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In this paper we investigate an inverse problem for a time-fractional diffusion equation
which is highly ill-posed in the two-dimensional setting. Based on an a priori assumption,
we give a conditional stability result. Some new regularization methods are constructed
for solving the inverse problem and the corresponding error estimates are proved. For
numerical illustration, several examples are constructed to demonstrate the feasibility and
efficiency of the proposed methods.
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1. Introduction

In recent years, the studies on fractional calculus and derivatives have drawn attention from various disciplines of
science and engineering, for instance, mechanical engineering [1], viscoelasticity [2], Lévymotion [3], electron transport [4],
dissipation [5], heat conduction [6–8] and high-frequency financial data [9]. A number of experiments have shown that, in
the process of modeling real physical phenomena such as Brownian motion, fractional calculus and derivatives provide
more accurate simulation than traditional calculus with integer order derivatives. Fractional derivatives have also proven
to be more flexible in describing viscoelastic behavior. In particular, fractional models are believed to be more realistic in
describing anomalous diffusion in heterogeneous porous media.

It is known that in solving a well-posed forward problem for partial differential equations, if the initial concentration
distribution and boundary conditions are given, a complete recovery of the unknown solution is attainable. On the other
hand, if the boundary data can only be measured on a portion of the boundary or at some scattered points in the solution
domain, this leads to an inverse problem in the sense that the solution does not depend continuously on the given data [10].
Many kinds of inverse problems are ill-posed in the sense that a small error in the boundary data will cause an enormous
error in the solution. These inverse problems are usually referred to as ill-posed backward determination problems [11]
which are by nature unstable because the unknown solution and its derivatives have to be determined from indirect
observable data which usually contains measurement errors. The major difficulty in establishing any numerical algorithm
for approximating the solution is due to the severe ill-posedness of the inverse problem. In this paper, we investigate an
inverse heat conduction problem (IHCP) for a fractional order diffusion equation in the two-dimensional (2-D) case. We
remark here that the IHCP for the one-dimensional (1-D) case had been well studied in the last few decades. Due to severe
ill-posedness, it is, however, much more difficult to solve IHCP in the 2-D case than in the 1-D case. To the knowledge of the
authors, there are still very few results on inverse problems for fractional order diffusion equations in the 2-D case.
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For inverse problems of the fractional diffusion equation in the one-dimensional setting, many authors have investigated
related topics. For example, the uniqueness of an inverse problem for one-dimensional fractional diffusion equation was
given by Cheng et al. [12]. Zheng and Wei [13] gave a regularization method for a Cauchy problem of the time fractional
advection–dispersion equation in a spatially unbounded domain. Numerical results using difference methods were given
respectively by Bondarenko and Ivaschenko [14] and Murio [15]. In this paper, we focus on the investigation of a fractional
inverse heat conduction problem (FIHCP) defined in a semi-infinite 2-D slab domain and apply the Fourier transform for
stability analysis and error estimate. Many of the numerical methods for solving ill-posed problems are based on solving
the corresponding direct problem iteratively. The iteration and the initial guess value are important and sensitive in these
iterative computational methods. By using static and dynamic regularization methods, in this paper, we devise a one-stage
direct computational method for solving the ill-posed problem. The proposed methods will improve the convergence of the
iterative procedures by providing good initial guesses.

Since the 2-dimensional FIHCP is much more ill-posed than the 1-dimensional FIHCP, obtaining the convergence error
estimates for the 2-dimensional case is very difficult. In this paper, we consider a revised version of the Fourier method [16]
in the 2-dimensional setting. To avoid the constraint that the regularization parameter is selected statically in the Fourier
method, i.e., the parameter does not depend on the location of reconstruction (see (4.4)), we construct a new dynamic
regularization procedure in which the regularization parameter is selected dynamically with respect to the location of
reconstruction (see (5.17)).

The paper is organized as follows. In Section 2 we first give an analysis on the ill-posedness of the 2-D FIHCP. The
conditional stability analysis is then given in Section 3. In Sections 4 and 5, some regularization solutions are constructed
with optimal order error estimates. In particular, we give in Section 5 some new dynamic methods for reconstructing stable
solutions. We stress here that one of the proposed dynamic methods gives an optimal error bound for the 2-D problem
under consideration not only in theory, but also can give a good approximation in numerical experiments. The numerical
verification is demonstrated in Section 6 in which several examples are presented for the validity of the proposed dynamic
regularization methods.

