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scalarization approaches. The set of solutions of VVI is shown to be the set of weak
sharpness for gap functions of some scalarization of VVI and for gap functions of VVI under
semi-strong monotonicity. Some examples are given to illustrate these results.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let X be a real Banach space with its dual X∗, and K be a nonempty, closed and convex subset of X . Denote by ⟨l, x⟩ the
value of l ∈ X∗ at x ∈ X . Let A ⊆ X . For x ∈ X , denote by d(x, A) the distance from x to A, i.e., d(x, A) = infa∈A ∥x − a∥.
Let Fi : X → X∗ (i = 1, . . . , n) and F = (F1, . . . , Fn). Let Rn be the n-dimensional Euclidean space and denote
Rn

+
= {x = (x1, . . . , xn)|xi ≥ 0, i = 1, . . . , n} and

Sn0 =


ξ = (ξ1, . . . , ξn) ∈ Rn

+

 n
i=1

ξi = 1


.

In this paper, we consider the following vector variational inequality problem (VVI) of finding x∗
∈ K such that

F(x∗)(y − x∗) ∉ −int Rn
+
, ∀y ∈ K .

Clearly, VVI can be rewritten as follows: finding x∗
∈ K such that

(⟨F1(x∗), y − x∗
⟩, . . . , ⟨Fn(x∗), y − x∗

⟩) ∉ −intRn
+
, ∀y ∈ K .

Denote by SVVI the set of solutions of VVI.
In this paper, we always consider the max-norm in Euclidean space Rl, i.e.,

∥x − y∥ = max
1≤i≤l

|xi − yi|,

where x = (x1, . . . , xl) and y = (y1, . . . , yl) ∈ Rl with l = m or n.

✩ This workwas supported by the Research Grants Council of Hong Kong (PolyU 5317/07E), the National Natural Science Foundation of China (11171237,
60804065, 10831009), the Key Project of Chinese Ministry of Education (211163) and Sichuan Youth Science and Technology Foundation (2012JQ0032).
∗ Corresponding author.

E-mail address:mayangxq@polyu.edu.hk (X.Q. Yang).

0022-247X/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2012.04.081

http://dx.doi.org/10.1016/j.jmaa.2012.04.081
http://www.elsevier.com/locate/jmaa
http://www.elsevier.com/locate/jmaa
mailto:mayangxq@polyu.edu.hk
http://dx.doi.org/10.1016/j.jmaa.2012.04.081


450 N.J. Huang et al. / J. Math. Anal. Appl. 394 (2012) 449–457

The notion of VVI was first introduced by Giannessi [1] in finite-dimensional spaces. Recently, extensive study of VVI
has been done by many authors (see, for example, [2,3] and the references therein). Among solution approaches for VVI,
scalarization is one of the most analyzed topics at least from the computational point of view (see, for example, [2–5]).

The concept of a sharp minimum for real-valued functions was introduced in [6]. Weak sharp minima for real-valued
functions, as a generalization of sharp minima, were introduced and investigated by Ferris [7]. Weak sharp minima play
important roles in mathematical programming. It is well known that weak sharp minima are closely related to error
bounds in convex programming, the sensitivity analysis of optimization problems and the convergence analysis of some
algorithms (see, for example, [8–14]). Recently, Marcotte and Zhu [15] have introduced the notion of weak sharpness for a
variational inequality problem (VI) and derived a necessary and sufficient condition for the solution set of VI to be weakly
sharp. Deng and Yang [16] studied the existence of weak sharp minima in multicriteria linear programming problems
(MCLP) and proved that weak sharp minimality holds for certain distance functions and gap functions. Bednarczuk [17] and
Studniarski [18] investigated global/local weak sharp minima in vector optimization problems in terms of some distance
functions, respectively. For related works on piecewise linear multiobjective problems, we refer [19,20].

