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1. Introduction and main results

We are concerned with the existence of n-dimensional invariant tori of the system:

x=wy)+ P y,u,v),
y=P*xy,u,v),
U=AW)v+P3x y,u,v),
v =B(y)u+ P*x, y,u,v),

(11)

where (x, y,u,v) e T" x R™" x RP x RP (n <m), o(y) = (w1(y), ..., wy(y)) € R" is called frequency vector, and y € M C R™,
where M is a bounded open domain. A and B are p x p matrices, P!, P2, P3 and P* are small perturbations.
A dynamical system is reversible if it admits an involutive symmetry G. Let G be defined by

G:(x,y,u,v) > (—x,y,—u,v).
Denote the vector field of dynamical system (1.1) by
F=(w+P',P? Av+P? Bu+P*)".
The system (1.1) is called reversible if
DG-F=—FoQ, (1.2)

where DG is the differential of G. From (1.2), it is easy to see that system (1.1) is reversible with respect to G when
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Pl (=x,y,—u,v)=P'(x,y,u,v),  P*(=x,y,—u,v)=—P*(x, y,u,v),
P3(—x, y,—u,v)= P3(x, y,u,v), P4(—x, y,—u,v)= —P4(x, y,u,v).

A mapping is said to compatible with the involution G if @ and G commute. Compatible transformations preserve the
reversible structure, that is, they transform reversible systems into reversible systems.
If P/=0 (j=1,2,3,4), then reversible system (1.1) becomes

x=w(y), y=0, u=AW)v, v =B(y)u. (1.3)
The reversible system (1.3) is integrable and admits invariant tori T" x {y%} x {0} x {0} carrying a quasi-periodic flow
x(t) = w(yO)t + xg, y(©) = y°, u(t) =0, v(t) = 0 with the frequencies w(y°) for all y° € M. Some of the invariant tori can
be destroyed by an arbitrarily small perturbations. Whether some invariant tori can persist under small perturbations is an
important problem which has been studied for a long time [1-5,9,11-13,16-24,26].

In the special case of p =0, that is, where there are no normal variables (u, v), the above result was obtained and proved
by Arnold [1] and Sevryuk [16]. They proved that if m > n and the unperturbed frequency map y — w(y) is submersive
in M, i.e, the rank of its differential is equal to n, then the majority of invariant tori survive small perturbations.

If p > 0, the invariant n-tori of reversible system (1.3) are said to be lower dimensional. The persistence of lower di-
mensional invariant tori for the reversible system (1.1) have been extensively studied under the following assumptions [2,3,
17-20]:

(i) Det(£2) # 0, where

2=(3 4.

(ii) Every eigenvalue of the matrix £2 is simple.

Assumption (ii) implies assumption (i). Indeed, since the matrix 2 is infinitesimally reversible, its eigenvalues come in
pairs A, —X. So, if 0 is an eigenvalue of §2, its multiplicity is even, i.e., at least 2. For clearness we write out both of them.

Later on, the results were extended by Broer et al. to the case that £2 has the multiple eigenvalues [4] or zero eigenval-
ues [5]. Let A;, i=1,2,...,2p, be eigenvalues of £2. In the papers just quoted, Broer et al. strongly required the following
non-resonance conditions:

(k,w) #£0, Vk#0, (14)
V=T(k,w) —2j#0, Vk#0, j=1,2,...,2p, (1.5)
V=T(k, @) £ 2 £ 1 £0, Vk#£0,i,j=1,2,...,2p, (1.6)

where k € Z". (1.4) is called Diophantine condition. (1.5) and (1.6) are usually called the first Melnikov’s condition and
the second Melnikov’s condition, respectively. These Melnikov’s non-resonance conditions are very important for lower
dimensional KAM tori for both Hamiltonian systems and reversible systems. But the second Melnikov’s condition (1.6) is
actually a technical condition. By a KAM skill Xu [26] proved a similar result without the second Melnikov’s condition (1.6).

As is well known, the persisting invariant tori usually form a Cantor like family depending on parameters. A natural
question is that in what way the KAM tori depend on parameters or how the KAM tori are connected together with
parameters. Recently, Wang and Xu [22] obtained some result about the above question in reversible system. More recently,
Wang, Xu and Zhang [23,24] obtained some results about the persistence of lower dimensional invariant tori with prescribed
frequencies in reversible systems. The problem of quasi-periodic bifurcations in reversible systems is also one of hot issues
for the KAM theory, and there are already some well-known results on this problem. See [6,8].

In the papers just quoted, they essentially required the condition that the matrix A(y) is non-singular on M. When the
matrix A is non-singular, we can use the linear term Av to control the shift of lower-order terms from small perturbation
in KAM steps and so we can completely control the shift of equilibrium point.

If the matrix A(y) is singular at some point y? € M, that is det(A(y®)) = 0, the previous results cannot give any
information on the persistence of the invariant torus T" x {y°} x {0} x {0}. Actually, consider the following dynamical
system:

k=w(y), y=0, i = P3(e), v =B(y)u, (1.7)

where (x, y,u,v) € T" x R x RP x RP, P3 = (¢, 0, ...,0) € RP. Then for all € > 0 the reversible system (1.7) has no invariant
torus.

If det(A(y%)) =0 with y® € M, then the invariant tori T" x {y°} x {0} x {0} of the reversible system (1.3) are called
degenerate lower dimensional tori. The purpose of this paper is to obtain some information on the persistence of the
degenerate lower dimensional invariant tori for the reversible systems.