2. Mathematical formulation

In several engineering contexts, it is sometimes necessary to estimate the surface temperature or heat flux in a body from
ameasured temperature history at a fixed location inside a body. This is the so-called inverse heat conduction problem. We
consider a two-dimensional inverse heat conduction problem in a semi-infinite slab made of heterogeneous material:

∂βu
∂tβ

− uxx − uyy = 0, x > 0, y > 0, t > 0, (2.1)

u(1, y, t) = g(y, t), y ≥ 0, t ≥ 0, (2.2)

with the corresponding measured data function gδ(y, t), and the initial and boundary conditions

u(x, y, 0) = 0, x > 0, y ≥ 0, (2.3)
u(x, 0, t) = 0, x > 0, t ≥ 0, (2.4)
uy(x, 0, t) = 0, x > 0, t ≥ 0, (2.5)

u(x, y, t)|x→∞ bounded, y > 0, t > 0, (2.6)

where the time fractional derivative ∂βu
∂tβ is the Caputo fractional derivative of order β (0 < β ≤ 1) defined by (cf. [17])

∂βu
∂tβ

(x, y, t) =
1

Γ (1 − β)

 t

0

∂u(x, y, s)
∂s

ds
(t − s)β

, 0 < β < 1, (2.7)

∂βu
∂tβ

=
∂u(x, y, t)

∂t
, β = 1. (2.8)

Since the order β of the derivative with respect to time in the heat equation can be of arbitrary real order, the heat equation
is called the fractional diffusion equation. For β = 1, the equation becomes the classical diffusion equation. For 0 < β < 1,
we have the ultraslow diffusion [18].

If we take the Laplace transform of both sides of (2.1) with respect to y and t , according to the properties of the Laplace
transform of the Caputo derivative (cf. [17] pp 106), we get

sβ2U(x, s1, s2) − u(x, y, 0) − Uxx(x, s1, s2) − (s21U(x, s1, s2) − uy(x, 0, t) − s1u(x, 0, t)) = 0, (2.9)

where s1, s2 are the variables of the Laplace transform on y, t , respectively, and U is the Laplace transform of u. Applying the
conditions (2.3)–(2.5), we have

Uxx(x, s1, s2) = (sβ2 − s21)U(x, s1, s2), (2.10)
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which is a second-order ordinary differential equation. Nowusing the conditions (2.2) and (2.6),we can getwith the principal

square root of

sβ2 − s21

U(x, s1, s2) = exp


sβ2 − s21(1 − x)

G(s1, s2), (2.11)

where G is the Laplace transform of g .
Throughout this paper, we extend all the functions to the whole plane −∞ < t < ∞, −∞ < y < ∞ by setting the

functions to be zero for t < 0 and y < 0. Let

f̂ (ξ , τ ) =
1
2π


∞

−∞


∞

−∞

f (y, t)e−i(ξy+τ t)dydt (2.12)

be the Fourier transform of the function f (y, t) ∈ L2(R2).
For the functions h(y, t) which vanish on the negative t axis and y axis, the Fourier and Laplace transforms are related

via

H(iξ, iτ) = 2π ĥ(ξ , τ ).

Therefore, from (2.11), setting s1 = iξ, s2 = iτ , the solution of (2.1)–(2.6) can be formulated in the frequency domain:

û(x, ξ , τ ) = e(1−x)
√

(iτ)β+ξ2 ĝ(ξ , τ ), (2.13)

where

(iτ)β = |τ |
β


cos


βπ

2


+ i sign(τ ) sin


βπ

2


. (2.14)

Denote η as follows

η :=


(iτ)β + ξ 2. (2.15)

η can be written in real and imaginary parts, i.e.

η =




|τ |2β sin2 βπ

2 +


ξ 2 + |τ |2β cos


βπ

2

2
+


ξ 2 + |τ |2β cos


βπ

2


2

+ isign

sign(τ )|τ |

β sin


βπ

2

 


|τ |2β sin2 βπ

2 +


ξ 2 + |τ |2β cos


βπ

2

2
−


ξ 2 + |τ |2β cos


βπ

2


2

.

The inverse Fourier transform on (2.13) yields

u(x, y, t) =
1
2π


R2

g(ξ , τ )e(1−x)
√

(iτ)β+ξ2ei(ξy+τ t)dξdτ .

We need to seek the solution u(x, y, t) from the given data g(y, t). Physically, g(y, t) can only be measured, there should be
measurement errors, and we would actually have some data functions gδ(y, t) ∈ L2(R2), for which

∥gδ(·, ·) − g(·, ·)∥ ≤ δ, (2.16)

where the constant δ > 0 represents a bound on the measurement errors, ∥ · ∥ denotes the L2-norm. And the solution is
assumed to be a priori bounded at the inaccessible surface

