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1. Introduction and main results

We are concerned with the existence of n-dimensional invariant tori of the system:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ = ω(y) + P 1(x, y, u, v),

ẏ = P 2(x, y, u, v),

u̇ = A(y)v + P 3(x, y, u, v),

v̇ = B(y)u + P 4(x, y, u, v),

(1.1)

where (x, y, u, v) ∈ T
n ×R

m ×R
p ×R

p (n � m), ω(y) = (ω1(y), . . . ,ωn(y)) ∈ R
n is called frequency vector, and y ∈ M ⊂ R

m ,
where M is a bounded open domain. A and B are p × p matrices, P 1, P 2, P 3 and P 4 are small perturbations.

A dynamical system is reversible if it admits an involutive symmetry G . Let G be defined by

G : (x, y, u, v) → (−x, y,−u, v).

Denote the vector field of dynamical system (1.1) by

F = (
ω + P 1, P 2, Av + P 3, Bu + P 4)T

.

The system (1.1) is called reversible if

DG · F = −F ◦ G, (1.2)

where DG is the differential of G . From (1.2), it is easy to see that system (1.1) is reversible with respect to G when

✩ The first author is supported by Scientific Research Foundation of Huaiyin Institute of Technology grant HGC0922 and the second by the National
Natural Science Foundation of China (10826035), (11001048) and the Specialized Research Fund for the Doctoral Program of Higher Education for New
Teachers (200802861043).

* Corresponding author.
E-mail addresses: jianxia6690@sina.com.cn, wangxiaocai325@163.com (X. Wang), xujun@seu.edu.cn (J. Xu), zhdf@seu.edu.cn (D. Zhang).
0022-247X/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2011.09.030

http://dx.doi.org/10.1016/j.jmaa.2011.09.030
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:jianxia6690@sina.com.cn
mailto:wangxiaocai325@163.com
mailto:xujun@seu.edu.cn
mailto:zhdf@seu.edu.cn
http://dx.doi.org/10.1016/j.jmaa.2011.09.030


X. Wang et al. / J. Math. Anal. Appl. 387 (2012) 776–790 777
P 1(−x, y,−u, v) = P 1(x, y, u, v), P 2(−x, y,−u, v) = −P 2(x, y, u, v),

P 3(−x, y,−u, v) = P 3(x, y, u, v), P 4(−x, y,−u, v) = −P 4(x, y, u, v).

A mapping is said to compatible with the involution G if Φ and G commute. Compatible transformations preserve the
reversible structure, that is, they transform reversible systems into reversible systems.

If P j = 0 ( j = 1,2,3,4), then reversible system (1.1) becomes

ẋ = ω(y), ẏ = 0, u̇ = A(y)v, v̇ = B(y)u. (1.3)

The reversible system (1.3) is integrable and admits invariant tori T
n × {y0} × {0} × {0} carrying a quasi-periodic flow

x(t) = ω(y0)t + x0, y(t) = y0, u(t) = 0, v(t) = 0 with the frequencies ω(y0) for all y0 ∈ M. Some of the invariant tori can
be destroyed by an arbitrarily small perturbations. Whether some invariant tori can persist under small perturbations is an
important problem which has been studied for a long time [1–5,9,11–13,16–24,26].

In the special case of p = 0, that is, where there are no normal variables (u, v), the above result was obtained and proved
by Arnold [1] and Sevryuk [16]. They proved that if m � n and the unperturbed frequency map y → ω(y) is submersive
in M, i.e., the rank of its differential is equal to n, then the majority of invariant tori survive small perturbations.

If p > 0, the invariant n-tori of reversible system (1.3) are said to be lower dimensional. The persistence of lower di-
mensional invariant tori for the reversible system (1.1) have been extensively studied under the following assumptions [2,3,
17–20]:

(i) Det(Ω) �= 0, where

Ω =
(

0 A
B 0

)
.

(ii) Every eigenvalue of the matrix Ω is simple.
Assumption (ii) implies assumption (i). Indeed, since the matrix Ω is infinitesimally reversible, its eigenvalues come in

pairs λ,−λ. So, if 0 is an eigenvalue of Ω , its multiplicity is even, i.e., at least 2. For clearness we write out both of them.
Later on, the results were extended by Broer et al. to the case that Ω has the multiple eigenvalues [4] or zero eigenval-

ues [5]. Let λi , i = 1,2, . . . ,2p, be eigenvalues of Ω . In the papers just quoted, Broer et al. strongly required the following
non-resonance conditions:

〈k,ω〉 �= 0, ∀k �= 0, (1.4)√−1〈k,ω〉 − λ j �= 0, ∀k �= 0, j = 1,2, . . . ,2p, (1.5)√−1〈k,ω〉 ± λi ± λ j �= 0, ∀k �= 0, i, j = 1,2, . . . ,2p, (1.6)

where k ∈ Z
n . (1.4) is called Diophantine condition. (1.5) and (1.6) are usually called the first Melnikov’s condition and

the second Melnikov’s condition, respectively. These Melnikov’s non-resonance conditions are very important for lower
dimensional KAM tori for both Hamiltonian systems and reversible systems. But the second Melnikov’s condition (1.6) is
actually a technical condition. By a KAM skill Xu [26] proved a similar result without the second Melnikov’s condition (1.6).

As is well known, the persisting invariant tori usually form a Cantor like family depending on parameters. A natural
question is that in what way the KAM tori depend on parameters or how the KAM tori are connected together with
parameters. Recently, Wang and Xu [22] obtained some result about the above question in reversible system. More recently,
Wang, Xu and Zhang [23,24] obtained some results about the persistence of lower dimensional invariant tori with prescribed
frequencies in reversible systems. The problem of quasi-periodic bifurcations in reversible systems is also one of hot issues
for the KAM theory, and there are already some well-known results on this problem. See [6,8].

In the papers just quoted, they essentially required the condition that the matrix A(y) is non-singular on M. When the
matrix A is non-singular, we can use the linear term Av to control the shift of lower-order terms from small perturbation
in KAM steps and so we can completely control the shift of equilibrium point.

If the matrix A(y) is singular at some point y0 ∈ M, that is det(A(y0)) = 0, the previous results cannot give any
information on the persistence of the invariant torus T

n × {y0} × {0} × {0}. Actually, consider the following dynamical
system:

ẋ = ω(y), ẏ = 0, u̇ = P 3(ε), v̇ = B(y)u, (1.7)

where (x, y, u, v) ∈ T
n ×R

m ×R
p ×R

p , P 3 = (ε,0, . . . ,0) ∈ R
p . Then for all ε > 0 the reversible system (1.7) has no invariant

torus.
If det(A(y0)) = 0 with y0 ∈ M, then the invariant tori T

n × {y0} × {0} × {0} of the reversible system (1.3) are called
degenerate lower dimensional tori. The purpose of this paper is to obtain some information on the persistence of the
degenerate lower dimensional invariant tori for the reversible systems.