There are already some results on degenerate lower dimensional invariant tori for Hamiltonian systems [7,10,29]. But the
relation between the papers [7,10,29] and the present paper is rather feeble. Therefore, we do not intend to introduce these
results.
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So far as we know, there is no similar result for reversible systems. Liu [9] considered the reversible systems of the
following form:

x=w+P'(x, y,u,v,w),

y=D()+ P>, y,u,v, ), 18)
i=C()y+AV+ Py, uvw), ’
v =B(w)u + P4(x, Y, U, v, w),

where (x, y,u,v) € T" x R" x RP x RY, w is an independent parameter varying over a positive measure set O C R". Liu [9]
replaced the condition det$2 # 0 by the condition rank(A, C) = p in the reversible system (1.8). A natural question is what
happens when rank(C, A) < p? In fact, the result in [9] does not hold in this case.

In this paper, we shall consider the simplest case of this degenerate problem: p =q = 1. If we do not want to impose
further restriction on the perturbations besides the smallness and smoothness, the higher order terms of the unperturbed
integrable system have to be taken into account. To be more precise, we consider the reversible system of the following
form:

Xx=wo+Qy+P'(x,y,u,v),
y=P3x,y,u,v),
o=y v PPy u, ),

v=u-+ P4(x, y,u,v),

(1.9)

where (x, y,u, V) eT" x R®" xR xR (m>n+1), y= (¥1, 2, ..., ¥m) € R™, ng > 0 is a positive integer, P!, P2, P3 and P4
are small perturbations. Q is an n x m matrix. The corresponding involution G is (x, y,u, v) — (=X, y, —u, v). The purpose
of this paper is to study the persistence of the degenerate lower dimensional invariant tori with given frequency wy.

To state our results, we first give some definitions and notations.

Let f(x1,...,Xxn) be a continuous function with period 27 in every x;, i =1, 2,...,n, denote the average of f by
1 2 2
=— .- X)dxq - - - dxp. 110
1= o [+ [ 00 a (110)
0 0
Let

D(s,r) ={(x,y,u,v) € (C/21Z)" x C" x C x C | |[Imx| <s, |y| <1, |u| <71, [v] <1}
If f(x,y,u,v) is analytic on D(s,r), expanding f as Fourier series with respect to x, we have

f(xv y? u, V) = Z fk(yv u, V)e\/__l(k'w- (111)

kezn
Since fi(y,u,v) in (1.11) are analytic in y, u, v around the origin, we have
fiyuvy= > fuyy'u'vl,
leZ7 i, jel
Define
I1fIpsn = IMfily €™,

kezn
where Mfi(y,u,v) =Y, ;| fuijly'u'vi and |Mfi|, denotes the sup-norm of Mf; over the domain D(s,r). The following
theorem is the main result of this paper.

Theorem 1.1. Consider the reversible system (1.9). Suppose the perturbation terms PJ (1 < j < 4) and Q (x) are real analytic in
(x,y,u,v)on D(s,r) and wy satisfies the Diophantine condition:

|k, wo)| > ”% vk € Z"\{0}, (112)

where @ > 0 and T > n — 1 are some constants. Let Q (x) = (Q?(x), Qg(x)), where Q?(x) and Qg(x) arenxnandn x (m—n)

matrices, respectively. We assume that Qg(x) = 0 and the average [Q?] of Q?(x) is non-singular. Then there exists a positive constant
€ > 0, such that if

”Pj”D(s,r) <€ (j:1725374)5

then the reversible system (1.9) has an invariant n-torus with wy as the frequency, i.e., the torus persists under small perturbations.
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Remark 1. The previous results cannot provide any information on the persistence of the degenerate lower dimensional in-
variant tori for the reversible system (1.9). Our result shows that the reversible system (1.9) has a torus with the frequencies
wo if P4 (j=1,2,3,4) are sufficiently small.

Although the paper [5] by Broer et al. allowed 2 to have zero eigenvalues, the results of [5] cannot be applied to the
reversible system (1.9). Actually, Broer et al. replaced the condition det §2 # 0 by the condition kerad NN B+ = {0} where (in
the framework of our paper) N = wgdx+ Avd, + Budy, ad N is the corresponding adjoint operator in the Lie algebra of vector
fields, and BT is the space of constant vector fields X with zero y component such that DG - X = X o G. For system (1.9), not
only the non-degeneracy condition det £2 # 0 is not met but even the condition ad N N B = {0} is violated. Liu [9] replaced
the condition det £2 # 0 by the condition rank(A, C) = p in the reversible system (1.8). For system (1.9), the non-degeneracy
condition rank(A, C) = p is also violated.

Remark 2. Consider the following reversible system:
X=wo+QXy+P', y=P>, a=vi+pP3 Uv=u+P4 (1.13)

where (x, y,u,v) € T" x R™ x R x R (m > n). Noth that all eigenvalues of the normal matrix 2 = ((1) "02) in system (1.13)

have nonzero real parts if 0 # v € R. Then (u,v) = (0, 0) is called a hyperbolic-type point. By the similar method as in
[28,29], the authors believe that the reversible system (1.13) also has an invariant torus with wg as the frequency. This is
one of subjects of future work.