∥u(0, ·, ·)∥ ≤ E (2.17)

for some E > 0.
We note that for a fixed 0 < x ≤ 1, |e(1−x)η

| is unbounded as Re(η) → ∞. There we want to seek a solution u(x, ·, ·) ∈

L2(R2), so that, from (2.13) and the Parseval equality, the exact data ĝ(ξ , τ ) must decay rapidly as |ξ |, |τ | → ∞. But in
practice, we can only get the noisy data ĝδ(·, ·) ∈ L2(R2). Hence for the noisy data ĝδ(·, ·), we cannot obtain a meaningful
solution. This implies that the ill-posedness of the problem (2.1)–(2.6) is caused by the high frequency components of ĝ(·, ·).
For ill-posed problems, it is impossible to solve by using classical numerical methods and requires special techniques to be
employed. A natural idea is to cut off all high frequency components from the solution. This idea was first proposed in
[16,19] where the method is called the Fourier method for stabilizing a one-dimensional inverse heat conduction problem.
In the forthcoming sections, we will discuss some spectral-type regularization methods. Firstly we discuss the issue on the
stability estimate for the problem (2.1)–(2.6).

Throughout this paper, we denote the real part and imaginary part of η as follows

a := Re(η); b := Im(η). (2.18)
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3. A conditional stability estimate

A conditional stability estimate for ill-posed problems tells how much any two solutions differ from each other when a
data error exists. Since the problem under consideration is linear, stability estimates can be derived by estimating the size
of solutions to the corresponding homogeneous problem.

Theorem 3.1. Suppose that u(x, y, t) is the solution of the problem under consideration, and (2.16) is satisfied, then the following
estimate holds for 0 < x < 1:

∥u(x, ·, ·)∥ ≤ e(1−x)
∥g(·, ·)∥ + ∥u(0, ·, ·)∥1−x

∥g(·, ·)∥x. (3.1)

Proof. From (2.13) and (2.18), since û(x, ξ , τ ) = e(1−x)(a+bi)ĝ(ξ , τ ), by the Parseval identity we have

∥u(x, ·, ·)∥2
= ∥û(x, ·, ·)∥2

=


|ξ |≤1


|τ |≤1

|e(1−x)(a+bi)
|
2
|ĝ(ξ , τ )|2dξdτ

+


|ξ |>1


|τ |>1

|e(1−x)(a+bi)
|
2
|ĝ(ξ , τ )|2dξdτ := B1 + B2.

According to the inequality |e(1−x)(a+bi)
|
2

≤ e(1−x)(|τ |
β
+ξ2),

B1 ≤ c21∥g(·, ·)∥
2,

where c1 = e(1−x).
By the Hölder inequality and (2.13) for 0 < x < 1, ĝ(ξ , τ ) =

1
ea+bi û(0, ξ , τ ),

B2 =


|ξ |>1


|τ |>1

|e(1−x)(a+bi)
|
2
|ĝ(ξ , τ )|2dξdτ

=


|ξ |>1


|τ |>1

|e−x(a+bi)
|
2
|û(0, ξ , τ )|2dξdτ

=


|ξ |>1


|τ |>1

(|û(0, ξ , τ )|2)1−x(e−2a
|û(0, ξ , τ )|2)xdξdτ

≤


|ξ |>1


|τ |>1

|û(0, ξ , τ )|2dξdτ
1−x

·


|ξ |>1


|τ |>1

e−2a
|û(0, ξ , τ )|2dξdτ

x

=


|ξ |>1


|τ |>1

|û(0, ξ , τ )|2dξdτ
1−x

·


|ξ |>1


|τ |>1

|ĝ(ξ , τ )|2dξdτ
x

≤ ∥u(0, ·, ·)∥2−2x
∥g(·, ·)∥2x.

Finally,

B2 ≤ ∥u(0, ·, ·)∥2(1−x)
∥g(·, ·)∥2x. (3.2)

Therefore, we get

∥u(x, ·, ·)∥ =


B1 + B2 ≤


B1 +


B2 = c1∥g(·, ·)∥ + ∥u(0, ·, ·)∥1−x

∥g(·, ·)∥x. � (3.3)

Since the solution u depends linearly on the data g , from Theorem 3.1, we have the following remark.

Remark 3.1. For given two functions g1 and g2(·, ·), let u1(x, ·, ·) and u2(x, ·, ·) be the corresponding solutions, respectively,
then

∥u1(x, ·, ·) − u2(x, ·, ·)∥ ≤ c1∥g1(·, ·) − g2(·, ·)∥ + (∥u1(0, ·, ·) − u2(0, ·, ·)∥)1−x
∥g1(·, ·) − g2(·, ·)∥x. (3.4)

4. Fourier regularization method and error estimate

Let χΩn be the characteristic function defined in the domain Ωn, and

Ωn =

(ξ , τ )

