
J. Math. Anal. Appl. 391 (2012) 240–254
Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and
Applications

www.elsevier.com/locate/jmaa

Limit cycles bifurcated from a class of quadratic reversible center of
genus one ✩

Haihua Liang a,∗, Yulin Zhao b

a Department of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, Guangdong 510665, PR China
b Department of Mathematics, Sun Yat-Sen University, Guangzhou 510275, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 November 2011
Available online 21 February 2012
Submitted by W. Sarlet

Keywords:
Quadratic perturbations
Quadratic reversible system
Limit cycle
Abelian integral

We investigate the bifurcation of limit cycles in a class of planar quadratic reversible (non-
Hamiltonian) systems. This systems has a center of genus one. The exact upper bound of
the number of limit cycles is given.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

This paper deals with the number of limit cycles for small quadratic perturbations of quadratic integrable systems:

ẋ = H y(x, y)/M(x, y) + ε f (x, y, ε),

ẏ = −Hx(x, y)/M(x, y) + εg(x, y, ε), (1.1)

where ε is a small parameter and f (x, y, ε), g(x, y, ε) are quadratic polynomials in x, y with coefficients depending analyt-
ically on ε, H(x, y) is the first integral of the unperturbed system (1.1)ε=0 with the integrating factor M(x, y).

The plane quadratic systems with at least one center are always integrable, which can be classified into the following
four classes: Hamiltonian Q H

3 , reversible Q R
3 , codimension four Q 4 and generalized Lotka–Volterra Q LV

3 . A natural problem
is asking for a maximal number of limit cycles, bifurcated from the period annulus of these four classes of systems under
small quadratic perturbations. For the Hamiltonian Q H

3 , this number is closely related to the weak Hilbert 16th problem in
the quadratic case. It is well known that the weak Hilbert 16th problem was solved completely by many authors, see [2,9]
and the references therein. The next natural step is to find the upper bound of the number of limit cycles which bifurcated
from the period annulus of quadratic integrable but non-Hamiltonian systems, under quadratic perturbation. As usual, we
use the notion cyclicity for the total number of limit cycles which can emerge from a configuration of trajectories (center,
period annulus, a singular loop) under a perturbation. In [14,34], the authors proposed a conjecture about the cyclicity of
the period annulus of quadratic centers Q R

3 , Q 4 and Q LV
3 under small quadratic perturbation.

Recently, by using the idea of [10], Zhao [31] proved that under quadratic perturbation the cyclicity of period annulus of
Q 4 is greater than or equal to 3 and is less than or equal to 5 (the conjectural one is 3). The cyclicity of period annulus of
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some classes of general Q LV
3 under quadratic perturbation has been studied by Zoladek in [34]. Quadratic perturbation of

several class of reversible Lotka–Volterra systems are investigated by [11,15,18,27].
H. Zoladek pointed out in [34] that the reversible case is the most complicated case for the studying bifurcation of limit

cycles. Taking a complex coordinate, the quadratic reversible center have the following form [14]:

ż = −iz + az2 + 2|z|2 + bz̄2, a,b ∈ R, z = x + iy. (1.2)

In [7], the authors determine all reversible centers with phase portrait formed by elliptic curves. Using the terminology
from [8], the centers whose periodic orbits are elliptic curves will be called centers of genus one. Theorem 1 of [8] shows
that the system (1.2) has a center of genus one if and only if a, b verify one of the following 18 conditions:

(r1) a = 2b + 1, (r2) a = −1, (r3) a = 5b + 4(b �= −3),

(r4) a = −3b − 4(b �= −3), (r5) a = 5
3 b + 2

3 , (r6) a = b
3 − 2

3 ,

(r7) (a,b) = ( 5
2 ,− 1

2 ), (r8) (a,b) = (− 7
2 ,− 1

2 ), (r9) (a,b) = (−8,−2),

(r10) (a,b) = (4,−2), (r11) (a,b) = (−17,−5), (r12) (a,b) = (7,−5),

(r13) (a,b) = (−7,− 5
3 ), (r14) (a,b) = ( 11

3 ,− 5
3 ), (r15) (a,b) = (−23,−7),

(r16) (a,b) = (9,−7), (r17) (a,b) = (13,5), (r18) (a,b) = (−3,5).

To our knowledge, until now, known results concerning the cyclicity of period annulus of these systems under small
quadratic perturbations are: family (r1) was completely solved in several papers [6,16–18,25,28,30]. Family (r2) (the re-
versible Hamiltonian case) has been completely studied by many authors, see [2,9] and the references therein. Family (r3)

is entirely investigated in a series of papers [20,22,33]. Family (r4) with a ∈ (−∞,−3) ∪ (5,+∞) and a ∈ (−3,−1) is con-
sidered in [4] and [21] respectively. Family (r5) with b �= 2, 1

2 and family (r6) with b ∈ ( 1
2 ,2) are studied in [1]. Cases (r7),

(r14), (r15) and (r17) are studied in [11]. Cases (r8), (r13) and (r16) are studied in [3]. Cases (r9), (r10) and (r12) are
studied in [23,13] and [24] respectively. Cases (r11) and (r18) are studied in [8].

In the present paper, we will deal with the case (r4):

ż = −iz + az2 + 2|z|2 − a + 4

3
z̄2. (1.3)

The authors of [14,8] conjecture that the cyclicity of the systems (1.3) under small quadratic perturbation is three with
4 < a < 5 and is two otherwise. That is to say, for small ε, the maximum number of limit cycles in the system (rewritten in
the (x, y) coordinates)

ẋ = y + 2

3
(a + 1)x2 − 2

3
(a − 5)y2 + ε f (x, y, ε),

ẏ = −x + 8

3
(a + 1)xy + εg(x, y, ε), (1.4)

which emerge from the period annulus of the unperturbed system is equal to three with 4 < a < 5 and two otherwise. If
a = −1, then system (1.3) belongs to (r2). If a = 5, then system (1.3) corresponding to an isochronous centers. Perturbations
of the quadratic isochronous centers have been studied in [5]. Apart from a = −1,5, as we have mentioned that, until now
the conjecture has already been verified by [4] and [21] for the cases a ∈ (−∞,−3)∪ (5,+∞) and a ∈ (−3,−1) respectively.
The main work of this paper is to investigate the remaining cases except that a = −3 (the outer boundary of the period
annulus contains a degenerate critical point). We will obtain the following theorem.

Theorem 1.1. The cyclicity of the period annulus of (1.3) under small quadratic perturbation is three for the case that 4 < a < 5 and
two for the case that −1 < a � 4.

Combining Theorem 1.1 with the results of [2,4,5,21], it turns out that

Theorem 1.2. Suppose that a �= −3, then the cyclicity of the period annulus of (1.3) under small quadratic perturbation is three for the
case 4 < a < 5 and two for others.