There are already some results on degenerate lower dimensional invariant tori for Hamiltonian systems [7,10,29]. But the
relation between the papers [7,10,29] and the present paper is rather feeble. Therefore, we do not intend to introduce these
results.
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So far as we know, there is no similar result for reversible systems. Liu [9] considered the reversible systems of the
following form:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ = ω + P 1(x, y, u, v,ω),

ẏ = D(ω) + P 2(x, y, u, v,ω),

u̇ = C(ω)y + A(ω)v + P 3(x, y, u, v,ω),

v̇ = B(ω)u + P 4(x, y, u, v,ω),

(1.8)

where (x, y, u, v) ∈ T
n × R

n × R
p × R

q , ω is an independent parameter varying over a positive measure set O ⊂ R
n . Liu [9]

replaced the condition det Ω �= 0 by the condition rank(A, C) = p in the reversible system (1.8). A natural question is what
happens when rank(C, A) < p? In fact, the result in [9] does not hold in this case.

In this paper, we shall consider the simplest case of this degenerate problem: p = q = 1. If we do not want to impose
further restriction on the perturbations besides the smallness and smoothness, the higher order terms of the unperturbed
integrable system have to be taken into account. To be more precise, we consider the reversible system of the following
form: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ = ω0 + Q (x)y + P 1(x, y, u, v),

ẏ = P 2(x, y, u, v),

u̇ = y2n0+1
m + v2 + P 3(x, y, u, v),

v̇ = u + P 4(x, y, u, v),

(1.9)

where (x, y, u, v) ∈ T
n × R

m × R × R (m � n + 1), y = (y1, y2, . . . , ym) ∈ R
m , n0 > 0 is a positive integer, P 1, P 2, P 3 and P 4

are small perturbations. Q is an n × m matrix. The corresponding involution G is (x, y, u, v) → (−x, y,−u, v). The purpose
of this paper is to study the persistence of the degenerate lower dimensional invariant tori with given frequency ω0.

To state our results, we first give some definitions and notations.
Let f (x1, . . . , xn) be a continuous function with period 2π in every xi , i = 1,2, . . . ,n, denote the average of f by

[ f ] = 1

(2π)n

2π∫
0

· · ·
2π∫
0

f (x)dx1 · · ·dxn. (1.10)

Let

D(s, r) = {
(x, y, u, v) ∈ (C/2πZ)n × C

m × C × C
∣∣ | Im x| � s, |y| � r, |u| � r, |v| � r

}
.

If f (x, y, u, v) is analytic on D(s, r), expanding f as Fourier series with respect to x, we have

f (x, y, u, v) =
∑
k∈Zn

fk(y, u, v)e
√−1〈k,x〉. (1.11)

Since fk(y, u, v) in (1.11) are analytic in y, u, v around the origin, we have

fk(y, u, v) =
∑

l∈Z
m+,i, j∈Z+

fkli j ylui v j.

Define

‖ f ‖D(s,r) =
∑
k∈Zn

|M fk|r es|k|,

where M fk(y, u, v) =∑
l,i, j | fkli j |ylui v j and |M fk|r denotes the sup-norm of M fk over the domain D(s, r). The following

theorem is the main result of this paper.

Theorem 1.1. Consider the reversible system (1.9). Suppose the perturbation terms P j (1 � j � 4) and Q (x) are real analytic in
(x, y, u, v) on D(s, r) and ω0 satisfies the Diophantine condition:∣∣〈k,ω0〉

∣∣� α

|k|τ , ∀k ∈ Z
n\{0}, (1.12)

where α > 0 and τ > n − 1 are some constants. Let Q (x) = (Q 0
1 (x), Q 0

2 (x)), where Q 0
1 (x) and Q 0

2 (x) are n × n and n × (m − n)

matrices, respectively. We assume that Q 0
2 (x) ≡ 0 and the average [Q 0

1 ] of Q 0
1 (x) is non-singular. Then there exists a positive constant

ε > 0, such that if∥∥P j
∥∥

D(s,r) � ε ( j = 1,2,3,4),

then the reversible system (1.9) has an invariant n-torus with ω0 as the frequency, i.e., the torus persists under small perturbations.
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Remark 1. The previous results cannot provide any information on the persistence of the degenerate lower dimensional in-
variant tori for the reversible system (1.9). Our result shows that the reversible system (1.9) has a torus with the frequencies
ω0 if P j ( j = 1,2,3,4) are sufficiently small.

Although the paper [5] by Broer et al. allowed Ω to have zero eigenvalues, the results of [5] cannot be applied to the
reversible system (1.9). Actually, Broer et al. replaced the condition det Ω �= 0 by the condition ker ad N ∩ B+ = {0} where (in
the framework of our paper) N = ω0∂x + Av∂u + Bu∂v , ad N is the corresponding adjoint operator in the Lie algebra of vector
fields, and B+ is the space of constant vector fields X with zero y component such that DG · X = X ◦ G . For system (1.9), not
only the non-degeneracy condition detΩ �= 0 is not met but even the condition ad N ∩ B+ = {0} is violated. Liu [9] replaced
the condition det Ω �= 0 by the condition rank(A, C) = p in the reversible system (1.8). For system (1.9), the non-degeneracy
condition rank(A, C) = p is also violated.

Remark 2. Consider the following reversible system:

ẋ = ω0 + Q (x)y + P 1, ẏ = P 2, u̇ = v3 + P 3, v̇ = u + P 4, (1.13)

where (x, y, u, v) ∈ T
n × R

m × R × R (m � n). Noth that all eigenvalues of the normal matrix Ω =
(

0 v2

1 0

)
in system (1.13)

have nonzero real parts if 0 �= v ∈ R. Then (u, v) = (0,0) is called a hyperbolic-type point. By the similar method as in
[28,29], the authors believe that the reversible system (1.13) also has an invariant torus with ω0 as the frequency. This is
one of subjects of future work.

Remark 3. If P j = 0 ( j = 1,2,3,4), then reversible system (1.9) becomes

ẋ = ω0 + Q (x)y, ẏ = 0, u̇ = y2n0+1
m + v2, v̇ = u, (1.14)

where (x, y, u, v) ∈ T
n × R

m × R × R (m � n + 1). The system (1.14) admits an (m − n)-parameter continuous family of
invariant n-tori which labeled by yn+1, yn+2, . . . , ym−1, v (with ym = −v2/(2n+1)). Theorem 1.1 shows that the reversible
system (1.9) also admits an (m − n)-parameter Cantor family of invariant n-tori with frequency vector ω0.

Remark 4. Noth that the eigenvalues of the normal matrix Ω =
(

0 v
1 0

)
in system (1.14) are nonzero pure imaginary for all

v < 0. Then (u, v) = (0,0) is called an elliptic-type point. So the methods in [28,29] cannot be applied to our problem.
In the proof of our result, by the assumption that det[Q 0

1 ] �= 0, we can use the first n components of y to remove shifts of
tangential frequencies. Moreover, we can also remove the shifts of normal frequencies by the higher order term v2. Then we
keep both tangential frequencies ω0 and normal frequencies fixed in our KAM steps, so Melnikov’s non-resonance conditions
always hold without deleting any parameter. The higher order term y2n0+1

m is used to control the shift of equilibrium point.

2. Proof of the theorems

The previous method cannot be applied to the degenerate case, so we must develop some KAM technique for our
problem. At first we introduce some parameters and change the reversible system (1.9) to a parameterized system and this
idea is used in [14] for Hamiltonian systems.