ξ
2
+ |τ |

β cos( β

2 )

n2
+

|τ |
2β sin2


β

2


4n4

≤ 1

 , n = ln

E
δ


, (4.1)

where δ and E are from (2.16) and (2.17), respectively. The reason why Ωn is selected as (4.1) can be found in the proof of
Theorem 4.1.
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Following the idea of truncation singular value decomposition, a regularization solution with the noisy data gδ can be
given, i.e.,

vδ(x, ξ , τ ) = gδ(ξ , τ )e(1−x)
√

(iτ)β+ξ2χΩn , (4.2)

or equivalently in the physical domain,

vδ(x, y, t) =
1
2π


R2

gδ(ξ , τ )e(1−x)
√

(iτ)β+ξ2χΩne
i(ξy+τ t)dξdτ . (4.3)

Theorem 4.1. . Let u(x, y, t) be the solution of the problem (2.1)–(2.6) with the exact data g, and let vδ be the regularized
solution (4.3) with the noisy data gδ which satisfies ∥g − gδ∥ ≤ δ. If the exact boundary temperature u(0, y, t) satisfies (2.17),
i.e., ∥u(0, ·, ·)∥ ≤ E, and if we choose

n = ln

E
δ


, (4.4)

then for 0 < x < 1, there holds

∥u(x, ·, ·) − vδ(x, ·, ·)∥ ≤ 2E1−xδx. (4.5)

Proof. We take two steps to prove it.
Step I: Convergence. We need to prove the regularization solution v given by (4.3) approaches the exact solution uwith the
same exact data g .

Firstly we have

u(x, ξ , τ ) −v(x, ξ , τ ) = ge(1−x)
√

(iτ)β+ξ2
−ge(1−x)

√
(iτ)β+ξ2χΩn

= ge(1−x)
√

(iτ)β+ξ2χR2\Ωn

= ge√(iτ)β+ξ2e−x
√

(iτ)β+ξ2χR2\Ωn . (4.6)

Using Parseval’s equality and the a priori bound ∥u(0, ·, ·)∥ ≤ E, we get

∥u(x, ·, ·) − v(x, ·, ·)∥ = ∥u(x, ·, ·) −v(x, ·, ·)∥ ≤ E sup
ξ,τ∈R

A1, (4.7)

where

A1 =

e−x
√

(iτ)β+ξ2χR2\Ωn

 . (4.8)

Since |e−xη
| = e−ax,

A1 = e−xaχR2\Ωn . (4.9)

According to the definition of Ωn in (4.1),

(ξ , τ ) ∈ R2
\ Ωn ⇒

ξ 2
+ |τ |

β cos


β

2


n2

+

|τ |
2β sin2


β

2


4n4

> 1. (4.10)

Because the following relations hold

(ξ , τ ) ∈ Ωn ⇔

ξ 2
+ |τ |

β cos


β

2


n2

+

|τ |
2β sin2


β

2


4n4

≤ 1 ⇔

|τ |
2β sin2


β

2


+ 4n2


ξ 2

+ |τ |
β cos


β

2


≤ 4n4

⇔ a =




|τ |2β sin2 βπ

2 +


ξ 2 + |τ |2β cos


βπ

2

2
+


ξ 2 + |τ |2β cos


βπ

2


2

≤ n, (4.11)

we have that, (ξ , τ ) ∈ R2
\ Ωn yields a > n, and

e−xa < e−xn. (4.12)
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With the selection of parameter n given in (4.1), it yields

∥u(x, ·, ·) − v(x, ·, ·)∥ ≤ E1−xδx. (4.13)

Step II: Stability. We now prove that the regularization solution is dependent continuously on the data. Using Parseval’s
equality, we obtain

∥v(x, ·, ·) − vδ(x, ·, ·)∥ = ∥v(x, ·, ·) −vδ(x, ·, ·)∥

= ∥ge(1−x)
√

(iτ)β+ξ2χΩn −gδe(1−x)
√

(iτ)β+ξ2χΩn∥

≤ δ sup
ξ,τ∈R

A2, (4.14)

where we have used the condition ∥g − gδ∥ ≤ δ, and

A2 = |e(1−x)
√

(iτ)β+ξ2χΩn |. (4.15)

We rewritten A2 as

A2 = e(1−x)aχΩn . (4.16)

From (4.11), we have

A2 ≤ e(1−x)n. (4.17)

Combining Step I and Step II, with the choice of parameter n given in (4.1), we get

∥v(x, ·, ·) − vδ(x, ·, ·)∥ ≤ E1−xδx. (4.18)

The conclusion of the theorem now follows immediately by using the triangle inequality, (4.13) and (4.18). �

Remark 4.1. We find that the error estimate (4.5) is not convergent to 0 for the location at x = 0. This is common in ill-
posed problems. If a stronger a priori condition is added, for example, ∥u(0, ·, ·)∥p ≤ Ẽ, with p > 0, Ẽ > 0, where ∥ · ∥p

denotes the norm of the Sobolev space Hp(R2), then the convergence rate is logarithmic. Please refer to [20,21].