Remark 3. If P/ =0 (j =1, 2,3, 4), then reversible system (1.9) becomes

x=wo+QWy, y=0, a=yat 42 v=u, (114)

where (x,y,u,v) € T" x R™ x R x R (m >n + 1). The system (1.14) admits an (m — n)-parameter continuous family of
invariant n-tori which labeled by yui1, Yni2, ..., Ym—1,V (with y,; = —v¥@m+D) Theorem 1.1 shows that the reversible
system (1.9) also admits an (m — n)-parameter Cantor family of invariant n-tori with frequency vector wy.

ov
10
v < 0. Then (u, v) = (0, 0) is called an elliptic-type point. So the methods in [28,29] cannot be applied to our problem.

In the proof of our result, by the assumption that det[Q?] # 0, we can use the first n components of y to remove shifts of
tangential frequencies. Moreover, we can also remove the shifts of normal frequencies by the higher order term v2. Then we
keep both tangential frequencies wy and normal frequencies fixed in our KAM steps, so Melnikov’s non-resonance conditions

always hold without deleting any parameter. The higher order term yﬁf‘ﬁl is used to control the shift of equilibrium point.

Remark 4. Noth that the eigenvalues of the normal matrix 2 = ( ) in system (1.14) are nonzero pure imaginary for all

2. Proof of the theorems

The previous method cannot be applied to the degenerate case, so we must develop some KAM technique for our
problem. At first we introduce some parameters and change the reversible system (1.9) to a parameterized system and this
idea is used in [14] for Hamiltonian systems.

Let ym =& + y;;. Then the reversible system (1.9) becomes

x=wo+ QXY+ flx y.u,v,6),
y=f2&y.u,v.8),

U=NE) +CEY+(y. EE)y)+ v+ fPx y.u, v, £),
v=u-+ f4(x, y,u, v, &),

(2.1)

where

N@E) =&*1 &) =(0,0,...,0,(2ng + 1)g2™),

E(§) =diag(0, ...,0, (2ng + Dngg?™ 1),

fl=PXy1.y2. . Ymot. ym+E V), =124,

P=P&y1,y2 .. ymt, ym +E 1w, v) + ((ym + £ —&20F —C&)y —(y, E©)y)).

and & € I[1 =[-§,8] C R is regarded as a parameter. Note that we have used yn instead of the new variable y; in the
transformed equations for simplicity.
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1
Now we consider the parameterized reversible system (2.1). Let 1y = {¢§ € C| dist(&, IT) < d}. We choose d = § = € 20+4

1 . )
and r = §2 = €™+2 Then it is easy to see that fi(x,y,u,v,£) (i=1,2,3,4) are analytic on D(s,r) x IT; and || f! lpes,ryxmy <
ce (i=1,2,3,4).1f fil=0(i=1,2,3,4), then reversible system (2.1) becomes

X=wo+QMy, y=0, a=NE+CEY+(y.EGy)+v:, v=u (2.2)

For & =0 the reversible system (2.2) has a lower dimensional invariant torus with wg as frequency. Now we want to prove
that if fi (i=1,2,3,4) are sufficiently small, there exists sufficiently small parameters &, € I such that at £ = &,, the
reversible system (2.1) also has a lower dimensional invariant torus with wg as frequency.

We use the Herman method to prove Theorem 1.1. The Herman method is a well-known KAM technique that introduces
an artificial external parameter to make the unperturbed system highly non-degenerate. This method has been used in [2,
19,20,23,27].

Now we introduce an artificial external parameter and consider the following reversible system:

x=wo+ QMY+ flx. y.u,v,8),

y=rxy.u,v,8),

U=NE ) +CEY+(y. E@y)+vi+ Px y.u,v,8),
\'/:u+f4(x,y,u,v,§),

(2.3)

where N(£,y) = &%+t £y e R is an artificial external parameter. The reversible system (2.1) corresponds to the re-
versible system (2.3) with y = 0. We will give a KAM theorem for the reversible system (2.3) with parameters (&, y) and
then prove Theorem 1.1.

Define

B(I',d)={y e C|dist(y, I') <d}

the complex d-neighborhood of I" in 1-dimensional complex space C. Let j = maxges |§20F!| = 62041 and M = 1, x
B0,2u+1). If f(x,y,u,v,&,y) is analytic on D(s,r) x M, then

f(xv y,u,v,é, J/): Z fklij(%_v y)yluivje\/ﬁ(k,@.
keZM 1€Z i, jely
Define

Ifps.xm= Y IMflpe.nxm ek,
kezn

where Mfy(y,u,v,&,y) = Zl!i!j | fraij &, Y)1y'uivi and IMfxlpes,ryxm denotes the sup-norm of Mfy over the domain
D(s,r) x M. Let f=(f1, f2, f3, f*) be a vector field depending on x, y,u, v, £ and y. Define a weighted norm by

4
1 1 .
|||f|||D(s,r)XM = ; Hf1 ”D(s,r)xM + Z r_2 Hfl ”D(s,r)xM'
i=2

Then we have the following theorem.

Theorem 2.1. Consider the reversible system (2.3), where Q (x) is the same as in Theorem 1.1. Suppose that the frequency vector wq
satisfies the Diophantine condition:

|k, wo)| > vk € Z"\{0}, (2.4)

o

Wa

where @ > 0 and T > n — 1 are some constants. Then, there exists an € > 0, such that if
[ s <€ §=1.23.4,

then in M we have a C*°-smooth curve
Ly =y(8), &ell,

which is determined by the equation
%.Zno-&-] +y+ N*(s’ y)=0, (2.5)

where N* (&, y) is a C°°-smooth function on M with

[N(&, y)| <ce/r and |Nug(€, y)|+ [Nosy (£, 7)| <

N =
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Moreover, we have a parameterized family of compatible transformations

s r
Dy sy 06, D(E’ 5) — D(s,r), & y)ely,
where &, is analyticin (x, y,u, v) on D(%, %) and C*-smooth in &, y on I'y, such that for each (§, y) € Iy, the compatible transfor-
mation . (-, -, -, - ,&, y) transforms the reversible system (2.3) into
x=wo+fl.  y=f1  u=Cy+f2. V=B.u+f2 (2.6)

where f,f satisfy fi (x,0,0,0)=0 (j =1, 2,3, 4). Hence, the reversible system (2.3) has an invariant torus ®,(T", 0, 0, 0, &, y) with
the frequencies wy.