Compared with the weak sharpness for variational inequalities, the investigation of that for VVI is very limited. In order
to characterize the set of solutions of VVI we will employ gap functions for VVI similar to the ones in [21] and investigate
the weak sharpness property of the sets of solutions for VVI via gap functions by introducing a semi-strong monotonicity
assumption.We first present characterizations of the set of solutions for VVI by using scalarization approaches,which extend
corresponding results of Lee et al. [5]. Comparedwith the proof by Lee et al. [5], gap functions instead of a separation theorem
are employed in this paper. We prove that the set of solutions of VVI is the set of weak sharpness for gap functions of some
scalarization of VVI and for gap functions of VVI under semi-strong monotonicity of each component mapping. We will give
some examples to illustrate these results.

2. Equivalent characterizations for VVI via scalarization approaches

This section is devoted to some preliminary results on characterizations of the set of solutions for VVI by using
scalarization approaches, which will be used in the sequel.

For each ξ ∈ Rn
+

\ {0}, we consider the following scalar variational inequality problem ((VI)ξ ) of finding x∗
∈ K such that

⟨ξ, F(x∗)(y − x∗)⟩ ≥ 0, ∀y ∈ K .

Denote by Sξ

VI the set of solutions of (VI)ξ . Notice that when X = Rm, (VI)ξ has been investigated by Lee et al. [5].
Let ξ ∈ Rn

+
\ {0} be given. Define functions ϕ, φξ : K → R ∪ {+∞}, respectively, by

ϕ(x) = sup
y∈K

min
1≤i≤n

⟨Fi(x), x − y⟩, x ∈ K , (2.1)

and

φξ (x) = sup
y∈K


n

i=1

ξiFi(x), x − y


, x ∈ K . (2.2)

The concept of a gap function for a scalar variational inequality problem was introduced in [22]. Some important
algorithms can be provided based on gap function to solve variational inequalities and optimization problems (see, for
example, [23,24]).

Definition 2.1 ([2]). A function p : K → R ∪ {+∞} is said to be a gap function for VVI if,

(i) p(x) ≥ 0, ∀x ∈ K ;
(ii) p(x∗) = 0 if and only if x∗

∈ SVVI.

We begin with the following useful proposition.

Proposition 2.1 ([22,4,21,25,26]). The function ϕ given by (2.1) is a gap function of VVI, and the function φξ given by (2.2) is a
gap function of (VI)ξ , where ξ ∈ Sn0 .

We now turn to the investigation of the relationship between the functions φξ and ϕ.

Proposition 2.2. The following equality holds:

ϕ(x) = min
ξ∈Sn0

φξ (x), ∀x ∈ K .

Proof. The proof follows from [21]. �
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The result below follows from Propositions 2.1 and 2.2.

Proposition 2.3. The following equality holds:

∪
ξ∈Sn0

Sξ

VI = SVVI.

Proof. From Proposition 2.1, we have SVVI = {x ∈ K |ϕ(x) = 0} and Sξ

VI = {x ∈ K |φξ (x) = 0}, where ξ ∈ Sn0 . Let x ∈ SVVI.
Then ϕ(x) = 0 and from Proposition 2.2, there is ξ0 ∈ Sn0 such that φξ0(x) = 0, i.e., x ∈ Sξ0

VI . Therefore, x ∈ ∪ξ∈Sn0
Sξ

VI.

Let x ∈ ∪ξ∈Sn0
Sξ

VI. Then there is ξ0 ∈ Sn0 such that x ∈ Sξ0
VI , i.e., φξ0(x) = 0. From Proposition 2.1, one has φξ (x) ≥ 0 for

each ξ ∈ Sn0 . It thus follows from Proposition 2.2 that ϕ(x) = 0, i.e., x ∈ SVVI. �

Remark 2.1. Let Bn
= {ξ = (ξ1, . . . , ξn) ∈ Rn

+
| ∥ξ∥ = max1≤i≤n |ξi| = 1} and Sn = {ξ = (ξ1, . . . , ξn) ∈ Rn

+
| ∥ξ∥ =

max1≤i≤n |ξi| ≤ 1 and
n

i=1 ξi ≥ 1}. It is obvious that Bn
∪ Sn0 ⊆ Sn, Bn is compact, Sn0 and Sn are compact and convex. Thus,

by Proposition 2.3, the following equalities hold:

∪
ξ∈Sn0

Sξ

VI = ∪
ξ∈Sn

Sξ

VI = ∪
ξ∈Bn

Sξ

VI = ∪
ξ∈Rn

+
\{0}

Sξ

VI = SVVI.