Moreover, the outer bounder of the period annulus of system (1.3) with −1 < a < 5 is a homoclinic loop (see Fig. 1
below). Using Roussarie’s theorem [26], it is easy to see that the cyclicity of the period annulus covers the number of limit
cycles bifurcated from the non-degenerate center, from the period annuls and from the homoclinic loop. Consequently, we
have the following corollary.

Corollary 1.1. For any sufficiently small ε, the exact upper bound for the number of limit cycles of system (1.4) in the finite phase plane
is three for 4 < a < 5 and two for −1 < a � 4.
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Fig. 1. The phase portrait of system (2.1).

Let us now describe the contents of the paper.
In Section 2 we firstly transform the system (1.3) to a more convenient system which possess a unique center at (1,0).

Secondly, by using Theorem 2 of [14], we derive the Melnikov function I(h) whose zeros correspond to the limit cycles
emerging from the period annulus under small quadratic perturbations. As usually, the question about the number of zeros
of I(h) can be transformed into a geometric form: to find in the plane the number of intersection points of a curve Σ with
the straight line. This means that a careful study of the geometric property of Σ is necessary. The last part of this section
is to derive the needed Picard–Fuchs equations satisfied by some integrals.

In Section 3 we estimate the upper bound for the number of zeros of Abelian integral I(h). The main idea used here
is based on [4]. However, the analysis used in that paper rely on the range of the parameter and some methods are not
applicable for our paper. Hence some non-trivial computations and analysis are needed.

Finally, in Section 4 we establish the asymptotic behavior of the curve Σ near its two endpoints. And then, by using the
results from Section 3, we obtain the geometric property of the curve Σ by which the main results of this paper is proved
naturally.

2. Some preliminary results

As the same of [4], by using an affine transformation of coordinate and a rescaling of time, the system (1.3) with
−1 < a < 5 is changed to

ẋ = −2xy,

ẏ = k − 1 − 2kx + (k + 1)x2 − 1

2
y2, (2.1)

where k = − a+7
2a+2 < −1.

To prove Theorem 1.1, we only need to prove the following result.

Theorem 2.1. The cyclicity of the period annulus of (1.3) under small quadratic perturbations is three for the case that −∞ < k < −1.1
and is two for the case that −1.1 � k < −1.

System (2.1) has a center at (1,0) and a saddle at ( k−1
k+1 ,0) respectively. Also, it has the invariant straight line {x = 0} and

the first integral

H(x, y) = x− 1
2

(
y2 + 2(k + 1)

3
x2 − 4kx − 2(k − 1)

)
= h (2.2)

with the integrating factor μ(x, y) = |x|− 3
2 .

The phase portrait of the system (2.1) for k < −1 is shown in Fig. 1.
Using the results of [14], we have the following lemma.

Lemma 2.1. If k < −1, then the cyclicity of the period annulus of system (2.1) under small quadratic perturbations is given by the
maximal number of isolated zeros of the (generalized) Abelian integral

I(h) =
∮
Γh

x− 3
2
(
αx + βx−1 + γ

)
y dx, h ∈ (h1,h2), (2.3)

where α, β , γ are constants and

h1 = H(1,0) = −8(2k − 1)

3
, h2 = H

(
k − 1

k + 1
,0

)
= −8

3
(2k + 1)

√
k − 1

k + 1
.

The critical levels h = h1 and h = h2 corresponding to the center (1,0) and the homoclinic loop respectively.
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Denoted by

I j(h) =
∮
Γh

x j− 3
2 y dx,

where the orientation of the integral over Γh is counterclockwise.
Obviously,

I(h) = α I1(h) + β I−1(h) + γ I0(h). (2.4)

It is well known that the integrals I j(h) admit an analytic continuation in a neighborhood of h = h1 and have no
such continuation in a neighborhood of h = h2 since their expansion along h = h2 contains logarithmic terms. Noting that
I1(h) < 0, we rewrite I(h) as I(h) = I1(h)(α + β Q (h) + γ P (h)), where

P (h) = I0(h)

I1(h)
, Q (h) = I−1(h)

I1(h)
, h ∈ (h1,h2).

Hence, the number of zeros of I(h) equals the number of intersection points of the straight line

L := {
(P , Q ): α + β Q + γ P

}
with the planar parametric curve

Σ := {
(P , Q ) = (

P (h), Q (h)
)
: h ∈ (h1,h2)

}
,

taking the multiplicities into account. Usually one calls Σ the centroid curve.
Our first goal will be to establish some Picard–Fuchs systems related to the Abelian integral I(h) which will be used in

the next section. Performing the standard calculation procedure, we obtain that

4

3
(k + 1)I1(h) + hI− 1

2
(h) + 4(k − 1)I−1(h) = 0, (2.5)

I0(h) = −8

3
(k + 1)I ′3

2
(h) + 8kI ′1

2
(h) + hI ′0(h), (2.6)

2I 1
2
(h) = 8kI ′1(h) + 3hI ′1

2
(h) + 8(k − 1)I ′0(h), (2.7)

3I1(h) = 8kI ′3
2
(h) + 3hI ′1(h) + 8(k − 1)I ′1

2
(h), (2.8)

4I 3
2
(h) = 8kI ′2(h) + 3hI ′3

2
(h) + 8(k − 1)I ′1(h), (2.9)

2(k + 1)I 3
2
(h) = 3kI 1

2
(h) − 3

8
hI0(h) − 3(k − 1)I− 1

2
(h). (2.10)

Eliminating I 3
2
(h) from Eqs. (2.6)–(2.10), we obtain a closed Picard–Fuchs system

⎛
⎜⎜⎜⎝

I− 1
2

I0

I 1
2

I1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

h
2 4k 0 − 4

3 (k + 1)

8(k − 1) 3h 8k 0

0 4(k − 1) 3
2 h 4k

− 8k(k−1)
k+1 − 2kh

k+1
8
3 (k − 1) h

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

I ′− 1
2

I ′0
I ′1

2

I ′1

⎞
⎟⎟⎟⎟⎠ . (2.11)

Taking derivative with respect to h on Eqs. (2.6)–(2.9), it follows that

Lemma 2.2. The vector function col(I ′1
2
(h), I ′3

2
(h)) verifies the first order linear differential system

�(h)

(
I ′′1

2
(h)

I ′′3
2
(h)

)
=

(
a21(h) a22(h)

a41(h) a42(h)

)(
I ′1

2
(h)

I ′3
2
(h)

)
, (2.12)

where

�(h) = (3h + 8 − 16k)(3h − 8 + 16k)
[
(9 + 9k)h2 + 64 + 192k − 256k3] = 81(k + 1)

(
h2 − h2

1

)(
h2 − h2

2

)
,

a21(h) = −3(k + 1)h
[
9h2 − 256k(k − 1)