Let ym = ξ + y+
m . Then the reversible system (1.9) becomes⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ = ω0 + Q (x)y + f 1(x, y, u, v, ξ),

ẏ = f 2(x, y, u, v, ξ),

u̇ = N(ξ) + C(ξ)y + 〈
y, E(ξ)y

〉+ v2 + f 3(x, y, u, v, ξ),

v̇ = u + f 4(x, y, u, v, ξ),

(2.1)

where

N(ξ) = ξ2n0+1, C(ξ) = (
0,0, . . . ,0, (2n0 + 1)ξ2n0

)
,

E(ξ) = diag
(
0, . . . ,0, (2n0 + 1)n0ξ

2n0−1),
f i = P i(x, y1, y2, . . . , ym−1, ym + ξ, u, v), i = 1,2,4,

f 3 = P 3(x, y1, y2, . . . , ym−1, ym + ξ, u, v) + (
(ym + ξ)2n0+1 − ξ2n0+1 − C(ξ)y − 〈

y, E(ξ)y
〉)

,

and ξ ∈ Π = [−δ, δ] ⊂ R is regarded as a parameter. Note that we have used ym instead of the new variable y+
m in the

transformed equations for simplicity.
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Now we consider the parameterized reversible system (2.1). Let Πd = {ξ ∈ C | dist(ξ,Π) � d}. We choose d = δ = ε
1

2n0+4

and r = δ2 = ε
1

n0+2 . Then it is easy to see that f i(x, y, u, v, ξ) (i = 1,2,3,4) are analytic on D(s, r)×Πd and ‖ f i‖D(s,r)×Πd �
cε (i = 1,2,3,4). If f i = 0 (i = 1,2,3,4), then reversible system (2.1) becomes

ẋ = ω0 + Q (x)y, ẏ = 0, u̇ = N(ξ) + C(ξ)y + 〈
y, E(ξ)y

〉+ v2, v̇ = u. (2.2)

For ξ = 0 the reversible system (2.2) has a lower dimensional invariant torus with ω0 as frequency. Now we want to prove
that if f i (i = 1,2,3,4) are sufficiently small, there exists sufficiently small parameters ξ∗ ∈ Π such that at ξ = ξ∗ , the
reversible system (2.1) also has a lower dimensional invariant torus with ω0 as frequency.

We use the Herman method to prove Theorem 1.1. The Herman method is a well-known KAM technique that introduces
an artificial external parameter to make the unperturbed system highly non-degenerate. This method has been used in [2,
19,20,23,27].

Now we introduce an artificial external parameter and consider the following reversible system:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ = ω0 + Q (x)y + f 1(x, y, u, v, ξ),

ẏ = f 2(x, y, u, v, ξ),

u̇ = N(ξ,γ ) + C(ξ)y + 〈
y, E(ξ)y

〉+ v2 + f 3(x, y, u, v, ξ),

v̇ = u + f 4(x, y, u, v, ξ),

(2.3)

where N(ξ, γ ) = ξ2n0+1 + γ , γ ∈ R is an artificial external parameter. The reversible system (2.1) corresponds to the re-
versible system (2.3) with γ = 0. We will give a KAM theorem for the reversible system (2.3) with parameters (ξ, γ ) and
then prove Theorem 1.1.

Define

B(Γ,d) = {
γ ∈ C

∣∣ dist(γ ,Γ ) � d
}

the complex d-neighborhood of Γ in 1-dimensional complex space C. Let μ = maxξ∈Π |ξ2n0+1| = δ2n0+1 and M = Πd ×
B(0,2μ + 1). If f (x, y, u, v, ξ, γ ) is analytic on D(s, r) × M , then

f (x, y, u, v, ξ, γ ) =
∑

k∈Zn,l∈Z
m+,i, j∈Z+

fkli j(ξ,γ )ylui v je
√−1〈k,x〉.

Define

‖ f ‖D(s,r)×M =
∑
k∈Zn

|M fk|D(s,r)×M es|k|,

where M fk(y, u, v, ξ, γ ) = ∑
l,i, j | fkli j(ξ, γ )|ylui v j and |M fk|D(s,r)×M denotes the sup-norm of M fk over the domain

D(s, r) × M . Let f = ( f 1, f 2, f 3, f 4) be a vector field depending on x, y, u, v, ξ and γ . Define a weighted norm by

||| f |||D(s,r)×M = 1

r

∥∥ f 1
∥∥

D(s,r)×M +
4∑

i=2

1

r2

∥∥ f i
∥∥

D(s,r)×M .

Then we have the following theorem.

Theorem 2.1. Consider the reversible system (2.3), where Q (x) is the same as in Theorem 1.1. Suppose that the frequency vector ω0
satisfies the Diophantine condition:∣∣〈k,ω0〉

∣∣� α

|k|τ , ∀k ∈ Z
n\{0}, (2.4)

where α > 0 and τ > n − 1 are some constants. Then, there exists an ε > 0, such that if∥∥ f j
∥∥

D(s,r)×M � ε, j = 1,2,3,4,

then in M we have a C∞-smooth curve

Γ∗: γ = γ∗(ξ), ξ ∈ Π,

which is determined by the equation

ξ2n0+1 + γ + N̂∗(ξ,γ ) = 0, (2.5)

where N̂∗(ξ, γ ) is a C∞-smooth function on M with∣∣N̂∗(ξ,γ )
∣∣� cε/r and

∣∣N̂∗ξ (ξ, γ )
∣∣+ ∣∣N̂0∗γ (ξ,γ )

∣∣� 1
.

2
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Moreover, we have a parameterized family of compatible transformations

Φ∗(·, · , · , · ,ξ, γ ) : D

(
s

2
,

r

2

)
→ D(s, r), (ξ, γ ) ∈ Γ∗,

where Φ∗ is analytic in (x, y, u, v) on D( s
2 , r

2 ) and C∞-smooth in ξ,γ on Γ∗ , such that for each (ξ, γ ) ∈ Γ∗ , the compatible transfor-
mation Φ∗(·, · , · , · ,ξ, γ ) transforms the reversible system (2.3) into

ẋ = ω0 + f 1∗ , ẏ = f 2∗ , u̇ = C∗ y + f 3∗ , v̇ = B∗u + f 4∗ , (2.6)

where f j∗ satisfy f j∗ (x,0,0,0) = 0 ( j = 1,2,3,4). Hence, the reversible system (2.3) has an invariant torus Φ∗(Tn,0,0,0, ξ, γ ) with
the frequencies ω0 .

By Theorem 2.1, we can easily get Theorem 1.1. In fact, by (2.5) and the implicit function theorem we have

γ∗(ξ) = −ξ2n0+1 + γ̂ (ξ), ξ ∈ Π.

Moreover, if ε is sufficiently small, we have |γ̂ | � cε/r � cδ2n0+2 for all ξ ∈ Π . It follows that γ∗(±δ) = ∓δ2n0+1 + γ̂0(±δ)

must have different sign if δ > 0 is sufficiently small. Thus there exists ξ∗ ∈ Π such that γ∗(ξ∗) = 0. Hence, by the compatible
transformation Φ∗(·, · , · , · ,ξ∗, γ∗(ξ∗)) = Φ∗(·, · , · , · ,ξ∗,0), the reversible system (2.3) is changed into (2.6). Therefore, the
reversible system (2.1) has a lower dimensional invariant torus with ω0 as frequency at ξ = ξ∗ . This completes the proof of
Theorem 1.1.