The relations presented above extend the corresponding results of Lee et al. [5] in finite dimensional spaces. We would
like to point out that Lee et al. [5] investigated the inclusion ∪ξ∈Bn S

ξ

VI ⊇ SVVI by using a separation theorem.

3. Weak sharpness for VVI

In this section, we shall investigate the weak sharpness property of SVVI for gap functions of some scalar VI and gap
functions of VVI. We first recall some basic definitions.

Definition 3.1. Let q : K → R ∪ {+∞} be a gap function for some scalar VI of VVI or for VVI. We say that SVVI is the set of
weak sharpness with respect to the function q on K if there exists µ > 0 such that

d(x, SVVI) ≤ µq(x), ∀x ∈ K .

Definition 3.2 ([15]). A mapping T : X → X∗ is said to be

(i) strongly pseudomonotone (SPM) at y ∈ K on K with modulus λ > 0 if, for any x ∈ K ,

⟨T (y), x − y⟩ ≥ 0 ⇒ ⟨T (x), x − y⟩ ≥ λ∥x − y∥2
;

(ii) strongly monotone (SM) at y ∈ K on K with modulus λ > 0 if, for any x ∈ K ,

⟨T (x) − T (y), x − y⟩ ≥ λ∥x − y∥2.

Next we introduce the following new concept on monotonicity of T .

Definition 3.3. Amapping T : X → X∗ is said to be semi-strongly monotone (semi-SM) at y ∈ K on K with modulus λ > 0
if, for any x ∈ K ,

⟨T (y), x − y⟩ ≥ 0 ⇒ ⟨T (x) − T (y), x − y⟩ ≥ λ∥x − y∥2.

Remark 3.1. Recall that T : X → X∗ is SPM (respectively, SM, semi-SM) on K if, the relation in (i) of Definition 3.2
(respectively, (ii) of Definitions 3.2 and 3.3) holds for all x, y ∈ K . It is easy to see that the following relations hold:

SM at y ∈ K H⇒ semi-SM at y ∈ K H⇒ SPM at y ∈ K .

Let X = K = R and T : K → R+ be given by T (x) = ex for all x ∈ X . Then T is semi-strongly monotone at any y ∈ K but
not strongly monotone at y ∈ K . That a mapping is strongly pseudomonotone at y ∈ K but not semi-strongly monotone at
y ∈ K can be illustrated by the following example. Let X = R, K = R+ and T : X → X be given by

T (x) =


2x + 1, if x ∈ (−∞, 1],
x + 1, if x ∈ (1, +∞).

(Choose y = 1).
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In the following, we investigate the weak sharpness of VVI under strong monotonicity or semi-strong monotonicity
assumptions, none of which implies the nonemptiness of SVVI, as shown below.

Example 3.1. Let X = K = R,

F1(x) =


x + 1, if x ∈ R+,
x − 1, if x ∈ (−∞, 0),

and

F2(x) =


x + 2, if x ∈ R+,
x − 2, if x ∈ (−∞, 0).

Consider the following VVI: finding x∗
∈ K such that

(⟨F1(x∗), y − x∗
⟩, ⟨F2(x∗), y − x∗

⟩) ∉ −intR2
+
, ∀y ∈ K .

It is easy to check that both F1 and F2 are strongly monotone on K with modulus 1. However, SVVI = ∅.

It is worth noting that the nonemptiness of SVVI can only be guaranteed by the monotonicity plus certain coercivity
condition; see [2]. But the coercivity is not needed in our study in this paper. Thus we always suppose that SVVI is nonempty
in this paper.

3.1. Weak sharpness for VVI via φξ

In this subsection, we prove that the set of solutions of VVI has the weak sharp property for the function


φξ (x) under
the assumption that each component mapping involved in VVI is strongly monotone, where ξ is some vector in Sn0 .