] = −a42(h),

a22(h) = 192(1 + k)h, a41(h) = −6h
[
9kh2 − 32(k − 1)

(
8k2 + 1

)]
.
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Differentiating both sides of (2.12) we get that

Lemma 2.3. The vector function col(I ′′1
2
(h), I ′′3

2
(h)) verifies the first order linear differential system:

G(h)

(
I ′′′1

2
(h)

I ′′′3
2
(h)

)(
b11(h) b12(h)

b21(h) b22(h)

)(
I ′′1

2
(h)

I ′′3
2
(h)

)
, (2.13)

where

G(h) = 81(k + 1)h
(
h2 − h2

1

)(
h2 − h2

2

) = h�(h),

b11(h) = −4
[
27(k + 1)h4 − 96k

(
1 + 2k2)h2 − 1024(k − 1)

(
4k2 − 1

)2]
,

b12(h) = −960(k + 1)h2, b21(h) = −6h2[9kh2 − 32(k − 1)
(
8k2 + 7

)]
,

b22(h) = −2
[
27(k + 1)h4 + 192k

(
1 + 2k2)h2 − 2048(k − 1)

(
4k2 − 1

)2]
.

3. Estimate for the number of zeros of I(h)

This section is devoted to estimate the number of zeros of I(h), h ∈ (h1,h2), counting the multiplicities. Firstly, we note
that the zeros of I(h) are just the zeros of I(h)/h. Since I(h)/h vanishes at h1, the number of zeros of it is not large than
the number of zeros of d

dh (
I(h)

h ).

Lemma 3.1. Denoted by Ψ (h) = −3(k − 1)h2 d
dh (

I(h)
h ) = 3(k − 1)(I(h) − hI ′(h)), then

Ψ (h) = ηI ′3
2

+ ξ I ′1
2

+ ζh2 I ′− 1
2
, (3.1)

where

η = 8αk(k − 1) − 8

3
βk(k + 1) − 8

(
k2 − 1

)
γ ,

ξ = 8α(k − 1)2 − 8

3
β
(
k2 − 1

) + 24k(k − 1)γ , ζ = 3

4
β.

Proof. It is direct follows from (2.6)–(2.10) by calculation. �
In order to simplify the expression of Ψ (h) by putting ζ = 1 it is first necessary to prove the following lemma.

Lemma 3.2. If β = 0, then I(h) has at most one zero, taking into account the multiplicities.

Proof. By the relation between I(h) and Ψ (h) and the fact that I(h1) = 0, it suffices to show that ηI ′3
2
(h) + ξ I ′1

2
(h) has

at most one zero. To this end, we will prove that the function v(h) := I ′1
2
(h)/I ′3

2
(h) is monotonic decreasing. It is worth

pointing out here that the fact I ′3
2
(h) < 0 guarantees that v(h) is well-defined on (h1,h2).

By applying the Picard–Fuchs (2.12), v(h) verifies

�(h)v ′(h) = −a41(h)v2(h) + 2a21(h)v(h) + a22(h). (3.2)

Instead of this Riccati equation we study an equivalent autonomous differential system on the plane, namely

dh

dt
= �(h),

dv

dt
= −a41(h)v2 + 2a21(h)v + a22(h). (3.3)

We shall first identify which solution of (3.3) corresponds to the v(h) under consideration. Differentiating (3.2) and using
the fact that v(h1) = 1, we find v ′(h1) = 1

8 (2k − 1) < 0.
To determine the feature of v(h) near h = h2, we performing the standard calculation procedure (for example, see

[12,32]) and obtain that the Picard–Fuchs equation (2.12) has a fundamental solution matrix in a neighborhood of h2 as
follows

TP(h)

(
1 ln(h2 − h)

0 1

)
, T =

(
k + 1 k + 1

k − 1 k − 13

)
(3.4)

where P(h) is analytic at h = h2, P(h2) is a unite matrix. Therefore I ′1 (h) and I ′3 (h) have the forms

2 2
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I ′1
2
(h) = (k + 1)

[
c2 ln(h2 − h) + (c1 + c2) + · · ·], (3.5)

I ′3
2
(h) = c2(k − 1) ln(h2 − h) + (k − 1)c1 + (k − 13)c2 + · · · , (3.6)

where c1 and c2 are constants. Note in addition that −I ′3
2
(h) is the period function of the Hamiltonian system

ẋ = −H y(x, y), ẏ = Hx(x, y), (3.7)

and that h = h2 corresponding to the homoclinic orbit of system (3.7), it follows that −I ′3
2
(h) → +∞ as h → h−

2 . Hence

c2 �= 0 (otherwise I ′3
2
(h) will doesn’t contain logarithmic terms). Then

v(h) =
I ′1

2
(h)

I ′3
2
(h)

= 1 + k

k − 1
+ 12(k + 1)

(k − 1)2 ln(h2 − h)
+ · · · , as h → h−

2 . (3.8)

This yields that v(h) → k+1
k−1 and v ′(h) → −∞ as h → h2.

We have already shown that v(h) is monotonic decreasing near the two endpoints. We assert that v(h) is monotonic
decreasing on (h1,h2). If this is not true, then the inequality v(h2) < v(h1) means that v(h) would have at least one
maximum point and one minimum point. Thus there exists a straight line v = v0 in the (h, v)-plane cutting the graph of
v(h) at three times, which means that there are at least two points on the segment {(v,h)|v = v0,h ∈ (h1,h2)}, at which
the vector field (3.3) is horizontal. This is however impossible because the function

dv

dt

∣∣∣∣
v=v0

= −a41(h)v2
0 + 2a21(h)v0 + a22(h)

= h
[
6
(
9kh2 − 32(k − 1)

(
8k2 + 1

))
v2

0 − 6(k + 1)
(
9h2 − 256k(k − 1)

)
v0 + 192(1 + k)

]
has at most one zero in (h1,h2). The proof is finished. �

By the above lemma, we can assume without loss of generality that ζ = 1 in (3.1), i.e.,

Ψ (h) = ηI ′3
2
(h) + ξ I ′1

2
(h) + h2 I ′− 1

2
(h).

