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0. Introduction and statement of results

In this article we prove the global existence of the small data solutions of the Cauchy problem for the semilinear
Klein-Gordon equation in the de Sitter spacetime. Unlike the same problem in the Minkowski spacetime, we have no
restriction on the order of nonlinearity and structure of the nonlinear term, provided that a physical mass of the field is
outside of some interval.

A large amount of work has been devoted to the Cauchy problem for the semilinear Klein-Gordon equations in the
Minkowski spacetime. The existence of global weak solutions has been obtained by Jérgens [1], Segal [2,3], Pecher [4],
Brenner [5], Strauss [6], Ginibre and Velo [7,8] for the equation

U — Au+ m?u = [u|%u.
For global solvability, the exact relation between n and « > 0 was finally established. More precisely, consider the Cauchy
problem for the nonlinear Klein-Gordon equation

Up — Au = —V'(u),

where A is the Laplace operator in R" and V' = V’(u) is a nonlinear function, a typical form of which is the sum of two
powers

V'(u) = Aou + A|ul%u

witha > 0and A > 0. For this equation, a conservation of energy is valid. For finite energy solutions the scaling arguments
suggest the assumption « < 4/(n — 1). In [7], by a contraction method, the existence and the uniqueness of strong global
solutions in energy space H;) ® L? are proved for arbitrary space dimension n under assumptions on V' that cover the case
of sum of powers Aju|*uwith0 < o < 4/(n — 1),n > 2,and A > 0 for the highest «. Some of the results can be extended
to the critical case « = 4/(n — 1) (see, e.g. [7, Section 4]).

The Klein-Gordon equation arising in relativistic physics and, in particular, general relativity and cosmology, as well
as, in more recent quantum field theories, is a covariant equation that is considered in the curved pseudo-Riemannian

E-mail address: yagdjian@utpa.edu.

0022-247X/$ - see front matter. Published by Elsevier Inc.
doi:10.1016/j,jmaa.2012.06.020


http://dx.doi.org/10.1016/j.jmaa.2012.06.020
http://www.elsevier.com/locate/jmaa
http://www.elsevier.com/locate/jmaa
mailto:yagdjian@utpa.edu
http://dx.doi.org/10.1016/j.jmaa.2012.06.020

324 K. Yagdjian /J. Math. Anal. Appl. 396 (2012) 323-344

manifolds. (See, e.g., [9-12].) Moreover, the latest astronomical observational discovery that the expansion of the universe
is speeding supports the model of the expanding universe that is mathematically described by the manifold with metric
tensor depending on time and spatial variables. In this paper we restrict ourselves to the manifold arising in the so-called de
Sitter model of the universe, which is the curved manifold due to the cosmological constant. Thus, there is a need to study
partial differential equations related to such models and, in particular, to investigate the question of the global solvability of
the semilinear hyperbolic equations with variable coefficients. The lack of results for the global solvability of such semilinear
hyperbolic equations can be explained, among other reasons, by the fact that there are only very few known examples of
linearized equations with explicit formulas for the fundamental solutions.
The line element in the de Sitter spacetime has the form

2 2\ !
2 r ) r 2 20102 ) 2
The Lamaitre-Robertson transformation leads to the following form for the line element [ 13, Section 134], [ 14, Section 142]:

d52 _ —CZ dt/Z + eza//R(dx/z + dy/Z + dZ/Z).

Here R is the “radius” of the universe. In fact, the de Sitter model belongs to the family of the Fried-
mann-Lemaitre-Robertson-Walker spacetimes (FLRW spacetimes). In the FLRW spacetime [15], one can choose coordi-
nates so that the metric has the form ds*> = —dt? 4+ S%(t)do?. In particular, the metric in the de Sitter spacetime in the
Lamaitre-Robertson coordinates [13] has this form with the cosmic scale factor S(t) = e'.

The homogeneous and isotropic cosmological models possess the highest degree of symmetry that makes them more
amenable to rigorous study. Among them we mention FLRW models. The simplest class of cosmological models can be
obtained if we assume, additionally, that the metric of the slices of constant time is flat and that the spacetime metric can
be written in the form ds®> = —dt? + a?(t)(dx*> + dy* + dz?) with an appropriate scale factor a(t). The assumption that the

universe is expanding leads to the positivity of the time derivative d%a(t). A further assumption that the universe obeys the

accelerated expansion suggests that the second derivative %a(t) is positive. Under the assumption of FLRW symmetry the

equation of motion in the case of positive cosmological constant A leads to the solution
A
a(t) = a()eV 5",

which produces models with exponentially accelerated expansion, which is referred to as the de Sitter model.
In general the matter fields described by the function ¢ must satisfy equations of motion and, in the case of the massive
scalar field, the equation of motion is that ¢» should satisfy the Klein—-Gordon equation generated by the metric g,

1 0 20
NG (@g"‘a—@ =m’y + V' ().

In physical terms this equation describes a local self-interaction for a scalar particle. In the de Sitter universe the equation

for the scalar field with mass m and potential function V written out explicitly in coordinates is (See, e.g., [16, Section 5.4]
and [17].)

G + nHee — e M AY +mPp = —V'(9). (0.1)

Herex € R", t € R,and A is the Laplace operator on the flat metric, A := 2}1:1 % whileH = /A/3is the Hubble constant.
j
For the sake of simplicity, from now on, we set H = 1. A typical example of a potential function would be V (¢) = ¢*. If we

introduce a new unknown function u = e%t¢, then the semilinear Klein-Gordon equation for u in the de Sitter spacetime
takes the form

2
n n n
U —e X Au+ <m2 - Z) u=—e2'v’ (e_ftu) ) (0.2)
The quantity .M, with nonnegative real part .M > 0, defined by
M2 = m? — ﬁ
: 1
will be called the “curved mass” of the particle, which is also sometimes referred to as the “effective mass”. It is convenient

e . 2 . .

touse M = |.M|. We distinguish the following three cases: the case of large mass m? > %, the case of dimensional mass
2 . . . . .

2 T . They lead to three different equations: the Klein-Gordon equation with the

2
m- = "Z' and the case of small mass m? < T

“real curved mass” M,

_ n _n
Uy — e 2'Au+ M?u = —ez'v’ (e 2tu> ,
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the wave equation with the “zero curved mass”
Uy — e X Au = —e2'V/ (e‘%[u> ,
and the Klein-Gordon equation with the “imaginary curved mass” M,
Uy — e 2 Au— MPu = —e?'V’ (e_%tu) , (0.3)

respectively.
Let W"P(R™) be the Sobolev space and H(R") = WS2(R"). To estimate the nonlinear term V = V(u) we use the
following Lipschitz condition.

Condition (L£). The function F is said to be Lipschitz continuous in the space H¢)(R") with the norm || - ||y @n) if

IF () = F@) g ey = Cllu = vl eny (1 eny + 1015, eny)  foralln, v € H (R, (0.4)
where o > 0.
Define the complete metric space

X(R,s,y) = {® € C([0,00); H5(RM) | [|®[lx == sup )eytllﬂp(t)llms)(w) <R}
0,00

tel
with the metric

d(®1, @) := sup e’'||®q(t) — P2 () gy m)-
te[0,00)

The main result of this paper is the following theorem.

Theorem 0.1. Assume that the nonlinear term F(u) is Lipschitz continuous in the space Hi)(R"),s > n/2 > 1,F(0) = 0,

and o > 0. Assume also that m € (0, v/n2 — 1/2) U [n/2, 00). Then, there exists &, > 0 such that, for every given functions
@0, 1 € H() (R"), such that

9ol @ + l@1llng @ <&, & < &,
there exists a global solution @ € C'([0, 00); Hs)(R™)) of the Cauchy problem
Py +nd; —e HAD + m?P = F(P), (0.5)
D(x,0) =po(x),  Pi(x,0) =1 (). (0.6)
That solution @ (x, t) belongs to the space X (2¢, s, y), that is,
sup e (|@ (-, ) [l en) < 2e,

te[0,00)

with y such that either 0 < y < (5 — % —m?)/(@+1)if vn2—1/2>m>0,0ory =0if 3 <m.
In particular, if
F(®) = £|®|°® or F(®) = +|®|*t,

and (£), then the small data Cauchy problem is globally solvable for every & € (0, co) if m € (0, +/n? — 1/2) U [n/2, 00).
We can only conjecture that (+/n? — 1/2, n/2) is a forbidden mass interval for the small data global solvability of the Cauchy
problem for all « € (0, co) with (&£). The case of m = +/n? — 1/2 will be considered in a forthcoming paper.