Theorem 3.1. Assume that for each i = 1, . . . , n, Fi is strongly monotone on K with modulus λi > 0. Then there is ξ ∈ Sn0 such
that SVVI is of the weak sharpness property for the function


φξ (x).

Proof. Let x∗
∈ SVVI be given. Then from Proposition 2.3, there exists ξ ∈ Sn0 such that x∗

∈ Sξ

VI and hence
n

i=1

ξiFi(x∗), x − x∗


≥ 0, ∀x ∈ K .

Since Fi is strongly monotone on K with modulus λi > 0 for each i = 1, . . . , n, we have

⟨Fi(x), x − x∗
⟩ ≥ ⟨Fi(x∗), x − x∗

⟩ + λi∥x − x∗
∥
2, ∀x ∈ K .

It follows that
n

i=1

ξiFi(x), x − x∗


≥


n

i=1

ξiFi(x∗), x − x∗


+

n
i=1

ξiλi∥x − x∗
∥
2

≥

n
i=1

ξiλi∥x − x∗
∥
2, ∀x ∈ K .

Consequently,


φξ (x) =

sup
y∈K


n

i=1

ξiFi(x), x − y



≥


n

i=1

ξiFi(x), x − x∗



≥

 n
i=1

ξiλi∥x − x∗
∥

≥

 n
i=1

ξiλid(x, SVVI), ∀x ∈ K ,
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and so
1

n
i=1

ξiλi


φξ (x) ≥ d(x, SVVI), ∀x ∈ K .

This completes the proof. �

Remark 3.2. (i) It seems that it is very difficult to derive the weak sharpness property of SVVI for the function
√

ϕ(x).
(ii) If the assumption ‘‘for each i = 1, . . . , n, Fi is strongly monotone on K with modulus λi > 0’’ in Theorem 3.1 is replaced

by ‘‘for each i = 1, . . . , n, Fi is semi-strongly monotone or strongly pseudomonotone on K with modulus λi > 0’’, then
the conclusion of Theorem 3.1 may not be true.

3.2. Weak sharpness for VVI via gap functions

In this subsection, we define some gap functions for scalar VI and apply them to establish the weak sharpness of VVI.
Let x, y ∈ X and ξ ∈ Rn

+
\ {0}. Define the following functions:

d(⟨ξ, F(x)⟩, ⟨ξ, F(y)⟩) =

 n
i=1

ξi(Fi(x) − Fi(y))


= sup

z∈X
z≠0

 n
i=1

ξi(Fi(x) − Fi(y)), z


∥z∥
,

d(Fi(x), Fi(y)) = ∥Fi(x) − Fi(y)∥

= sup
z∈X
z≠0

|⟨Fi(x) − Fi(y), z⟩|
∥z∥

, i = 1, . . . , n,

and

d(F(x), F(y)) = ∥F(x) − F(y)∥

= sup
z∈X
z≠0

∥⟨F(x) − F(y), z⟩∥
∥z∥

= sup
z∈X
z≠0

max
1≤i≤n

|⟨Fi(x) − Fi(y), z⟩|

∥z∥
.

The following result is useful in the proof of main results of this paper.

Proposition 3.1. For x, y ∈ X, we have

max
1≤i≤n

d(Fi(x), Fi(y)) = max
ξ∈Sn0

d(⟨ξ, F(x)⟩, ⟨ξ, F(y)⟩) = d(F(x), F(y)).

Proof. Let ξ = (ξ1, . . . , ξn) ∈ Sn0 . Then ξi ≥ 0 (i = 1, . . . , n) with
n

i=1 ξi = 1. For any z ∈ X with z ≠ 0, we get


n
i=1

ξi(Fi(x) − Fi(y)), z

 ≤

n
i=1

ξi|⟨Fi(x) − Fi(y), z⟩|

≤ max
1≤i≤n

|⟨Fi(x) − Fi(y), z⟩|
n

i=1

ξi

= max
1≤i≤n

|⟨Fi(x) − Fi(y), z⟩|

and so

max
ξ∈Sn0

d(⟨ξ, F(x)⟩, ⟨ξ, F(y)⟩) = max
ξ∈Sn0

sup
z∈X
z≠0

 n
i=1

ξi(Fi(x) − Fi(y)), z


∥z∥
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≤ sup
z∈X
z≠0

max
1≤i≤n

|⟨Fi(x) − Fi(y), z⟩|

∥z∥

= d(F(x), F(y))

= max
1≤i≤n

sup
z∈X
z≠0

|⟨Fi(x) − Fi(y), z⟩|
∥z∥

= max
1≤i≤n

d(Fi(x), Fi(y)).

