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a b s t r a c t

We study the existence and continuous dependence of stationary solutions of the one-
populationWilson–Cowan model on the steepness of the firing rate functions. We investi-
gate the properties of the nonlinear nonlocal operators which arise when formulating the
stationary one-population Wilson–Cowan model as a fixed point problem. The theory is
used to study the existence and continuous dependence of localized stationary solutions of
this model on the steepness of the firing rate functions. The present work generalizes and
complements previously obtained results as we relax on the assumptions that the firing
rate functions are given by smoothed Heaviside functions.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Themacroscopic dynamics of neural networks is often studied bymeans of neural fieldmodels. Herewe consider a neural
field model of the Wilson–Cowan type [1–5]

∂

∂t
u(x, t) = −u(x, t) +


R

ω(x, y)P(u(y, t))dy, x ∈ R, t > 0. (1.1)

Eq. (1.1) describes the dynamics of the spatio-temporal electrical activity in neural tissue in one spatial dimension. Here
u(x, t) is interpreted as a local activity of a neural population at the position x ∈ R and time t > 0. The second term on
the right hand side of (1.1) represents the synaptic input where P is a firing rate function. Typically P is a smooth function
that has sigmoidal shape (the shape of the logistic function). The spatial strength of the connectivity between the neurons
is modeled by means of a connectivity function ω. We refer the reader to [1–5] for more details regarding the relevance of
Eq. (1.1) in neural field theory.

The most common ‘simplification’ of the model consists of replacing the smooth firing rate function by the unit step
function. The existence of solutions to a neural field equationwith smooth firing rate functions can be studied usingmethods
of classical fixed point theory; see e.g. [6,7]. These methods have been applied to the particular type of neural field model by
various authors; see [8–11]. Dealing with the unit step function however leads to the discontinuity in the integral operator
involved in (1.1), which makes it impossible to apply the classical theory.

Despite difficulties in mathematical treatment, the mentioned ‘simplification’ allows to obtain closed form expressions
for solutions describing coherent structures like stationary localized solutions (bumps) and traveling fronts [5] as well as to
assess the stability of these structures using the Evans function approach [12]. To benefit from both representation of P it
is often conjectured that the ‘simplified’ model reproduces the essential features of the model with smooth P in the steep

∗ Correspondence to: Department of Mathematics, Uppsala University, P.O. Box 480 751 06 Uppsala, Sweden.
E-mail address: anna.oleynik@math.uu.se (A. Oleynik).

0022-247X/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2012.08.063

http://dx.doi.org/10.1016/j.jmaa.2012.08.063
http://www.elsevier.com/locate/jmaa
http://www.elsevier.com/locate/jmaa
mailto:anna.oleynik@math.uu.se
http://dx.doi.org/10.1016/j.jmaa.2012.08.063


336 A. Oleynik et al. / J. Math. Anal. Appl. 398 (2013) 335–351

firing rate regimes. While this conjecture is supported by numerical simulations (see for example [13]) there are few and
far between works addressing this problem in a rigorous mathematical way. Namely, Potthast and Beim Graben provided
a rigorous approach to study global existence of solutions to the Wilson–Cowan type of the model with the smooth firing
rate function as well as with the unit step function, [11]. They demonstrated that the latter case requires more restrictions
on the choice of a functional space as well as some extra assumptions on ω. In [14–16] the reader can find the analysis of
existence and stability of localized stationary solutions (bumps) for a special class of the firing rate functions, the functions
that are ‘squeezed’ between two unit step functions. This class of functions is also referred to as the smoothed Heaviside
functions [17]. It has been shown that if the both bump solutions to themodelwith the unit step functions are stable/unstable
then the bump in the framework of the corresponding smoothed Heaviside firing rate function has the same stability
property, [14–16]. To the best of our knowledge, no analysis has been done on the passage from a smooth to discontinuous
firing rate function in the framework of neural field models.

In the present paper we study the existence and continuous dependence of stationary solutions to (1.1) under the
transition from a smooth firing rate function to the unit step function. The stationary solutions of (1.1) are solutions to a
fixed point problem. We describe the fixed point problem in terms of a Hammerstein operator that is represented as the
superposition of a Nemytskii operator N : u → P(u(x)) and a linear integral operator. We study properties of the operators
when the firing rate function is represented as a one-parameter family of functions that approach the unit step function
with the step taking place in x = θ , when the steepness parameter goes to infinity. The main challenge here is to choose
function spaces and a suitable topology of the operators convergence that allow the continuous dependence properties of
solutions to be fulfilled.

We introduce the notion of the θ-condition, the condition on a function, say u, to have finite number of only simple roots
to u(x) − θ ; for details see Definition 3.4. We show that the Nemytskii operator in the limit case (when the steepness
parameter goes to infinity) preserves continuity if the functions from the operator domain satisfy the θ-condition. We
demonstrate that the choice of the norm is crucial here since, e.g., the θ-condition is achieved in W 1,∞-norm but not
in W 1,q-norms, q < ∞. Our main results are summarized in Theorems 3.14 and 3.15, which we will refer to as the
continuous dependence theorem and the existence theorem, respectively. These theorems enable us to show the existence
and continuous dependence of bumps on the steepness parameter when it approaches infinity. We provide two examples
of assumptions on ω: one is for the inhomogeneous and one is for the homogeneous function ω, to demonstrate the
applicability of our results. In particular, in the latter case we prove the existence of bumps in a steep firing rate regime
where the firing rate function takes values zero on a ray (−∞, θ). We emphasize that this result is more general than
results on the existence of bumps obtained in [14–16].

The paper is organized as follows. In Section 2 we explain our notations, prove some useful theorems, and state lemmas
from functional analysis, to which we refer in the subsequent sections. In Section 3 we give a detailed description of the
model. Next, we study continuity and compactness of the associated operators in Sobolev spaces, formulate and prove
the main theorems. In Section 4 we apply the results of Section 3 to prove continuous dependence of spatially localized
stationary solutions (bumps) of (1.1) on the steepness of the firing rate function for both inhomogeneous and homogeneous
connectivity functions, and show the existence of the bumps in the framework of the homogeneous ω. Section 5 contains
conclusions and outlook.

2. Preliminaries

Let B be an open set of a real Banach space B, then B denotes the closure of B in B. We use the notation deg(A, B, p) for
the degree defined for an operator A : B → B, and p ∈ B. We use ind(A, B) for the topological index of A, [18].

Let W 1,q(R, µ), 1 ≤ q ≤ ∞, denote a Sobolev space which consists of all functions w ∈ Lq(R, µ) such that their
generalized derivatives (with respect to the given measure µ) dw/dµ = w̃ belong to Lq(R, µ).