We note here that, due to the time dependence of the coefficient, there is no conservation of energy, and that, for the
general nonlinearity F(®), the decay of the energy cannot be established even though the equation contains a dissipative
term.

Baskin [18] discussed the small data global solutions for the scalar Klein-Gordon equation on asymptotically de Sitter
spaces, which is a compact manifold with a boundary. More precisely, in [18] the Cauchy problem is considered for the
semilinear equation

Ogu+mPu=f),  uX t)) =eo(x) € HyR"),  u(x to) = @1(x) € *(R"),
where mass is large, m?> > n?/4, F is a smooth function and satisfies conditions

f@l < cul*  Jul- I @I~ FWl, f@—f@-u<o,
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fouf(v)dv > 0, and fouf(v)dv ~ |u|®*? for large |u]. It is also assumed that & = ﬁ. In Theorem 1.3 [18] the existence
of the global solution for small energy data is stated. (For more references on the asymptotically de Sitter spaces, see the
bibliography in [19,20].)

D’Ancona [21] considered the Cauchy problem for the equation

U —a()Au= —V'(u), tel[0,T], x€R>,

with the nonnegative real-analytic function a(t), which has a locally finite number of zeros and those zeros are of finite
order only. It was supposed in [21] that the nonlinear term obeys conditions V'(u)u > 0, V(0) = 0,

V'O <c4+VvEes), WPl <ca+Is, VOEVP ) + V)’ =0,

with some p > 1and B8 < 1. Then, assuming that the possible zeros of a(t) are of order not greater than 2A, A = 1,2, ...,
the existence of solution u € C*®([0, T] x R?) without restriction on the size of the initial data is proved, provided that
p < (3L 4+ 5)/(3A + 1).In[22] this result was extended to the case of 1 and 2 space dimensions.

The remaining part of this paper is organized as follows. In Section 1 we give integral representations for the solutions
of the Cauchy problem for the linear equation with large physical mass. Then, we quote from [23], the [P — L7 estimate for
the solutions of that equation with and without a source term. In Section 2 we introduce similar representations for the
case of small real mass and of the imaginary mass. These representations are used for the derivation in Sections 2.1 and 2.2
the [P — L9 estimate for the linear equation with and without a source term. The last section, Section 3, is devoted to the
solvability of the associated integral equation and to the proof of Theorem 0.1.

1. The case of large mass, m > n/2

The nonlinear equations (0.1) and (0.2) are those we would like to solve, but the linear problem is a natural first step. An
exceptionally efficient tool for studying nonlinear equations is the fundamental solution of the associated linear operator.
We extract a linear part of Eq. (0.2) as an initial model that must be treated first:

U — e X AU+ MPu=f. (1.1)

In this section we list the explicit formulas for the solution to the Cauchy problem for Eq. (1.1).

Eq. (1.1) is strictly hyperbolic. That implies the well-posedness of the Cauchy problem for (1.1) in the different function
spaces. The coefficient of the equation is an analytic function and, consequently, the Holmgren theorem implies local
uniqueness in the space of distributions. Moreover, the speed of propagation is finite, namely, it is equal to e~* for every
t € R. The second-order strictly hyperbolic equation (1.1) possesses two fundamental solutions resolving the Cauchy
problem. They can be written microlocally in terms of the Fourier integral operators [24], which give a complete description
of the wave front sets of the solutions. The distance between two characteristic roots A¢(t, £) and A, (t, &) of Eq. (1.1) is
At &) —Aa(t, &) = e ||, t € R, & € R". It tends to zero as t approaches oo. Thus, the operator is not uniformly strictly
hyperbolic. Moreover, the finite integrability of the characteristic roots, f0°° |Ai(t, £)|dt < oo, leads to the existence of so-
called “horizon” for that equation. More precisely, any signal emitted from the spatial point x, € R" at time t; € R remains
inside the ball |x — xg| < e~ for all time t € (tg, 00). Eq. (1.1) is neither Lorentz invariant nor invariant with respect to
usual scaling and that brings additional difficulties.

In this section we introduce some necessary notations, definitions, formulas, and results from [23], where the case of
the large mass, that is, m? > n2/4, is discussed. First, we define “forward light cone” D, (xo, ty), X0 € R", t; € R, and the
“backward light cone” D_(xo, to), X0 € R", ty € R, as follows:

Do (o, to) = {(x, £) € R™1; |x — x| < +£(e~© — e—f)}. (12)

In fact, any intersection of D_(xg, tp) with the hyperplane t = const < ty determines the so-called dependence domain
for the point (xg, to), while the intersection of D, (xg, ty) with the hyperplane t = const > t; is the so-called domain of
influence of the point (xo, to). Eq. (1.1) is non-invariant with respect to time inversion. Moreover, the dependence domain
is wider than any given ball if time const > t; is sufficiently large, while the domain of influence is permanently, for all time
const < ty, in the ball of the radius efo.

Define for ty € R in the domain D, (xg, to) U D_(Xo, to) the function

. _1_;
E(x, £; Xo, to) = (4e”0" )M ((e™" +e70)> — (x —x0)?) 2 "' F

(e —e™)? — (x — xo)?
’ (e—to + e—t)z _ (X _ X0)2> ’

where F (a, b; c; ¢) is the hypergeometric function. (For the definition of F (a, b; c; {) see, e.g., [25].) Here the notation
(x — X0)®> = (x — xg) - (x — xo) for the points x, xo € R" has been used. The kernels Ky (z, t) and K; (z, t) are defined by

(1.3)

1 1
x | = +iM, = +iM; 1
(2 2

Ko(z, t) = — [aabE(Z’ t; 0, b)]

b=0
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—iM

— (4e—t)iM ((»1 + e—t)z _ 22)

[(1—eH2—22]/(1+e )2 —22

1 1 (1—eH%—22

x |(et=1=—iMe*=1=2))F(=+iM, = +iM; 1; —————

[( ( )) 2 + 2 + (14+e1)2—22
1 1 1 (-l_e—[)Z_ZZ
1—e?4+22)(=—iM)F(—=+iM, = +iM; 1, — 2=
+( + )<2 ) <2+ 2" (1+e)? —22

and K (z, t) := E(z, t; 0, 0), that is,

(1 _ eft)Z _ ZZ
('1 + ef[)Z — ZZ

1 .
—5—iM

, 1 1
Ki(z,t) = (4e O™ (1 +e7)? — 2%) F (5 +iM, T iM:; 1; ) , O0<z<1-—e,

respectively. The kernels Ky (z, t) and K; (z, t) play leading roles in the derivation of [P — L7 estimates. Their main properties
of Ko(z, t) and K, (z, t) are listed and proved in Section 3 [23].
We consider the equation with n > 2. The solution u = u(x, t) to the Cauchy problem

Ur —e XAu+Mu=f, u(x,0) =0, u(x,0) =0, (1.4)

with f € C*°(R™") and with vanishing initial data is given by the next expression

t e—b_e—t
ulx, t) = 2/0 dbf0 drv(x,r; b)E(r, t; 0, b),
where the function v(x, t; b) is a solution to the Cauchy problem for the wave equation
Ve — Av =0, v(x,0; b) = f(x,b), ve(x,0;b) = 0. (1.5)
Thus, for the solution @ of the equation
Py +nd; —e AP +mPD =, (1.6)

due to the relation u = e%tCD, we obtain

t e b_e—t
D(x, b) =2e*%f/ db/ drezPv(x, r; bE(r, t; 0, b), (1.7)
0 0

where the function v(x, t; b) is defined by (1.5).
The solution u = u(x, t) to the Cauchy problem

ug —e XAu+Mu=0, ukx0) =g(x), ux 0 =), (1.8)

with gg, 91 € Cg°(R"), n > 2, can be represented as follows:
1
ux,t) = 65v¢0(x,¢(t)) +2 / Vg (X, P (£)$)Ko (P (E)s, t) () ds
0