By Theorem 2.1, we can easily get Theorem 1.1. In fact, by (2.5) and the implicit function theorem we have

V(&) ==& 4 P&), eIl

Moreover, if € is sufficiently small, we have |P| < ce/r < c8202 for all £ e IT. It follows that Y, (£8) = F820H! + Po(£8)
must have different sign if § > 0 is sufficiently small. Thus there exists &, € IT such that y,(&,) = 0. Hence, by the compatible
transformation @, (-, -, -, - &, Vs (&) = D, -, -, - ,&4, 0), the reversible system (2.3) is changed into (2.6). Therefore, the
reversible system (2.1) has a lower dimensional invariant torus with wg as frequency at & = &,. This completes the proof of
Theorem 1.1.

Now it remains to prove Theorem 2.1. In the following, we will use the KAM iteration to prove Theorem 2.1. In the proof
of this theorem, we can remove the shifts of tangential frequencies wg by a small translation of components of y in KAM
steps. The existence of such translation of coordinates can be guaranteed by the condition that det[Q?] # 0. Moreover, we
can also remove the shifts of normal frequencies by a small translation of v. The existence of such translation of coordinates
can be guaranteed by the higher order term v2. Then we keep both tangential frequencies wg and normal frequencies fixed
in our KAM steps, so Melnikov’s non-resonance conditions always hold without deleting any parameter.

2.1. KAM step

In this section, we give the details of one KAM step. To simplify notations, in what follows, the quantities without
subscripts refer to those at the j-th step, while the quantities with subscript “+” denote the corresponding ones at the
(j + 1)-th step. We will use the same notation c to indicate different constants, which are independent of the iteration
process.

Suppose at the j-th step, the reversible system is written as

Xx=wo+ QX &1y + Wi & Y)u+Wax, &, y)v+ flx, y,u, v, 6 p),
=) Bhx&YUVI 4 Py u v E ),

[[4i+j=2
i=NEY)+CEVIY+ Y BLxE YUV + Py u v g y), (2.7)
Il +i+j=2
V=BE YU+ Y BLxE YUY+ Ay u v E ),

[+i+j=2

where (x,y,u,v,&,v) e D(s,r) x M, N(&,y) = 52”0“ +v+ N(g, y). Let Q@ =(Q, W1, W3), N = (01xm, N(§, y),O)T with
O1xm being a 1 x m zero matrix. Set

1
B o 00 0 2
BxzZ2 Y | B |Yuvi, A=[c o0 0], g=|f>
— 4
[|+i+j=2 B?ij(x) 0 B O f
Then system (2.7) is written as
X=0+0Wz+ fl(x2), 2=N+Az+Bx7 +g*, 2). (2.8)

Note that in the above equations the parameters (£, ) are implied. We summarize one KAM step in the following lemma.

Lemma 2.2. Let us consider the above reversible system (2.8) with

6 67+2
I fllps,mxm < € =a’Ep® T+,
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We assume wy satisfying the Diophantine condition (2.4) and N(p) satisfying

R, + Ry € )| < 50 VEE ) M. (29)
Moreover, the equation

N y) =57 +y + NG y) =0,
defines implicitly an analytic curve

r: y=y@): §ellg—y¢) eB02u+1),

suchthat I' ={(§, y(§)) | § e [1y} C M. Let o = E%r we have
ur.o)={(E.y)elgxCl|y' —y@®|<o}cM.
Letn=E3,dy =d— g 5. =5s—10p, py =5, 14 =01, E = CES, €, =abE, p8712. Assume that
1

67+2 B - =

, |BIm 2
where Eq is a parameter that can be chosen sufficiently small, Bo(x)z% = (0, (2ng + Dno&?™~1y2 +v2,0)T, [Qo] = [Q2,0] €
R M+2) with Q? € R™" being a non-singular matrix. Then, there exists

2
max(r, E%} <a’p max{ 1B — Bollpis,nxm. | Qx) — Qo ||D(s,r)xM} <Eg, (2.10)

M= {(E,)/) €My, xCléeMy,, Ey)el, [y —y®)]|< %} cM, (2.11)

such that for any (&, y) € W, there exists a compatible transformation @ (-, - ,£,y) : D(s4+,r4+) — D(s,r) which changes the re-
versible system (2.8) to

x=w+0yz+ flx,2), z=Np+Ayz+BiX7% + g+ (%, 2), (212)

where N = (01xm, Ny (€, ¥),0)T with N_(&,y) = N(&, y) + AN(S, ¥ ). Moreover, we have the following conclusions:
(i) The compatible transformation @ satisfies

|&@ —id) ‘|D(s+,r+)><M+ S cE, (213)
(= ~—1
|&8@® —Inimi2) & p, v yum, SCE (2.14)
where 5 = diag(ln, 1Im, 1, 1). Here I, denotes the m x m identity matrix.