5. Dynamic regularization methods and error estimates

By previous analysis, the cause of ill-posedness for the problem (2.1)–(2.6) lies in the amplified factor e(1−x)
√

(iτ)β+ξ2

of the data. To stabilize the problem, a natural idea is to construct a function that approaches the amplified factor. The
constructed function must satisfy the following properties:

(I) The modulus of the constructed function should be less than or equal to that of the amplified factor.
(II) We need to preserve the information of low-frequency components and eliminate partially or completely the

information of high-frequency components as well.

The Fourier method mentioned in Section 4 for solving (2.1)–(2.6) is given by

vn(x, ξ , τ ) = g(ξ , τ )e(1−x)
√

(iτ)β+ξ2χΩn ,

where n is the regularization parameter. The method stabilizes the ill-posed problems by cutting off the high frequency
components completely. For the problem (2.1)–(2.6), the Fourier regularization solution in the frequency domainvn can be
rewritten as

v̂α(x, ξ , τ ) =

g(ξ , τ )e(1−x)
√

(iτ)β+ξ2 , |e(1−x)
√

(iτ)β+ξ2
| ≤ 1/

√
α,

0, |e(1−x)
√

(iτ)β+ξ2
| > 1/

√
α,

where α is the new regularization parameter.
However, in image processing, the original images usually contain important high frequency information in the form

of finely detailed features, and much of this high frequency information cannot be discerned in the images. On one hand,
the high frequency components of data induce severe ill-posedness of the problem. On the other hand, the high frequency
components cannot be discerned arbitrarily. In other words, in the process of constructing approximate solutions we have
to preserve the major portion of the high-frequency components and at the same time we should not let the solutions blast.
Fortunately, we can achieve this goal for the problem (2.1)–(2.6) in the frequency domain. Follow the idea mentioned at the
beginning of this section, the regularized solutions in the frequency domain with unperturbed data g can be constructed as
follows:
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Method 1:

ûδ
α(x, ξ , τ ) =

 e(1−x)(a+bi)ĝδ(ξ , τ ), e−a(1−x)
≥

√
α,

e−2a(1−x)

α
e(1−x)(a+bi)ĝδ(ξ , τ ), e−a(1−x) <

√
α.

(5.1)

Method 2:

v̂δ
α(x, ξ , τ ) =


e(1−x)(a+bi)ĝδ(ξ , τ ), e−a(1−x)

≥
√

α,

e−a(1−x)

√
α

e(1−x)(a+bi)ĝδ(ξ , τ ), e−a(1−x) <
√

α.
(5.2)

Method 3:

ŵδ
α(x, ξ , τ ) =


e(1−x)(a+bi)ĝδ(ξ , τ ), e−a(1−x)

≥
√

α,

e−
a
2 (1−x)

α
1
4

e(1−x)(a+bi)ĝδ(ξ , τ ), e−a(1−x) <
√

α.
(5.3)

In general,

ẑδ
α(x, ξ , τ ) =


e(1−x)(a+bi)ĝδ(ξ , τ ), e−a(1−x)

≥
√

α,

e−νa(1−x)

√
α

ν e(1−x)(a+bi)ĝδ(ξ , τ ), e−a(1−x) <
√

α,
(5.4)

where ν is a positive real number. In (5.4), we note that the factor e−νa(1−x)
√

α
ν < 1 (ν > 0) under the restriction e−a(1−x) <

√
α.

Obviously the blasting components of high frequency in the data have been suppressed by introducing the factor e−νa(1−x)
√

α
ν .

Thus it guarantees the stability even if there exist some high frequency components of the data.
According to the convolution theorem in Fourier analysis, we have

e−νa(1−x)

√
α

ν e(1−x)(a+bi)ĝδ(ξ , τ )

∨

=
1
2π


e−νa(1−x)

√
α

ν e(1−x)(a+bi)
∨

∗ g(y, t),

where ∗ represents convolution operation, ∨ denotes inverse Fourier transform. Unfortunately, in the physical domain, we

cannot obtain the expression of


e−νa(1−x)
√

α
ν e(1−x)(a+bi)

∨

in a simple form explicitly.

Remark 5.1. Obviously, if α → 0 as δ → 0, the regularization solutions approach the exact solution. The regularization
parameter α depends on the fractional order β implicitly via the relationship that e−a(1−x) <

√
α (or e−a(1−x)

≥
√

α). In
fact, we recall that

a =




|τ |2β sin2 βπ

2 +


ξ 2 + |τ |2β cos


βπ

2

2
+


ξ 2 + |τ |2β cos


βπ

2


2

.

We now only deal with the Methods 1 and 2. According to (5.1) and (5.2), we have:
Method 1:

ûδ
α(x, ξ , τ ) =


e(1−x)(a+bi)ĝδ(ξ , τ ), e−2a(1−x)

≥ α,
1
α
e−(1−x)(a−bi)ĝδ(ξ , τ ), e−2a(1−x) < α.