Now it remains to prove Theorem 2.1. In the following, we will use the KAM iteration to prove Theorem 2.1. In the proof
of this theorem, we can remove the shifts of tangential frequencies ω0 by a small translation of components of y in KAM
steps. The existence of such translation of coordinates can be guaranteed by the condition that det[Q 0

1 ] �= 0. Moreover, we
can also remove the shifts of normal frequencies by a small translation of v . The existence of such translation of coordinates
can be guaranteed by the higher order term v2. Then we keep both tangential frequencies ω0 and normal frequencies fixed
in our KAM steps, so Melnikov’s non-resonance conditions always hold without deleting any parameter.

2.1. KAM step

In this section, we give the details of one KAM step. To simplify notations, in what follows, the quantities without
subscripts refer to those at the j-th step, while the quantities with subscript “+” denote the corresponding ones at the
( j + 1)-th step. We will use the same notation c to indicate different constants, which are independent of the iteration
process.

Suppose at the j-th step, the reversible system is written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = ω0 + Q (x, ξ, γ )y + W1(x, ξ, γ )u + W2(x, ξ, γ )v + f 1(x, y, u, v, ξ, γ ),

ẏ =
∑

|l|+i+ j=2

B1
li j(x, ξ, γ )ylui v j + f 2(x, y, u, v, ξ, γ ),

u̇ = N(ξ,γ ) + C(ξ,γ )y +
∑

|l|+i+ j=2

B2
li j(x, ξ, γ )ylui v j + f 3(x, y, u, v, ξ, γ ),

v̇ = B(ξ,γ )u +
∑

|l|+i+ j=2

B3
li j(x, ξ, γ )ylui v j + f 4(x, y, u, v, ξ, γ ),

(2.7)

where (x, y, u, v, ξ, γ ) ∈ D(s, r) × M , N(ξ, γ ) = ξ2n0+1 + γ + N̂(ξ, γ ). Let Q = (Q , W1, W2), N = (01×m, N(ξ, γ ),0)T with
01×m being a 1 × m zero matrix. Set

B(x)z2 �
∑

|l|+i+ j=2

⎛
⎜⎜⎝

B1
li j(x)

B2
li j(x)

B3
li j(x)

⎞
⎟⎟⎠ ylui v j, A =

⎛
⎝ 0 0 0

C 0 0
0 B 0

⎞
⎠ , g =

⎛
⎝ f 2

f 3

f 4

⎞
⎠ .

Then system (2.7) is written as

ẋ = ω + Q(x)z + f 1(x, z), ż = N + Az + B(x)z2 + g(x, z). (2.8)

Note that in the above equations the parameters (ξ, γ ) are implied. We summarize one KAM step in the following lemma.

Lemma 2.2. Let us consider the above reversible system (2.8) with

||| f |||D(s,r)×M � ε = α6 Eρ6τ+2.
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We assume ω0 satisfying the Diophantine condition (2.4) and N̂(p) satisfying

∣∣N̂ξ (ξ, γ )
∣∣+ ∣∣N̂γ (ξ,γ )

∣∣� 1

2
, ∀(ξ,γ ) ∈ M. (2.9)

Moreover, the equation

N(ξ,γ ) = ξ2n0+1 + γ + N̂(ξ,γ ) = 0,

defines implicitly an analytic curve

Γ : γ = γ (ξ): ξ ∈ Πd → γ (ξ) ∈ B(0,2μ + 1),

such that Γ = {(ξ, γ (ξ)) | ξ ∈ Πd} ⊂ M. Let σ = E
4
5 r we have

U (Γ,σ ) = {(
ξ,γ ′) ∈ Πd × C

∣∣ ∣∣γ ′ − γ (ξ)
∣∣� σ

}⊂ M.

Let η = E
1
5 , d+ = d − σ

2 , s+ = s − 10ρ , ρ+ = ρ
2 , r+ = ηr, E+ = cE

6
5 , ε+ = α6 E+ρ6τ+2+ . Assume that

max
{

r, E
1
5
}

� α6ρ6τ+2, |B|M >
1

2
, max

{‖B − B0‖D(s,r)×M ,
∥∥Q(x) − Q0

∥∥
D(s,r)×M

}
� E

2
3
0 , (2.10)

where E0 is a parameter that can be chosen sufficiently small, B0(x)z2 = (0, (2n0 + 1)n0ξ
2n0−1 y2

m + v2,0)T , [Q0] = [Q 0
1 ,0] ∈

R
n×(m+2) with Q 0

1 ∈ R
n×n being a non-singular matrix. Then, there exists

M+ =
{(

ξ,γ ′) ∈ Πd+ × C
∣∣ ξ ∈ Πd+ , (ξ, γ ) ∈ Γ,

∣∣γ ′ − γ (ξ)
∣∣� σ

2

}
⊂ M, (2.11)

such that for any (ξ, γ ) ∈ W+ , there exists a compatible transformation Φ(·, · ,ξ, γ ) : D(s+, r+) → D(s, r) which changes the re-
versible system (2.8) to

ẋ = ω + Q+(x)z + f 1+(x, z), ż = N+ + A+z + B+(x)z2 + g+(x, z), (2.12)

where N = (01×m, N+(ξ, γ ),0)T with N+(ξ, γ ) = N(ξ, γ ) + �N̂(ξ, γ ). Moreover, we have the following conclusions:
(i) The compatible transformation Φ satisfies∥∥Ξ(Φ − id)

∥∥
D(s+,r+)×M+ � cE, (2.13)∥∥Ξ(DΦ − In+m+2)Ξ

−1
∥∥

D(s+,r+)×M+ � cE, (2.14)

where Ξ = diag(In, 1
r Im, 1

r , 1
r ). Here Im denotes the m × m identity matrix.

(ii) The new perturbation term f+ = ( f 1+, f 2+, f 3+, f 4+) satisfies

||| f+|||D(s+,r+)×M+ � ε+ = α6ρ6τ+2+ E+. (2.15)

(iii) �N̂(p), Q+ , B+ and A+ satisfy∣∣�N̂(ξ,γ )
∣∣� cεr, ∀(ξ,γ ) ∈ M, (2.16)∣∣�N̂ξ (ξ, γ )
∣∣+ ∣∣�N̂γ (ξ,γ )

∣∣� cεr

σ
� cE

1
5 , ∀(ξ,γ ) ∈ M+, (2.17)

max
{‖Q+ − Q‖D(s+,r+)×M+ ,‖B+ − B‖D(s+,r+)×M+ , |A+ − A|M+

}
� cE. (2.18)

(iv) The equation

γ + ξ2n0+1 + N̂+(ξ,γ ) = γ + ξ2n0+1 + N̂(ξ,γ ) + �N̂(ξ,γ ) = 0,

defines implicitly an analytic curve

Γ+: γ+ = γ+(ξ): ξ ∈ Πd+ → γ+(ξ) ∈ B(0,2μ + 1),

satisfying∣∣γ+(ξ) − γ (ξ)
∣∣� cεr � σ

4
(2.19)

and

Γ+ := {(
ξ,γ+(ξ)

) ∣∣ ξ ∈ Πd
}⊂ M+. (2.20)
+
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If

σ+ � σ

4
, (2.21)

then we have U (Γ+, σ+) ⊂ M+ .