(ii) The new perturbation term f = (f1, f2, f3, f$) satisfies

N fllDes, roxm, <€t =abpSTH2E,. (215)

(i) AN(p), Q4. By and A satisfy

|ANGE, p)| <cer, VE p)eM, (2.16)
N A CEr 1

|ANg (&, 9)| + |AN, (€, )| < — SCES, V& y)eMy, (217)

max{[|Qy — Qllp(s,.ryxMy 1B+ — Blipes,.ryxmy» A — Alm, } < cE. (2.18)

(iv) The equation
y +E A N6 y) =y + 8T NG y) + ANGE ) =0,
defines implicitly an analytic curve
Tyt ye=y4@): §€lly, — v+ () € B0, 2 +1),
satisfying

v+ @& —y&)| <cer< (2.19)

N

and

r={(yr®) | £ €My, ) c My (2.20)
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If

o
04 < —, 221
+S 4 (2.21)
then we have U(I'+,04+) C M.

We divide the proof of Lemma 2.2 into the following several parts.

A. Constructing compatible transformation. In the following, we will construct a compatible transformation @ which changes
the reversible system (2.7) into (2.12). Let & : (x4, y+, U4, V4) — (X, ¥, u, v) be defined by

x=xy +h(xy),
Y=Y+ +a1(x4) +b11(xp)y+ +bra(x)uy +bi13(x1)vy,

uU=uy+ax(x4) +ba1(X1)y+ +baa(xp)uy +baz(x)vy, (2:22)
vV =vy +a3(x4) +b31(x4)y+ + ba2(x)us +b3z(x4)vy.
Denote z = (y, u, )T and Zy =Y+, Ug, v+)T. @ is written in a more compact form:
X=xy +h(x4), z=z4y+axy)+b(xy)zy, (2.23)
where
(a1) b11 b1z bis
a=|a |, b=|ba bxn b
as bs1 b3z b33
Let S =diag(Ipm, —1, 1). It is easy to see that @ is compatible with the involution G if and only if
h(—x) = —h(x), Sa(—x) =a(x), Sb(—x)S =b(x). (2.24)

Under the transformation @ the system (2.8) is changed into

% =wo + (In+Dyh(0) ' (=dwph + f1(x,0) + QX)a(x))
+ (In+Dxh0) " (Qx + ) (1 + b)) + f1(x, 0)z + f1(x,2),

=Ny 4+ Az + (Inga +b®) " (=9 + Aa(x) + g(x, 0) — ) (2.25)
+ (Im2 + b))~ (—dyb + Ab(X) — b(X).A + g,(x, 0) + 2B(X)a(x) — dga(x) — A)z

+ (Img2 + b)) ™! (B(x +h)(1+bx)* + %azzgo«, 0) — agw(x))zz +84(x,2),

where A/ =N+N, A = A+ A with A and N/ being determined later, le (x,0) = %lzzg, g,(x,0) = 3—5 |z=0, 0228(x,0) =
g%glzzo, dogh =X jegn V—1(k, wo)hgeV—1kx), wod, b, d0a and 3o, b are defined similarly. Moreover, we have

Fl(x,2) = (In+ Deh(x) ™' (Flod®2) - f1(x,0) - (f} (x,0),2) + (Qx + h) — Q(x))a(x)), (2.26)

_ 1
g+(X, Z) = (1m+2 + b(X)) ! <g o ¢(X7 Z) - g(x7 O) - (gZ(X7 0)7 Z> - §<822g(x7 O)Z’ Z>

+ B(x + h)a*(x) — bx)N; — 8 p1(a0) +b(x)z) — Béb(x)>, (2.27)
with Q(x) = Q4 — Q. Note that we have used (x, z) instead of the new variables (x, z;) in the transformed equations for
simplicity.

Let
Q4 (%) = (In + 01 (0) " (Qx+h)(1+bX) + f1(x,0)), (2.28)
_ 1
By () = (Imy2 +b(x) l(B<x +)(1+b0)” + 5 0228(x.0) - ag+b(x)). (2.29)
If we can find h(x), a(x) and b(x) such that
doh(x) = ' (x,0) + Q)a(x), (2.30)
dipya(x) — Aa(x) = g(x,0) = N, (231)

dwob(x) — Ab(x) +b(X) A = g,(x,0) — dgwa(x) — 2B(x)a(x) — A. (2.32)
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Then the system (2.8) becomes

X=w+ 04+ fi(x,2), z=Ni+Az+Br(0Z22+g4(x 2) (2.33)
with f}_ and g4 being much smaller perturbations than before.
B. Solving linear homological equations. In the following, we solve the linear homological equations (2.30)-(2.32).

We first solve Eq. (2.31). Since the system (2.7) is reversible, we have [f2(-,0)] =0 and [f*(-,0)] =0. Let a = (a1, az, a3)"
and A = (01xm, N, 0)T. Then the linear homological equation (2.31) becomes

dpa1 () = f2(x,0,0,0), (2.34)
dwp@2(®) = f3(x,0,0,0) + Car (x) — N, (2.35)
3wy a3(x) = f4(x,0,0,0) + Bay(x). (2.36)

Let

a(x) = Z a’l‘eﬁ“‘*’“.
kezn

Note that [f2(-,0)]=0 and || f2(x, 0,0, O)llpes,ryxm < < er?. By Lemma A.1 of Appendix A, Eq. (2.34) is solvable. Moreover, we
have