Unfortunately, it is very difficult to estimate directly the number of zeros of Ψ (h) since the expression of Ψ (h) con-
tains three Abelian integrals. As [4] has done, to overcome this difficulty we will consider the derivative of Ψ (h)/h3. By a
straightforward manipulation we obtain the following result:

Lemma 3.3. Let Ψ̃ (h) = 9
2 (k + 1)h5 d

dh (
Ψ (h)

h3 ), then Ψ̃ (h) = (ah2 + b)I ′′1
2
(h) − (ch2 + d)I ′′3

2
(h), where

a = 45(k + 1)ξ + 81kη + 32(k + 1)
(
8k2 + 1

)
,

b = −288(k − 1)
[
4k(k + 1)ξ + (

8k2 + 1
)
η
]
,

c = 4(k + 1)
[
9η + 32k(k + 1)

]
,

d = 288(k + 1)
[
ξ − 4k(k − 1)η

]
. (3.9)

The expression of Ψ̃ (h) inspired us to consider the function w(h) := I ′′3
2
(h)/I ′′1

2
(h). We will illustrate that I ′′1

2
(h) �= 0 for all

h ∈ (h1,h2) after the proof of Lemma 3.5, see Remark 3.1 below.
Taking advantage of Lemma 2.3, it is easy to see that w(h) verifies the Riccati equation:

�(h)w ′ = 6h
[
160(k + 1)w2 + (

9(k + 1)h2 − 128k
(
1 + 2k2))w − 9kh2 + 32(k − 1)

(
8k2 + 7

)]
. (3.10)

Setting u = h2, u1 = h2
1, u2 = h2

2, w̄(u) = w(h) = w(−√
u). By (3.10), it turns out that

Lemma 3.4. w̄(u) verifies the following Riccati equation:

G2(u)w̄ ′ = 160(k + 1)w̄2 + (
9(k + 1)u − 128k

(
1 + 2k2))w̄ − 9ku + 32(k − 1)

(
8k2 + 7

)
, (3.11)

where G2(u) = 27(k + 1)(u − u1)(u − u2).

Lemma 3.5. w̄(u) is monotonic decreasing and concave on (u1, u2).
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Fig. 2. Phase portraits of (3.12) and the graph of w̄(u) (denoted by C w̄ ).

Proof. By Lemma 3.4, w̄(u) is a solution of the system

du

dt
= G2(u),

dw̄

dt
= 160(k + 1)w̄2 + (

9(k + 1)u − 128k
(
1 + 2k2))w̄ − 9ku + 32(k − 1)

(
8k2 + 7

)
. (3.12)

This system has two invariant straight lines u = u1 and u = u2 as well as four critical points: saddle S1(u1, w1), saddle
S2(u2, w22) and node N1(u1,1), node N2(u2, w21), where

w1 = 5k − 7

5(k + 1)
, w21 = k − 1

k + 1
, w22 = 5k + 7

5(k + 1)
.

Putting h = h1 into (2.13) gives rise to w(h1) = w1 = w̄(u1). Taking derivative with respect to u in (3.11) yields that
w̄ ′(u1) = − 21

1280 . Applying the same procedure we get w̄ ′′(u1) = 77(k+1)
131 072 .

On the other hand, by applying the methods of [32], we obtain a fundamental solution matrix of (2.13) in a neighborhood
of h = h2(

k + 1 5k + 5

k − 1 5k + 7

)(
q11(h) q12(h)

q21(h) q22(h)

)( 1
h2−h 0

v ln(h2 − h) 1

)
, (3.13)

where v = (2k + 1)(k + 1)
√

(k − 1)/(k + 1)/96, qij(h) is analytic at h = h2 and (qij(h2))1�i, j�2 is an unite matrix. This
implies that there exist two constants d1 and d2, such that

I ′′1
2
(h) = d1(k + 1)(h2 − h)−1 + 5d1(k + 1)v ln(h2 − h) + 5d2(k + 1) + · · · ,

I ′′3
2
(h) = d1(k − 1)(h2 − h)−1 + d1(5k + 7)v ln(h2 − h) + d2(5k + 7) + · · · ,

as h → h−
2 .

Since −I ′3
2
(h) is the period function of system (3.7), −I ′′3

2
(h) → +∞ as h → h−

2 . Thus d1 �= 0. Consequently w(h) has the

following asymptotic expansion

w(h) = k − 1

k + 1
+ 12v

k + 1
(h2 − h) ln(h2 − h) + · · · , h → h−

2 .

It turns out that w(h2) = w21, w ′(h2) = −∞, which means that w̄(u2) = w21, w̄ ′(u2) = −∞.
On the other hand, by the global analysis of the phase portraits of system (3.12) it is easy to see that w̄(u) is an orbit of

system (3.12) connecting S1 and N2. See Fig. 2.
Since w̄ ′(u1) < 0, w̄ ′′(u1) < 0 and w̄ ′(u2) = −∞, w̄(u) is monotonous decreasing and concave near S1 and N2. We claim

that w̄(u) is global monotonous decreasing and concave on (u2, u1).
In fact, if w̄(u) has an extremum in (u1, u2), then there exists a straight line w̄ = w0 which cuts the graph of w̄(u)

at three points at least. Thus we can find two points on (u1, u2) × {w0}, at them dw̄
dt = 0. However, this contradicts that

dw̄
dt |w=w0 has at most one zero (see (3.12)). Consequently, we conclude that w̄(u) is global monotonous decreasing on
(u2, u1).

Suppose that w̄(u) has an inflection point. Then we would find a straight line w̄ = mu + n cuts w̄(u) at least at three
points and intersects the invariant straight line {u = u1} below the saddle S1, at these three points the vector field is tangent
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to this line. This contradicts to the fact that dw̄
dt − m u̇

dt |w̄=mu+n is a quadratic polynomial in u. Therefore, w̄(u) is convex on
(u1, u2). The proof is complete. �
Remark 3.1. In the proof of the above lemma, we show that w̄(u) is bounded. This implies that I ′′1

2
(h) �= 0 for all h ∈ (h1,h2).

In fact, taking derivative with respect to h in (2.6)–(2.8), we obtain

I ′′0(h) = 1

h

(
−8kI ′′1

2
(h) + 8

3
(k + 1)I ′′3

2
(h)

)
, (3.14)

−I ′1
2
(h) = 8(k − 1)I ′′0(h) + 3hI ′′1

2
(h) + 8kI ′′1(h), (3.15)

3hI ′′1(h) = −8(k − 1)I ′′1
2
(h) − 8kI ′′3

2
(h). (3.16)

Substituting (3.14) and (3.16) into (3.15), we have

3hI ′1
2
(h) = 64I ′′3

2
(h) + [

256k(k − 1) − 9h2]I ′′1
2
(h). (3.17)

By (3.17) and hI ′1
2
(h) < 0, it turns out that |I ′′3

2
(h)| + |I ′′1

2
(h)| �= 0. Consequently, the fact |w(h)| < ∞ implies that I ′′1

2
(h) �= 0

for all h ∈ (h1,h2).

We can now prove the following lemma.

Lemma 3.6. For any real numbers α, β , γ , the integral I(h) in (2.4) has at most three isolated zeros in (h1,h2), taking into account
their multiplicities. This bound is exact.

Proof. Since I(h1) = 0, the relation between I(h) and Ψ̃ (h) implies that it is enough to prove that Ψ̃ (h) has at most two
isolated zeros, taking into account their multiplicities.