1
—I—Z/ vy, (x, @(O)S)K1(p()s, )p(t)ds, x €R", t >0,
0

where ¢(t) := 1 — e~". Here, for ¢ € C{°(R") and for x € R", the function v, (x, ¢(t)s) coincides with the value v(x, ¢(t)s)
of the solution v(x, t) of the Cauchy problem

Ve — Av =0, v(x,0) = @(x), ve(x,0) = 0. (1.9)
Thus, for the solution @ of the Cauchy problem

Gy +n® — e XAD + m?d =0, @ (x,0) = @o(x), @,(x,0) = @1 (%), (1.10)
due to the relation u = e2‘®, we obtain

1
Bx, 1) = e "7 oy (x, (1) + e 2" / Vgo (X, $(0)5) Ko ((D)s, £) + nKy (p(D)s, £)) p(t) ds

0

1
+2€_%t/ Vg, (X, 9(D)S)K1(@(t)s, )P(t) ds, x € R", t > 0.
0
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1.1. IP — L9 estimates for equation with source, n > 2

The Cauchy problem

vy — Av =0, v(x, 0) = Yo(x), ve(x, 0) = Y1 (x),
with o, ¥1 € C°(R") for the linear wave equation has a unique solution that can be written as follows:

Uo(x, t) = Vi(t, D)o (x) + Va(t, Dx) ¥ ().
The operators V;(t, Dy) and V,(t, Dy) are chosen in accordance with

V1(0,Dy) =1 (identity operator), 0:V1(0,Dy) =0,

V5(0,Dy) =0, d:V>(0,Dy) =1 (identity operator).
The microlocal description of those operators by means of the Fourier integral operators is known (see, e.g. [26]). Let
WP (R"), BYP(R"), and B"P(R") be Sobolev, Besov, and homogeneous Besov spaces, respectively. In what follows the space
M*1 can be each of the next spaces LY(R"), W4(R"), W*9(R"), B*9(R™), or B*9(R"). The following decay estimates for the

linear operators V;(t, Dy) and V;(t, Dy) can be found, e.g., in [5,4].
Forall ¥ € Cj°(R"), n > 1, one has the estimates

_a(1_1
1= 2 Vi€ DY Lo = € " F 7 [ yln, €€ 0,00),
under the conditionss > 0,1 < p < 2, 117 + % =1,and 3 (n+ l)(ll7 - %) <2< n(% - %).Then, forallg € C§°(R™) one
has the estimate

_ 142s—n(1-1
1=V (t, DOg W)t < € 75" 6D gl n, ¢ € (0, 00),

under the conditionss > 0,1 <p <2, J+ ¢ = 1,k>0,and 5(n+1)(; — ) — 1 < 25 < n(; — ). Moreover, a standard
interpolation implies that these estimates hold for s and r in some range (see for details [27]). The scaling arguments show
that the time dependent factors are exact. The Duhamel principle gives corresponding estimate for the equation with the
source term.

Let u = u(x, t) be a solution of the Cauchy problem (1.4). Then according to Corollary 9.3 [23]" for n > 2 one has the
following estimate

t (11
I(—2)~u(x, )|l < Cu f IF (¢, Bl cemye® (e — e~6) ™ "(=3) (1 1 ¢ — pyi-se g,
0

provided that 1 < p < 2, % + % =1imn+1 <% — %) <2s<n (113 — %) < 25 + 1. Thus, for the solution @ of Eq. (1.6),

due to the relation u = e%‘qD, we obtain
n t np b b 1+25_n<l_l) 1 M
[(=2)7 @ (x, O)lla@n SCMeﬁ[/ e2’|If (x, b) lpemye® (e — ™) PT4) (14t — b)'~#M gp,
0
For M > 0 we obtain
LLY3 ‘ op b b ¢ l+2$—n<1—l)
1= @, Dl < Cue? f e2If G D)llne” (7" — ™) 77 db.
0

For M = 0 we obtain

1+237n(

n t n 1
(=)D (x, t)lany < Cye 2" f ez’ |If x, b)[lpme’ (e —e™") 0) (14t — b) db.
0

In particular, fors = 0 and p = q = 2, we have
t
12X, Oll2@ny = Cme’ft/ e2"[If (x, b)ll2any (14 ¢ — b)' 5™ db.

0

Here the rates of exponential factors are independent of the curved mass .M and, consequently, of the mass m.

1 Thereisa misprint in [23].
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1.2. IP — L9 estimates for equation without source, n > 2

According to Theorem 10.1 [23] the solution u = u(x, t) of the Cauchy problem (1.8) satisfies the following [P — L4
estimate

_ _ 25— n(l_1 t _
=200, O llsen) < G140 (1 = "6 ed lgu@ e + (1 = € gl

forallte(O,oo),providedthatl<p§2,%+%:1 (n+1)( —)<25<n( —)<25+1.
In particular, for large t we obtain “no decay” estimate

(=) ux, O)llaEn < Cu(1+ f)lfsgnmieé loo () llp ey + Nl ”LP(]R”)]-
Thus, for the solution @ of the Cauchy problem (1.10), due to the relation u = e2'®, we obtain the decay estimate
(=)@ (x, t) 1) < Cue 2 (14 ) se™M (1 — e_t)2$7n(%7%) {e% loo ) I1p gy + (1 — e_t)”ﬁDl”Lp(R”)] (1.11)
forall t > 0, while
(=) (x, ) 1an) < Cue™2°(1+ f)lfsgnmieé loo () llp ey + Nl ”LP(]R”)]
for large t. Here the rate of decay is independent of the curved mass .M and, consequently, of the mass m.
2. The equation with the imaginary curved mass
In this section we consider the linear part of the equation
U — e X Au— M?u = —ez2'V’ (e’%tu) , (2.1)

with M > 0. Eq. (2.1) covers two important cases. The first one is the Higgs boson equation, which has V'(¢) = A¢> and
M? = pm? +n?/4with A > 0and u > 0, while n = 3. The second case is the case of the small physical mass, that is
0 < m < J.For the last case M* = - — m?,

We mtroduce new functions E(x, t; Xq, to; M), Ko(z, t; M), and K;(z, t; M), which can be obtained by continuation in
complex domain, the ones introduced in [23] and which have been used in Section 1. First we define the function

n2

_1
E(x, t; Xo, to; M) = 47 MeM®0H0 (et 4 e710)2 — (x — xp)?) 2™
1 1 e~ — e )2 — (x — x)?
x F f—M,f—M;l;( )~ X=Xy
2 2 (7 +e7")? — (x — xp)?
Hence, it is related to the function E(x, t; Xg, to) of (1.3) as follows:

E(x, t; X0, to) = E(x, t; X, to; —iM).

Next we define also new kernels Ky (z, t; M) and K;(z, t; M) by

0
Ko(z, t; M) == — |:abE(z, t; 0, b; M)]
b=0
1

[(1—e )2 —22],/(1+e")2 — 22

1 1 (1—eH? - 22
ef—14+MEe*-1-2))F(--M, = —M; 1, —
x [( +M( N =M (1 +e?— 22

1 1 1 (1—eH%—22
T—e?+2) (= +M)Fl—-M, - -M;1; ——————
+ ( + )(2+ ) ( > 5 (T2

and K (z, t; M) := E(z, t; 0, 0; M), that is,

— 4 Mt ((1 +et)? = 22)M

_1 1 1 (1—eH2—22
Kz, t; M) =4 MM (1 4e -2 2 ME( - oM, - -1, —— 2 — %
i ) (¢ ) ) 2 2 (1+e )2 — 22

respectively. These kernels will be used in the representation of the solutions of the Cauchy problem.
The solution u = u(x, t) to the Cauchy problem

