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Let Mn denote the partial maximum of an independent and identically distributed
lognormal random sequence. In this paper, we derive the exact uniform convergence
rate of the distribution of the normalized maximum (Mn − bn) /an to its extreme value
distribution, where the constants an and bn are chosen by an optimal way.
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1. Introduction and main results

Let (ξn, n ≥ 1) be a sequence of independent and identically distributed standardized normal random variables with
distribution function Φ(x). LetMn = max(ξk, 1 ≤ k ≤ n) denote the partial maximum. It is well-known that

lim
n→∞

P (Mn ≤ anx + bn) = lim
n→∞

Φn (anx + bn) = exp

−e−x

= Λ(x) (1.1)

with the normalized constants an and bn given by

an = (2 log n)−1/2, bn = a−1
n −

an
2

(log log n + log 4π) .

The pointwise convergence rate of (1.1) is

Φn (anx + bn) − Λ(x) ∼
e−x exp


−e−x


16

(log log n)2

log n
(1.2)

for large n. For more details, see [1,2]. Hall [1] investigated this problem further and proved

C1

log n
< sup

x∈R
|P (Mn ≤ anx + bn) − Λ(x)| <

C2

log n
(1.3)

for some absolute constants 0 < C1 < C2 if we choose an and bn by the following equations:

2πb2n exp(b
2
n) = n2, an = b−1

n . (1.4)

For the extreme value distributions and their associated uniform convergence rates of some given distributions, see [3,4]
respectively for exponential andmixed exponential distributions, [5,6] for the general error distribution, [7,8] for the short-
tailed symmetric distribution.
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It is popular in theoretical analysis and wide applications that the normal distribution is carried over to logarithmic
normal one. Let ξ ∼ N(0, 1), we say that X follows the logarithmic normal distribution if X is defined by X = eξ , abbreviated
as lognormal distribution. In this paper, we are interested in the uniform convergence rate of extremes from samples with
common distribution F following the lognormal distribution. The probability density function of the lognormal distribution
is given by

F ′(x) =
x−1

√
2π

exp


−
(log x)2

2


, x > 0.

In the sequel, let (Xn, n ≥ 1) be a sequence of independent random variables with common distribution F following the
lognormal distribution, and letMn denote its partial maximum. For the limiting distribution of the maximum of lognormal,
by Lemma 2 in Section 2 and the arguments similar to the proof of Theorem 1.5.3 in [2], we can derive

lim
n→∞

P (Mn ≤ αnx + βn) = lim
n→∞

F n (αnx + βn) = Λ(x)

with normalized constants αn and βn given by

αn =
exp


(2 log n)1/2


(2 log n)1/2

, (1.5)

and

βn =

exp


(2 log n)1/2

 
1 −

log 4π + log log n
2 (2 log n)1/2


. (1.6)

As mentioned by Hall [1] and Leadbetter et al. [2] that the choices of normalized constants may influence the convergence
rate of extremes, and the distribution tail representation may help us find the optimal normalized constants. For the
distributional tail representation of lognormal distribution, Lemma 2(ii) in Section 2 shows that

1 − F(x) = c(x) exp


−

 x

e

g(t)
f (t)

dt


for sufficiently large x, where c(x) → (2πe)−1/2 as x → ∞, f (x) = x/ log x and g(x) = 1+ (log x)−2. Noting that f ′(x) → 0
and g(x) → 1 as x → ∞. By Proposition 1.1(a) and Corollary 1.7 of [9], we can choose the norming constants an and bn in
such a way that bn is the solution of the equation

2π (log bn)2 exp

(log bn)2


= n2 (1.7)

and an satisfies

an = f (bn) =
bn

log bn
, (1.8)

then

lim
n→∞

P (Mn ≤ anx + bn) = lim
n→∞

F n (anx + bn) = Λ(x). (1.9)

The aim of this paper is to prove that the uniform convergence rate of (1.9) is proportional to 1/ (log n)1/2. However, for
F n(αnx + βn) the convergence rate is no better than (log log n)2/ (log n)1/2 even though αn/an → 1 and (βn − bn)/an → 0
as n → ∞. The main results are stated as follows:

Theorem 1. Let {Xn, n ≥ 1} denote a sequence of independent identically distributed random variables with common
distribution F which is lognormal distribution.