We divide the proof of Lemma 2.2 into the following several parts.

A. Constructing compatible transformation. In the following, we will construct a compatible transformation Φ which changes
the reversible system (2.7) into (2.12). Let Φ : (x+, y+, u+, v+) → (x, y, u, v) be defined by⎧⎪⎪⎪⎨

⎪⎪⎪⎩
x = x+ + h(x+),

y = y+ + a1(x+) + b11(x+)y+ + b12(x+)u+ + b13(x+)v+,

u = u+ + a2(x+) + b21(x+)y+ + b22(x+)u+ + b23(x+)v+,

v = v+ + a3(x+) + b31(x+)y+ + b32(x+)u+ + b33(x+)v+.

(2.22)

Denote z = (y, u, v)T and z+ = (y+, u+, v+)T . Φ is written in a more compact form:

x = x+ + h(x+), z = z+ + a(x+) + b(x+)z+, (2.23)

where

a =
⎛
⎝ a1

a2
a3

⎞
⎠ , b =

⎛
⎝ b11 b12 b13

b21 b22 b23
b31 b32 b33

⎞
⎠ .

Let S = diag(Im,−1,1). It is easy to see that Φ is compatible with the involution G if and only if

h(−x) = −h(x), Sa(−x) = a(x), Sb(−x)S = b(x). (2.24)

Under the transformation Φ the system (2.8) is changed into⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = ω0 + (
In + Dxh(x)

)−1(−∂ω0 h + f 1(x,0) + Q(x)a(x)
)

+ (
In + Dxh(x)

)−1(Q(x + h)
(
1 + b(x)

)+ f 1
z (x,0)

)
z + f 1+(x, z),

ż = N+ + A+z + (
Im+2 + b(x)

)−1(−∂ω0a + Aa(x) + g(x,0) − N̂
)

+ (
Im+2 + b(x)

)−1(−∂ω0 b + Ab(x) − b(x)A + gz(x,0) + 2B(x)a(x) − ∂Qa(x) − Â
)
z

+ (
Im+2 + b(x)

)−1
(

B(x + h)(1 + b(x))2 + 1

2
∂zz g(x,0) − ∂Q+b(x)

)
z2 + g+(x, z),

(2.25)

where N+ = N + N̂ , A+ = A + Â with Â and N̂ being determined later, f 1
z (x,0) = ∂ f 1

∂z |z=0, gz(x,0) = ∂ g
∂z |z=0, ∂zz g(x,0) =

∂2 g
∂z2 |z=0, ∂ω0 h =∑

k∈Zn

√−1〈k,ω0〉hke
√−1〈k,x〉 , ∂ω0 a, ∂ω0 b, ∂Qa and ∂Q+b are defined similarly. Moreover, we have

f 1+(x, z) = (
In + Dxh(x)

)−1(
f 1 ◦ Φ(x, z) − f 1(x,0) − 〈

f 1
z (x,0), z

〉+ (
Q(x + h) − Q(x)

)
a(x)

)
, (2.26)

g+(x, z) = (
Im+2 + b(x)

)−1
(

g ◦ Φ(x, z) − g(x,0) − 〈
gz(x,0), z

〉− 1

2

〈
∂zz g(x,0)z, z

〉
+ B(x + h)a2(x) − b(x)N+ − ∂ f 1+

(
a(x) + b(x)z

)− ∂Q̂b(x)

)
, (2.27)

with Q̂(x) = Q+ − Q. Note that we have used (x, z) instead of the new variables (x+, z+) in the transformed equations for
simplicity.

Let

Q+(x) = (
In + ∂xh(x)

)−1(Q(x + h)
(
1 + b(x)

)+ f 1
z (x,0)

)
, (2.28)

B+(x) = (
Im+2 + b(x)

)−1
(

B(x + h)
(
1 + b(x)

)2 + 1

2
∂zz g(x,0) − ∂Q+b(x)

)
. (2.29)

If we can find h(x), a(x) and b(x) such that

∂ω0 h(x) = f 1(x,0) + Q(x)a(x), (2.30)

∂ω0a(x) − Aa(x) = g(x,0) − N̂ , (2.31)

∂ω0 b(x) − Ab(x) + b(x)A = gz(x,0) − ∂Q(x)a(x) − 2B(x)a(x) − Â. (2.32)
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Then the system (2.8) becomes

ẋ = ω + Q+(x) + f 1+(x, z), ż = N+ + A+z + B+(x)z2 + g+(x, z) (2.33)

with f 1+ and g+ being much smaller perturbations than before.

B. Solving linear homological equations. In the following, we solve the linear homological equations (2.30)–(2.32).
We first solve Eq. (2.31). Since the system (2.7) is reversible, we have [ f 2(·,0)] = 0 and [ f 4(·,0)] = 0. Let a = (a1,a2,a3)

T

and N̂ = (01×m, N̂,0)T . Then the linear homological equation (2.31) becomes

∂ω0a1(x) = f 2(x,0,0,0), (2.34)

∂ω0a2(x) = f 3(x,0,0,0) + Ca1(x) − N̂, (2.35)

∂ω0a3(x) = f 4(x,0,0,0) + Ba2(x). (2.36)

Let

a1(x) =
∑
k∈Zn

ak
1e

√−1〈k,x〉.

Note that [ f 2(·,0)] = 0 and ‖ f 2(x,0,0,0)‖D(s,r)×M � εr2. By Lemma A.1 of Appendix A, Eq. (2.34) is solvable. Moreover, we
have

∥∥a1 − a0
1

∥∥
D(s−ρ,r)×M =

∥∥∥∥ ∑
k∈Zn\{0}

ak
1e

√−1〈k,x〉
∥∥∥∥

s−ρ

� cεr2

αρτ
, (2.37)

where a0
1 is determined later.

Let N̂ = [ f 3(·,0)] + Ca0
1. By Lemma A.1 of Appendix A, it follows that Eq. (2.35) has a unique solution a2(x) with

[a2] = 0 and ‖a2‖s−2ρ � cεr2

α2ρ2τ
. (2.38)

Let

a3(x) =
∑
k∈Zn

ak
3e

√−1〈k,x〉.

Note that [ f 4(·,0)] = 0 and [a2] = 0. By Lemma A.1 of Appendix A, Eq. (2.36) is also solvable. Moreover, we have

∥∥a3 − a0
3

∥∥
D(s−3ρ,r)×M =

∥∥∥∥ ∑
k∈Zn\{0}

ak
3e

√−1〈k,x〉
∥∥∥∥

s−ρ

� cεr2

α3ρ3τ
, (2.39)

where a0
3 = [a3] is determined later.

Next we choose suitable a0
1 and a0

3 to remove the shifts of normal frequencies and normal frequencies.
Since the system (2.7) is reversible, we have

[
gz(·,0) − ∂xa(·)Q(·) − 2B(·)a(·)]=

⎛
⎜⎝

0 Hε
m×1 0

Dε
1×m 0 Eε

0 F ε 0

⎞
⎟⎠ .