Ur —e XAu—Mu=f, u(x, 0) = 0, ur(x,0) = 0,

), 0<z<1-—e7t,
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with f € C*®°(R"") and with vanishing initial data is given [28] by the next expression

t eh_et
u(x, t) = 2/ dbf drv(x,r; b)E(r, t; 0, b; M), (2.2)
0 0
where the function v(x, t; b) is a solution to the Cauchy problem for the wave equation (1.5).
The solution u = u(x, t) to the Cauchy problem
ug —e *Au—Mu=0, ukx0) =@k, uX 0 =epx),

with gg, 91 € C§°(R"), n > 2, can be represented [28] as follows:
1
t
U 0) = 5 (0. $O) + 2 [ 1y (0 HONKG)5, 6 B0 5
0

1
+2/ Vo, (X, @(D)S)K1 (¢ (D)s, £; M)p(t) ds, x € R", t >0,
0

where ¢(t) := 1 — e". Here, for ¢ € C§°(R") and for x € R", the function v, (x, ¢(t)s) coincides with the value v(x, ¢(t)s)
of the solution v(x, t) of the Cauchy problem (1.9).
Thus, for the solution @ of the Cauchy problem

Gy + 1P, —e AP +mPPd =f, P(x,0)=0, D(x,0)=0,

due to the relation u = e2'®, we obtain with f € C*®°(R™") and with vanishing initial data the next expression

t e b et
D (x, 1) =2e*%f/ db/ drezbv(x, r; bE(r, t; 0, b; M),
0 0

where the function v(x, t; b) is a solution to the Cauchy problem for the wave equation (1.5).
Thus, for the solution @ of the Cauchy problem (1.10), due to the relation u = e2'®, we obtain

n—1 _ng

1
DX, t) = e 2 gy (x, p(t)) +e 2 / Vg (X, @(1)5) (2Ko (@ (0)s, t5 M) + nK: (¢ (t)s, t; M)) ¢(t) ds
0

1
+2e 2t / Vg, (%, ()K1 (P(D)s, t; M) (t)ds, x €R", t > 0.
0

Here for ¢ € Cj°(R") and for x € R", the function v, (x, ¢(t)s) coincides with the value v(x, ¢(t)s) of the solution v(x, t) of
the Cauchy problem (1.9).

In fact, the representation formulas of this section have been used to establish in [29] some qualitative properties of the
solutions of the Higgs boson equation.

2.1. IP — L9 estimates for equation without source, n > 2

Consider the solution @ of the problem (1.10), which is generated by the smooth initial functions ¢y(x) and @1 (x) with
compact supports, ¢, ¢1 € Ci°(R"). Then @ € C*°([0, 00) x R") and the support of @ is contained in some cylinder
Br x [0, 0co0), where Bg C R" is a ball of radius R centered at the origin and is depending on the supports of ¢y and ;. We
may say that the support of the solution is permanently bounded. That is a consequence of the finite propagation speed
property of the hyperbolic equation and due to the existence of horizon for the de Sitter spacetime. Next, we integrate the
equation of (1.10) with respect to x and obtain the following initial value problem for the second-order ordinary differential
equation,

Itt + nI[ + m21 = 0, 1(0) = COv It(x9 0) = C15

with the solution I(t) = [,, ®(x,t)dx, where Co = [, @o(x)dx and C; = [, ¢1(x) dx. For the case of small mass
m, m € (0, n/2), the last problem implies

1) = D27 (gomye G GO (mye
)\.2 - )\.1 2 — M
where M = \/n?/4 —m?, 7 := —5+M < 0,and A, := —5 — M < Osince 0 < M < 3. Hence, we have

/ @ (x, t) dx| < C(go, p1)e"(Z™M forallt > 0.
[Rn
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The last estimate is optimal in the sense that there are ¢g, ¢1 € C§°(R") and C(gyo, ¢1) > 0 such that

/ D(x,t)dx
RTI

Moreover, since the support of @ is permanently bounded, we have

/ D(x,t)dx
Rn

In the case of the dimensional mass, n?/4 = m?, the curved mass vanishes, M = 0, and we have

> C(go, pr)e” G,

< Cl@o, 91, DIP (-, D)l a@n), q € [1, o0l

g n N
I(t) = Coe 5t + (co5 +cl) te= 5t
Hence, there exist ¢g, ¢1 € C§°(R") and C(go, ¢1) > 0 such that

/ D(x,t)dx
Rn

In the case of the imaginary mass the corresponding equation is
le +nle —m*l =0, 10 =G, L(x,0)=0C,

C(@o, 1, DIP (-, Ollawny > > C(¢o, Qﬂl)fe_%t, q € [1, o0].

where M =,/ % +m? > 0and Ay := —5 + M > 0 while A, :== —3 — M < 0. Consequently, there are ¢y, ¢; € C5°(R")
and C(¢o, ¢1) > 0 such that

n? n
/ D (x, 1) dx| = C(po, ¢1) exp (W — ) t,
RM 4 2

as well as,

n? n
@, )@ = Sexp 5+ m2 — 5]t

and the norms of the solution are increasing in time. Thus, we have proven the following statement.

Lemma 2.1. If q € [1, o], then for both equations, with the real small mass (M = ,/ % —m2>0,0<m< %) and with the
imaginary mass (M = ,/ % +m? > 7, m > 0), there exist ¢o, ¢1 € Cg°(R") and § > 0 such that

D, ) la@ny > 8t7=EMe=(G=M forallt € (0, 00).
The lemma shows that the estimate of the next theorem is optimal.

Theorem 2.2. The solution ® = & (x, t) of the Cauchy problem
Py + 1D —e FAPEME =0, D0 =@, D (x0) =¢i(0),

with either M = / % —m? and m < +/n? — 1/2 for the case of “plus”, or M = ,/ % -+ m? for the case of “minus”, satisfies the
following LP — L9 estimate

_ _p2s—n(1-1 _n _
=200 Dllsn < Cunpas( — 9" "G g lien, + (1 = el lren |
forallt € (0, 00), provided that 1 < p < 2, % +% =1,3(n+1) (% - %) <2< n(% - %) <25+ 1.
Proof. First we consider the case of ¢; = 0. Then
1
n—1 _n
D(x, 1) =e 2 ‘v, (x, 9(t) + e Zt/ Vyo (X, @()s) Ko (¢ (t)s, t; M) + nKi(¢(t)s, t; M)) p(t) ds
0
and, consequently,

1
I(=2) =D, Dllaen < €2 (= A4) vy (x, () l1gcen) +€7%t/ [(=2)" gy (x, p()3) ll19zm)
0

x |2Ko(p(0)s, t; M) + nK; (¢(t)s, t; M)|¢(t) ds. (2.3)
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If n > 2, then for the solution v = v(x, t) of the Cauchy problem (1.9) for the wave equation in the Minkowski spacetime
with ¢(x) € C§°(R") one has (see, e.g., [5,4]) the following so-called I — L7 decay estimate

_ —s 2$7n(%7%)
I(=2)"v(, Olla@n < Ct lellp@n forallt >0, (24)

provided thats > 0,1 < p < 2, % + % =1,and ;(n + 1)(117 - %) <2s< n(% - %). Hence,

_n(1_1
(=2t (% pED sy = CHO> "™ ggllpn, foralle > o,
where ¢(t) = 1 — e™". Consequently, for the first term of the right-hand side of (2.3) we have

n— n— - 1
&3 (= 2) Py e, 9O s = 341 = e G g peny forall e > 0.

while for the second term we obtain

1
e 2! / [[(—=2) vy (%, $(0)3) |19z [2Ko (@ (D)5, t; M) + nKy(p(0)s, t; M) | (¢) ds
0

1 1.1 1.1
< lealwane ¥ [ 00" "6 (koo )] + k05,6 M) ) 90 s
0

We have to estimate the following two integrals of the last inequality:

1 1.1 11
/ o0 "G 1) G0 ko 0)s. 1 M) g 0) ds
0
and

1 11 11
/ 60> G027 G0 [k, (0)s, t: M| (0) s,
0

where ¢(t) = 1—efand t > 0. We are going to apply the next two lemmas in the case of a = 2s — n(% — 1) and to prove

P q
the following estimates
1 11 11
/ o> "G [k (0)s, £ M) |(0) ds
0

< CM,n,p,q,SefMtf[zsfn(%f%)]r(et - 1)H237n(%7%)(e[ + 1M1 forallt > 0,

and
1
/ o> "(670) G0 |k, (p(0)s, £ M) | (0) ds
0

< cM,n’p.q’Se*Mf*f(ZS*”(%*%))(ef — 1)”254(%*%)(& +1)2M-1 forallt > 0.