(i) For norming constants an and bn given respectively by (1.7) and (1.8), then there exist absolute constants 0 < C1 < C2 such
that

C1

(log n)1/2
< sup

x∈R

F n (anx + bn) − Λ(x)
 <

C2

(log n)1/2

for n ≥ 2.
(ii) For norming constants αn and βn respectively given by (1.4) and (1.6), we have

F n (αnx + βn) − Λ(x) ∼ −
e−x exp


−e−x


8

(log log n)2

(2 log n)1/2

for large n.
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2. Auxiliary lemmas

In this section we provide several key properties of lognormal distribution which are needed for the proofs of our main
results. The first one is the distributional tail decomposition of lognormal distribution, which is stated as follows.

Lemma 1. Let F denote the lognormal distribution function. For x > 1, we have

1 − F(x) =
1

√
2π

(log x)−1 exp


−
(log x)2

2


− γ (x) (2.1)

=
1

√
2π

(log x)−1 exp


−
(log x)2

2

 
1 − (log x)−2

+ s(x), (2.2)

where

0 < γ (x) =
1

√
2π


∞

x
(log t)−2 exp


−

(log t)2

2


1
t
dt <

1
√
2π

(log x)−3 exp


−
(log x)2

2


(2.3)

and

0 < s(x) =
3

√
2π


∞

x
(log t)−4 exp


−

(log t)2

2


1
t
dt <

3
√
2π

(log x)−5 exp


−
(log x)2

2


. (2.4)

Proof. By integration by parts we have

1 − F(x) =
1

√
2π

(log x)−1 exp


−
(log x)2

2


−

1
√
2π


∞

x
(log t)−2 exp


−

(log t)2

2


1
t
dt

=
1

√
2π

(log x)−1 exp


−
(log x)2

2


− γ (x),

which is (2.1). Similarly,

γ (x) =
1

√
2π

(log x)−3 exp


−
(log x)2

2


− s(x).

Putting it into (2.1), we obtain (2.2), where

s(x) =
3

√
2π


∞

x
(log t)−4 exp


−

(log t)2

2


1
t
dt

=
3

√
2π

(log x)−5 exp


−
(log x)2

2


−

15
√
2π


∞

x
(log t)−6 exp


−

(log t)2

2


1
t
dt

<
3

√
2π

(log x)−5 exp


−
(log x)2

2


.

The proof is complete. �

By Lemma 1, we can derive the Mills ratio and the distributional tail representation of lognormal distribution, which
are helpful, just as mentioned in Section 1, to find the optimal normalized constants an and bn given by (1.7) and (1.8).
The following result is about the Mills-type ratio and distributional tail representation of lognormal distribution, which is a
special case of tail behavior and Mills ratio of logarithmic general error distribution studied by Liao and Peng [10].

Lemma 2. Let F(x) denote the distribution of lognormal random variable with density F ′(x), then

(i) for x > 1 we have

xF ′(x)
log x


1 −

1

(log x)2


< 1 − F(x) <

x
log x

F ′(x)

and

1 − F(x)
F ′(x)

∼
x

log x
(2.5)

as x → ∞;
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(ii) for large x we have

1 − F(x) = c(x) exp


−

 x

e

g(t)
f (t)

dt


(2.6)

with c(x) → (2πe)−1/2, g(x) = 1 + (log x)−2
→ 1 as x → ∞ and the auxiliary function f (x) = x(log x)−1 satisfies

f ′(x) → 0 as x → ∞.