Recall that Ψ̃ (h) = (ah2 + b)I ′′1
2
(h) − (ch2 + d)I ′′3

2
(h). If ad − bc = 0, then there exists a real number μ such that Ψ̃ (h) =

(ch2 + d)I ′′1
2
(h)(μ − w(h)) which has, by Lemma 3.5, at most two positive zeros. Therefore, we will assume without loss

of generality that ad − bc �= 0. If there exists some h0 ∈ (h1,h2) such that ch2
0 + d = 0, then Ψ̃ (h0) = (ah2

0 + b)I ′′1
2
(h0) �= 0.

So we may be limited to consider the number of zeros of Ψ̃ (h) on the set (h1,h2) \ {h: ch2 + d = 0}, and rewrite Ψ̃ (h) =
(ch2 + d)I ′′1

2
(h)(r(h) − w(h)), where r(h) = ah2+b

ch2+d
.

Let u = h2 and r̄(u) = r(h) = r(−√
u), then the number of zeros of Ψ̃ (h) equals to the number of intersection points of

the graphs of r̄(u) = au+b
cu+d and w̄(u), denoted by Cr̄ and C w̄ respectively.

If c = 0, then Cr̄ is a straight line and by Lemma 3.5 it could has at most two intersection points with C w̄ . Hence we can

suppose that c �= 0, and write r̄(u) = āu+b̄
u+d̄

, where ā = a/c, b̄ = b/c, d̄ = d/c.

If r̄′(u) > 0, then the monotonicity of w̄(u) means that Cr̄ can intersect C w̄ at two points at most. Thus we suppose in
the rest of the proof that r̄′(u) < 0. In this case, we denote by C+

r̄ and C−
r̄ the right-upper and the left-lower branch of Cr̄

respectively.
It is easy to see that only one branch of Cr̄ could intersect C w̄ . By the convexities, C+

r̄ can intersect C w̄ at two points at
most. Hence it remains to study the number of intersection points of C−

r̄ with C w̄

The hyperbola r̄(u) has a horizontal asymptote u = ā and a vertical one u = −d̄. The equation for the contact points
between Cr̄ and the flow in (3.12) is:

0 = d

dt

(
w̄ − r̄(u)

)∣∣∣∣
w̄=r̄(u)

= − Ē(u)

3(u + d̄)2
= 4(k + 1)2 E(u)

(cu + d)2
(3.18)

where Ē(u) = ē3u3 + ē2u2 + ē1u + ē0 with ē3 = −27(ā − k + āk) and E(u) = e3u3 + e2u2 + e1u + e0 with

e3 = 9(k + 1)
[
9η + 32k(k + 1)

][
45kη + 45(k + 1)ξ + 32(k + 1)

(
4k2 + 1

)]
,

e2 = −8
[
81

(
376k4 − 317k2 − 32

)
η2 − 2835(k + 1)2ξ2 + 648k(k + 1)

(
47k2 − 44

)
ξη

+ 1728k(k + 1)
(
96k4 − 100k2 + 13

)
η + 2304(k + 1)2(92k4 − 85k2 − 4

)
ξ

+ 1024(k + 1)2(4k2 − 1
)2(

8k2 − 5
)]

. (3.19)

By using the saddle S1 property and the fact that deg Ē(u) � 3, it follows that C−
r̄ could has at most three intersection

points with C w̄ , taking the multiplicity into account.
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Fig. 3. (i): {(ξ,η): L2 > 0, L3 > 0, L4 � 0, b > 0} is an empty set; (ii): {(ξ,η) ∈ D: e2 < 0, s2 > 0} is an empty set.

If the vertical asymptote u = −d̄ located on the left side of the straight line u = u1, then C−
r̄ does not intersect C w̄ at

all. This is also true if −d̄ = u1. Therefore, in what follows we may suppose that u1 < −d̄.
We will verify that C−

r̄ can intersect C w̄ at most twice. Assume the opposite. Then there are at least three contact points
on C−

r̄ with the vector field, due to the behavior of the vector field near the hyperbolic saddle S1. What is more, the relative
position of horizontal asymptote u = ā and the node N2 means that ā > w21, which yields ē3 = −27(k+1)(ā−k/(k+1)) > 0.
This implies that on C−

r̄ , the vector field for u 
 0 is transversal to C−
r̄ in the positive direction. If C−

r̄ goes above S1, then
at the intersection points of C−

r̄ with the trajectory u = u1 the vector field is transversal to C−
r̄ in the negative direction,

which means an additional contact point on C−
r̄ for u < u1, leading to a contradiction. Thus we may suppose that C−

r̄ goes
below S1.

If −d̄ � u2 or −d̄ > u2 but C−
r̄ goes below N2, then the number of intersections of C−

r̄ and C w̄ is even. This implies that
C−

r̄ can intersect C w̄ at most twice. Accordingly, it remains to consider the case that −d̄ > u2 with that C−
r̄ goes above N2.

In this case, if C−
r̄ intersects C w̄ at three points, then the following conditions are satisfied:

r̄′(u) < 0, r̄(0) > w21 > 0, −d̄ > u2, r̄(u2) > w21, ā � w21. (3.20)

Using (3.9) and ā = a/c, b̄ = b/c, d̄ = d/c, calculation gives

r̄′(u) = ad − bc

(cu + d)2
, r̄(0) = b

d
, −d̄ − u2 = −8L1

9(1 + k)L2
,

r̄(u2) − w21 = (k − 1)(2k + 1)2L3

(k + 1)L1
, ā − w21 = L4

4(1 + k)L2
,

where

L1 = −36(k + 2)(k − 1)2η + 81(k + 1)ξ + 256k
(
k2 − 1

)
(2k + 1)2,

L2 = 9η + 32k(k + 1) = c

4(k + 1)
,

L3 = 9(k − 1)η + 9(k + 1)ξ + 64(k + 1)(2k + 1)2,

L4 = 9(5k + 4)η + 45(k + 1)ξ + 32(k + 1)(2k + 1)2.

Thus (3.20) is equivalent to

ad < bc, bd > 0, L1L2 > 0, L1L3 > 0, L4L2 � 0. (3.21)

Moreover, since ā � w21 > 0 and −d̄ > u2 > 0, we have ac > 0 and cd < 0. The graphics of the straight lines Li = 0 (i =
2,3,4) and b = 0 is shown in Fig. 3.