2
0 k /=1 k, cer
Hal -0 ||D(s—p,r)><M = Z aler( " < oot ’ (2'37)
- o
keZm\{0} s=p
where a{ is determined later.
Let N = [f3C, 01+ Ca?. By Lemma A.1 of Appendix A, it follows that Eq. (2.35) has a unique solution a;(x) with
cer?
[a2]=0 and |lazlls—2p < 22T (2.38)
Let
as(x) = Z ageﬁ“‘*’“.
keZh
Note that [f4(-, 0)] =0 and [a2] = 0. By Lemma A.1 of Appendix A, Eq. (2.36) is also solvable. Moreover, we have
2
0 k /—1(k,x) Cer
|las — a3 ”D(s—3p,r)><M = Z ase 03037’ (2.39)
keZm\{ S=p p
where a3 [a3] is determined later.
Next we choose suitable al and a3 to remove the shifts of normal frequencies and normal frequencies.
Since the system (2.7) is reversible, we have
0 H;X1 0
[g:(-,0) — %a()Q() —2B()a()] = | DS, O E€
0 F€ 0
By (2.10), (2.37), (2.38) and (2.39), it is easy to see that E€ has the following form:
E€ = —2[Bjpya§ + e1a] +ea,
where |[B%02]|M > % le1lm < E3 and |eq|y < max{m,er} < cer.
Let
) 0 00 0 0 [bi3]
A= Dixm 0 O and [b]=]|0 0 O , (2.40)
0 F€ 0 0 0 0

with [by3] = 4 H€. Then we have
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0 HE¢ 0
—A[b]+[b]A=|0 0 —C[b13]|]. (2.41)
0 0 0

Noting that the system (2.7) is reversible, so H¢ does not contain the variables a? and ag. By (2.10) and it is easy to see
that |[b13]|m < 2|HE|m < cer.
If we can find a9 and a9 such that
[F1¢.0+0(Ma] =0, (2.42)
Ee + Clb13] = —2[B3, a3 + e1ad + e + C[b13] = 0. (2.43)
Then the homological equations (2.30) and (2.32) are also solvable.
In view of @ =(Q, W1, W»), let Q () =Y pczm QkeV=TkX) Wy (x) = > ez W’geﬁ“‘"‘) and we have
[F1¢.0 - QMa()] =[Qla) + Wad + Y (Q¥al, + W5a? ) + [W1(hax() + f1(. 0)].
k|0
Let
a?:(&?,O,...,O)T with @) e R", Y:(&?,ag)TeR"“.
Note that we already obtained the a; (|k| # 0) from (2.31). By (2.10), Egs. (2.42) and (2.43) can be written as the following
form:
M+ MY =W, (2.44)

where

0 0 0o wod
M = Q] 2 b MG = 2 )
0 —2[BZy,] e7 O

wel(~ Z\k#o(Qkalk + Wia® ) — [Wi()az() + f1(,0)] '
—e3 — C[b13]

By (2.10) it is easy to see that M is an (n+ 1) x (n + 1) non-singular matrix. Moreover, we have

2
IMell <2E; and  [[Wlls—3 < cer.

Hence, M + M is also a non-singular matrix if Eg is sufficiently small. Then Eq. (2.44) is solvable. Therefore, we obtain a?
and ag such that Eqgs. (2.42) and (2.43) hold. Moreover, we have

|a(1)| < cer, |ag| < cer. (2.45)
By the form of .4 and Lemma A.1 of Appendix A, the linear homological equations (2.30) and (2.32) are also solvable.

Moreover, we have the following estimates:

cer

55 (2.46)

Il p(s—4p,r)xM < , blps—9p,ryxM <

ap®

Now we already obtained h(x), a(x) and b(x) from the homological equations (2.30)-(2.32). Then the transformation @ is
defined well by (2.23). To prove that @ is a compatible transformation, we verify the symmetry of (2.24). Since the system
(2.7) is reversible, it follows that

Sg(—x,0)=—g(x,0), SA=-AS, SN=-N, Sg;(—x0)S=—gx0),
where S =diag(I;;, —1,1). If a(x) is a solution for (2.31), then we have

—0woa(—X) — Aa(—x) = g(—x,0) — N.
Multiplying the above equation by S from the left, we have

By SaA(—x) — ASa(—x) = g(x,0) — .

Thus Sa(—x) is also a solution for (2.31). Then a(x) = %(a(x) + Sa(—x)) is also a solution for (2.31) and satisfies the second
equation of (2.24). Thus, if Sa(—x) # a(x), we can replace a(x) by a(x) so that Sa(—x) = a(x). In the same way, we have
Sb(—x)S = b(x). Noting that Sa(—x) = a(x), the symmetry of h holds obviously. Hence, @ is a compatible transformation.
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cer
apt

Cer

Nothing that € = «8Ep®7*2 and 5 = E3, we have oo

< p and

<nr<g.letsy =s—10p,r, =nr. It is easy to
see that

D:(X4,21)eD(sy,14+) —> (X,2) € D(s —9p,2nr) C D(s,1).