Let the norming constants an and bn are defined by (1.7) and (1.8) respectively. Let

a∗

n = anrn, b∗

n = bn + δnan (2.7)

with rn → 1 and δn → 0 as n → ∞. Then a∗
n/an → 1, and


b∗
n − bn


/an → 0 which implies F n(a∗

nx + b∗
n) → Λ(x). Since

a∗
nx + b∗

n → ∞, for large nwe have the following expansion.

Lemma 3. Let a∗
n and b∗

n be defined by (2.7). For fixed x ∈ R and sufficiently large n,

F n a∗

nx + b∗

n


− Λ(x) = Λ(x)e−x


(rn − 1) x + δn −

1
2
anb−1

n (rnx + δn)
2

+ O

(rn − 1)2 + δ2

n +

anb−1

n

2
. (2.8)

Proof. Note by (1.7) that log bn ∼ (2 log n)1/2, which implies that

anb−1
n =

1
log bn

∼ (2 log n)−1/2
→ 0

as n → ∞ by virtue of (1.8). Notice

log

1 + anb−1

n (rnx + δn)


= anb−1
n (rnx + δn) −

1
2


anb−1

n

2
(rnx + δn)

2
+ O


anb−1

n

3
,

implying
anb−1

n

−1
log


1 + anb−1

n (rnx + δn)


= rnx + δn −
1
2
anb−1

n (rnx + δn)
2
+ O


anb−1

n

2
and 

log

1 + anb−1

n (rnx + δn)
2

=

anb−1

n

2
(rnx + δn)

2
+ O


anb−1

n

3
,

so we have

exp


−

anb−1

n

−1
log


1 + anb−1

n (rnx + δn)

−

1
2


log


1 + anb−1

n (rnx + δn)
2

= e−x

1 − (rn − 1) x − δn +

1
2
anb−1

n (rnx + δn)
2
+ O


anb−1

n

2
+ δ2

n + (rn − 1)2


and 
1 + anb−1

n log

1 + anb−1

n (rnx + δn)
−1

= 1 −

anb−1

n

2
(rnx + δn) + O


anb−1

n

3
.

Hence,
1 + anb−1

n log

1 + anb−1

n (rnx + δn)
−1

× exp


−

anb−1

n

−1
log


1 + anb−1

n (rnx + δn)

−

1
2


log


1 + anb−1

n (rnx + δn)
2

=


1 −


anb−1

n

2
(rnx + δn) + O


anb−1

n

3
e−x

×


1 − (rn − 1) x − δn +

1
2
anb−1

n (rnx + δn)
2
+ O


anb−1

n

2
+ δ2

n + (rn − 1)2


= e−x

1 − (rn − 1) x − δn +

1
2
anb−1

n (rnx + δn)
2
+ O


anb−1

n

2
+ δ2

n + (rn − 1)2


.
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Thus for large n we have

1
√
2π


log


a∗

nx + b∗

n

−1 exp


−
1
2


log


a∗

nx + b∗

n

2
=

1
√
2π


log bn


1 + anb−1

n (rnx + δn)
−1

exp


−
1
2


log bn


1 + anb−1

n (rnx + δn)
2

= n−1 1 + anb−1
n log


1 + anb−1

n (rnx + δn)
−1

× exp


−

anb−1

n

−1
log


1 + anb−1

n (rnx + δn)

−

1
2


log


1 + anb−1

n (rnx + δn)
2

= n−1e−x

1 − (rn − 1) x − δn +

1
2
anb−1

n (rnx + δn)
2
+ O


anb−1

n

2
+ δ2

n + (rn − 1)2


. (2.9)

Similarly, one can get
log


a∗

nx + b∗

n

−2
=

anb−1

n

2
+ O


anb−1

n

4
(2.10)

and

s(x) = O

n−1 anb−1

n

4
(2.11)

by virtue of (2.4).
Using (2.9)–(2.11) together with (2.2) and (2.4) we have

F n a∗

nx + b∗

n


− Λ(x)

=


1 − n−1e−x


1 − (rn − 1) x − δn +

1
2
anb−1

n (rnx + δn)
2
+ O


(rn − 1)2 + δ2

n +

anb−1

n

2
×


1 −


anb−1

n

2
+ O


anb−1

n

4
+ O


n−1 anb−1

n

4n

− Λ(x)

= Λ(x)e−x


(rn − 1) x + δn −
1
2
anb−1

n (rnx + δn)
2
+ O


(rn − 1)2 + δ−1

n +

anb−1

n

2
,

which completes the proof. �

3. Proofs of the main results

The aim of this section is to prove the main results.