(5.5)

Method 2:

v̂δ
α(x, ξ , τ ) =

 e(1−x)(a+bi)ĝδ(ξ , τ ), e−2a(1−x)
≥ α,

1
√

αe−2a(1−x)
e−(1−x)(a−bi)ĝδ(ξ , τ ), e−2a(1−x) < α.

(5.6)

For the sake of clarity, we rewrite these two methods.
Method 1:

ûδ
α(x, ξ , τ ) =

 e(1−x)(a+bi)ĝδ(ξ , τ ), e−2a(1−x)
≥ α,

e−2a(1−x)

α
e(1−x)(a+bi)ĝδ(ξ , τ ), e−2a(1−x) < α.

(5.7)
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Method 2:

v̂δ
α(x, ξ , τ ) =

 e(1−x)(a+bi)ĝδ(ξ , τ ), e−2a(1−x)
≥ α,

1
√

α
e(1−x)biĝδ(ξ , τ ), e−2a(1−x) < α.

(5.8)

By the inverse Fourier transform, we can get the corresponding regularized solutions uδ
α(x, y, t) and vδ

α(x, y, t) in the
physical domain.

Lemma 5.1. For 0 < x < 1, suppose that uα(x, y, t) is the solution byMethod 1with exact data g(y, t), uδ
α(x, y, t) is the solution

by Method 1 with noisy data gδ(y, t), (2.16) holds, we have

∥uδ
α(x, ·, ·) − uα(x, ·, ·)∥ ≤ α−

1
2 δ. (5.9)

Proof. By Parseval’s equality and (5.7), then

∥uα(x, , ·, ·) − uδ
α(x, ·, ·)∥ = ∥ûα(x, ·, ·) − ûδ

α(x, ·, ·)∥

=

min

1,

e−2a(1−x)

α


e(1−x)(a+bi)(ĝ − ĝδ)

 ≤ α−
1
2 δ. �

Lemma 5.2. For 0 < x < 1, suppose that u(x, y, t) is the exact solution with exact data g(y, t), uα(x, y, t) is the solution by
Method 1 with exact data g(y, t), (2.17) holds, we have

∥uα(x, ·, ·) − u(x, ·, ·)∥ ≤
2(1 − x)
2 − x


x

2 − x

 x
2(1−x)

α
x

2(1−x) E. (5.10)

Proof. By Parseval’s equality and using ĝ(ξ , τ ) = e−(a+bi)û(0, ξ , τ ), then

∥uα(x, ·, ·) − u(x, ·, ·)∥ = ∥ûα(x, ·, ·) − û(x, ·, ·)∥

=

min

1,

e−2a(1−x)

α


e(1−x)(a+bi)ĝ − e(1−x)(a+bi)ĝ


=


1 − min


1,

e−2a(1−x)

α


e(1−x)(a+bi)ĝ


=


1 − min


1,

e−2a(1−x)

α


e(1−x)(a+bi)e−(a+bi)û(0, ·, ·)


≤ sup

e−2a(1−x)≤α


1 −

e−2a(1−x)

α


e−ax

∥û(0, ·, ·)∥.

Now we seek the maximum of F(a) :=


1 −

e−2a(1−x)

α


e−ax under the restriction e−2a(1−x)

≤ α. It is easy to find the zero

point a∗ of F ′(a), i.e., a∗ satisfies

xα
2 − x

= e−2a∗(1−x), (5.11)

and a∗ maximize the function F(a), hence F(a) ≤ F(a∗). Finally,

∥uα(x, ·, ·) − u(x, ·, ·)∥ ≤ F(a∗)E =

1 −

x
2−x

  x
2−xα

 x
2(1−x) E. �

Theorem 5.1. For 0 < x < 1, suppose that u(x, y, t) is the exact solution with the exact data g(y, t), uδ
α(x, y, t) is the solution

by Method 1 with noisy data gδ(y, t), (2.16) and (2.17) holds. If α is selected dynamically

α(x) = 22x−2


x
2 − x

x−2 
δ

E

2(1−x)

, (5.12)

then the following error estimate holds

∥uδ
α(x, ·, ·) − u(x, ·, ·)∥ ≤

21−x

2 − x


x

2 − x

−
x
2

δxE1−x. (5.13)
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Fig. 1. The plot of H(x).

Proof. According to Lemmas 5.1 and 5.2, we have

∥uδ
α(x, ·, ·) − u(x, ·, ·)∥ ≤ α−

1
2 δ +

2(1 − x)
2 − x


x

2 − x

 x
2(1−x)

α
x

2(1−x) E.

Minimizing the right-hand side of above inequality with respect to α, we can get (5.12). Thus, (5.13) holds. �

Remark 5.2. The function 21−x

2−x

 x
2−x

−
x
2 in (5.13) is denoted as H(x) which is plotted as Fig. 1.