The element w ∈ W 1,q(R, µ) then can be represented as

w(x) = w(0) +

 x

0
w(ξ)dµ(ξ). (2.1)

We consider the following two norms inW 1,q(R, µ)

∥w∥1 = ∥w∥Lq + ∥w∥Lq (2.2)

and

∥w∥2 = |w(0)| + ∥w∥Lq (2.3)

where ∥ · ∥Lq is the norm in Lq(R, µ), i.e.,

∥w∥Lq =


R

|w(x)|qdµ(x)
1/q

, 1 ≤ q < ∞

and

∥w∥L∞ = sup
x∈R

|w(x)|.
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Theorem 2.1. The norms ∥ · ∥1 and ∥ · ∥2 are equivalent whenever µ is finite.

Proof. From the representation (2.1) we have

∥w∥Lq = ∥w(0) +

 x

0
w̃(y)dµ(y)∥Lq ≤ ∥|w(0)| +

 x

0
|w̃(y)|dµ(y)∥Lq

≤ ∥|w(0)| +


R

|w̃(y)|dµ(y)∥Lq = [µ(R)]1/q(|w(0)| + ∥w̃∥L1).

Using the Hölder inequality we get ∥w̃∥L1 ≤ [µ(R)]1/q
′

∥w̃∥Lq where q′ is defined by the equality 1/q + 1/q′
= 1. Thus,

∥w∥Lq ≤ [µ(R)]1/q|w(0)| + µ(R)∥w̃∥Lq . (2.4)

From (2.2) and (2.4) we obtain

∥w∥1 ≤ [µ(R)]1/q|w(0)| + µ(R)∥w̃∥Lq + ∥w̃∥Lq .

Therefore we get

∥w∥1 ≤ C2∥w∥2, C2 = max

[µ(R)]1/q, 1 + µ(R)


.

In a similar way we estimate |w(0)|, i.e.,

|w(0)| = [µ(R)]−1/q
∥w(0)∥Lq = [µ(R)]−1/q

∥w(x) −

 x

0
w̃(y)dµ(y)∥Lq ≤ [µ(R)]−1/q (∥w∥Lq + ∥w̃∥Lq) .

We have

∥w∥2 ≤ c1∥w∥1, c1 = [µ(R)]−1/q
+ 1.

Hence, we get

C1∥w∥2 ≤ ∥w∥1 ≤ C2∥w∥2

with

C1 = c−1
1 =

[µ(R)]1/q

[µ(R)]1/q + 1
, C2 = max


[µ(R)]1/q, 1 + µ(R)


.

By definition the norms then are equivalent. �

We denote the norm inW 1,q(R, µ) by ∥ · ∥W1,q .

Lemma 2.2. Let A be the following operator

(Au)(x) =


R
k(x, y)u(y)dµ(y), x ∈ R, (2.5)

where µ is a finite complete measure on R and k(x, y) is measurable on R2. Let the following conditions be satisfied
(i) for any x ∈ R, k(x, ·) ∈ Lp(R, µ),
(ii) for any ε > 0 there exist a finite partitioning of R into measurable sets, say D1, D2, . . . ,Dn, such that

sup
x1,x2∈Dj

∥k(x1, y) − k(x2, y)∥Lp′ < ε, j = 1, 2, . . . , n. (2.6)

Then the integral operator A maps Lp(R, µ) to L∞(R, µ) and it is compact; see [19].

Theorem 2.3. Let D be a closed bounded subset of a real Banach space B , Λ be a closed subset of R, and an operator T (λ, u) :

Λ × D → B be continuous with respect to both variables and collectively compact (i.e., T (Λ × D) is a pre-compact set in B).
Assume that λn → λ∗ and T (λn, un) = un. Then the equation T (λ∗, u) = u has at least one solution. Moreover, any limit point
of the sequence {un} is a solution of this equation, i.e., if unk → u∗ then u∗ is a solution of T (λ∗, u∗) = u∗.

Proof. The sequence {un} defined by T (λn, un) = un is a pre-compact set due to T is collectively compact. Thus, there exist
convergent subsequences of {un}, i.e., {unk} → u∗

∈ D. The continuity of T yields limnk→∞ T (λnk , unk) = T (λ∗, u∗) = u∗. �

Remark 2.4. If u∗ is unique in D then un has only one limit point, that is, un → u∗.

Lemma 2.5 (Homotopy Invariance). Let D be an open bounded subset of a real Banach space B . Suppose that {ht} is a homotopy
of operators ht : D̄ → B for t ∈ [0, 1], and assume that ht − I is collectively compact. If ht f ≠ p for any f ∈ ∂D and t ∈ [0, 1],
then deg(ht ,D, p) is independent of t; see [20].
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3. Main results

The stationary Wilson–Cowan model (1.1) is equivalent to the fixed point problem

u = Hu, (3.1)

where H is the Hammerstein operator

(Hu)(x) =


R

ω(x, y)
ρ(y)

P(u(y))dµ(y) (3.2)

and

µ(A) =


A
ρ(y)dy

is an arbitrary probability measure which is absolutely continuous with respect to the Lebesgue measure (i.e., µ(R) = 1
and µ(A) ≥ 0 whenever the Lebesgue measurable set A has a positive Lebesgue measure). This can be achieved by putting
some necessary properties on the function ρ.

We assume that the function ω(x, y) is a measurable function satisfying the following assumptions:

(i) for any x ∈ R, ω(x, ·) ∈ L1(R), i.e.,

∀x ∈ R


R
|ω(x, y)|dy < ∞,

(ii) ω is differentiable a.e. with respect to the first variable and

ω′

x(x, ·) ∈ L1loc(R) ∀x ∈ R,

(iii) ω is bounded, i.e.,

∃C > 0 |ω(x, y)| < C ∀x, y ∈ R,

(iv) for any y ∈ R limx→∞ ω(x, y) = 0.

The function P can be interpreted as a probability function of firing. Thus, P is a map from R to [0, 1]. We consider the
special family of P: P(u) = S(β, u) where β takes values from (0, ∞]. We assume that S satisfies the following properties:

(i) S : (0, ∞) × R → [0, 1] is a continuous function,
(ii) S(β, ·) is monotonically non-decreasing,
(iii) S(β, ·) → S(β0, ·) uniformly on R as β → β0 ∈ (0, ∞),
(iv) as β → ∞ S(β, u) approaches S(∞, u) uniformly on (−∞, θ − ε] ∪ [θ + ε, ∞) for any ε > 0, where S(∞, u) is the

unit step function

S(∞, u) =


0, u < θ
1, u ≥ θ

with some threshold value θ > 0.

The Hammerstein operator (3.2) can be represented as the superposition

(Hu)(x) = (Ω ◦ N u)(x)

of the linear operator

(Ωu)(x) =


R

ω(x, y)
ρ1(y)

u(y)dµ(y), (3.3)

and the Nemytskii operator

(N u)(x) =
ρ1(x)
ρ(x)

P(u(x)). (3.4)

Here ρ1 is an auxiliary function satisfying the following properties

(i) 0 ≤ ρ1(x) ≤ Cρ1 , where Cρ1 > 0,
(ii) supp(ρ1) ⊇ supp(ρ),
(iii) |ω(0, y)| ≤ Cωρ1(y) ∀y ∈ R and Cω > 0.

We set ρ1(x)/ρ(x) = 0 and ρ(x)/ρ1(x) = 0 for all x ∈ R \ supp(ρ1).