Proof of Theorem 1. (i) Letting rn = 1, δn = 0 in (2.7) and noting anb−1
n ∼ 1/ (2 log n)1/2, by Lemma 3 we can prove that

there exists an absolute constant C1 > 0 such that

sup
x∈R

F n(anx + bn) − Λ(x)
 >

C1

(log n)1/2

for n ≥ 2. In order to obtain the upper bound, we need to prove the following.

sup
dn≤x<∞

|F n(anx + bn) − Λ(x)| < D1 anb−1
n , (3.1)

sup
0≤x<dn

|F n(anx + bn) − Λ(x)| < D2 anb−1
n , (3.2)

sup
−cn≤x<0

|F n(an + bn) − Λ(x)| < D3 anb−1
n (3.3)

sup
−∞<x<−cn

|F n(anx + bn) − Λ(x)| < D4 anb−1
n (3.4)

for n ≥ n0 as there must exist absolute constant C2 > C1 such that n0 = sup(k : C2/(log k)1/2 ≥ 1), where Di > 0 for
i = 1, 2, 3, 4 are absolute constants, and cn and dn are respectively defined by

cn =: log log log bn > 0, dn =: − log log
log bn

log bn − 1
> 0
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for n ≥ n0. Note that x ≥ −cn implies

bn + anx ≥ bn − ancn = bn


1 −

log log log bn
log bn


> 0, n ≥ n0.

For the rest of the proof, let Cj, j = 1, 2, . . . , 12 stand for the absolute positive constants.
For x ≥ −cn, let Ψn(x) = 1 − F(anx + bn), then

n log F(anx + bn) = −nΨn(x) − Rn(x), (3.5)

where

0 < Rn(x) = −n (Ψn(x) + log (1 − Ψn(x))) <
nΨ 2

n (x)
2 (1 − Ψn(x))

since

− x −
x2

2(1 − x)
< log(1 − x) < −x for 0 < x < 1. (3.6)

We deduce from (2.1) that for x ≥ −cn,

Ψn(x) ≤ Ψn(−cn) = 1 − F(bn − ancn)

< n−1 1 + anb−1
n log


1 − anb−1

n cn
−1

exp

−

anb−1

n

−1
log


1 − anb−1

n cn


< n−1 1 + anb−1
n log


1 − anb−1

n cn
−1

exp

cn +

anb−1
n c2n

2(1 − anb−1
n cn)



<
log (2 log n)

2n

1 +

log

1 −

log log log bn
log bn


log bn

−1

exp

 (log log log bn)2

log bn

2

1 −

log log log bn
log bn




< C1 < 1 (3.7)

for n ≥ n0, implying

inf
x≥−cn

(1 − Ψn(x)) > 1 − C1 > 0,

so,

0 < Rn(x) ≤
nΨ 2

n (x)
2 (1 − Ψn(x))

<
anb−1

n

2
√
2π(1 − C1)

1 +

log

1 −

log log log bn
log bn


log bn

−2

(log log bn)2

exp
 1
2 (log bn)2

 exp
 (log log log bn)2

log bn
1 −

log log log bn
log bn




< C2anb−1
n

for n ≥ n0. Thus

|exp (−Rn(x)) − 1| < Rn(x) < C2anb−1
n (3.8)

as 1 − e−x < x for x > 0.
Let An(x) = exp


−nΨn(x) + e−x


and Bn(x) = exp (−Rn(x)), by (3.8) we haveF n(anx + bn) − Λ(x)