By (2.10), (2.37), (2.38) and (2.39), it is easy to see that Eε has the following form:

Eε = −2
[

B2
002

]
a0

3 + e1a0
1 + e2,

where |[B2
002]|M > 1

2 , |e1|M � E
2
3
0 and |e1|M � max{ cεr2

α3ρ3τ+1 , εr} � cεr.

Let

Â =
⎛
⎜⎝

0 0 0

Dε
1×m 0 0

0 F ε 0

⎞
⎟⎠ and [b] =

⎛
⎝ 0 0 [b13]

0 0 0
0 0 0

⎞
⎠ , (2.40)

with [b13] = 1 Hε . Then we have
B
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−A[b] + [b]A =
⎛
⎝ 0 Hε 0

0 0 −C[b13]
0 0 0

⎞
⎠ . (2.41)

Noting that the system (2.7) is reversible, so Hε does not contain the variables a0
1 and a0

3. By (2.10) and it is easy to see
that |[b13]|M � 2|Hε |M � cεr.

If we can find a0
1 and a0

3 such that[
f 1(·,0) + Q(·)a(·)]= 0, (2.42)

Eε + C[b13] = −2
[

B2
002

]
a0

3 + e1a0
1 + e2 + C[b13] = 0. (2.43)

Then the homological equations (2.30) and (2.32) are also solvable.
In view of Q = (Q , W1, W2), let Q (x) =∑

k∈Zn Q ke
√−1〈k,x〉 , W2(x) =∑

k∈Zn W k
2e

√−1〈k,x〉 and we have[
f 1(·,0) − Q(·)a(·)]= [Q ]a0

1 + W 0
2a0

3 +
∑
|k|�=0

(
Q ka1

−k + W k
2a3

−k

)+ [
W1(·)a2(·) + f 1(·,0)

]
.

Let

a0
1 = (

ã0
1,0, . . . ,0

)T
with ã0

1 ∈ R
n, Y = (

ã0
1,a0

3

)T ∈ R
n+1.

Note that we already obtained the ak (|k| �= 0) from (2.31). By (2.10), Eqs. (2.42) and (2.43) can be written as the following
form:

(M + Mε)Y = W, (2.44)

where

M =
(

Q 0
1 0

0 −2[B2
002]

)
, Mε =

(
0 W 0

2

e1 0

)
,

W =
(

−∑|k|�=0(Q ka1
−k + W k

2a3
−k) − [W1(·)a2(·) + f 1(·,0)]

−e2 − C[b13]

)
.

By (2.10) it is easy to see that M is an (n + 1) × (n + 1) non-singular matrix. Moreover, we have

‖Mε‖ � 2E
2
3
0 and ‖W‖s−3ρ � cεr.

Hence, M + Mε is also a non-singular matrix if E0 is sufficiently small. Then Eq. (2.44) is solvable. Therefore, we obtain a0
1

and a0
3 such that Eqs. (2.42) and (2.43) hold. Moreover, we have∣∣a0

1

∣∣� cεr,
∣∣a0

3

∣∣� cεr. (2.45)

By the form of A and Lemma A.1 of Appendix A, the linear homological equations (2.30) and (2.32) are also solvable.
Moreover, we have the following estimates:

‖h‖D(s−4ρ,r)×M � cεr

αρτ
, ‖b‖D(s−9ρ,r)×M � cεr

α6ρ6τ
. (2.46)

Now we already obtained h(x), a(x) and b(x) from the homological equations (2.30)–(2.32). Then the transformation Φ is
defined well by (2.23). To prove that Φ is a compatible transformation, we verify the symmetry of (2.24). Since the system
(2.7) is reversible, it follows that

Sg(−x,0) = −g(x,0), S A = −A S, S N̂ = −N̂ , Sgz(−x,0)S = −gz(x,0),

where S = diag(Im,−1,1). If a(x) is a solution for (2.31), then we have

−∂ω0a(−x) − Aa(−x) = g(−x,0) − N̂ .

Multiplying the above equation by S from the left, we have

∂ω0 Sa(−x) − A Sa(−x) = g(x,0) − N̂ .

Thus Sa(−x) is also a solution for (2.31). Then ã(x) = 1
2 (a(x) + Sa(−x)) is also a solution for (2.31) and satisfies the second

equation of (2.24). Thus, if Sa(−x) �= a(x), we can replace a(x) by ã(x) so that Sa(−x) = a(x). In the same way, we have
Sb(−x)S = b(x). Noting that Sa(−x) = a(x), the symmetry of h holds obviously. Hence, Φ is a compatible transformation.
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Nothing that ε = α6 Eρ6τ+2 and η = E
1
5 , we have cεr

αρτ < ρ and cεr
α6ρ6τ < ηr < r

8 . Let s+ = s − 10ρ, r+ = ηr. It is easy to

see that

Φ : (x+, z+) ∈ D(s+, r+) → (x, z) ∈ D(s − 9ρ,2ηr) ⊂ D(s, r).

Moreover, we have∥∥Ξ(Φ − id)
∥∥

D(s+,r+)×M � cE, (2.47)∥∥Ξ(DΦ − In+m+2)Ξ
−1
∥∥

D(s+,r+)×M � cE, (2.48)

where Ξ = diag(In, 1
r Im, 1

r , 1
r ).

C. Estimates of perturbation terms. For any (ξ, γ ′) ∈ U (Γ, δ), ∃(ξ, γ ) ∈ Γ such that |γ ′ − γ | < σ . So it follows that

∣∣N
(
ξ,γ ′)∣∣= ∣∣N

(
ξ,γ ′)− N (ξ,γ )

∣∣= ∣∣N̂(ξ,γ ′)− N̂(ξ,γ )
∣∣� 1

2

∣∣γ ′ − γ
∣∣< σ = E

4
5 r. (2.49)

Let M+ be defined by (2.11), it follows easily that M+ is closed. Obviously, we have

M+ ⊂ U (Γ,σ ) ⊂ M and dist(M+, ∂M) � 1

2
σ ,

where ∂M is the boundary of M . Note that �N̂ = [ f 3(·,0)] + Ca0
1 with |[ f 3(·,0)] + Ca0

1|M � cεr. It is easy to see that (2.16)
and (2.17) hold.

Set N̂+(ξ, γ ) = N̂(ξ, γ ) + �N̂(ξ, γ ). By the implicit function theorem, if∣∣∣∣dN̂

dγ
(ξ,γ )

∣∣∣∣� 1

2
, ∀(ξ,γ ) ∈ M,

the equation

γ + ξ2n0+1 + N̂+(ξ,γ ) = 0,

defines implicitly an analytic curve

Γ+: γ+ = γ+(ξ): ξ ∈ Πd+ → γ (ξ) ∈ B(0,2μ + 1).

Note that γ+ and γ satisfy

γ+(ξ) + ξ2n0+1 + N̂+
(
ξ,γ+(ξ)

)= γ (ξ) + ξ2n0+1 + N̂
(
ξ,γ (ξ)

)= 0.

Then it is easy to see that∣∣γ+(ξ) − γ (ξ)
∣∣� ∣∣N̂+

(
ξ,γ+(ξ)

)− N̂
(
ξ,γ (ξ)

)∣∣
�
∣∣N̂(ξ,γ+(ξ)

)− N̂
(
ξ,γ (ξ)

)∣∣+ ∣∣�N̂
(
ξ,γ+(ξ)

)∣∣
� 1

2

∣∣γ+(ξ) − γ (ξ)
∣∣+ cεr.

