G : Nn−1 → E

n to an immersion of I × Nn−1 into Cn as

F ⊗ G : I × Nn−1 → C ⊗ E
n = Cn, (7.2)

where (F ⊗ G)(s, p) = F (s) ⊗ G(p) for s ∈ I , p ∈ Nn−1. This extension F ⊗ G of G via tensor product is called the complex
extensor of G via F .

The following result was proved in [4].

Proposition 7.1. Let ι : Sn−1 → E
n be the inclusion of a hypersphere of E

m centered at the origin. Then every complex extensor
φ = F ⊗ ι of ι via a unit speed curve F : I → C∗ is a Lagrangian H-umbilical submanifold of Cn unless F is contained in a line through
the origin (which gives a totally geodesic Lagrangian submanifold).

For F ⊗ ι, let us choose a unit vector field ē1 tangent to the first factor and ē2, . . . , ēn tangent to the second factor of
I × Sn−1. If we put F ′(s) = eiζ(s) and F (s) = r(s)eiθ(s) , then it follows from [4] that the second fundamental form of F ⊗ ι
satisfies (7.1) with

ϕ = ζ ′(s) = κ, μ = 〈F ′, i F 〉
〈F , F 〉 = θ ′(s), (7.3)

where κ is the curvature function of F . Therefore, by applying (7.1), (7.3) and Theorem 4.1, we conclude that if the unit
speed curve F : I → C satisfies
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κ(s) = (n + 1)θ ′(s) �= 0, s ∈ I, (7.4)

then the complex extensor F ⊗ ι : I × Sn−1 → Cn is a non-minimal Lagrangian submanifold of Cn which verifies the equality
case of (6.1) with n1 = n − 1. Consequently, Theorem 6.1 is sharp.
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