Similarly, for Method 2, we have the following conclusions.

Lemma 5.3. For 0 < x < 1, suppose that vα(x, y, t) is the solution by Method 2 with exact data g(y, t), vδ
α(x, y, t) is the

solution by Method 2 with noisy data gδ(y, t), (2.16) holds, we have

∥vδ
α(x, ·, ·) − vα(x, ·, ·)∥ ≤ α−

1
2 δ. (5.14)

Proof. By Parseval’s equality and (5.8), then

∥vα(x, ·, ·) − vδ
α(x, ·, ·)∥ = ∥v̂α(x, ·, ·) − v̂δ

α(x, ·, ·)∥

=

min

1,

e−a(1−x)

√
α


e(1−x)(a+bi)(ĝ − ĝδ)

 ≤ α−
1
2 δ. �

Lemma 5.4. For 0 < x < 1, suppose that u(x, y, t) is the exact solution with exact data g(y, t), vα(x, y, t) is the solution by
Method 2 with exact data g(y, t), (2.17) holds, we have

∥vα(x, ·, ·) − u(x, ·, ·)∥ ≤ (1 − x)x
x

1−x α
x

2(1−x) E. (5.15)

Proof. By Parseval’s equality and noting ĝ(ξ , τ ) = e−(a+bi)û(0, ξ , τ ), we have

∥vα(x, ·, ·) − u(x, ·, ·)∥ = ∥v̂α(x, ·, ·) − û(x, ·, ·)∥

=

min

1,

e−a(1−x)

√
α


e(1−x)(a+bi)ĝ − e(1−x)(a+bi)ĝ


=


1 − min


1,

e−a(1−x)

√
α


e(1−x)(a+bi)ĝ


=


1 − min


1,

e−a(1−x)

√
α


e(1−x)(a+bi)e−(a+bi)û(0, ·, ·)


≤ sup

e−2a(1−x)≤α


1 −

e−a(1−x)

√
α


e−ax

∥û(0, ·, ·)∥.
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Similarly we want to seek the maximum of F(a) :=


1 −

e−a(1−x)
√

α


e−ax under the restriction e−2a(1−x)

≤ α. It is easy to find

the zero point a∗ of F ′(a), i.e., a∗ satisfies

x
√

α = e−a∗(1−x), (5.16)

and a∗ maximizes the function F(a), hence F(a) ≤ F(a∗). Finally,

∥vα(x, ·, ·) − u(x, ·, ·)∥ ≤ F(a∗)E = (1 − x)

x
√

α
 x

(1−x) E. �

Theorem 5.2. For 0 < x < 1, suppose that u(x, y, t) is the exact solution with exact data g(y, t), vδ
α(x, y, t) is the solution by

Method 2 with noisy data gδ(y, t), (2.16) and (2.17) holds. If α is selected dynamically

α(x) = x−2


δ

E

2(1−x)

, (5.17)

then we have

∥vδ
α(x, ·, ·) − u(x, ·, ·)∥ ≤ δxE1−x. (5.18)

Proof. According to Lemmas 5.3 and 5.4, we have

∥vδ
α(x, ·, ·) − u(x, ·, ·)∥ ≤ α−

1
2 δ + (1 − x)x

x
1−x α

x
2(1−x) E.

Minimize the right-hand side of above inequality with respect to α, we can get (5.17). Thus, (5.18) holds.

Remark 5.3. Following the definition of optimality in [22,23], similarly we can obtain the optimal error bound for the
problem (2.1)–(2.6). Here we can predict that the error estimate (5.18) is optimal. �

6. Numerical examples

Despite its lengthy theoretical analysis, the spectral regularization methods are relatively simple to be implemented.
Here, the proposed methods will be implemented in Matlab.

In this section, we will show some numerical results to illustrate the validity of the regularization methods presented in
this paper. Firstly we consider the following direct problem for the given data f (y, t):

∂βu
∂tβ

− uxx − uyy = 0, x > 0, y > 0, t > 0,

u(x, y, 0) = 0, x > 0, y > 0,
u(x, 0, t) = 0, x > 0, t > 0,
uy(x, 0, t) = 0, x > 0, t > 0,
u(0, y, t) = f (y, t), y > 0, t > 0,
u(x, y, t)|x→∞ bounded, y > 0, t > 0. (6.1)

This problem is a well-posed problem and its solution at x = 1 is given by

g(y, t) := u(1, y, t) =
1
2π


∞

−∞


∞

−∞

f (ξ , τ )e−

√
(iτ)β+ξ2e−i(ξy+τ t)dξdτ . (6.2)