For any x, y ∈ K , there exists i0 (1 ≤ i0 ≤ n) such that

max
1≤i≤n

d(Fi(x), Fi(y)) = d(Fi0(x), Fi0(y)).

Since ξ 0
= (0, . . . ,

(i0)
1 , . . . , 0) ∈ Sn0 , it follows that

max
1≤i≤n

d(Fi(x), Fi(y)) = d(Fi0(x), Fi0(y))

= d(⟨ξ 0, F(x)⟩, ⟨ξ 0, F(y)⟩)
≤ max

ξ∈Sn0
d(⟨ξ, F(x)⟩, ⟨ξ, F(y)⟩).

Now above arguments lead to

max
1≤i≤n

d(Fi(x), Fi(y)) = max
ξ∈Sn0

d(⟨ξ, F(x)⟩, ⟨ξ, F(y)⟩) = d(F(x), F(y)).

This completes the proof. �

Under certain mild conditions, we will show the closedness of the set of solutions of VVI.

Proposition 3.2. If for each i = 1, . . . , n, Fi is continuous in the weak* topology of X∗, then SVVI is closed.

Proof. Let {xm} ⊆ SVVI with xm → x0 as m → ∞. Then

(⟨F1(xm), y − xm⟩, . . . , ⟨Fn(xm), y − xm⟩) ∉ −intRn
+
, ∀y ∈ K

or equivalently,

(⟨F1(xm), y − xm⟩, . . . , ⟨Fn(xm), y − xm⟩) ∈ W = Rn
\ (−intRn

+
), ∀y ∈ K .

Let y ∈ K and i = 1, . . . , n. Since Fi is continuous in the weak* topology of X∗, one has that Fi(xm) converges weak* to Fi(x0)
and so {∥Fi(xm)∥} is bounded. Consequently,

|⟨Fi(xm) − Fi(x0), y − x0⟩| → 0

and

|⟨Fi(xm), x0 − xm⟩| ≤ ∥Fi(xm)∥ ∥xm − x0∥ → 0

asm → ∞. It follows that for each i = 1, . . . , n,

⟨Fi(xm), y − xm⟩ = ⟨Fi(x0), y − x0⟩ + ⟨Fi(xm) − Fi(x0), y − x0⟩ + ⟨Fi(xm), x0 − xm⟩

→ ⟨Fi(x0), y − x0⟩, as m → ∞,

which implies that x0 ∈ SVVI sinceW is closed. Thus, SVVI is closed. �

For x ∈ X and ξ ∈ Rn
+

\ {0}, let

D(ξ , x) = d(⟨ξ, F(x)⟩, ⟨ξ, F(SVVI)⟩).

Now, we discuss the relationship among the functions related to VVI defined above.

Proposition 3.3. For x ∈ X, we have

max
ξ∈Sn0

D(ξ , x) ≤ d(F(x), F(SVVI))

and

max
1≤i≤n

d(Fi(x), Fi(SVVI)) ≤ d(F(x), F(SVVI)).
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Proof. Let x ∈ X . It is clear that

max
ξ∈Sn0

D(ξ , x) = max
ξ∈Sn0

inf
y∈SVVI

d(⟨ξ, F(x)⟩, ⟨ξ, F(y)⟩)

≤ inf
y∈SVVI

max
ξ∈Sn0

d(⟨ξ, F(x)⟩, ⟨ξ, F(y)⟩)

= inf
y∈SVVI

d(F(x), F(y)) (From Proposition 3.1)

= d(F(x), F(SVVI)).