 ≤ Λ(x)|An(x) − 1| + |Bn(x) − 1|

< Λ(x)|An(x) − 1| + C2anb−1
n . (3.9)

From (2.1) and (2.3) it follows that

− nΨn(x) + e−x
=

1 + anb−1

n log

1 + anb−1

n x
−1

e−xCn(x) (3.10)
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with

Cn(x) = −Dn(x)En(x) + Fn(x), (3.11)

where Dn(x), En(x) and Fn(x) are respectively defined by

Dn(x) = exp

x −

1
2


log


1 + anb−1

n x
2

−

anb−1

n

−1
log


1 + anb−1

n x


,

En(x) = 1 −

anb−1

n

2 
1 + anb−1

n log

1 + anb−1

n x
−2

κn,

Fn(x) = 1 + anb−1
n log


1 + anb−1

n x

,

where 0 < κn < 1.
Noting that 1 + x < ex, x ∈ R and log(1 + x) < x, x > −1, for x ≥ −cn we have

Dn(x) > 1 + x −
1
2


log


1 + anb−1

n x
2

−

anb−1

n

−1
log


1 + anb−1

n x


> 1 −
1
2


log


1 + anb−1

n x
2

. (3.12)

First we prove (3.3). Noting that log

1 + anb−1

n x


< 0 in the case of −cn ≤ x < 0 and (log(1 + x))2 <

x −

x2
2(1+x)

2
as

−1 < x < 0, by (3.12) we have

Cn(x) < anb−1
n

1
2
anb−1

n


x −

anb−1
n x2

2

1 + anb−1

n x
2

+ anb−1
n


1 + anb−1

n log

1 + anb−1

n x
−2

 (3.13)

for −cn ≤ x < 0. On the other hand, since ex − 1 < xex, x ∈ R and by (3.6) we have

Dn(x) < 1 +
anb−1

n x2

2

1 + anb−1

n x
 exp anb−1

n x2

2

1 + anb−1

n x
 ,

so,

Cn(x) > anb−1
n


−

x2

2

1 + anb−1

n x
 exp anb−1

n x2

2

1 + anb−1

n x
+ anb−1

n x −


anb−1

n x
2

2

1 + anb−1

n x
 . (3.14)

Combining (3.13) with (3.14), for −cn ≤ x < 0 we have

|Cn(x)| < anb−1
n

1
2
anb−1

n


x −

anb−1
n x2

2

1 + anb−1

n x
2

+ anb−1
n


1 + anb−1

n log

1 + anb−1

n x
−2

+
x2

2

1 + anb−1

n x
 exp anb−1

n x2

2

1 + anb−1

n x
− anb−1

n x +


anb−1

n x
2

2

1 + anb−1

n x



< anb−1
n


1
8
anb−1

n c2n


1 +

1

1 − anb−1
n cn

2

+ anb−1
n


1 + anb−1

n log

1 − anb−1

n cn
−2

+
x2

2

1 − anb−1

n cn
 exp anb−1

n c2n
2

1 − anb−1

n cn
+ anb−1

n cn +


anb−1

n cn
2

2

1 − anb−1

n cn


< anb−1
n


C3 + C4x2


for n ≥ n0. So for −cn ≤ x < 0 we have

| − nΨn(x) + e−x
| =


1 + anb−1

n log

1 + anb−1

n x
−1

e−x
|Cn(x)|

<

1 + anb−1

n log

1 + anb−1

n x
−1

e−xanb−1
n


C3 + C4x2


<

1 + anb−1

n log

1 − anb−1

n cn
−1

e−xanb−1
n


C3 + C4x2


<

1 + anb−1

n log

1 − anb−1

n cn
−1

ecnanb−1
n


C3 + C4c2n


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=

1 + anb−1

n log

1 − anb−1

n cn
−1


C3

log log bn
log bn

+ C4
log log bn (log log log bn)2

log bn



<

1 +

log

1 −

log log log bn
log bn


log bn

−1 
C3

log log bn
log bn

+ C4
(log log bn)3

log bn


< C5

for n ≥ n0. Hence noting |ex − 1| < |x| (ex + 1) , x ∈ R, we have

Λ(x)|An(x) − 1| = Λ(x)| exp

−nΨn(x) + e−x

− 1|

< Λ(x)| − nΨn(x) + e−x
|

exp


−nΨn(x) + e−x

+ 1


<

eC5 + 1


Λ(x)