Hence, the conclusions (2.19) and (2.20) hold. By (2.21) and noting that cεr � σ
4 , we have U (Γ+, σ+) ⊂ M+.

From (2.10), (2.28) and (2.46) we have

‖Q̂‖D(s+,r+)×M = ‖Q+ − Q‖D(s+,r+)×M � cεr

α6ρ6τ+1
� cE. (2.50)

By the definition of Q+ , B+ , Â and (2.46), it is easy to see that (2.18) holds.
Now we first give an estimate of the new perturbation term f 1+ . By (2.28) it follows that ‖(In + Dxh)−1‖D+ � 2 if E is

sufficiently small. Note that here and below we write D+ = D(s+, r+) × M+ for simplicity.
By (2.26) and (2.46), we have∥∥ f 1+

∥∥
D+ � cεr

αρτ+1
· cεr + ∥∥ f 1 ◦ Φ(x, z) − f 1(x,0) − 〈

∂z f 1(x,0), z
〉∥∥

D+ . (2.51)

Next we give an estimate of ‖ f 1 ◦ Φ(x, z) − f 1(x,0) − 〈∂z f 1(x,0), z〉‖D+ . Obviously, we have∥∥ f 1 ◦ Φ(x, z) − f 1(x,0) − 〈
∂z f 1(x,0), z

〉∥∥
D+ = F 1 + F 2, (2.52)

where

F 1 = f 1 ◦ Φ − f 1(x, z), F 2 = f 1(x, z) − f 1(x,0) − 〈
∂z f 1(x,0), z

〉
.
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By the Cauchy estimates and noting that ε = α6 Eρ6τ+2 and r � α6ρ6τ+1, it follows that

∥∥F 1
∥∥

D+ � c

(
εr

ρ
· εr

αρτ
+ εr

r
· εr

α6ρ6τ

)
� cεEr,

∥∥F 2
∥∥

D+ � η2εr.

In view of η = E
1
5 , we have∥∥ f 1 ◦ Φ(x, z) − f 1(x,0) − 〈

∂z f 1(x,0), z
〉∥∥

D+ � cηεr+.

By (2.51) we have∥∥ f 1+
∥∥

D+ � cηεr+.

Now we estimate the new perturbation term g+ . Similarly to the above estimates of f 1+ , it is easy to see that
‖(Im+2 + b)−1‖D+ � 2 if E is sufficiently small. Combining (2.10), (2.27), (2.46), (2.49) and (2.50), it follows that

‖g+‖D+ � 2

∥∥∥∥g ◦ Φ(x, z) − g(x,0) − 〈
gz(x,0), z

〉− 1

2

〈
∂z g(x,0)z, z

〉∥∥∥∥
D+

+ cεr

α6ρ6τ+2
E

4
5 r + cEr

∥∥ f 1+
∥∥

D+ .

In the same way as (2.52), we have

g ◦ Φ(x, z) − g(x,0) − 〈
gz(x,0), z

〉− 1

2

〈
∂z g(x,0)z, z

〉= P1 + P2,

where

P 1 = g ◦ Φ(x, z) − g(x, z), P 2 = g(x, z) − g(x,0) − 〈
gz(x,0), z

〉− 1

2

〈
∂z g(x,0)z, z

〉
.

Then, it follows that

∥∥P 1
∥∥

D+ � c

(
εr2

ρ
· εr

αρτ
+ εr2

r
· εr

α6ρ6τ

)
� cEεr2,

∥∥P 2
∥∥

D+ � η3εr2.

Noting that E
1
5 � α6ρ6τ+2, η = E

1
5 and ‖ f 1+‖D+ � cηεr+ , we have

‖g+‖D+ � cη3εr � cηεr2+.

Therefore, we have

||| f+|||D+ = 1

r+
∥∥ f 1+

∥∥
D+ + 1

r2+
‖g+‖D+ � cηε = α6ρ6τ+2+ cE

4
3 = αρ6τ+2+ E+ = ε+,

where E+ = cE
6
5 . Thus, Lemma 2.2 is proved. �

2.2. Setting the parameters and iteration

Now we choose some suitable parameters so that the above iteration can go on infinitely. At the initial step, let
Q0(x) = (Q (x),0,0), it is easy to see that [Q0] = [Q 0

1 ,0n×(m−n+2)] ∈ R
n×(m+2) with Q 0

1 ∈ R
n×n being a non-singular matrix.

We set B0(x)z2 � (0, (2n0 + 1)n0ξ
2n0−1 y2

m + v2,0)T , N0 = (0, ξ2n0+1 + γ ,0)T , f 1
0 = f 1, g0 = ( f 2, f 3, f 4)T , C0 = (0,0, . . . ,

(2n0 + 1)ξ2n0 ), B0 = 1, s0 = s, r0 = min{δ2,α6( s
48 )6τ+1}, d0 = δ and E0 = ε0/α

6(
s0
48 )6τ+1 with ε0 = δ2n0 .

Let

s j = s0

(
1

2
+
(

1

2

) j+1)
, ρ j = s j − s j+1

12
, η j = E

1
3
j , σ j = E

4
5
j r j,

r j+1 = η jr j, E j+1 = cE
4
3
j , d j+1 = d j − 1

2
E j, ε j+1 = α6 E j+1ρ

6τ+2
j+1 .

Then, it is easy to see that s j, r j,ρ j, E j,d j, σ j, ε j are all well defined for j � 0. In the following we are going to check all
assumptions in the iteration Lemma 2.2 to ensure KAM steps are valid for all j � 0.

We verify the assumption r j � α6ρ6τ+6
j by induction. By the choice of r0, we have r0 � α6ρ6τ+2

0 . We now assume that

rν � α2ρ6τ+2
ν for some nonnegative integer ν . Then, if E

1
5
0 � ( 1

2 )6τ+2, we have

rν+1 = E
1
5
ν rν � E

1
5
0 α6ρ6τ+2

ν � α2
(

ρν

2

)2τ+1

= α6ρ6τ+2
ν+1 .

Hence, the assumption r j � α6ρ6τ+2 holds for all j � 0.
j
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By the definitions of E j and ρ j , we have E j � (c5 E0)
( 6

5 ) j
and ρ j = 1

3 ( 1
2 ) j+3s0. Hence, the assumption E

1
5
j � α6ρ6τ+2

j
holds for all j � 0 if E0 is sufficiently small.

Obviously,

σ j+1

σ j
= E

4
5
j+1r j+1

E
4
5
j r j

= c
4
5 E

9
25
j+1 � c

4
5 E

9
25
0 for ∀ j � 0.

Hence, for sufficiently small E0, the assumption σ+ � 1
4 σ holds in KAM steps.

Let D j = D(s j, r j) × M j . By (2.18), if c5 E0 < 1
2 , it follows that

‖Q j − Q0‖D j �
j−1∑
ν=0

‖Qν+1 − Qν‖Dν+1 �
j−1∑
ν=0

cEν �
∞∑

ν=0

cEν � cE0 for ∀ j � 1.