Notice that

max
1≤i≤n

d(Fi(x), Fi(SVVI)) = max
1≤i≤n

inf
y∈SVVI

d(Fi(x), Fi(y))

≤ inf
y∈SVVI

max
1≤i≤n

d(Fi(x), Fi(y))

= inf
y∈SVVI

d(F(x), F(y)) (From Proposition 3.1)

= d(F(x), F(SVVI)).

This completes the proof. �

Denote by SF the system of the following functions:

max
1≤i≤n

d(Fi(x), Fi(SVVI)), max
ξ∈Sn0

D(ξ , x), d(F(x), F(SVVI)).

Based on Proposition 3.3, we next prove the weak sharpness property of the set of solutions of VVI for each gap function
of VVI in SF under the assumption that each component mapping Fi(i = 1, . . . , n) of F is semi-strongly monotone.

Theorem 3.2. Let Fi be continuous in the weak* topology of X∗ for each i = 1, . . . , n. Assume that for each i = 1, . . . , n, Fi is
semi-strongly monotone at each point of SVVI on K with modulus λi > 0. Then SVVI is weakly sharp for each function of SF. In this
case, each function of SF serves as a gap function of VVI for SVVI.

Proof. It is obvious that each function of SF restricted to K is nonnegative, and if x∗
∈ SVVI, then d(F(x∗), F(SVVI)) = 0. It

follows from Proposition 3.3 that each function of SF is zero at x∗
∈ SVVI. Since Fi(i = 1, . . . , n) are continuous in the weak*

topology of X∗, from Proposition 3.2, SVVI is closed.
From Proposition 3.3, it suffices to prove that SVVI is weakly sharp for the functions max1≤i≤n d(Fi(x), Fi(SVVI)) and

maxξ∈Sn0
D(ξ , x), respectively.

Let x ∈ K \ SVVI and x∗
∈ SVVI. Then there exists i0(1 ≤ i0 ≤ n) such that

⟨Fi0(x
∗), x − x∗

⟩ ≥ 0.

Since Fi0 is semi-strongly monotone at x∗ on K with modulus λi0 > 0, we have
n

i=1

ξ 0
i (Fi(x) − Fi(x∗)), x − x∗


= ⟨Fi0(x) − Fi0(x

∗), x − x∗
⟩

≥ λi0∥x − x∗
∥
2,

where ξ 0
= (0, . . . ,

(i0)
1 , . . . , 0) ∈ Sn0 . As a consequence,

d(Fi0(x), Fi0(x
∗)) = sup

z∈X
z≠0

|⟨Fi0(x) − Fi0(x
∗), z⟩|

∥z∥

≥
|⟨Fi0(x) − Fi0(x

∗), x − x∗
⟩|

∥x − x∗∥

≥ λi0∥x − x∗
∥

and

d(⟨ξ 0, F(x)⟩, ⟨ξ 0, F(x∗)⟩) = sup
z∈X
z≠0

 n
i=1

ξ 0
i (Fi(x) − Fi(x∗)), z


∥z∥
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≥


n

i=1
ξ 0
i (Fi(x) − Fi(x∗)), x − x∗


∥x − x∗∥

≥ λi0∥x − x∗
∥.

It follows that

max
1≤i≤n

d(Fi(x), Fi(SVVI)) ≥ min
1≤i≤n

λid(x, SVVI)

and

max
ξ∈Sn0

D(ξ , x) ≥ min
1≤i≤n

λid(x, SVVI),

i.e.,

d(x, SVVI) ≤
1

min
1≤i≤n

λi
max
1≤i≤n

d(Fi(x), Fi(SVVI)) (3.1)

and

d(x, SVVI) ≤
1

min
1≤i≤n

λi
max
ξ∈Sn0

D(ξ , x). (3.2)

If x ∈ SVVI, then inequalities (3.1) and (3.2) also hold.
Since SVVI is weakly sharp for each function of SF, it follows that if each function of SF is zero at x∗

∈ K , then x∗
∈ SVVI

since SVVI is closed. Consequently, each function of SF is a gap function of VVI. This completes the proof. �

Remark 3.3. Let n > 1. If Fi is stronglymonotone onK withmodulusλi > 0 for each i = 1, . . . , n, then SVVI is not necessarily
a singleton. Let X = R2, K = [−1, 0] × [−1, 0] and F = (F1, F2) : X → R2 be given by F1(x) = x + (1, 1) and F2(x) = 2x
for all x ∈ X . It is easy to verify that F1 and F2 are strongly monotone on K with moduli λ1 = 1 and λ2 = 2, respectively.
However, SVVI ⊇ {(0, 0), (−1, −1)}.