Remark 3.1. In particular, one can assume ρ1 ≡ ρ. However, in order to keep the theory as general as possible, we allow
ρ1 to differ from ρ. In Section 4 we make use of this difference. See Example 4.5.
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When we want to emphasize that some particular property is valid only for operators corresponding to S(β, ·), β ∈

(0, ∞) or S(∞, ·) we use the subindexes β and ∞, respectively. That is, we denote the Hammerstein operator (3.2) and the
Nemytskii operator (3.4) as Hβ , H∞ and Nβ , N∞. When a property is valid for an operator with any P : R → [0, 1] we do
not use any subindex, e.g., H , N .

Lemma 3.2. Let Ω : Lp(R, µ) → Lq(R, µ), 1 ≤ p, q ≤ ∞ be an operator defined as

(Ωv)(x) =


R

ω′
x(x, y)

ρ(x)ρ1(y)
u(y)dµ(y). (3.5)

Then, the operator Ω in (3.3) is a map from Lp(R, µ) to W 1,q(R, µ) and (a) it is a continuous operator if and only if Ω is
continuous, (b) it is a compact operator if and only if Ω is a compact operator.

Proof. We formally apply (2.1) to the element (Ωu)(x). We have

(Ωu)(x) = (Ωu)(0) +

 x

0

Ωu(y)dµ(y)

where

(Ωu)(0) =


R

ω(0, y)
ρ1(y)

u(y)dµ(y),

and

(Ωu)(x) =
d(Ωu)(x)

dµ
=


R

ω′
x(x, y)

ρ(x)ρ1(y)
u(y)dµ(y).

Using properties of ρ1 we get

|(Ωu)(0)| =


R

ω(0, y)
ρ1(y)

u(y)dµ(y)
 ≤ Cω∥u∥Lp . (3.6)

Further, Ω is a map from Lp(R, µ) to Lq(R, µ), hence Ω maps Lp(R, µ) to W 1,q(R, µ).
To prove (a) continuity and (b) compactness of Ω we introduce a linear operator J : W 1,p(R, µ) → R × Lp(R, µ) such

that

J = (J1, J2) : J1w = w(0) ∈ R, J2w =
d
dµ

w ≡ w̃ ∈ Lp(µ, R).

The inverse operator J−1
: R × Lp(R, µ) → W 1,p(R, µ) then is given as

J−1(a, u) = a +

 x

0
u(y)dµ(y), (a, u) ∈ R × Lp(R, µ).

It is easy to check that J is a homeomorphism: Indeed J is an isomorphism [21] and linear continuous. Thus, J−1

is continuous by the Banach theorem [22]. We present the proof of (b). The operator Ω0 : Lp(R, µ) → R given by
(Ω0u)(x) = (Ωu)(0) is compact as soon as it is bounded, which is the case due to the estimate (3.6). Therefore, for
any bounded subset D ⊂ Lp(R, µ) there is a corresponding pre-compact subset (Ω0D, Ω̃D) ⊂ R × Lp(R, µ) which is
homeomorphic to ΩD. Hence, ΩD is a pre-compact set inW 1,p(R, µ) and Ω is a compact operator.

Let us assume now that Ω is a compact operator, while Ω̃ is not compact. Then, for any bounded Dwe get a pre-compact
set ΩD which is homeomorphic to the non pre-compact set (Ω0D, Ω̃D). This contradiction completes the proof. To prove
(a) one can proceed in a similar way assuming boundedness of a set D instead of pre-compactness. �

Lemma 3.3. If ρ1(x)/ρ(x) belongs to Lp(R, µ) the Nemytskii operator N maps W 1,q(R, µ) to Lp(R, µ), 1 ≤ p, q ≤ ∞.
Moreover Nβ , β < ∞, is continuous. The operator N∞ is discontinuous on W 1,q(R, µ), 1 ≤ q ≤ ∞.

Proof. First of all, we notice that due to the boundedness of P, i.e., |P(u)| ≤ 1, we haveρ1(x)
ρ(x)

P(u)
 ≤

ρ1(x)
ρ(x)

 ∈ Lp(R, µ).

Hence, the Nemytskii operator is a map from W 1,q(R, µ) to Lp(R, µ). Moreover, S(β, ·) satisfies to the Caratheodory
conditions [19,20]. We conclude that the Nemytskii operator Nβ is continuous [19,20].

To show thatN∞ is not continuous onW 1,q(R, µ) it is enough to give an example. Consider un(x) = θ+1/n and u(x) = θ .
We have (N∞un)(x) = ρ1(x)/ρ(x) for all n ∈ N and N∞u = 0. When n → ∞ we get

∥un − u∥W1,q → 0, and ∥N∞un − N∞u∥Lp = ∥ρ1/ρ∥Lp ↛ 0. �
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Fig. 1. The θ-condition inW 1,∞(R, µ) for N = 4.

Definition 3.4. Let θ > 0 be fixed. We say that u ∈ W 1,q(R, µ) satisfies the θ-condition if

• the function u(x) − θ has finitely many simple roots (i.e. u(a) = θ always implies u′(a) ≠ 0);
• there exist σ > 0 and A > 0 such that u(x) ≤ θ − σ for all |x| > A.

Remark 3.5. Definition 3.4 implies that if u ∈ W 1,q(R, µ) satisfies the θ-condition then the number of intersections
u(x) = θ is an even number.

Lemma 3.6. Let θ > 0 be fixed and let U ∈ W 1,∞(R, µ) satisfies the θ-condition. Assume that the equation U(x) = θ has N
solutions. Then there exists ε > 0 such that for any u ∈ B(U, ε) = {u : ∥u − U∥W1,∞ < ε}

• the function u satisfies the θ-condition;
• the equation u(x) = θ has exactly N solutions.

Proof. Here we are going to use ∥ · ∥W1,∞ given by (2.2). Let U satisfy the θ-condition, and a(k): a(k) < a(k+1), k = 1, . . . ,N ,
be all solutions of the equation U(x) = θ . Due to these assumptions there exist a positive ε and the points b(k,1), b(k,2),
k = 0, . . . ,N , satisfying

a(k) < b(k,1) < b(k,2) < a(k+1), k = 1, . . . ,N − 1,
b(0,1)

= −∞, b(0,2) < a(1), a(N) < b(N,1), b(N,2)
= ∞,

such that

• U(x) > θ + 2ε if x ∈ (b(k,1), b(k,2)), k = 2m − 1, 0 ≤ k ≤ N;
• U(x) < θ − 2ε if x ∈ (b(k,1), b(k,2)), k = 2m, 0 ≤ k ≤ N;
• |U ′(x)| > 2Mε if x ∈ (b(k,2), b(k+1,1)), 0 ≤ k ≤ N − 1, where M = supx∈R ρ(x).

Let u ∈ B(U, ε). Clearly,

|u(x) − U(x)| < ε, |u′(x) − U ′(x)| < ερ(x) a.e. x ∈ R.