1 + anb−1

n log

1 − anb−1

n cn
−1

e−xanb−1
n


C3 + C4x2


<

eC5 + 1


e−1anb−1

n


1 + anb−1

n log

1 − anb−1

n cn
−1 

C3 + C4x2

exp


−

x2

2


< C6anb−1

n

for n ≥ n0, since max−cn≤x≤0

C3 + C4x2


e−x2/2

≤ C3 + C4. Combining above inequality with (3.9) we have

sup
−cn≤x<0

F n (anx + bn) − Λ(x)
 < (C2 + C6) anb−1

n

for n > n0.
Second, consider the case in which 0 ≤ x < dn. By (3.6), (3.10) and (3.12) we can derive

Cn(x) < anb−1
n


1
2
anb−1

n x2 + anb−1
n


1 + anb−1

n log

1 + anb−1

n x
−2

+ anb−1
n x


. (3.15)

On the other hand, note that x − x2/2 < log(1 + x), x > 0 and ex − 1 < xex, x ∈ R, implies

Dn(x) < exp

x −


anb−1

n

−1
log


1 + anb−1

n x


< 1 +
anb−1

n x2

2
exp


anb−1

n x2

2


,

so,

Cn(x) > −1 −
anb−1

n x2

2
exp


anb−1

n x2

2


+ 1 + anb−1

n log

1 + anb−1

n x


> −
anb−1

n x2

2
exp


anb−1

n x2

2


(3.16)

as x ≥ 0. Combining (3.15) with (3.16), for 0 ≤ x < dn we can get

|Cn(x)| < anb−1
n


C7 + C8x2


for n ≥ n0, implying

| − nΨn(x) + e−x
| <


1 + anb−1

n log

1 + anb−1

n x
−1

e−xanb−1
n


C7 + C8x2


< e−xanb−1

n


C7 + C8x2


< anb−1

n


C7 + 4C8e−2

< C9.

Hence by |ex − 1| < |x| (ex + 1) , x ∈ R,

Λ(x)|An(x) − 1| = Λ(x)
exp −nΨn(x) + e−x

− 1


< Λ(x)
−nΨn(x) + e−x

 exp −nΨn(x) + e−x
+ 1


<

eC9 + 1


Λ(x)e−xanb−1

n


C7 + C8x2


=

eC9 + 1


anb−1

n


C7 + C8x2


exp


−e−x

− x

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<

eC9 + 1


anb−1

n


C7 + C8x2


exp


−1 −

1
2
x2


≤

eC9 + 1


e−1 C7 + 2C8e−1 anb−1

n

= C10anb−1
n

for n ≥ n0 since 0 ≤ x < dn. Combining with (3.9) to get (3.2).
Third we prove (3.1). Obviously,

sup
x≥dn

(1 − Λ(x)) ≤ 1 − Λ(dn) = anb−1
n , (3.17)

and from (3.5) we deduce that

1 − F n (andn + bn) < nΨn(dn) + Rn(dn). (3.18)

By (2.1) we have

nΨn(dn) <
n

√
2π

(log (andn + bn))−1 exp


−
1
2

(log (andn + bn))2


< exp

−

anb−1

n

−1
log


1 + anb−1

n dn


< exp


−dn +
anb−1

n d2n
2



= anb−1
n (log bn)


log

log bn
log bn − 1


exp



log log log bn

log bn−1

2
2 log bn


< C11anb−1

n (3.19)

for n ≥ n0 since the continuous function x log (x/(x − 1)) exp

 
log log x

x−1

2
2x


is decreasing as x > 2. Note that Rn(x) <

C2anb−1
n by (3.7). Combining with (3.17), (3.18) and (3.19), we derive that

sup
x≥dn

|F n (anx + bn) − Λ(x)| ≤ 1 − F n (andn + bn) + 1 − Λ(dn)