Remark 3.4. (i) From the proof of Theorem 3.2, the assumption of semi-strong monotonicity of Fi, i = 1, . . . , n, plays a
key role in obtaining the weak sharpness property of SVVI for each function of SF.

(ii) If the assumption ‘‘for each i = 1, . . . , n, Fi is semi-strongly monotone at each point of SVVI on K with modulus λi > 0’’
in Theorem 3.2 is replaced by ‘‘there exists i0(1 ≤ i0 ≤ n) such that Fi0 is strongly monotone on K with modulus
λi0 > 0’’ and other assumptions in Theorem 3.2 are satisfied, then one can easily verify that any nonempty subset of K
(certainly, the set of solutions of VVI) is weakly sharp for each function of SF.

(iii) If the assumption ‘‘for each i = 1, . . . , n, Fi is semi-strongly monotone at each point of SVVI on K with modulus λi > 0’’
in Theorem 3.2 is replaced by ‘‘for each i = 1, . . . , n, Fi is strongly pseudomonotone on K with modulus λi0 > 0’’ and
other assumptions in Theorem 3.2 are satisfied, then one cannot obtain that the set of solutions of VVI is weakly sharp
for any function of SF.

The following example illustrates that the semi-strong monotonicity cannot be replaced by the strong pseudomono-
tonicity in Theorem 3.2.

Example 3.2. Let X = R, K = R+,

F1(x) =


−x + 1, if x ∈


−∞,

1
2


,

x, if x ∈


1
2
, +∞


,

and

F2(x) = 2F1(x) =


−2x + 2, if x ∈


−∞,

1
2


,

2x, if x ∈


1
2
, +∞


.

Consider the following VVI of finding x∗
∈ K such that

(⟨F1(x∗), y − x∗
⟩, ⟨F2(x∗), y − x∗

⟩) ∉ −intR2
+
, ∀y ∈ K .
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Clearly, SVVI = {0}, F1 and F2 are continuous and strongly pseudomonotone at 0 on K with moduli 1 and 2, respectively, but
not semi-strongly monotone at 0 on K . Moreover,

d(x, SVVI) = x, ∀x ∈ K ,

and

max
i=1,2

d(Fi(x), Fi(SVVI)) = d(F(x), F(SVVI))

= max
ξ∈S20

D(ξ , x)

=


2x, if x ∈


0,

1
2


,

2|x − 1|, if x ∈


1
2
, +∞


.

For any t > 0 large enough, let x = 1 +
1

4t−2 ∈ ( 1
2 , +∞) ⊆ K . Then

d(x, SVVI) = x = 1 +
1

4t − 2

>
1

2 −
1
t

=
t

2t − 1
= 2t|x − 1|

= t max
i=1,2

d(Fi(x), Fi(SVVI))

= td(F(x), F(SVVI))
= t max

ξ∈S20

D(ξ , x),

which implies that SVVI is not weakly sharp for any function of SF.

Acknowledgments

The authors appreciate greatly three anonymous referees for their useful comments and suggestions, which have helped
to improve an early version of the paper.

References

[1] F. Giannessi, Theorem of alternative, quadratic programs, and complementarity problems, in: R.W. Cottle, F. Giannessi, J.L. Lions (Eds.), Variational
Inequality and Complementarity Problems, John Wiley and Sons, Chichester, England, 1980, pp. 151–186.