In particular,

1
/ ¢(t)25‘"<%‘%)s25‘"<%‘5)|1<0(¢(t)s, £ M)|p(t) ds < c,v,,,,_p,q,st“zs‘“(%‘%) for small t > 0,
0

1 1.1 11
/ ¢(t)25’"<15’ﬁ)5257"(57) [Ko((D)s, t; M)|p(t) ds < Cunp.qs€™ forlarget,
0
and
1 1_1Y 5 p(1_1 _af1_1
/ ¢(t)25‘"<v i) q)|1<1(¢(t)s,t;M)|¢(t)ds5c,v,,n_p,q,st“zs (573 for small.
0
1 1.1 1.1
/¢(t)25’”<ﬁ’ﬁ)5257"(57)|I<1(¢(t)5,t;M)‘(;&(t)ds5CM,n,p,q,seMt forlarge t. O
0

Lemma2.3. Leta > —1and ¢(t) = 1 — e~'. Then

1
/ P (0)'s”|K1(p(D)s, t; M)|p(t) ds < Cye ™M (e — D™ '(e" + DM forallt > 0.
0
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In particular,

1
/ ()" K1 (p(D)s, t; M)|p(t) ds < Cu ot for smallt,
0

1
/ () [K1(p(D)s, t; M)|p(t) ds < Cyy o™ for largert.
0

Proof. By the definition of the kernel K;, we obtain

1 1—et
f ¢(t)“s“|1<1(¢(t)s,t;M)|q§(t)ds:/ Ky (r, t; M)| dr
0 0

2 2

et

1 1
XF|-—M, - —
2 2

where the substitution e‘r = y has been used. Thus,

t

! e —1 1
/ B0 [K1 (@ (0)s, t; M)|$(6) ds < 4~ Me Mot / Yo (e 17— y2) B
0 0

t_ 2 4,2
. w> g

1 1
xF(=—M, - —
2 2

On the other hand, for M > 0 we have

1 1
F<f —-M, - — M; 1;2) <(Cy forallz €0, 1],

)

M; 1

M; 1

1—et 1
< 4‘MeMt/ r((1+e ™ - r2)77+M
0

1 1
XFl=-—M,-—-—M;1

- (1 _ e—t)Z _ r2
’ 1+ e—t)Z —r2

’ (et+ 1)2 _yz

’ (e[—l— 1)2 _y2

2 2
where
€ =1D*=¥" _10.1) forally € [0.¢' — 1]andallt > 0
zZ=—"- , orally ,ee —1]andallt > 0.
(et+])2_y2
Hence

t

1 e —1
/ ()s"[K1(p(D)s, t; M)| (1) ds < Cye ™M~ / y (et + 1) — yz)_%+M dy.
0 0

On the other hand, for M > 0 we have

t

e —1 1
/ Y (e + 12 —y?) 2 dy =
0

1+4+a

where a > —1. Hence, for M > 0 we have

1
/ () 's[K1(p(D)s, t; M)|p(0) ds < Cue ™ (e — D™ (e" + 1)*M7" forallt > 0.
0

Thus the lemma is proven. O

Lemma24. Leta > —1,M > 1/2,and ¢(t) = 1 — e~'. Then

(Z— ])l+ﬂ(z+])2M—1F< > ,

1+4+a

)ar

-1 1
< 47MeMt/‘ etsztefatya ((et 4 1)2 _yZ) 2+M
0

t_-lz_ 2
(=1 y>e_[dy’

1
2

34a z-1?

’

2 T (z4+1)2

1
/ ()5 |Ko(p(D)s, t; M)|p(t) ds < Curae ™ (e" — ) (" + )M forallt > 0.
0

)

333
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In particular,
1
/ P ()" |Ko(g(D)s, t; M)|p(t) ds < Cy,ot™" forsmall t > 0,
0
1
/ P (0)*s®[Ko (@ (0)s, t; M)|p(t) ds < Cup. o™ for large t.
0
Proof. By substituting K; into integral, we obtain

1
/ P ()" [Ko(p(£)s, £5 M) | (t) ds
0

1—e™
— 47MetM/ ra ((1 + eft)Z _ r2)M
0

[(1—e2—1r2]y/(1+e )2 —12

1 1 (1—eH?—12
1+ ME*—1-r)F(s-M,--M; I; —————
X |:(e +M(e r?)) 5 5 1en 2
1 1 1 (1—e 52 —1¢2
T—e®+r?) (= +M)F|(—s—-M, - —M; 1; ———— | || dr.
+(1-e +r)<2+ ) (2 > Grenz—_r2) ||

Now we make the change r = e~y in the last integral and obtain the following estimate:

1—et
/ (14 e )2 — )"
0

[(1=—eD2=1r2]/(14+e )2 =12

1 1 (1—e 2> —r?
t_14+MEeE-1-r))F|(--M,-—M;1;, ————
X [(e +M(e r?)) 5 5 1012
1 1 1 (1—e 2> —r?
1—e 2+ (=+M)F|——=-M,=—M;1;, ——— | ||d
+(1—e +r)<2+ ) ( 5 5 Are_r r
<e2Mteat/e[1ya((et+1)2_y2)M 1
- 0 ((er_l)z_yz) /(et_|_1)2_y2
1 1 (et — 1) —y?
e —e* +MA - —y))F(-—-M, - —M; I; ———
* [( +M( ) 2 2 (et +1)2 —y2
1 1 1 (et —1)2 —y?
2t 2
e —1 —4M|F|l—=—-M, - —M;1;, —————— | || dy.
we ) (g em) e (g -m g omen G ) o

Then we denote z = e and obtain

1 1.1 1.1
/ ¢(t)25*"(ra)525*"(57) |Ko(g(0)s, t; M)|(t) ds
0

z—1 1
SZ_[2M+an a Z+])2— n\M
0 s (¢ y) (2—=1D*=y?) V(@ + 1) —y?
_ IR N O N <Z—1>—Y>
X [(z z*+ M1 -z y))F(2 1\/1,2 M; 1; CT Iy
2 14y ( L T B et
+ (z 1+y)<2+M)F(2 M, > 1\/1,1,(Z+])2_y2 dy.

To complete the proof of lemma we need the estimate given by the following proposition. [

Proposition 2.5. If a > —1and M > 1/2, then

/2—1 ya ((Z n 1)2 _yZ)M 1
0 (=12 —y?) Jz+ 12 —y?
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1 1 (z—1)2 -y
2 2 2

— MA-22—y))Fl=-M, - —M;1; —————

x|(z—=22+M1-2*—y?)) (2 3 12—y

1 1 1 (z— 12—y

2 2

-1 ~4+M)F|l—= =M, - —M;1; ———")|d
+(z +y)<2+ ) (2 5 i)Y

= CM,n,p,q.s(z - 1)1+a(1 +Z)2M_1-

Proof. We follow the arguments have been used in the proof of Lemma 4.7 [23]. f M > 0, then the both involved
hypergeometric functions are bounded and the integral can be estimated as follows. We divide the domain of integration
into two zones:

(z — 1) —r?
z+ 1% —r?

z—-1*-r?
Zr(e,2) = {(z,r) le < G+ 1E—r2

and then split the integral into two parts,

z—1
/ *dr:/ *dr—i-/ *xdr.
0 (z,r)€Z1(e,2) (z,1)€Zy(e,2)

In the first zone Z; (¢, z) we have
1 1 z—1)2 — )2 1 2@z—1?2—y? z— 12—\’
F ,_M’,_M’]!u :‘l+ ,_M u_l’_o g ,
2 2 z+1)2—y2 2 (z+1)2—y2 (z+1)2—y2
1 1 z—1)2 —y? 1 z—1)2—y? z— 12—\’
F _,_M!,_M;tu =1— (- = Mm? u_{_o u .
2 2 z+1)2—y2 4 (z+1)2—y2 (z+1)2—y2
We use the last formulas to estimate the term containing the hypergeometric functions:

1 1 z—1%2—y?
—2Z24+MA-22—)F|=-M,=—M;1; ———
(z—22+M(1 -2 —y") M ML

<e, O§r§Z—1},

Z1(e,2) = {(z, r) |

Osrsz—l},

1 1 1 (z—1)2—y?
2 14+ (=+M)Fl—=-M, - —M;1;, ————
+ (2 +¥) 2+ 2 2 Zz+12—y2

1 1
<5 (-1 =y + g|21v1 — 1|y 422 -1+ —1+2M (3> + 22z — 1) +2* — 1)|
2_12_2 1 2_12_22
XM_F,((Z_])Z_},Z)O u .
Z+1)?—y> 2 @Z+1)? -y
Hence, we have to consider the following two integrals, which can be easily estimated,

Ai = / V(@ + 12 —y?)"
(z,y)€Z1(¢,2)

1
* dy,

_3
Ay = 22/ ¥y (z+1)? —yZ)M 2 gy,
(z.y)€Z1(e.2)

forallz € [1, 00). Indeed, for A; we obtain

z—1 1
A < / Y (e+1*=y)""7 dy
0

_ 1 34+a (z—1)?
7z — Dz + 1)M-1F , = —M; ——;
1—|—a( )T+ D 2 2 2 T (z4+1)2?

CM,n,p,q,s(Z - 1)1+a(z + l)ZMil-

Similarly, if M > 0, then

A

z—1 3
A < 22/ Y (e+ 12 =y) " 2dy
0
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1 _ 1+a 3 34a (z—1)>?

2 1+a 2M-3 . .

=z z—1 z+1 F| —, - —M; —— .
1+a( )Tt ( 2 2 2 T (z+1)?

On the other hand, for M > 1/2,and a > —1, the inequality

1 3 3
F +a7i_M; +a;g_
2 2 2

<(C forall¢ €[0,1),

implies
Ay < Cunpags@ — Dz + DM

Finally, for the integral over the first zone Z; (¢, z) we have obtained
/ *dr < Cynpqs@— 1Tz + 12"
(z,r)€Zy(e,2)

In the second zone we have
(z — 1) —r? 1 1
0<e<—— <1 and < .
z+ 12 —1r2 z—12—1r2 7 gl(z+ 12 —1r2]

Then, the hypergeometric functions obey the estimates

1 1
Fl—5—M - —M1;¢
2 2

This allows us to estimate the integral over the second zone:

<(Cy forall¢ €le, 1).

1 1
<C and |F{=-—-M,-—M;1;¢
2 2

M 1
Y (z+1)?° -y
/(z,y)ezz<s,z) ( ) ((z—l)z—yz),/(z+1)2—y2
1 1 (z—1)2—y?
—Z2+MA-2—y))F(--M, - -M;1; ————
x|(z=22+MQ1—2" —y») 5 5 T 7

1 1 1 z—1)%—y?
+ (22— 14 <5+M)F<—7—M,7—M;1'u> dy

2 2 Tz 4 1)2—y2

M—3
< Cnp.qs2° / Y (@+1D*=y)" 2 dy
(z,y)€Z5(¢,2)

z—1 3
M—-2
< Ci.np.gs?’ / Y (z+1>—y)" % dy
0
< Cunpgs@— DM@+ 1M1 forallz € [1, 00).

The rest of the proof is a repetition of the above used arguments. Thus, the proposition is proven. O
2.2. [P — 9 estimates for equation with source, n > 2

Theorem 2.6. Let ® = & (x, t) be a solution of the Cauchy problem

Gy + 1P, —e AP+t mPd =f, P(x,00=0, D(x,0)=0, (2.5)

with either M = ,/ % —m? and m < ~/n?> —1/2 for the case of “plus”, or M = ,/ % + m? for the case of “minus”. Then
@ = P (x, t) satisfies the following P — L9 estimate:

—t[2sn(1-1)] [*
||(_A)—S¢(X’ t)”LQ(R”) < CME_M[E_%[e tl:zs ﬂ(p q)]/ e%beMb
0

1 1
x (@ = 160 @ 12T (1, b) s, d,

forallt>0,providedthat1<p§2,%+%:1,%(n+1)(%—%)525§n<%—%) <25+ 1
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Proof. From (2.2) we have

n t eb_et N 1
D(x, t) = 2e‘§t/ db[ dre3Pu(x, r; b4 MeMPHO (e~ 4 g2 — y2) 72N
0 0

(€7b _ eft)z _ T2
xF\=-M,--M; 1, —F—— ],
2 2 (e7b +e~t)2 — 2

where according to (2.4) we can write
_a(1_1
I(=2)v(x, 5 b) llageny < Cr™ "G b)|pny forallr > 0.
Hence,
. t eb_et .
1= 2B 6, Dllgeny < 2675 / db f dr e30)(—2)v(x, 13 B) liamd™
0 0

_1
X eM(b+f) ((e—f + e—b)z _ rZ) 2+M

1 1 (e7? —e )2 — 12
Flg =Moo =M1 s

X
2 (e—b + e—t)z —r2

t
< CueMe ¥t / €52 |17 (x, b) 1 gy db
0
b t

y /e* —e” T2$7n(%7%) ((e_[ + e—b)Z _ r2)—%+M
0

1 1 (e b —e )2 12
X|Fl=—M,-—M; 1, ——— || dr.
2 2 (e7b +e )2 —r2
Following the outline of the proof of Lemma 2.3 we set r = ye™" and obtain
n, — _n(1-1 t n et=b-1 _n(1_1
1= 2) D, ) laeny < e e bte (23] f e2"eM |If (x, b) |up en) db / yG9)
0 0
1 1 1 " —1)?—y
et 12 —y?2) 2 E - —M, - —M; 1, ————— || dy.
x (( + ) y) 2 2 (et—b+1)2 _y2 Y

Hence, we have to estimate the integral

z—1 1 1 1 (Z _ 1)2 _y2
S+ =) M (=M =M1, " )4
/(; y (( ) J’) 2 2 (z+1)2—y2 Y

’

wherez = et > 1anda = 2s — n(% — %) > —1.0n the other hand, if M > 1/2, then we have

= -1 1 1 _12_ 2
/ V(@17 =y F<7_M7*—M;1'u> dy
0

2 2 T+ 1?2 —y?
z—1 1
< Cu Y (@ + 1> —y?) 2 My
0
B ~ B 14+a 1 34+a (e7h—1)?
—C et=b _ qylHa(et=b 4 1)~ 1+2Mf S —M: :
" e 2 2 2 (e 1)

<Cum

1
a(etfb _ 1)1+a(et7b + 1)*1+2M.
Thus,

n, _tlos n(1_1 t (1.1
(=2 DX, Ol < Cue e 3t 12 (7)] / S N )
0

x (€7 + 1)*M7f (x, b)l|p n) db.

The theorem is proven. O
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Corollary 2.7. Let ® = ®(x, t) be a solution of the Cauchy problem considered in Theorem 2.6. Then forn > 2and M > 1/2
one has the following estimate

t
(=2 (x, ) luaany < Cue~ G f e3> G=0)) £ (x, by e, b,
0

i 1 1_1 1 1_1 1_1
provzdedthatl<p§2,l—7+5_1,2(n+1)(p q)stfn(p q)<2$+l.

Proof. SinceM > 1/2and 1+ 25 — n(}, - %) > 0 we have

(=)D (x, )l lawm)

IA

CME—Mte—%[e—t[Zs—n(%—%)] /t e3bMb (gt =b _ 1)l+25—n<%—%)
0

x (e + 1) 7f (x, b) || ) db

IA

t
_n n _ _e142s—n(d-1) _ _
CyeMte gt[ e2beMb(eb _ o=ty1F% (5 ")e PEM=DIf (x, b) ||p any db
0

T )
< GueMie bt f e3¢0 (5 (575)) 7, )19 e b,
0
The corollary is proven. 0O

3. Global existence. Small data solutions

The Cauchy problem for Eq. (0.3) was studied in [28]. For the case of nonlinearity F(®) = c|®|**!,c # 0, Theorem
1.1 [28], implies the nonexistence of the global solution even for arbitrary small initial functions ¢q(x) and ¢;(x) under
some conditions on n, «, and M. By means of the evident transformation one can apply the conclusion of Theorem 1.1 [28]
to the equation with imaginary physical mass (see (3.1)) and derive the following blowup result.