This implies the following estimates:

u(x) > θ + ε if x ∈ (b(k,1), b(k,2)), k = 2m − 1, 0 ≤ k ≤ N; (A1)

u(x) < θ − ε if x ∈ (b(k,1), b(k,2)), k = 2m, 0 ≤ k ≤ N; (A2)

|u′(x)| > Mε if x ∈ (b(k,2), b(k+1,1)), 0 ≤ k ≤ N − 1. (A3)

Therefore, the equation u(x) = θ has a unique solution in each interval (b(k,2), b(k+1,1)), 0 ≤ k ≤ N − 1, while |u′(x)| > Mε
within any of these intervals. Remembering that b(0,2)

= −∞ and that u(x) < θ for x > b(N,1) yield exactly N solutions of
the equation u(x) = θ , and all of these solutions must be simple. Fig. 1 illustrates graphically Lemma 3.6 for N = 4. Here
we have plotted schematically a function u ∈ B(U, ε), where U has N = 4 intersections with u = θ . �

Lemma 3.7. Let θ > 0 be fixed and let U ∈ W 1,q(R, µ), 1 ≤ q < ∞, satisfy the θ-condition. For any ε > 0 the ball
B(U, ε) = {u : ∥u − U∥W1,q < ε} contains functions which do not satisfy the θ-condition.
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a

Fig. 2. The violation of the θ-condition inW 1,q(R, µ) for q < ∞.

Proof. For the proof we give the following example

un(x) =


U(x) − U(a(1)

− 1/n) + θ, x ∈ (−∞, a(1)
− 1/n)

θ, x ∈

2
j=1

[a(j)
− 1/n, a(j)

+ 1/n]

U(x) − U(a(2)
+ 1/n) + θ, x ∈ (a(2)

+ 1/n, +∞).

(3.7)

We consider the norm inW 1,q(R, µ) given by (2.3). Without loss of generality, we assume that one of a(j), j = 1, 2, is equal
to zero. Then, it is easy to see that

∥un − U∥W1,q = ∥ũn − Ũ∥Lq =


2

j=1

 a(j)+1/n

a(j)−1/n
|Ũ(x)|qdµ(x)

1/q

≤ A

µ[a(1)

− 1/n, a(1)
+ 1/n] + µ[a(2)

− 1/n, a(2)
+ 1/n]

1/q
,

where A = supx{Ũ(x)}, for x ∈ [a(1)
−1/n, a(1)

+1/n]


[a(2)
−1/n, a(2)

+1/n]. Thus, ∥un −U∥W1,q → 0 as n → ∞, i.e., for
any ε > 0 there exist such nε that ∥un − U∥W1,q ≤ ε for all n ≥ nε . In Fig. 2 we have plotted the graphs of U(x) (red solid
line) and u∗(x) (blue solid line), where u∗(x) is an example of (3.7) for some n∗

≤ nε , together with the constant function θ .
From the figure it is clear that u∗(x) does not satisfy the θ-condition. �

Theorem 3.8. Let θ > 0 be fixed, U(x) ∈ W 1,∞(R, µ) satisfies the θ-condition and U(x) = θ has, say, N solutions a(1),
a(2), . . . , a(N). Let ρ1(x)/ρ(x) belong to Lp(R, µ). (a) There exist ε > 0 such that N∞ : B(U, ε) = {u : ∥u − U∥W1,∞ < ε} →

Lp(R, µ) is continuous when 1 ≤ p < ∞. (b) The operator N∞ : B(U, ε) → L∞(R, µ) is continuous provided that there exist
some δ > 0 that supp(ρ1)


(a(k)

− δ, a(k)
+ δ) = ∅ for any k = 1, 2, . . . ,N. Otherwise, i.e., if for any δ > 0 there exist some

k̂ such that supp(ρ1)


(a(k̂)
− δ, a(k̂)

+ δ) ≠ ∅, we get discontinuity of N∞ : B(U, ε) → L∞(R, µ).

Proof. Let us consider un, u ∈ B(U, ε) ⊂ W 1,∞(R, µ) such that ∥un − u∥W1,∞ → 0. By Lemma 3.6 it is always possible to
choose ε in a such way that both un and u satisfy the θ-condition and the equations un(x) = θ , u(x) = θ possess N simple
roots each. We denote these roots as a(k)

n for the first equation, and a(k)
0 for the second, k = 1, . . . ,N.

We derive the estimate

|(N∞un)(x) − (N∞u)(x)| = |ρ1(x)/ρ(x)| χ(x),

where

χ(x) =

1, x ∈

N
k=1

[a(k)
n , a(k)

0 ],

0, otherwise.

Here [x1, x2] defines the interval [x1, x2] when x2 ≥ x1 and [x2, x1] if x2 < x1.
First we consider p < ∞. Then, after the lemma (follows below), the case p = ∞ will be considered. When 1 ≤ p < ∞

we have the following equality

∥(N∞un)(x) − (N∞u)(x)∥Lp =


R

ρ1(x)
ρ(x)

p χ(x)dµ(x)
1/p

.
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Using now the Hölder inequality we get
R

ρ1(x)
ρ(x)

p χ(x)dµ(x)
1/p

≤ ∥ρ1/ρ∥L∞


µ


N

k=1

[akn, a
k
0]

1/p

.

Since |ρ1(x)/ρ(x)| ∈ Lp(R, µ) ⊂ L∞(R, µ) then ∥ρ1/ρ∥L∞ ≤ Cρ , where Cρ > 0 is some constant. If now
µ(
N

k=1[a
(k)
n , a(k)

0 ]) → 0 as n → ∞ we get the continuity of N∞ : B(U, ε) → Lp(R, µ). To prove that we use the following
lemma. �

Lemma 3.9. For any un, u ∈ B(U, ε) ⊂ W 1,∞(R, µ) such that ∥un − u∥W1,∞ → 0 we have a(k)
n → a(k)

0 .

Proof. For our proof we use the norm (2.2) ofW 1,∞(R, µ). From ∥un −u∥W1,∞ → 0 follows that supx∈R |un(x)−u(x)| → 0.
Let us assume the contrary, i.e., there is k = k∗ such that a(k∗)

n ↛ a(k∗)
0 . This means that

(∃σ0 > 0) (∀N ∈ N) (∃ñ ≥ N) : |a(k∗)

ñ − a(k∗)
0 | ≥ σ0.

Then we have

sup
x∈R

|uñ(x) − u(x)| ≥ |uñ(a
(k∗)

ñ ) − u(a(k∗)

ñ )| = |θ − u(a(k∗)

ñ )| = |u(a(k∗)
0 ) − u(a(k∗)

ñ )|.

Due to the transversality condition on the intersection of any u(x) ∈ B(U, ε) and θ we have |u(a)−u(b)| ≥ κ if |a−b| ≥ σ0.
Therefore we get

(∀N ∈ N) (∃ñ ≥ N) : sup
x∈R

|uñ(x) − u(x)| > κ.