Moreover, we have

| 8@ —id)| b, 1\ yoem < CE. (247)

— ——1

”‘:‘(D¢ _In+m+2)‘:‘ “D(S+,T+)XM <CE7 (2'48)
where Z = diag(Iy, %Im, % %).
C. Estimates of perturbation terms. For any (&,y’) e U(I',8), 3(§,y) € I" such that |y’ — y| < o. So it follows that

N N 1 4

VE V) =IVEY) -NEW=INEY) - NE NI <Sly —y|<o=Eor (2.49)

Let M, be defined by (2.11), it follows easily that M is closed. Obviously, we have
1

MycU({,o)cM and dist(My,dM) > EU’

where dM is the boundary of M. Note that AN = [f3(, 0]+ Ca? with |[f3(-, 0)] +Ca?|M < cer. It is easy to see that (2.16)

and (2.17) hold. .
Set Np(&,y)=N(,y)+ AN(, y). By the implicit function theorem, if

)<l veprem
E(gv)/ Sy &.v)eM,

the equation

Y+ 4 NLE y) =0,
defines implicitly an analytic curve

Fpi ye=y4@): &elly, — y() €BO.2u+1).
Note that y; and y satisfy
V&) +ET LN (5 p(©) =y +ET 1N (E v (©) =0.

Then it is easy to see that

ly+@®) —y®| <N+ (6, 1) = NE y(©)]

<INE y+®) = NE vy ®)] + |AN(E, y4+©)|
1
< ® =y ©| +cer.

Hence, the conclusions (2.19) and (2.20) hold. By (2.21) and noting that cer « %, we have U(Iy,04) C M4.
From (2.10), (2.28) and (2.46) we have

. cer
121Dy, royxm =19+ — Cllpesy,ryxM € —m—7 < CE. (2.50)

o6 pbT+1
By the definition of Q, B, A and (2.46), it is easy to see that (2.18) holds.
Now we first give an estimate of the new perturbation term f_l. By (2.28) it follows that ||(I, + Dxh)~! lp, <2if Eis
sufficiently small. Note that here and below we write D = D(s4,r4) x My for simplicity.
By (2.26) and (2.46), we have

I£2 5, < gocter -cer+ 1 002 = 116.0) = o .00 2) .. (2.51)
Next we give an estimate of || f! o @ (x,2) — f1(x,0) — (3,f1(x,0), 2)[Ip, . Obviously, we have

[flod®2) - f1(x,0) —(3:f1(x,0).2)] ) =F' +F, (2.52)
where

Fl=flod - flx2, F=f'x2—-f(x0—(3,f1(x0),2).
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By the Cauchy estimates and noting that € = «®Ep®7+2 and r < o657+, it follows that

. er er er er 5 5
|7, <c{ = > apt +7'o¢67,oﬁf <cekr, | F, <nPer.

In view of n = E%, we have
[flo@@2) = f1(x0) —(3:f1(x.0.2)],, <cners.
By (2.51) we have

|7+, <cmers.

787

Now we estimate the new perturbation term g,. Similarly to the above estimates of f}r, it is easy to see that
l(Im2 +b)~1|p, <2 if E is sufficiently small. Combining (2.10), (2.27), (2.46), (2.49) and (2.50), it follows that

lg+llp, <

1
‘go D (x,2) — g(x,0) — (g:(x.0), 2) — i(azg(x, 0)z,2)

In the same way as (2.52), we have
1
god(x,2) — g(x,0) — (g,(x,0), 2) — 5<Bzg(x, 0)z,2)=P1 + P2,
where
Pl=god(x2)—gx.2. P*=gx2) —g(x0) —(g(x0).2)—

Then, it follows that
2

Pl - err er er
1P, <c 7'apr+7'a6p6r

. 1 1
Noting that E5 < a®p®" %2, n=E5 and | fllp, <cnery, we have
lg+llp, <cnler <cners.
Therefore, we have

6 ,67+2

1 1
Il f+lllp, = r—|\f1||D++r7||g+||u+ cne =apSTH2cES = apSTE, =
+ +

where E; = CES. Thus, Lemma 2.2 is proved. O

2.2. Setting the parameters and iteration

+
Dy

1
§<8zg(x, 0)z, z).

L) < cEer?, [P HD+ <nler.

WEST"‘C“HJEHD

Now we choose some suitable parameters so that the above iteration can go on infinitely. At the initial step, let
Qo(x) = (Q(x),0,0), it is easy to see that [Qo] =[QY, Opxm—nt2)] € R™™2 with Q¥ € R™" being a non-singular matrix.

We set Bo(x)z? £ (0, (2ng + Dnpg?™~1y2 +v2,0)T, Np = (0,204 0)7, fJ —f1 g0 =

(f% 2, fHT, co=(0,0,...,

(2no + 1)€2™), Bo =1, so =S5, ro =min{8?, a®(55)%" "1}, do = and Eo = €o/ab(33)57 ! with g = §2™.

Let

1 1\/*! Si—Sj41 1 4
51‘=50<§+<§> ) Pj=%, nj=E;, oj=E]rj,

4 1
P . _F3 . . =obE:
Tj+1 =1MjTj, Ejy1=cE;, djy1=dj— E]! €j+1 =0 Ej11p;

Then, it is easy to see that s;,rj, pj, Ej,dj, 0}, €; are all well defined for j > 0. In the following we are going to check all

assumptions in the iteration Lemma 2.2 to ensure KAM steps are valid for all j >

We verify the assumption rj <« ,06T+6 by induction. By the choice of ry, we have ro < Gpo

ry <a?p87+2 for some nonnegative integer v. Then, if Eg < (7)6”2, we have

. oy )27
_F5 6 G‘L’+2 2 v 6 ,67+2
1 =Epry <Eja’py <o (7> =000 -

Hence, the assumption r; < 05‘3/);3r+2 holds for all j >0

6

™2 We now assume that
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By the definitions of E; and pj, we have E; < (CSEQ)( ) and pj= 3( 1yJ+3sy. Hence, the assumption E5 < osz?”z

holds for all j > 0 if Eq is sufficiently small.