Theorem 3.1. Suppose that F(®) = c|®|**!, ¢ # 0, and « > 0. Then, for every a > 0, N, and &, there exist ¢y, @1 € G5 (RM)
such that

llwollen gny + ll@1llen gy < €

but a global in time solution ® € C2([0, c0); LY(R")) of the equation
Dy +nd; — e HAD —mPD =c|D|*T], (3.1)

with permanently bounded support does not exist for all q € [2, 00). More precisely, there is T > 0 such that

lim D (x, t)dx = 0.
t/T Jrn

This theorem shows that instability of the trivial solution occurs in a very strong sense, that is, an arbitrarily small
perturbation of the initial data can make the perturbed solution blowing up in finite time.

If we allow large initial data, then, according to Theorem 1.2 [ 28], the concentration of the mass, due to the non-dispersion
property of the de Sitter spacetime, leads to the nonexistence of the global solution, which cannot be recovered even by
adding an exponentially decaying factor in the nonlinear term. More precisely, the next theorem states that the solution
blows up in finite time.

Theorem 3.2. Suppose that F(®) = ce’!|®|**',c # 0, > 0,and y € R. Then, for every a > 0 and n there exist
@0, 91 € C§°(R™) such that a global in time solution & € C2([0, oo); LY(R™)) of Eq. (3.1) with permanently bounded support
does not exist for all q € [2, 0o). More precisely, there is T > 0 such that

lim D(x,t)dx = 0.
t/T Jrn

Thus, for every @ > 0 the large energy classical solution of the Cauchy for Eq. (3.1) blows up.

It is evident that, if solution is real-valued and either « is odd or the nonlinear term is ®**! with an integer nonnegative
«, then the support of the solution with such initial data is permanently bounded.

In fact, the results of the previous sections are valid also in more general spaces of functions. In what follows, the space
M*7 can be each of the following spaces LY(R"), Sobolev spaces W*49(R"), W*4(R"), or Besov spaces B*%(R"), B>9(R").
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Lemma 3.3. Let ® = & (x, t) be a solution of the Cauchy problem (2.5) with either M = ,/ % —m?and m < +/n?> — 1/2 for

the case of “plus”, or M = % ~+ m? for the case of “minus”. Then for n > 2 one has the following estimate

I(=2)=® (X, £)|l1aan) < CMe*(gf’V’)‘/ (3=t (=1(5=3)) ) Z ayipex, bl ny db.
0

forallt > 0, provided that 1 < p < 2, % + % =1,3(n+1) <117 — %) <2s<n (117 — %) < 25 + 1. Moreover,

t
1(=2) D, )|l y1q < Cye (M f e (5= (5=8)) I (x, b))y b
0

In particular,
n t n
1 (X, £) 11y eny < Cue™ B / eGP £ (x, b) [y db-
0

For the equation with “plus” and large mass, m > n/2, and with the curved mass M = /m? — n2/4, one has the following
estimate

n, [P on (11
(=)@ (x, )|l 1agny < Cue™ 2" f edbed (e — e t)" "(5-4) (14t — b)""8™M||(—2)'f (x, b) | gn) db.
0
Moreover,

n t n _n(l_1
[(—=A) DX, £)]| g < c,v,e—ff/ L e "(3-3) (14t —b)" =™ |If(x, b)|| 0 db.
0

In particular,

t
1 (X, 6) 1y 2y < Cure 2 f e2"(1+ £ — b)'E™|If (x, b) 4y, o, .
0

Here the rate of exponential factors is independent of the curved mass M and, consequently, of the mass m.
Proof. The statements of this lemma follow immediately from Corollary 2.7 and Section 1. O
The last lemma and the fixed point theorem allow us to prove global existence in the Cauchy problem for semilinear
equations. For the simplicity we consider the potential function
V'(¢) =m’p —F(). (32)
For instance, it can be
V'(g) =m’p —Alp"¢, >0,

where m > 0 and A # 0. In the de Sitter universe the equation for the scalar field with potential function V is the covariant
wave equation

20
Og¢ = V'(¢) or (\/Eg"‘—(’b> =V'(¢),

1 0
Jg| 9xi axk
with the usual summation convention. Written explicitly in coordinates in the de Sitter spacetime it, in particular, for (3.2),
has the form (0.5):

Gy + NP — e AP + mPD = F(P).

Scalar fields play a fundamental role in the standard model of particle physics, as well as, its possible extensions. In
particular, scalar fields generate spontaneous symmetry breaking and provide masses to gauge bosons and chiral fermions
by the Brout-Englert-Higgs mechanism [30] using a Higgs-type potential [31].

We study the Cauchy problem (0.5), (0.6) through the integral equation. To determine that integral equation we appeal
to the operator

G:= XK o W§,
where

WE[f1(x, t; b) = v(x, t; b)
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and the function v(x, t; b) is a solution to the Cauchy problem for the wave equation (1.5), while X is introduced either
by (1.7),

K[v)(x, t) = 2e” zf/ db[ dre%bu(x,r; b)E(r, t; 0, b),

for the large mass m, or by (2.2),

t e_ —et
Kl t) = 2e*%f/ db/ dre2®v(x, r; b)E(r, t; 0, b; M), (3.3)
0 0

for the small mass m. Hence,

GIf1(x, t) = 2e"f/ db/ dre%” WEIf1(x, r; bE(r, t; 0, b; M).

Thus, the Cauchy problem (0.5), (0.6) leads to the following integral equation
P(x,t) = Po(x, t) + GIF(D)](x, ). (34)

Every solution to Eq. (0.5) solves also the last integral equation with some function ®@q(x, t), which, in fact, is a solution of
the Cauchy problem (1.10).

3.1. Solvability of the integral equation associated with Klein-Gordon equation

Consider the integral equation (3.4) where @y = ®y(x, t) is a given function. Every solution to Eq. (0.5) solves also the
last integral equation with some function @4 = ®(x, t). We are going to apply the Banach fixed-point theorem. To estimate
nonlinear term we use the Lipschitz Condition (£). Evidently, the Condition (.£) imposes some restrictions on n, ¢, s. Now
we consider the integral equation (3.4), where the function @y € C([0, co); L9(R")) is given. We note here that any classical
solution to Eq. (0.5) solves also the integral equation (3.4) with some function @, (t, x), which is classical solution to the
Cauchy problem for the linear equation (1.10).

Solvability of the integral equation (3.4) depends on the operator G. For the operator G generated by the linear part
of Eq. (3.1) the global solvability of the integral equation (3.4) was studied in [28]. For the case of nonlinearity F(®) =
c|®@|**1, ¢ # 0, the results of [28] imply the nonexistence of the global solution even for arbitrary small function @q(x, 0)
under some conditions on n, «, and M.

We start with the case of Sobolev space H;) (R") with s > n/2, which is an algebra. In the next theorem operator X is
generated by linear part of Eq. (0.5).

Theorem 3.4. Assume that F(u) is Lipschitz continuous in the space H) (R"), s > n/2, F(0) = 0, and also that « > 0. Then for
every given function ®(x, t) € X(R, s, yo) such that

Sup ey0[||¢0( t)”H(S)(Rn) <e,

te[0,00)
n 2
y0<5—,/z—m2 ifo<m<+/n>—1/2, whlleyo_01f7<m

and for sufficiently small e the integral equation (3.4) has a unique solution @ (x,t) € X(R,s, y) with0 < y < yp/(a + 1) if

0<m<+/n?—1/2and yy < 3 —,/— —m? whiley =0 if 5 < m. For the solution one has

sup e’ | D, t)[lng@m < 2¢.

te[0,00)

Proof. Consider the mapping
S[@]1(x, t) = Po(x, t) + GIF(P)](x, t).