By definition supx∈R |un(x) − u(x)| diverges. Then ∥un − u∥W1,∞ diverges too. This contradiction completes the proof of the
lemma. �

Next, we consider the case p = ∞. We get

∥N∞un − N∞u∥L∞ = sup
x∈R

|(N∞un)(x) − (N∞u)(x)| = αn,

where αn is a smallest value that µ{x : |(N∞un)(x) − (N∞u)(x)| ≥ αn} = 0, i.e.,

αn = sup
x∈Q

|ρ1(x)/ρ(x)|, Q =

N
k=1

[a(k)
n , a(k)

0 ].

Let us assume first that there is some δ > 0 such that supp(ρ1)


(a(k)
− δ, a(k)

+ δ) = ∅ for any k = 1, 2, . . . ,N . This
means that supp(ρ1)


Q = ∅ which implies αn = 0. Thus, N∞ is continuous. Assume now that supp(ρ1)


Q ≠ ∅. Due

to ρ1(x) > 0 for all x ∈ supp(ρ1) we have αn = 0 if and only if a(k)
n = a(k)

0 , for all k = 1, 2, . . . ,N . That is not necessarily the
case, thus, N∞ discontinuous on B(U, ε). �

Remark 3.10. Wenotice here that the assumption supp(ρ1)


(a(k)
−δ, a(k)

+δ) = ∅ for all k = 1, 2, . . . ,N is not interesting
here, as it breaks properties of the model. Thus, further we exclude these types of ρ1 from consideration.

Theorem 3.11. Let θ be fixed, U(x) ∈ W 1,q(R, µ), 1 ≤ q < ∞, satisfies the θ-condition. There exist no such ε > 0 that
N∞ : B(U, ε) ⊂ W 1,q(R, µ) → Lp(R, µ), 1 ≤ p ≤ ∞ is continuous operator.

Proof. In Lemma 3.7 it has been shown that for any ε > 0 there exists some nε that un, given by (3.7), for all n ≥ nε belongs
to the ball B(U, ε). We fix n∗

= nε/2 and denote u∗
= unε/2 . Then we consider the sequence uk(x) given as

uk(x) =


θ −

1
γ k

sin(πn∗(x − a1)), x ∈ [a(1)
− 1/n∗, a(1)

+ 1/n∗
]

θ +
1
γ k

sin(πn∗(x − a2)), x ∈ [a(2)
− 1/n∗, a(2)

+ 1/n∗
]

u∗(x), otherwise

where γ is a positive constant. We have plotted the graphs of U(x) (red solid line), u∗(x) (blue solid line), and uk(x) (blue
dashed line) in Fig. 2 together with the constant θ . First, we prove that uk → u∗ and show that there exists γ = γ ∗ such
that uk

∈ B(U, ε). Next we prove that ∥N∞uk − N∞u∗
∥Lp does not converges to zero.
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Without loss of generality we assume that one of a(j), j = 1, 2 is equal to zero. We calculate the norm of |uk(x) − u∗(x)|
using (2.3) and derive the following inequality

∥uk − u∗
∥W1,q = ∥ũk − ũ∗∥Lq = ∥(u′

k − (u∗)′)ρ−1(x)∥Lq

=


2

j=1

 a(j)+1/n∗

a(j)−1/n∗

 1
πn∗γ k

cos(πn∗(x − a(j)))

q dx
1/q

≤
1

πn∗γ k


2

j=1

(a(j)
+ 1/n∗) − (a(j)

− 1/n∗)
1/q

=
1

πn∗γ k


2
n∗

1/q

.

From this inequality we see that ∥uk − u∗
∥W1,q → 0 as k → ∞. Moreover, as we assign γ ∗

= 2/(επn∗) we get
∥uk − u∗

∥W1,q ≤ ε/2. We have

∥uk − U∥W1,q ≤ ∥uk − u∗
∥W1,q + ∥u∗

− U∥W1,q ≤ ε/2 + ε/2 = ε,

for k = 1, 2, . . ., i.e., uk ∈ B(U, ε) for all k ∈ N.

Using the definition of N∞ we have

|(N∞uk)(x) − (N u∗)(x)| =


ρ1(x)
ρ(x)

, x ∈

2
j=1

[a(j)
− 1/n∗, a(j)

+ /n∗
]

0, otherwise.

Due toρ1(x)/ρ(x) > 0we have ∥(N∞uk)(x)−(N u∗)(x)∥Lp = δ > 0 independently of k. Hence, we conclude that (N∞uk)(x)
does not converges to (N u∗)(x). It completes our proof. �

Now we consider the Nemytskii operator Nβ when β is not fixed, but belongs to (0, ∞]. Then, Nβ is a map (0, ∞] ×

B(U, ε) ⊂ W 1,∞(R, µ) → W 1,∞(R, µ). We have the following lemma.

Lemma 3.12. Let θ > 0 be fixed, U ∈ W 1,∞(R, µ) satisfy the θ-condition,ρ1/ρ ∈ L1(R, µ) and B(U, ε) = {u : ∥u−U∥W1,∞ <
ε}. The operator Nβ : (0, ∞] × B(U, ε) → L1(R, µ) is continuous at β0 ∈ (0, ∞] uniformly for all u ∈ B(U, ε).

Proof. By Lemma 3.3 and Theorem 3.8 Nβ is a map from (0, ∞] × B(U, ε) to L1(R, µ). Using properties of ρ1 we have

∥Nβ − Nβ0∥L1 ≤ Cρ1


R

|S(β, u(x)) − S(∞, u(x))|dx.

For β0 < ∞ from uniform convergence S(β, z) → S(β0, z) we get pointwise convergence S(β, u(x)) → S(β0, u(x)).
Boundedness of S allows us to applying the Lebesgue dominated convergence theorem. Thus, we get

∥Nβ − Nβ0∥L1 → 0, ∀u ∈ B(U, ε). (3.8)

When β0 = ∞ the proof is not so straightforward. By Lemma 3.6 there is ε > 0 such that for given U there are defined
b(k,i) (k = 1, . . . ,N, i = 1, 2) such that for any u ∈ B(U, ε) the conditions (A1)–(A3) are satisfied. We have

∥Nβ − N∞∥L1 ≤ Cρ1


R

|S(β, u(x)) − S(∞, u(x))|dx

=

N
k=0

 b(k,2)

b(k,1)
|S(β, u(x)) − S(∞, u(x))|dx = Cρ1(Σ1 + Σ2), (3.9)

where

Σ1 =

N
k=0

 b(k,2)

b(k,1)
|S(β, u(x)) − S(∞, u(x))|dx

and

Σ2 =

N−1
k=0

 b(k+1,1)

b(k,2)
|S(β, u(x)) − S(∞, u(x))|dx.

Notice, that Σ1 contains only the integrals over such intervals that S(∞, u(x)) does not have singularities; see for example
Fig. 1.
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Let us consider first Σ1 and then Σ2. Using (A1)–(A2) we have

Σ1 =

N/2
m=0

 b(2m,2)

b(2m,1)
|S(β, u(x)) − S(∞, u(x))|dx +

N/2−1
m=0

 b(2m+1,2)

b2m+1,1
|S(β, u(x)) − S(∞, u(x))|dx

≤

N/2
m=0

 b(2m,2)

b(2m,1)
S(β, θ − ε)dx +

N/2−1
m=0

 b(2m+1,2)

b(2m+1,1)
(1 − S(β, θ + ε))dx

≤ S(β, θ − ε)

N/2
m=0

(b(2m,2)
− b(2m,1)) + (1 − S(β, θ + ε))

N/2−1
m=0

(b(2m+1,2)
− b(2m+1,1)).