< (C11 + C2 + 1) anb−1
n

for n ≥ n0 which completes the proof of (3.1).
Finally, consider the case in which −∞ < x ≤ −cn. In this case,

sup
x≤−cn

F n (anx + bn) ≤ F n (bn − ancn)

≤ exp


−ecn

1 −

1
2


log


1 − anb−1

n cn
2

−

anb−1

n

2 
1 + anb−1

n log

1 − anb−1

n cn
−2


≤ anb−1

n exp


(log log bn) c2n
2 (log bn)2

+
1

2

1 − anb−1

n cn
 (log log bn) c3n

(log bn)3

+
1

8

1 − anb−1

n cn
2 (log log bn) c4n

(log bn)4
+

log log bn
(log bn)2


1 + anb−1

n log

1 − anb−1

n cn
−2


< C12anb−1

n

for n ≥ n0. Thus we have

sup
x<−cn

|F n(anx + bn) − Λ(x)| ≤ F n (bn − ancn) + Λ(−cn)

< (C12 + 1) anb−1
n

for n ≥ n0. This completes the proof of (3.4). The proof of Theorem 1(i) is complete.
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(ii) Setting

bn = βn + θn

=

exp


(2 log n)1/2

 
1 −

Bn

2 (2 log n)1/2
+

θn

exp

(2 log n)1/2

 , (3.20)

where βn is defined by (1.6), Bn = log 4π + log log n and θn = exp

(2 log n)1/2


o

1/ (log n)1/2


. Note that

log (1 + x) = x −
x2

2
+ O


x3


as x → 0.

Taking logarithms of (3.20), we have

log bn = (2 log n)1/2

1 −
Bn

4 log n
+

θn

(2 log n)1/2 exp

(2 log n)1/2


−

1
2 (2 log n)1/2


Bn

2 (2 log n)1/2
−

θn

exp

(2 log n)1/2

2

+ O


B3
n

(log n)2

 .

Hence,

(log bn)2 = 2 log n − Bn +
B2
n

8 log n
−

Bnθn

(2 log n)1/2 exp

(2 log n)1/2

 +


1 − (2 log n)1/2


θ2
n

exp

2 (2 log n)1/2


+


2 (2 log n)1/2 + Bn


θn

exp

(2 log n)1/2

 −
B2
n

4 (2 log n)1/2
+ O


B3
n

log n


and

log log bn =
1
2
log 2 +

1
2
log log n −

Bn

4 log n
+

θn

(2 log n)1/2 exp

(2 log n)1/2

 −
B2
n

32 (log n)2

−
θ2
n

4 (log n) exp

2 (2 log n)1/2

 +
Bnθn

2 (2 log n)3/2 exp

(2 log n)1/2

 + O


B2
n

(log n)3/2


.

Putting above expansions of (log bn)2 and log log bn into

log 2π + 2 log log bn + (log bn)2 = 2 log n, (3.21)

we have

θn ∼
exp


(2 log n)1/2


B2
n

16 log n
.

Hence,

bn = exp

(2 log n)1/2

 
1 −

Bn

2 (2 log n)1/2
+

B2
n

16 log n
+ o


(log log n)2

log n


.

Now for αn and βn defined by (1.4) and (1.6), one can check that

rn − 1 =
αn

an
− 1 ∼

log log n
2 (2 log n)1/2

,

and

δn =
βn − bn

an
∼ −

(log log n)2

8 (2 log n)1/2

for large n. Hence by Lemma 3 we can derive

F n (αnx + βn) − Λ(x) ∼ −
e−xΛ(x)

8
(log log n)2

(2 log n)1/2

for large n, which completes the proof of Theorem 1(ii). �
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