If L2 > 0, then L3 > 0, L4 � 0 and b > 0. One can easy check that in the (ξ,η)-plane, {(ξ,η): L2 > 0, L3 > 0, L4 � 0,

b > 0} is an empty set.
If L2 < 0, then L3 < 0, L4 � 0. Let D = {(ξ,η): L2 < 0, L3 < 0, L4 � 0}. Below, we are going to show that for any

(ξ,η) ∈ D , the polynomial E(u) does not have three zeros in (u1, u2). Assume the opposite. Then it follows that s2 :=
2e3u2 + e2 > 0 and e2e3 < 0.
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Noting that e3 = 9(k + 1)L2[45kη + 45(k + 1)ξ + 32(k + 1)(4k2 + 1)], one can easy check that e3 > 0 for any (ξ,η) ∈ D .
This means that e2 < 0. Computation shows that

s2 = 8
[
81

(
104k4 − 43k2 − 120k + 32

)
η2 + 2835(1 + k)2ξ2 + 648(1 + k)

(
13k3 − k − 15

)
ηξ

+ 1728(1 + k)
(
48k5 + 8k3 − 36k2 − 25k − 4

)
η − 2304(1 + k)2(32k4 − 40k2 + 15k − 4

)
ξ

+ 1024(1 + k)2(1 + 2k)2(64k4 − 63k3 + 36k2 − 44k + 5
)]

.

The conics s2 = 0 is tangent to the conics e2 = 0 at the point that L2 = L3 = 0. Denoted by Ms (resp. Me) the intersect point
of s2 and L4 (resp. e2 and L4). The abscissa of Ms and Me are

xs = −64(k + 1)(1 + 2k)2(36k3 − 22k2 − k − 13)

9(52k3 − 39k − 94)
,

and

xe = 64(k + 1)(1 + 2k)2(36k3 − 16k2 − 13k − 7)

9(188k3 − 141k + 34)

respectively. A simple calculation yields that

xs − xe = −384(k − 1)2(k + 1)(1 + 2k)2(4 + 5k)(32k3 + 20k2 + 16k + 1)

(52k3 − 39k − 94)(188k3 − 141k + 34)
> 0.

By this information, it is not hard to check that in the region {(ξ,η) ∈ D: e2 < 0, s2 > 0} is an empty set. See Fig. 3(ii).
Therefore, there is not (ξ,η) ∈ R2 such that Cr̄ intersect C w̄ at three points. The proof is finished. �

4. Proof of the main theorem

In this section we are going to obtain the exact upper bound for the number of zeros of I(h), counting the multiplicity.
We first use the Picard–Fuchs system (2.11) to obtain the asymptotic expansions of P (h) and Q (h) in a neighborhood of

h = h1.

Lemma 4.1. If h → h+
1 , then we have

P (h) = 1 + 2k + 1

16
(h − h1) + (2k + 1)(110k2 + 91k − 55)

9216
(h − h1)

2

+ (2k + 1)(14 740k4 + 20 020k3 − 7551k2 − 12 530k + 1165)

3 538 944
(h − h1)

3 + · · · ,

Q (h) = 1 + 2k + 3

8
(h − h1) + (k + 1)(220k2 + 292k + 231)

4608
(h − h1)

2

+ (k + 1)(29 480k4 + 54 780k3 + 38 418k2 + 11 789k + 1155)

1 769 472
(h − h1)

3 + · · · .

Proof. Recall that Iμ(h)(μ = − 1
2 ,0, 1

2 ,1) are analytic at h = h1 since the Hamiltonian value h1 corresponds to the center of
system (2.1). An easy manipulation shows that

I− 1
2
(h1) = I0(h1) = I 1

2
(h1) = I1(h1) = 0, I ′− 1

2
(h1) = I ′0(h1) = I ′1

2
(h1) = I ′1(h1).

Hence we can set

Iμ(h) = I ′1(h1)(h − h1) + bμ(h − h1)
2 + cμ(h − h1)

3 + dμ(h − h1)
4 + o

(|h − h1|4
)
. (4.1)

Substituting (4.1) into (2.11), we get the following expressions after a long but straightforward manipulations:

b− 1
2

= 1

192

(
10k2 + 29k + 31

)
I ′1(h1), b0 = 1

192

(
10k2 + 17k + 7

)
I ′1(h1),

b 1
2

= 5

192
(k + 1)(2k − 1)I ′1(h1), b1 = 1

192

(
10k2 − 7k − 5

)
I ′1(h1);

c− 1
2

= 35

110592
(1 + k)2(44k2 + 52k + 11

)
I ′1(h1),

c0 = 35
(1 + k)2(2k − 1)(22k + 13)I ′1(h1),
110592
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c 1
2

= 1

110592

(
308k4 + 308k3 − 231k2 − 226k + 5

)
I ′1(h1),

c1 = 35

110592
(2k − 1)

(
22k3 + 9k2 − 24k − 11

)
I ′1(h1),

d− 1
2

= 5005

127401984
(1 + k)3(2k − 1)

(
68k2 + 76k + 17

)
I ′1(h1),

d0 = 35

127401984
(1 + k)2(19448k4 + 10868k3 − 14586k2 − 5665k + 1313

)
I ′1(h1),

d 1
2

= 385

127401984
(1 + k)2(2k − 1)

(
884k3 − 663k − 103

)
I ′1(h1),

d1 = 35

127401984
(k + 1)

(
19448k5 − 10868k4 − 24310k3 + 10637k2 + 5980k − 1243

)
I ′1(h1).

Using these expressions and (2.5) we obtain the required asymptotic expansion of P (h) and Q (h) by direct calculation. We
also omit the course for sake of brevity. �

By Lemma 4.1, P (h) is strict monotonous decreasing in a neighborhood of h = h1. Moreover, we have the following result.

Lemma 4.2. P ′(h) < 0, h ∈ (h1,h2).

Proof. It is suffices to prove that the equation P (h) = −1/ν has at most one solution in (h1,h2) for any ν ∈ R \ {0}. To this
end, we verify that ν I0(h) + I1(h) has at most one zero in (h1,h2). Noting that the number of the zeros of ν I0(h) + I1(h)

equals to the number of the limit cycles of system

ẋ = −2xy,

ẏ = k − 1 − 2kx + (k + 1)x2 − 1

2
y2 + ε(vx + 1)y, 0 < |ε| 
 1,

counting multiplicities. By the results of [29], any planar quadratic differential system with an invariant line has at most
one limit cycle. Thus ν I0(h) + I1(h) has at most one zero. This completes the proof of the result. �

Since P ′(h) < 0, h ∈ (h1,h2), the inverse function of P = P (h), say h = h(P ), exists and we can treat Q as a function
of P : Q = Q (h(P )) := Q̃ (P ). We will determine the geometric behavior of Σ : Q = Q̃ (P ) in its two endpoints, namely
C = (P (h1), P (h1)) = (1,1) and S = (P (h2), P (h2)).

Lemma 4.3. dQ
dP |h=h1 = 2(2k+3)

2k+1 , d2 Q
dP 2 |h=h1 = 4(10k+11)

(2k+1)2 , d3 Q
dP 3 |h=h1 = −380k3−320k2+2213k+2225

6(2k+1)3 .