Using the property (iii) of S(β, x) we have Σ1 → 0 as β → ∞.
Consider now the second term in (3.9). On each interval [b(k,2), b(k+1,1)

] the functionu(x) ismonotone. Using the condition
(A3) we get

Σ2 ≤

 Umax

Umin

|S(β, y) − S(∞, y)|
dy

|u′(x)|
≤

1
Mε

 Umax

Umin

|S(β, y) − S(∞, y)|dy,

where M = supx∈R ρ(x), Umin = infx∈R U(x), and Umax = supx∈R U(x). Since S(β, x) → S(∞, x) as β → ∞ almost
everywhere on R (see property (iii) of S(β, x)) and |S(β, x)| ≤ 1 for all β ∈ (0, ∞], then by the Lebesgue dominance
convergence theorem, the integral in the last inequality converges to 0 as β → ∞. Combining the results for Σ1 and Σ2 we
complete the proof. �

Theorem 3.13. Let θ > 0 be fixed and let U ∈ W 1,∞(R, µ) satisfy the θ-condition. We define a set Q as Q = supp(ρ) and a
ball B(U, ε) = {u : ∥u − U∥W1,∞ < ε}. If the following condition is fulfilled

sup
x∈Q


sup
y∈Q

 ω′
x(x, y)

ρ(x)ρ1(y)

 < ∞, (3.10)

then there exists ε > 0 that the Hammerstein operator Hβ : (0, ∞] × B(U, ε) is continuous at β0 ∈ (0, ∞] uniformly for all
u ∈ B(U, ε).

Proof. We consider the norm of |(Hβu)(x) − (Hβ0u)(x)| inW 1,∞(R, µ) given by (2.3). Here u is an arbitrary function from
the ball B(U, ε). We have

∥Hβu − Hβ0u∥W1,∞ = |(Hβu)(0) − (Hβ0u)(0)| + ∥(Ω̃ ◦ Nβ)u − (Ω̃ ◦ Nβ0)u∥L∞ .

Here Ω̃ is given as in (3.5). We consider the first and the second term separately.

|(Hβu)(0) − (Hβ0u)(0)| =


R

ω(0, y)
ρ(y)

(S(β, u(y)) − S(β0, u(y)))dµ(y)


≤


R

ω(0, y)
ρ1(y)

ρ1(y)
ρ(y)

 S(β, u(y)) − S(β0, u(y))dµ(y)


≤ Cω∥Nβu − Nβ0u∥L1 .

By Lemma 3.12|(Hβu)(0) − (Hβ0u)(0)| uniformly converges to zero.
Under the conditions of the theorem Ω̃ : L1(R, µ) → L∞(R, µ) is bounded. Indeed, using the Hölder inequality we get

∥Ω̃v∥L∞ ≤ CΩ̃∥u∥L1 , CΩ̃ = sup
x∈Q


sup
y∈Q

 ω′
x(x, y)

ρ(x)ρ1(y)

 < ∞.

Then it is easy to see that

∥(Ω̃ ◦ Nβ)u − (Ω̃ ◦ Nβ0)u∥L∞ ≤ CΩ̃∥Nβu − Nβ0u∥L1 .

Applying Lemma 3.12 we complete our proof. �

We formulate our main theorem.

Theorem 3.14 (Continuous dependence). Let θ > 0 be fixed and U ∈ W 1,∞(R, µ) satisfy the θ-condition. Assume that
1 ≤ p < ∞ and ρ1/ρ ∈ Lp(R, µ), the operator Ω in (3.3) is a compact operator from Lp(R, µ) to W 1,∞(R, µ), and (3.10) is
satisfied. If there exist solutions of the equation Hβuβ = uβ which belong to B(U, ε) = {u : ∥u − U∥W1,∞ < ε} for any
β ∈ [Cβ , ∞], Cβ > 0, then there exist a solution of H∞u = u and it is a limit point of the net {uβ}. Moreover, if the solution of
H∞u = u, say u∗, is unique then {uβ} → u∗.
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Proof. Webase our proof on Theorem2.3.We chooseD (in Theorem2.3) to be a closure of B(U, ε) = {u : ∥u−U∥W1,∞ < ε},
and λ = 1/β and, thus, Λ = [0, 1/Cβ ]. The operator Hβ ≡ H1/λ : Λ × B(U, ε) → W 1,∞(R, µ) is continuous as a
superposition of continuous operators,Ω andN1/λ, for each λ ∈ Λ. The operatorΩ : Lp(R, µ) → W 1,∞(R, µ) is continuous
by the conditions of the theorem, and continuity of N1/λ : B(U, ε) → Lp(R, µ) follows from Lemma 3.3 (for λ > 0) and
Theorem 3.8 (for λ = 0). Moreover, from Theorem 3.13 we conclude that H1/λ : Λ × B(U, ε) → W 1,∞(R, µ) is continuous
with respect to both variables.

The observation that the operators H1/λ are collectively compact as a superposition of a compact operator Ω and
collectively bounded operators N1/λ completes the proof. �

It is usually much easier to study the existence of solutions (which satisfy the θ-condition) of the fixed point problem
H∞u = u than Hβu = u, β < ∞. The next theorem allows us to prove the existence of the fixed points of Hβ using some
knowledge about the fixed point of the limit problem. We give more details on the existence of fixed points of H∞ in the
next section.

Theorem 3.15 (Existence). Let the conditions of Theorem 3.14 be satisfied, i.e., θ > 0 be fixed, U ∈ W 1,∞(R, µ) satisfy the
θ-condition, ρ1/ρ ∈ Lp(R, µ), 1 ≤ p < ∞, the operator Ω : Lp(R, µ) → W 1,∞(R, µ) is compact, and (3.10) is fulfilled. Let
B0 define an open subset of B(U, ε) = {u : ∥u − U∥W1,∞ < ε}. If U is a unique fixed point of the operator H∞ on B0 such that
deg(H∞ − I, B0, 0) ≠ 0, then Hβ possesses a fixed point uβ ∈ B0 for any β ≫ 1.

Proof. Wedefine ht(u) = (Hk/t−I)(u), where I is an identity operator, t ∈ [0, 1], and k ≥ 1.We show that ht is a homotopy,
i.e., (a) continuous with respect to t and u for all t ∈ [0, 1] and u ∈ B0, (b) ht(u) ≠ 0 for any t ∈ [0, 1] and u ∈ ∂B0. The
property (a) is satisfied. IndeedHk/t is continuous (for details see the proof of Theorem 3.14) and thus,Hk/t − I is continuous
as well.