Similarly, we have ‖B j − B0‖D j � cE0, ‖B j − B0‖D j � cE0 and ‖A j − A0‖D j � cE0 for all ∀ j � 1. Then it is easy to see that

the assumptions that ‖B j‖D j > 1
2 ‖B j − B0‖D j � E

2
3
0 and ‖Q(x) − Q0‖D j � E

2
3
0 hold in KAM steps if E0 is sufficiently small.

By iteration we have N̂ j =∑ j−1
i=0 �N̂i . Combining with estimates for �N̂ j , we have that

∣∣N̂ jξ (ξ, γ )
∣∣+ ∣∣N̂ jγ (ξ,γ )

∣∣� j−1∑
i=0

cE
1
5
j �

∞∑
i=0

cE
1
5
j � cE

1
5
0 .

Hence, if E0 is sufficiently small, the assumption |N̂ jξ (ξ, γ )| + |N̂ jγ (ξ, γ )| � 1
2 hold in KAM steps.

2.3. Convergence of iteration

Let M0 = Πd0 × B(0,2μ + 1) and D0 = D(s0, r0) × M0. By the iteration lemma, we have a sequence of closed sets
{M j} with M j+1 ⊂ M j , and a sequence of compatible transformations {Φ j} such that for each (ξ, γ ) ∈ M j+1, Φ j(·,·; ξ,γ ) :
D(s j+1, r j+1) → D(s j, r j). Moreover, we have the following estimates∥∥Ξ j(Φ j − id)

∥∥
D j+1

� cE j and
∥∥Ξ j(DΦ j − In+m+2)Ξ

−1
j

∥∥
D j+1

� cE j,

where D j = D(s j, r j) × M j . Let Φ j = Φ0 ◦ Φ1 ◦ · · · ◦ Φ j−1 with Φ0 = id. In the same way as in [14,15], it follows that

∥∥Ξ0 DΦ jΞ−1
j

∥∥
D j

�
j−1∏
i=0

(1 + cEi) �
∞∏

i=0

(1 + cEi) � 2

if E0 is sufficiently small. So, we have∥∥Ξ0
(
Φ j − Φ j−1)∥∥

D j
� cE j−1 and

∥∥Ξ0 D
(
Φ j − Φ j−1)∥∥

D j
� cE j−1.

Let M∗ =⋂
j�0 M j , D∗ = D( s

2 ,0) × M∗ and Φ∗ = lim j→∞ Φ j . Thus we have∥∥Ξ0(Φ∗ − id)
∥∥

D∗ � cE0 and
∥∥Ξ0 D(Φ∗ − id)

∥∥
D∗ � cE0.

Since Φ j is affine in (y, u, v), we have the convergence of Φ j to Φ∗ on D( s
2 , r

2 ) × M∗ .

Now we consider the convergence of N̂ j . By the KAM step we have∣∣N̂ j+1(ξ,γ ) − N̂ j
∣∣� |�N̂ j| � cε jr j → 0, as j → ∞, for all (ξ,γ ) ∈ M∗.

So we have N̂∗ = lim j→∞ N̂ j on M∗ . Moreover, we have∣∣N̂∗(ξ,γ )
∣∣� cε0r0 � cε/r and

∣∣N̂∗ξ (ξ, γ )
∣∣+ ∣∣N̂∗γ (ξ,γ )

∣∣� 1

2
.

Let d∗ = d0 − 1
2

∑∞
j=0 σ j = d0 − 1

2

∑∞
j=0 E

4
5
j r j . It follows that d∗ > d0 − E

4
5
0 r0. Note that E

4
5
0 r0 = O (δ2+ 8

5 n0 ) � d0 = δ if δ

is sufficiently small. Then we have d∗ > 1
3 d0. Thus Πd∗ ⊂⋂

j�0 Πd j . By (2.19) and ε j → 0 as j → 0, it is easy to see that
{γ j(ξ)} and also convergent on Πd∗ . In fact, by the iteration lemma, for i > j

∣∣γi(ξ) − γ j(ξ)
∣∣� i−1∑

l= j

σl

4
� σ j

2
.

Let γ j(ξ) → γ∗(ξ), ξ ∈ Πd∗ . Since Γ j = {(ξ, γ j(ξ)) | ξ ∈ Πd } ⊂ M j and γ j are all analytic on Πd∗ , so it is limit γ∗(ξ).
j
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Let i → ∞ and we have∣∣γ∗(ξ) − γ j(ξ)
∣∣� σ j

2
.

This implies that Γ∗ = {(ξ, γ∗(ξ)) | ξ ∈ Πd∗ } ⊂ M j . So Γ∗ ⊂ M∗ =⋂
j�0 M j . Obviously, for (ξ, γ ) ∈ Γ∗ we have

ξ2n0+1 + γ + N̂∗(ξ,γ ) = 0. (2.53)

By (2.18) and in view of E j → 0 as j → ∞, we have Q j → Q∗ , B j → B∗ and A j → A∗ as j → ∞. Then it is easy to see
that for all (ξ, γ ) ∈ Γ∗ , Φ∗ transforms the reversible system (2.7) into the following form:

ẋ = ω0 + Q∗(x) + f 1∞(x, z), ż = A∗z + B∗z2 + g∞(x, z) (2.54)

where

A∗ =
⎛
⎝ 0 0 0

C∗ 0 0
0 B∗ 0

⎞
⎠ , N∗ =

⎛
⎝ 0m×1

N∗,
0

⎞
⎠ ,

with N∗(ξ, γ ) = N0(ξ) + N̂∗(ξ, γ ). Set f 1∗ = Q ∗ y + Q∗(x)z + f 1∞(x, y, z) and ( f 2∗ , f 3∗ , f 4∗ )T = B∗z2 + g∞(x, z). Noting that

ε j → 0 as j → ∞, it is easy to see that f j∗ (x,0,0,0) = 0 ( j = 1,2,3,4).
In some way as in [22] we can prove that N̂∗ and Φ∗ are C∞ in (ξ, γ ) on M∗ in the Whitney’s sense. By Whitney’s

extension theorem [25], we can extend N̂∗ and Φ∗ to be C∞-smooth on M = Πd × B(0,2μ + 1), but it only makes sense
on M∗ for our problem. This completes the proof of Theorem 2.2.

Appendix A

In this section we formulate a lemma which have been used in the previous section.
Let Us denote the space of all real analytic functions f (x) defined in the complex domain D(s) = {x | |Im x| � s}; that is

Us =
{

f (x)
∣∣∣ f (x) =

∑
k∈Zn

fke
√−1〈k,x〉, ‖ f ‖s < ∞

}
.

Let

U 0
s = {

f (x)
∣∣ f (x) ∈ Bs, [ f ] = 0

}
.

Lemma A.1. Suppose that ω0 satisfies the Diophantine condition |〈k,ω0〉| � α
|k|τ , ∀k ∈ Z

n\{0}. Then the equation

∂ω0 h(x) = g(x), g(x) ∈ U 0
s ,

has a unique solution h(x) ∈⋃0<ρ<s U 0
s−ρ with

‖h‖s−ρ � c

αρτ
‖g‖s, 0 < ρ < s,

where the constant c depends only on n and τ .

For this lemma, we refer to Lemma 1 in [14].
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