Proof. Applying the result of Lemma 4.1 and the formulas

dQ

dP

∣∣∣∣
h=h1

= Q ′(h1)

P ′(h1)
,

d2 Q

dP 2

∣∣∣∣
h=h1

= Q ′′(h1)P ′(h1) − Q ′(h1)P ′′(h1)

[P ′(h1)]3
,

d3 Q

dP 3

∣∣∣∣
h=h1

= Q ′′′(h)(P ′(h))2 − 3Q ′′(h)P ′′(h)P ′(h) + Q ′(h)[3(P ′′(h))2 − P ′(h)P ′′′(h)]
[P ′(h)]5

∣∣∣∣
h=h1

,

we obtain the required results by direct calculation. �
Our next goal will be to obtain the geometric behavior of Σ near the endpoint S . Since the Hamiltonian value h2

corresponds to the homoclinic orbit of system (2.1), we can write

Iμ(h) = ãμ + b̃μ(h2 − h) ln(h2 − h) + c̃μ(h2 − h) + d̃μ(h2 − h)2 ln(h2 − h) + · · · (4.2)

in a neighborhood of h = h2, where ãμ, b̃μ, c̃μd̃μ ∈ R, μ = − 1 ,0, 1 ,1. Clearly, ãμ < 0, b̃μ < 0 since Iμ(h) < 0, I ′μ(h) < 0.
2 2
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Substituting (4.2) into (2.11), some tedious computations show that

3h2b̃− 1
2

+ 24kb̃0 − 8(k + 1)b̃1 = 0,

8(k − 1)b̃− 1
2

+ 3h2b̃0 + 8kb̃ 1
2

= 0,

8(k − 1)b̃0 + 3h2b̃ 1
2

+ 8kb̃1 = 0,

−24k(k − 1)b̃− 1
2

− 6kh2b̃0 + 8
(
k2 − 1

)
b̃ 1

2
+ 3(k + 1)h2b̃1 = 0.

From the above equalities and (2.5) we obtain the relations between the coefficients:

b̃ 1
2

= λb̃1, b̃− 1
2

= λ3b̃1, b̃0 = λ2b̃1, b̃−1 = λ4b̃1, with λ =
√

k + 1

k − 1
. (4.3)

Define J−1(h) = I−1(h)−λ4 I1(h), J0(h) = I0(h)−λ2 I1(h). By (4.2) and (4.3) it follows that | J ′−1(h)| < +∞, | J ′
0(h)| < +∞.

Let

P̃ (h) = J0(h)/I1(h) = P (h) − λ2, Q̃ (h) = J−1(h)/I1(h) = Q (h) − λ4

and define the corresponding curve

Σ̃ := {
( P̃ , Q̃ ) = (

P̃ (h), Q̃ (h)
)
: h ∈ (h1,h2)

}
.

The Σ̃ is just a translation of Σ . Denoted respectively by L S and L S̃ the tangent line to Σ at S and the tangent line to Σ̃

at S̃ := ( P̃ (h2), Q̃ (h2)) = (P (h2) − λ2, Q (h2) − λ4).

Lemma 4.4.

(i) The curve Σ lies below L S .
(ii) The curve Σ is increasing near S.

Proof. (i) Obviously, it suffices to prove that Σ̃ lies below L S̃ .

From (3.5) (c2 �= 0) and b̃ 1
2

= λb̃1 it follows that |I ′1(h)| → +∞ as h → h−
2 . Since | J ′−1(h)| < +∞, | J ′

0(h)| < +∞, we

obtain

lim
h→h−

2

Q̃ ′(h)

P̃ ′(h)
= lim

h→h−
2

J ′−1(h)I1(h) − J−1(h)I ′1(h)

J ′
0(h)I1(h) − J0(h)I ′1(h)

= lim
h→h−

2

J ′−1(h)/I ′1(h) − J−1(h)/I1(h)

J ′
0(h)/I ′1(h) − J0(h)/I1(h)

= lim
h→h−

2

J−1(h)/I1(h)

J0(h)/I1(h)
= Q̃ (h2)

P̃ (h2)
.

Thus the equation of L S̃ is Q = Q̃ (h2)

P̃ (h2)
P .

On the other hand, we find on the Γh that x < k−1
k+1 = λ−2, hence J0(h) = ∮

Γh
x− 1

2 (x−1 − λ2)y dx < 0. Since I1(h) < 0, it

turns out that P̃ (h) > 0. Noting that

Q̃ (h) − Q̃ (h2)

P̃ (h2)
P̃ (h) = P̃ (h)

(
Q̃ (h)

P̃ (h)
− Q̃ (h2)

P̃ (h2)

)
,

the proof will be complete if we show that Q̃ (h)/ P̃ (h) is strictly increasing.

It is easy to see that Q̃ (h)/ P̃ (h) can be wrote as the ratio of two Abelian integrals
∮

H=h f2(x)y dx∮
H=h f1(x)y dx

. In Theorem 2 of [19],

a method to determine the monotonicity of such a ratio of two Abelian integrals is given. Before applying the result of that
paper, we perform a change of variable: x̄ = √

x and change the first integral H(x, y) = h of system (2.1) to H̄(x̄, y) = h,
where (for the simplicity in notation we still write x̄ as x): H̄(x, y) = φ(x)y2 + Φ(x),

φ(x) = x−1, Φ(x) = 2

3
(k + 1)x3 − 4kx − 2(k − 1)x−1,

and corresponding, Ii(h) = 2
∮

¯ x2i−2 y dx. Consequently
H=h
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Q̃ (h)

P̃ (h)
= I−1(h) − λ4 I1(h)

I0(h) − λ2 I1(h)
=

∮
H̄=h f2(x)y dx∮
H̄=h f1(x)y dx

,

where f1(x) = x−2 − λ2, f2(x) = x−4 − λ4. Obviously, f1(x) verifies the hypothesis (H2) of [19].

The homoclinic orbit H̄(x, y) = h2 cut the x-axis in two points: (

√
4k+2
k+1 −

√
k−1
k+1 ,0) and (

√
k−1
k+1 ,0). Since Φ ′(x) = x−2(x2 −

1)(x2 + kx2 − k + 1), the hypothesis (H1)(i) of [19] is satisfied. By using the formula (19) of [19], we define the function

ζ(x) = f2(x)
√

φ(x̃)Φ ′(x̃) − f2(x̃)
√

φ(x)Φ ′(x)

f1(x)
√

φ(x̃)Φ ′(x̃) − f1(x̃)
√

φ(x)Φ ′(x)
, x ∈

(√
4k + 2

k + 1
−

√
k − 1

k + 1
,1

)
,

where x̃ = x̃(x) is an analytic involution defined by Φ(x̃) = Φ(x).
According to Theorem 2 of [19], to prove that Q̃ (h)/ P̃ (h) is strictly monotonically increasing, it is enough to prove that

ζ ′(x) < 0. It turns out after a straightforward calculation that

ζ(x) = x̃
3
2 (1 + λ2x2)(x̃2 − 1) − x

3
2 (1 + λ2x̃2)(x2 − 1)

(x̃x)
3
2 [√x(x̃2 − 1) − √

x̃(x2 − 1)]
:= A(x, x̃)

B(x, x̃)
.