In the proof of (b) we first observe that H∞u ≠ u for all u ∈ ∂B0 since U is a unique solution on B̄0 and U ∈ B0. Assume
that Hβu ≠ u for all u ∈ ∂B0 does not hold true, i.e., there exist {un} ∈ ∂B0 such that Hβnun = un. From Theorem 3.14
it follows that un → u0 ∈ ∂B0 where u0 = H∞u0. This contradiction competes the proof of (b). It is easy to see that ht
satisfies the conditions of Lemma 2.5 and thus, deg(ht , B0, 0) = deg(H∞ − I, B0, 0) ≠ 0 for any t ∈ [0, 1]. This implies the
existence of solutions of Hk/tu = u belonging to B0 ∈ B(U, ε). �

4. Bumps in neural field model

Definition 4.1. Let θ > 0be fixed, andU be a stationary solution of (1.1)where P(u) = S(∞, u). A setR[U] = {x : U(x) ≥ θ}

is called an excited region of U, [4].

Definition 4.2. Let θ > 0 be fixed, and U be a stationary solution of (1.1) where P(u) = S(∞, u). If the excited region of
U is such that R[U] =

N
k=1[a

(2k−1), a(2k)
] and U ′(a(k)) ≠ 0, k = 1, . . . , 2N then U(x) is called a bump, or more specificity,

N-bump.

The existence of 1-bump solutions was studied in [4]. Later, 2-bumps and multibumps were considered in [23,24]. In all
these cases the connectivity function was assumed to be translation homogeneous, i.e., ω(x, y) = ϖ(x − y) where ϖ(z)
is an even function. These type of solutions were linked to the mechanisms of the working memory, representations in the
head-direction system, and feature selectivity in the visual cortex; see [5] and references therein.

Remark 4.3. Although the conditionU ′(a(k)) ≠ 0, k = 1, . . . , 2N was not postulated in [4], it was used for studying stability
of these bumps.

Theorem 4.4. A bump solution of (1.1) with P(u) = S(∞, u) belongs to W 1,∞(R, µ) and satisfy the θ-condition.

Proof. By Definition 4.2 and (3.1) a bump is given as

U(x) =


R[U]

ω(x, y)dy. (4.1)

We use the norm (2.3) and get the following estimate

∥U∥W1,∞ =


R[U]

ω(0, y)dy
+ sup

x∈R

ρ(x)

R[U]

ω′

x(x, y)dy


≤


R[U]

|ω(0, y)|dy + M sup
x∈R


R[U]

|ω′

x(x, y)|dy, M = sup
x∈R

ρ(x).

Applying the property (i) of ω to the first term of the sum, and the property (ii) to the second, we get ∥U∥W1,∞ < ∞,
i.e., u ∈ W 1,∞(R, µ).
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Next, we show that U satisfies the θ-condition. By the definition of bumps the first condition of Definition 3.4 is fulfilled.
To show that the second one is fulfilled as well we consider the limit

lim
|x|→∞

U(x) = lim
|x|→∞


R[U]

w(x, y)dy.

The properties (iii) and (iv) of ω allows us to apply the Lebesgue dominated convergence theorem, i.e., we get
lim|x|→∞ U(x) = 0. This observations complete the proof. �

Below we give two examples where quite simple requirements on ω(x, y) allow us to choose ρ, ρ1 in a such way that all
conditions of Theorem 3.14 are satisfied.

Example 4.5. For any ω such that∂mω(x, y)
∂xm

 ≤ Ce−a|x|e−b|y|, m = 1, 2, C, a, b > 0, (4.2)

the conditions of Theorem 3.14 are satisfied.

Proof. We set

ρ1(x) = e−α|x|, ρ(x) =
β

2
e−β|x|, (4.3)

for some positive α and β. To satisfy the first condition of Theorem 3.14 (ρ1/ρ ∈ Lp(R, µ), 1 ≤ p < ∞), it is sufficient to
fulfill the following inequality p(α − β) + β > 0 or, equivalently,

α > 0 if p = 1, and β > αp′ if p > 1.

Let us now focus on the second condition of Theorem3.14 (Ω is compact). By Lemma 3.2 it is sufficient to prove compactness
of Ω̃ given by (3.5). We use Lemma 2.2. We denote the kernel of the operator Ω̃ as k(x, y). Using the estimates (4.2) and
(4.3) we have

|k(x, y)| ≤ 2
C
β
e−(a−α)|x|e−(b−β)|y|, (4.4)

and

|k′

x(x, y)| ≤
|ω′′

xx(x, y)| + |ρ ′(x)/ρ(x)||ω′
x(x, y)|

ρ1(y)ρ(x)

≤
|ω′′

xx(x, y)| + α|ω′
x(x, y)|

ρ1(y)ρ(x)
≤ 2C

1 + α

α
e−(a−α)|x|e−(b−β)|y|.

Moreover, the requirement

a > α, b > β, (4.5)

implies that both conditions of Lemma 2.2 are satisfied. While it is obvious that k(x, ·) ∈ Lp
′

(R, µ) for almost all x ∈ R, (2.6)
is needed to be explained. We notice that

|k(x, y)| ≤ C1e−c|x|, |k′

x(x, y)| ≤ C2e−c|x|, (4.6)

where c = a − α > 0, and C1, C2 > 0. First, we assign A to be some constant larger than c−1 ln(2C1/ε). Then, for |x| > A
we have C1e−c|x| < ε/2 and for any x1, x2 : |x1| > A, |x2| > A we get

|k(x1, y) − k(x2, y)| ≤ C1(e−c|x1| + e−c|x2|) < ε/2 + ε/2 = ε. (4.7)

Next, using the mean value theorem we have

|k(x1, y) − k(x2, y)| ≤ |k′

x(x̃, y)(x2 − x1)|

≤ C2e−c|x̃|
|x2 − x1| ≤ C2|x2 − x1|, (4.8)

where x̃ = λx1 + (1 − λx2), λ ∈ [0, 1]. We define some ∆ : 0 < ∆ < ε/C2 and set

D1 = (∞, −A), D2 = (−A, −A + ∆), D3 = (−A + ∆, −A + 2∆), . . . ,Dn = (−A + n∆, +∞),

where n is defined in a such way that −A + n∆ > A, e.g., n = [2A/∆] + 1. Therefore, (2.6) is fulfilled for j = 1, n due to
(4.7), and for j = 2, 3, . . . , n− 1 due to (4.8). Thus, under assumptions (4.5) the operator Ω̃ maps Lp(R, µ) to L∞(R, µ) and
is compact.
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Combining all the restrictions on α, β we have

0 < α < a, 0 < β < b if p = 1,
0 < α < a, αp′ < β < b if p > 1. (4.9)

It is clear that for any given a, b > 0, and 1 ≤ p < ∞ it is always possible to choose α and β satisfying (4.9).
Finally, using (4.4) it is easy to see that (3.10) is valid. �

The case when ω(x, y) = ϖ(x − y) seems to be more complicated. The main difficulty here is that the kernel of the
operatorΩ becomes unbounded along the line y = x. We have not found a general approach how to deal with this problem.
However, the theory developed in previous section works very well for the family of firing rate functions, S(β, u), which
possesses the following property:

S(β, u) = 0 for all u ≤ θ − τ , and β > 0. (4.10)

Example 4.6. Let ω be given as ω(x, y) = ϖ(x − y) with ϖ(z) such that

ϖ (m)(z) ≤ Ce−c|z|, m = 1, 2, c > 0. (4.11)

In addition to the properties of S, we assume (4.10). Then there exist such τ > 0 that the conditions of Theorem 3.14 are
satisfied.