We are going to prove that S maps X(R, s, y) into itself and is a contraction provided that & and R are sufficiently small.
2

The case of the small physical mass 0 < m < ~/n?> — 1/2. In this case the operator X is given by (2.2)and M = ,/ ”4 m2,

Lemma 3.3 withy = — M —6) > 0and § > 0implies

a1
ISIBIC, Ol eny < 1PoC Ol any + NGIF@)IC, 0 g e

t
< 190, 6) g e + Cue™ (50 / eSMO (@) (- b) iy, ey b
0

t
< 11@o(. )l ny + Cue? @D / e? VP I E (D) (-, b) ||, rn) b
0
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Taking into account the Condition (£) we arrive at

¢
IS[P1C, Ollng@ny < 1PoCs O llkg @y + Cye 7@t / e? (@ DbHob) g (. b)ll‘;‘,:)l(Rn) db
0

t
— — a+1
< ||(p0(7 t)”H(s)(R”) + CMe y(a+1)t—68t / 6513 (el’b”qj(" b)”H(S)(Rn)) db.

0
Then
e ISIR T, )l @m < € CHVYSI@K, ) em)
a+1 t
< ey<"+1)f||<po(-,t)||H(S)(Rn)+CM( sup e"" @ (., T)”H@(W)) e*&/ e” db
7€[0,00) 0
a+1
< e[ B (-, )|y ey + Cud ™! ( sup e’"[@(, T)”H(S)(R”)) ;
7€[0,00)
and

—1
sup e [IS[@]X, ) g @ny < sup e[| Po(-, )|l @) + Cud
te[0,00) te[0,00)

a+1
x ( sup e“||q>(¢,r)||H(s)<Rn>) : (3.5)
te[0,00)

In particular, if yo = 5 — M > 0, then, with § > Osuch that y (« + 1) = 5 — M — § < yp, we have

a+1
n_
sup " SLP](, O)llugen < sup el M>f||¢o<~,r)||ﬂ<s)<Rn>+c< sup eV‘||q><~,r>||H<s)<Rn>) :
te[0,00) te[0,00) te[0,00)

Thus, the last inequality proves that the operator S maps X(R, s, y) into itself if ¢ and R are sufficiently small, namely, if
&+ CR*T! <R

It remains to prove that S is a contraction mapping. As a matter of fact, we just need to apply estimate (0.4) and get the
contraction property from

e’ |IS[@](-, t) — S[¥](-, Ol @y < CR(O* (D, ¥),
where R(t) := max{supy<,; e"" [P (-, T)llng ®n), SUPo<r=<¢ " II¥ (-, T)llng@m} < R.Indeed, we have

[SI@IC, £) = SI¥IC, Dllng @m = IGLEF@) = FINIC, Ol @

IA

t
e~ (274 / eGP (F(@) — F(W)) (-, b) Iy ey db
0

IA

t
CME*J/(CHJ)[*M/ e}’(a+1)b+§b”(F((p) _ F(W))(, b)”H(S)(R") db
0

IA

t
CME*J/(OHJ)[*M/ ey(a+1)b+8b”(p(_’ b) _ l]/(’ b)”H(S)(R")
0

x (10 . D) oy + 19 C D)5 ey ) b

Thus, taking into account the last estimate and the definition of the metric d(&®, ¥), we obtain

e’ VY S[B](-, 1) — S[¥IC, Ol @y

IA

t
Cue™ / L YO S T
0

x (10 €. D) ey + 19 C. D)5 ey ) b

t
< Cye f e (max (. T) — W, r)nH(s)(Rn))
0 0<t<b
a o
YT T
x ((Orgggbe 12C Dllngen ) + (gg;(bey 78 r>||H(s)<Rn>> )db
t
< Cuod(®, WIR(t) e / e’ db
0
< Cu.e8 'd(®, W)R(D)".
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Consequently,
e’ |IS[@](-, £) = S[¥IC, Dl @y < Cuad” 'ROA(D, ).

Then we choose ¢ and R such that Cy ,8 "R < 1. The Banach fixed point theorem completes the proof for the case of small
physical mass.

The case of the large physical mass m > n/2. In this case the operator X is given by (1.7). We set ¥ = 0 in the definition of
metric of the space X(R, s, y). Then we have

[ISIP1C, Ollbg @ny = [1Po(s O llhg @my + IGIE(@)IC, O)llHg @

t
< 1190 (-, ) g ey + Cue ™2 / e2" (14t — b)'*E™ | F(0) (-, b) g, eny db
0

t
< ||q>0(.,t)||H<S)<Rn>+CM,ae*zf/ ezb(l+r—b)‘*sg“M||q>(~,b)||:‘,(f)‘(Rn)db.
0

Hence

a+1 t
ISI®IC, )l eny < ||¢o<.,r>||H<s)<Rn>+cM,a( sup ||¢<-,r>||H(s><Rn>> et / e3P (1 4t —b)' M b
0

t€[0,00

4 a+1
= NPy Ol @ + CM,aE ( sup [|®(, T)”H(S)(]R")> .

t€[0,00)

Then we choose ¢ and R such that & + 4Cy ,R*T!/n < R.
To prove that S is a contraction mapping, we just need to apply estimate (3.5) and get the contraction property from

ISI@1C, £) = SI¥IC, )l @ny < CREOA(D, W),
where R(t) := max{supy., -, [P (-, 1:)||H<5)(Rn), SUPo<. < 1¥ (-, ‘L')”H(S)(Rn)} < R. Indeed, we have
ISI@1C, £) = SI¥IC, Ol @n = IGLE@) — F@)IC Ol @)

t
< Cue 2! f e2"(1 4t — b)'"EM | (F(®) — F(¥)) (-, b) [l em) db
0

IA

t
Cuge 5 / e3P (1 4+ £ — B EM (. b) — W (-, By o
0
x (10 €. D)y + 19 C B )

Thus, taking into account the last estimate and a definition of the metric, we obtain

[ISIPIC, t) — SIFIC, ) llhg, &m

IA

t
Cue 5 / e3P (1 4+ £ — B (- b) — W (-, By o
0

x (10 €. D) oy + 19 C. D) ) b

t
< CM,ae_%t/ e2’(1 4t — b)' &M <0maxb e, ) —¥(, T)||H(s)(R")>
0 <t<
< ((mas o Otmeo)”+ (gmag 106 Ot ) )
t
< Cuod(®, lI/)R(t)"‘e’%t/ e2b(1 4t — b)! =58 gp
0
4
S CM,otfd(gbv lI/)R(t)atﬂ
n

and, consequently,
4 — o
ISP ) = SIPIC. Ol ) < Cua 6RO ).

Then we choose ¢ and R such that 4Cy .6~ 'R*/n < 1. The Banach fixed point theorem completes the proof of theorem. O
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3.2. Proof of Theorem 0.1

The case of the small physical mass m < /n? — 1/2. In this case the operator X is given by (2.2) and M = 2 _ m2. Then
4

for the function @, that is, for the solution of the Cauchy problem (1.10) and fors > 2,p = q = 2,n > 2, according to

2 9
Theorem 2.2 we have the estimate
_n
120(x, )l ) = Cungse ™D Igolgen + 101 g em |-

According to Theorem 3.4, for every initial functions ¢y and ¢; the function @y belongs to the space X (R, s, y), where the
operator S is a contraction. In the case of n = 3 that means m? < 2, that is, the physical mass must be inside of the Higuchi
bound [32]. The consideration done in Section 3.1 completes the proof of the existence of the global solution.

The case of the large physical mass m > n/2. In this case the operator X is given by (1.7). We set y = 0 in the definition
of metric of the space X(R, s, ). Then for the function &, that is for the solution of the Cauchy problem (1.10) and for

s > %,p = q = 2,n > 2 we have the estimate (1.11),

n _ t
1o, O)lli@n < Cue™2"(1+1)' SgnM{ez l@oll g @y + ||¢1||H(S)(R”)}

IA

Cm { l@olltg @y + 191 llHg) ®n) }

Thus, @9 € X(R,s, 0). According to Section 3.1, the Banach fixed point theorem implies the existence of the solution
@ € X(R, s, 0) of the integral equation (3.5) provided that R is sufficiently small. The theorem is proven. O

One can consider the problem with the initial functions ¢, ¢ in the Sobolev spaces with a higher index and in the Besov
spaces. The necessary modifications we leave to the reader.
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