Obviously,
4
5
ojy1 Ejglizt a2 1 3 .
L:H‘li:cs};‘ﬁ_]gcslfés forVj>0
0j E5t;
il

Hence, for sufficiently small Eg, the assumption o < }10 holds in KAM steps.
Let Dj = D(sj,rj) x Mj. By (2.18), if c>Eq < 3, it follows that

19j — Qolip; <> 11Qui1 — Qvan\Zch\ZcEv CEq forVj>

v=0
Similarly, we have ||B; — Bollp; < cEo, IBj — Bo||Dj <cEp and || Aj — A0||Dj CEg for all Vj > 1. Then it is easy to see that

2

2
the assumptions that [|Bjl|p; > 1 3 I1Bj — BO||D]. <Eg and [|Q(x) — Qollp; < Eg hold in KAM steps if Eg is sufficiently small.
By iteration we have N; = Z{:(} AN;. Combining with estimates for AN, we have that

j-1 1 00 i f
Rje )| + [Ny 6. )] < D cES <3 cF <cEg.
i=0 i=0

Hence, if Eq is sufficiently small, the assumption |Nj5 E v+ |Njy(s, )| < % hold in KAM steps.
2.3. Convergence of iteration

Let Mo = I, x B(0,214 + 1) and Do = D(so,r0) x Mp. By the iteration lemma, we have a sequence of closed sets
{M;} with Mj41 C M}, and a sequence of compatible transformations {®;} such that for each (§,y) € Mji1, @j(-,- &, ¥):
D(sj41,7j+1) — D(sj,rj). Moreover, we have the following estimates

|zj@;—id),  <cEj and [|&;(D®;~Inmi2)&; " |, <CEj.

where D = D(sj,rj) x Mj. Let Pl =dgodo -0 @j_q with @0 =id. In the same way as in [14,15], it follows that

|20 5|, < ]_[(1 +CcEp) < 1_[(1 +CE) <2
i=0
if Eq is sufficiently small. So, we have

|| Eo(q)f _ q)j—1) <cEj_; and || EJOD(q)f _ q;j—l)

”Dj\ gCEjil'

I,
Let My =[50 Mj, Dx=D(35,0) x My and &, =lim;_, o, #/. Thus we have

| E0(@s —id)|, <cEo and |ZoD(®x —id)|, <cEo.

. <
Since @/ is affine in (y,u, v), we have the convergence of ®J to @, on D(%, %) X M.
Now we consider the convergence of N j- By the KAM step we have

INjt1(8,7) — Nj| <|ANj| <cejrj— 0, asj— oo, forall (£,y) € M.

So we have N, =lim;_, o, Nj on M,. Moreover, we have

NI'—\

N8, y)| <ceoro<ce/r and [Ny (&, y)|+ [Ny (€. ¥)| <

4 4 4
Let d, =do — %Z?O:o oj=do— %Z;’-io E;rj. It follows that d. > do — Egro. Note that Egro = 0(82+5M0) « dg =5 if §

is sufficiently small. Then we have d, > %do. Thus Iy, C ﬂDO Ig;. By (2.19) and €; — 0 as j — 0, it is easy to see that
{y;j(&)} and also convergent on I1g,. In fact, by the iteration lemma, for i > j

i—1 .
i -r©l< Y5 <2
I=j

Let yj(€&) — v«(&), E e Iy,. Since I'; ={(§, yj(€)) | & € I'Idj} C Mj and y; are all analytic on Iy, so it is limit y, ().
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Let i — oo and we have

— _1

This implies that I, = {(§, y«(§)) | § € [Ty} C Mj. So I, C My = ﬂ];o M;. Obviously, for (¢, y) € Iy we have
g2+ Ly 4 N6, 7) =0. (2.53)

By (2.18) and in view of Ej — 0 as j — oo, we have Q; — Q,, Bj — B, and Aj; — A, as j— oo. Then it is easy to see
that for all (&, y) € Iy, @, transforms the reversible system (2.7) into the following form:

k=wo+ Q) + fL(x2), z=Az+B.2+geox2) (2.54)
where
0 0 O Omx1
A* = C* 0 0 ) N* = N*, )
0 B, O 0

with N.(&, ) = No(§) + Nu(€, ). Set fl = Q.y + Qu(®z+ fL(x.y.2) and (f2, f3, fHT = B.z> + goo(x, 2). Noting that
€;j— 0 as j— oo, it is easy to see that f1(x,0,0,00=0 (j=1,2,3,4).

In some way as in [22] we can prove that N, and &, are C* in (&,y) on M, in the Whitney’s sense. By Whitney’s
extension theorem [25], we can extend N, and &, to be C>®-smooth on M = IT; x B(0, 2 + 1), but it only makes sense
on M, for our problem. This completes the proof of Theorem 2.2.

Appendix A

In this section we formulate a lemma which have been used in the previous section.
Let Us denote the space of all real analytic functions f(x) defined in the complex domain D(s) = {x | |Imx| < s}; that is

{(x)]f(x) > fre 7T ||f||s<oo}.

kezn
Let

={f® | f(x) €Bs, [f1=0}.
Lemma A.1. Suppose that wy satisfies the Diophantine condition |{k, wp)| > ,i Vk € Z"\{0}. Then the equation

dwgh() =g(x), gx) eUd,

has a unique solution h(x) € Up - L{so_p with
[Ihlls—p < IIgIIs, O<p<s,
where the constant ¢ depends onlyonnand t.
For this lemma, we refer to Lemma 1 in [14].
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