Then ζ ′(x) = κ(x,x̃)+κ(x̃,x)x̃′(x)
B2(x,x̃)

, where κ(x, x̃) = A′
x(x, x̃)B(x, x̃) − A(x, x̃)B ′

x(x, x̃).

Since x̃′(x) = Φ ′(x)
Φ ′(x̃) < 0, and

κ(x, x̃) = 1

2

√
x(

√
x −

√
x̃ )2(1 − x̃2)x̃

3
2
[
x + 3x3 + 2

√
xx̃ + 6x

5
2
√

x̃ + 3x̃ + 9x2x̃ + 12(x̃x)
3
2 + 8xx̃2 + 4xx̃

5
2
]
,

which yields that κ(x, x̃) < 0, κ(x̃, x) > 0, we conclude that ζ ′(x) < 0. This prove that Q̃ (h)/ P̃ (h) is strictly monotonically
increasing.

(ii) By (4.2) and (4.3), we obtain for h → h−
2 that

Q (h) = ã−1

ã1
+ (λ4ã1 − ã−1)b̃1

ã2
1

(h2 − h) ln(h2 − h) + · · · .

Since

λ4ã1 − ã−1 =
∮

H=h2

x− 1
2
(
λ4 − x−2)y dx > 0

and b̃1 < 0, it follows that Q (h) is decreasing for h → h−
2 . Hence, by Lemma 4.2, near the endpoint S we find that dQ /dP =

Q ′(h)/P ′(h) > 0.
The proof is finished. �
By Lemma 4.3 and Lemma 4.4, the convex properties of the centroid curve Σ at the two endpoints are different for the

case that k ∈ (−1.1,1). Thus there are at least one inflexion. One can easily find a straight line cutting Σ at least three
points. Consequently, we obtain the following conclusion by using Lemma 3.6 immediately.

Theorem 4.1. If k ∈ (−1.1,1), then I(h) has at most three isolated zeros, counting the multiplicity. This bound is exact.

Next we consider the cases that k � −1.1. First of all, we prove the following lemma.

Lemma 4.5. For each k ∈ (−∞,−1.1], the centroid curve Σ lies below LC .

Proof. By Lemma 4.3, if k < −1.1, then d2 Q
dP 2 |h1 < 0. If k = −1.1, then d2 Q

dP 2 |h1 = 0, d3 Q
dP 3 |h1 = 35

4 . Noting that P ′(h) < 0, hence
it follows that for both cases, the centroid curve is concave near the endpoint C . Since LC go through C and its slope is
2(2k+3)

2k+1 , the equation of LC is

LC : (2k + 1)Q − 2(2k + 3)P + 2k + 5 = 0.

Substituting α = 2k + 5, β = 2k + 1, γ = −2(2k + 3) into (3.1), it follows that

3(k − 1)Ψ (h) = −128

3
(2k + 1)

(
k2 − 1

)
I ′1

2
(h) + 16

3
(2k + 1)

(
4k2 + 4k − 9

)
I ′3

2
(h) + 3

4
(2k + 1)h2 I ′− 1

2
(h).

Multiplied by 4 both sides of the above equation yields
3(2k+1)
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Fig. 4. Near the endpoints Σ is placed inside the triangle T .

4(k − 1)

2k + 1
Ψ (h) = −512

9

(
k2 − 1

)
I ′1

2
(h) + 64

9

(
4k2 + 4k − 9

)
I ′3

2
(h) + h2 I ′− 1

2
(h). (4.4)

Substituting ξ = − 512
9 (k2 − 1), η = 64

9 (4k2 + 4k − 9) into

4(k − 1)

2k + 1
Ψ (h) = ηI ′3

2
+ ξ I ′1

2
+ h2 I ′− 1

2
,

it turns out that

4(k − 1)

2k + 1
Ψ̃ (h) = (

âh2 + b̂
)

I ′′1
2

− (
ĉh2 + d̂

)
I ′′3

2
, (4.5)

where

â = −2592(k − 1), b̂ = 18432(k − 1)(2k − 1)2,

ĉ = 1152(k2 − 1)(k + 2), d̂ = −8192
(
k2 − 1

)
(k + 2)(2k − 1)2. (4.6)

If k = −2, then ĉ = d̂ = 0 and

36Ψ̃ (h) = 8
(
97h2 − 172800

)
I ′′1

2
�= 0, for h ∈ (h1,h2) = (172800/97,192).

Suppose that k �= −2. Then by (4.5) and (4.6) we obtain

4(k − 1)

2k + 1
Ψ̃ (h) = 32

(
k2 − 1

)
(k + 2)

[
36h2 − 256(2k − 1)2]I ′′1

2

[
9

4(k + 1)(k + 2)
− w(h)

]
.

As the proof of Lemma 3.5 has shown, w(h) ∈ (w21, w1). Computation shows(
9

4(k + 1)(k + 2)
− w21

)(
9

4(k + 1)(k + 2)
− w1

)
= (2k − 1)2(2k + 1)2(11 + 10k)

80(k + 1)2(k + 2)2
� 0.

Since k � −1.1, it follows that 9
4(k+1)(k+2)

− w(h) �= 0, which implies that Ψ̃ (h) �= 0 for h ∈ (h1,h2).

Finally, noting that Ψ (h1) = I(h1) − h1 I ′(h1) = −h1 I ′(h1)(α + β + γ ) = 0, the conclusion Ψ̃ (h) �= 0 yields that Ψ (h) �= 0.
Hence I(h) �= 0. This means that LC has not intersection point with Σ . �

Now it is ready to finish the proof of Theorem 2.1 for k � −1.1.

Theorem 4.2. If k � −1.1, then I(h) has at most two isolated zeros, counting the multiplicity.

Proof. By Lemma 4.3 and Lemma 4.4, Σ is concave in a neighborhood of its two endpoints. Furthermore, near its endpoints
it is placed inside the triangle T formed by the lines LC , L S and the line going through C and S (Lemma 4.4(ii)). See Fig. 4.
If Σ leaves T , then there would exist a straight line L going through a point of Σ sufficiently close to some of its endpoints
and intersecting Σ at least at four points (taking the multiplicities into account). This yields a contradiction. If Σ is placed
inside T but not globally concave, then we can also find a straight ling L intersecting Σ at four points, also a contradiction.
Therefore, Σ is a concave curve, which implies that I(h) has at most two zeros. �
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