In numerical implementations, we give the data f (y, t) and sample at an equidistant grid in the domain [0, 1] × [0, 1]
with 100 × 100 grid points, then carry out a 2-dimensional discrete Fourier transformation. We obtain the data g(y, t) via
2-dimensional inverse discrete Fourier transformation according to (6.2), then generate the noisy data gδ:

gδ(·, ·) = g(·, ·) + gmax ∗ δ rand(size(g(·, ·))), (6.3)

where δ indicates the error level of g, gmax is the maximum of sampled data g , the symbol rand(size(·)) is a random number
between [−1, 1]. Let RMS denotes the root mean square for a sampled functionW (·, ·) which is defined by

RMS(W ) =

 1
(s + 1)2

s+1
j=1

s+1
k=1

(W (yj, tk))2, (6.4)

where s + 1 is the total number of test points. Similarly, we can define the root mean square error (RMSE) between the
computed data and the exact data.
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Table 1
Error behavior of Fourier method.

x 0.9 0.5 0.1
n 9.81 9.81 9.81
RMSE(u − vδ) 1.42 ∗ 10−6 2.10 ∗ 10−4 3.26 ∗ 10−2

Table 2
Error behavior of Method 2.

x 0.9 0.5 0.1
α 1.70 ∗ 10−2 2.19 ∗ 10−4 2.13 ∗ 10−6

RMSE(u − vδ
α) 4.40 ∗ 10−7 1.82 ∗ 10−4 3.23 ∗ 10−2

Fig. 2. The noisy input data gδ(y, t) with β = 0.1.

Fig. 3. The un-regularized solution with δ = 3%, x = 0.5, β = 0.1.

The regularized solutions were computed by the 2D discrete Fast Fourier Transform (2D FFT) and 2D inverse discrete
Fast Fourier Transform (2D IFFT) according to the formulas in Sections 4 and 5. The regularization parameter α is chosen by
Theorem 5.1, Theorem 5.2where E is computed by (6.4) for the sampled f (y, t) at the grids. Nowwe construct two examples
to investigate the regularization methods.

Example 1. Consider a smooth function u(0, y, t) := f (y, t) = 16 sin(2πy) sin(2π t).
Fig. 2 shows the input noisy data g(y, t) with δ = 3%.
Fig. 3 shows the result with δ = 3% where we do not use any regularization method at x = 0.5.
Fig. 4 shows the result computed by Fourier method with δ = 3% at x = 0.5.
Fig. 5 shows the result computed by Method 2 with δ = 3% at x = 0.1.
Now we compare Method 2 with the Fourier method for this example.
For the Fourier method, the regularization parameter n and RMSE are listed in Table 1.
For Method 2, the regularization parameter α and RMSE are listed in Table 2.
From Tables 1 and 2, we can see that Fourier method and the dynamic Method 2 are comparable. The numerical results

are in excellent agreement with our theoretical analysis.
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Fig. 4. (a) The exact solution at x = 0.5; (b) reconstruction by Fourier method at x = 0.5.

Fig. 5. (a) The exact solution at x = 0.1; (b) reconstruction by Method 2 at x = 0.1.

Example 2. Let Ω = {(y, t)|0.1 ≤ y ≤ 0.3, 0.1 ≤ t ≤ 0.3}


{(y, t)|0.6 ≤ y ≤ 0.8, 0.6 ≤ t ≤ 0.8}. Consider a
non-smooth function

f (y, t) =


1, if (y, t) ∈ Ω

0, if else.

In this example, we fix δ = 1% and x = 0.4.
Fig. 6 shows the noisy data gδ(y, t) with δ = 1%.
Fig. 7 shows the result by Fourier method and Method 1 with δ = 1%, β = 0.1.
This example shows the comparison between the Fourier and the dynamic spectral regularization methods. From Fig. 7,

we can see that the computed result supports the theoretical result.
Fig. 8 shows the results by Method 1 with different values of β at x = 0.4. From these results, it can be seen that the

solution continuously depends on the time fractional derivative.

7. Concluding remarks

In this paper, we obtained a stability result for the inverse heat conduction problem of a fractional heat diffusion equation
in 2-D setting. In the theoretical aspect, order optimal error estimations were proved. Especially, using a new dynamic
spectralmethod, an optimal error estimationwas obtained. Comparingwith the static spectral regularizationmethod, i.e. the
Fourier method, the regularization parameters in the dynamic methods are related to the locations x of reconstruction. The
proposed dynamicmethods could give higher accuracy not only in theoretical analysis, but also in the numerical experiment.
The numerical examples show the comparison between the static and the dynamic spectral regularization methods and the
numerical results support the theoretical analysis.
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Fig. 6. The noisy input data gδ(y, t) with β = 0.1.

Fig. 7. (a) The exact solution at x = 0.4; (b) reconstruction by Fourier method at x = 0.4 with RMSE = 0.014 and n = 5.77; (c) reconstruction by Method
1 at x = 0.4 with RMSE = 0.007 and α = 9.8 ∗ 10−4 .
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