[2] G.Y. Chen, X.X. Huang, X.Q. Yang, Vector Optimization: Set-Valued andVariational Analysis, in: Lecture Notes in Economics andMathematical Systems,
vol. 541, Springer-Verlag, Berlin, 2005.

[3] F. Giannessi (Ed.), Vector Variational Inequalities and Vector Equilibrium, Kluwer Academic Publishers, Dordrecht, Boston, London, 2000.
[4] I.V. Konnov, A scalarization approach for vector variational inequalities with applications, J. Global Optim. 32 (2005) 517–527.
[5] G.M. Lee, D.S. Kim, B.S. Lee, N.D. Yen, Vector variational inequality as a tool for studying vector optimization problems, Nonlinear Anal. TMA 34 (1998)

745–765.
[6] B.T. Polyak, Introduction to Optimization, Optimization Software, Inc., Publications Division, New York, 1987.
[7] M.C. Ferris, Weak Sharp Minima and Penalty Functions in Mathematical Programming, Ph.D. Thesis, University of Cambridge, Cambridge, 1988.
[8] J.V. Burke, S. Deng, Weak sharp minima revisited. II, application to linear regularity and error bounds, Math. Program. Ser. B 104 (2005) 235–261.
[9] J.V. Burke, M.C. Ferris, Weak sharp minima in mathematical programming, SIAM J. Control Optim. 31 (1993) 1340–1359.

[10] F. Facchinei, J.S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer-Verlag, New York, 2003.
[11] P.T. Harker, J.S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and

applications, Math. Program. Ser. B 48 (1990) 161–220.
[12] J.S. Pang, Error bounds in mathematical programming, Math. Program. Ser. A 79 (1997) 299–332.
[13] R.T. Rockafellar, R.J.-B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998.
[14] C. Zălinescu, Sharp estimates for Hoffman’s constant for systems of linear inequalities and equalities, SIAM J. Optim. 14 (2003) 517–533.
[15] P. Marcotte, D.L. Zhu, Weak sharp solutions of variational inequalities, SIAM J. Optim. 9 (1998) 179–189.
[16] S. Deng, X.Q. Yang, Weak sharp minima in multicriteria linear programming, SIAM J. Optim. 15 (2004) 456–460.
[17] E. Bednarczuk, On weak sharp minima in vector optimization with applications to parametric problems, Control Cybernet. 36 (2007) 563–570.
[18] M. Studniarski, Weak sharp minima in multiobjective optimization, Control Cybernet. 36 (2007) 925–937.
[19] X.Q. Yang, N.D. Yen, Structure and weak sharp minimum of the Pareto solution set for piecewise linear multiobjective optimization, J. Optim. Theory

Appl. 147 (2010) 113–124.
[20] X.Y. Zheng, X.Q. Yang, Weak sharp minima for piecewise linear multiobjective optimization in normed spaces, Nonlinear Anal. 68 (2008) 3771–3779.
[21] J. Li, N.J. Huang, X.Q. Yang, Weak sharp minima for set-valued vector variational inequalities with an application, European J. Oper. Res. 205 (2010)

262–272.
[22] A.A. Auslender, Optimisation, in: Méthodes Numériques, Masson, Paris–New York–Barcelona, 1976.
[23] M. Fukushima, Equivalent differentiable optimization problems and descentmethods for asymmetric variational inequality problems,Math. Program.

53 (1992) 99–110.
[24] G. Mastroeni, Gap functions for equilibrium problems, J. Global Optim. 27 (2003) 411–426.
[25] J. Li, G. Mastroeni, Vector variational inequalities involving set-valued mappings via scalarization with applications to error bounds for gap functions,

J. Optim. Theory Appl. 145 (2010) 355–372.
[26] X.Q. Yang, J.C. Yao, Gap functions and existence of solutions to set-valued vector variational inequalities, J. Optim. Theory Appl. 115 (2002) 407–417.


	Weak sharpness for gap functions in vector variational inequalities
	Introduction
	Equivalent characterizations for VVI via scalarization approaches
	Weak sharpness for VVI
	Weak sharpness for VVI via  φξ 
	Weak sharpness for VVI via gap functions

	Acknowledgments
	References