Proof. Let θ > 0 be fixed and U ∈ W 1,∞(R, µ) satisfy the θ-condition. Moreover, assume that U(x) = θ has N solutions.
Then, by Lemma 3.6 there exist such ε > 0, and b(0,2), b(N,1) that for any u ∈ B(U, ε) = {u : ∥u−U∥W1,∞ < ε} the following
inequality U(x) < θ − ε for all x ∈ (−∞, b(0,2)) ∪ (b(N,1), ∞) is valid.

We introduce a set D = [b(0,2), b(N,1)
]. Next, we set τ < ε and define

ρ(x) ≡ ρ1(x) =


1/(b(N,1)

− b(0,2)), x ∈ D,
0, x ∉ D.

This definition of ρ implies that Ls(R, µ) ≡ Ls(D) and W 1,s(R, µ) ≡ W 1,s(D) for any 1 ≤ s ≤ ∞. By Lemma 3.3 and
Theorem 3.8 N is a continuous map from B(U, ε) to Lp(D). Using Lemmas 2.2 and 3.2 we next show that the operator Ω is
compact operator from Lp(D) to W 1,∞(D). The operator Ω̃ is given by

(Ω̃u)(x) =


D
ϖ ′(y − x)u(y)dy, x ∈ D.

Due to the estimate (4.11) the first condition of Lemma2.2 is satisfied. It remains to check the second condition of Lemma2.2.
Making use of the mean value theorem and (4.11) form = 2, we get

∥ϖ ′(x1 − y) − ϖ ′(x2 − y)∥Lp′ ≤ ∥ϖ ′′(x̃ − y)∥Lp′ |x2 − x1| ≤ C |x2 − x1|.

Here we assume x̃ = λx1 + (1 − λx2), λ ∈ [0, 1]. Similarly to Example 4.5 we choose some ∆ : ∆ < ε/C and set

D1 = (b(0,2), b(0,2)
+ ∆), D2 = (b(0,2)

+ ∆, b(0,2)
+ 2∆), . . . ,Dn = (b(0,2)

+ n∆, b(N,1)),

where n is defined in a such way that b(0,2)
+ n∆ < b(N,1) and b(0,2)

+ (n + 1)∆ ≥ b(N,1), e.g., n =

(b(N,1)

− b(0,2))/∆

.

Thus, by Lemma 2.2 Ω̃ : Lp(R, µ) → L∞(R, µ) is compact. This implies Ω : Lp(R, µ) → W∞(R, µ) be a compact operator;
see Lemma 3.2. Finally, we remark that (3.10) is fulfilled. Hence, all the conditions of Theorem 3.14 are verified.

In neural field theory one often assumes that ω(x, y) is given as a homogeneous and distant dependent function,
i.e., ω(x, y) = ϖ(x − y), where ϖ is an even function. In this case any stationary solution of (1.1) is translation invariant.1
A typical example of a homogeneous connectivity function ϖ is

ϖ(x) = M1e−m1|x| − M2e−m2|x|, M1 > M2, m1 > m2. (4.12)

This function is called a ‘Mexican-hat’ function andmodels a neural network with local excitation and distal inhibition. This
function satisfies (4.11) and thus it is a particular case of Example 4.6. The existence of 1- and 2-bumps for the model (1.1)
with P(·) = S(∞, ·) and this type of connection was shown in [4] and [23], respectively.

Next, we formulate our second theoremwhich rigorously shows that the bumps solutions in the steep firing rate regime
approach the bumps solutions of the stationary Wilson–Cowan model in the unit step function approximation of the firing
rate function.

1 i.e., if U(x) is a solution so is U(x + c) for any c ∈ R.
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Theorem 4.7. Assume that ω(x, y) = ϖ(x − y) with ϖ be an even function satisfying (4.11). Let θ > 0 be fixed and
U be a symmetric 1-bump solution of (1.1) where P(·) = S(∞, ·). Moreover, we let S(β, ·) satisfy the condition (4.10).
Then, there exists ε > 0 such that for any τ < ε and all β ≫ 1 the operator Hβ has a fixed point uβ ∈ Be(U, ε) =

{u − even function:∥u − U∥W1,∞ < ε}. Moreover, uβ depends continuously on β , i.e., uβ → U as β → ∞.

The proof of the theorem involves some knowledge of degree theory and topological fixed point index theory. We do not
recall any definitions and properties here but refer a reader to [18].

Proof. We notice that all conditions of Theorem 3.14 are fulfilled; see Example 4.6. This means that if u = Hβu possesses
a solution uβ ∈ B(U, ε) for all Cβ < β < ∞ then uβ → U . It remains to show that such uβ exist. For that we are going to
use Theorem 3.15 where we choose B0 = Be(U, ε). To be able to apply Theorem 3.15 we need to show that (a) U is a unique
fixed point of H∞ in Be(U, ε) and (b) deg(H∞ − I, Be(U, ε, 0)) ≠ 0.

By Theorem 4.4, U satisfies the θ-condition and U ∈ W 1,∞(R, µ). By Lemma 3.6 there exists ε > 0 such that any
u ∈ B(U, ε) = {u : ∥u−U∥W1,∞ < ε} satisfies the θ-condition and possesses exactly two intersectionswith the straight line
θ . Obviously, the same properties are valid for u ∈ Be(U, ε), i.e., for any u ∈ Be(U, ε) there is cu > 0 such that u(±cu) = θ ,
u′(±cu) ≠ 0. For u = U we denote the intersections as ±a.

We define an auxiliary function

W (x) =

 x

0
ϖ(y)dy.

Then, for any u ∈ Be(U, ε) there is defined v(x) = (H∞u)(x) = W (x + cu) − W (x − cu). In particular, we have

U(x) = W (x + a) − W (x − a), (4.13)

where

W (2a) = θ, ϖ(2a) < 0. (4.14)

Lemma 4.8. A symmetric 1-bump, U, is a unique fixed point of H∞ on Be(U, ε).

Proof. Let us assume the contrary. Then there exist a sequence {un} ∈ Be(U, ε) such that un → U andH∞un = un. Similarly
to (4.13) and (4.14) we have

un(x) = W (x + an) − W (x − an) (4.15)

with

W (2an) = θ, ϖ(2an) < 0 (4.16)

where we set an = cun .
From Lemma 3.9 we have an → a. The condition ϖ(2a) < 0 implies that any vicinity of a contains such an that

W (2an) ≠ θ . This contradicts with (4.16) and thus, with un being a fixed point of H∞. We conclude that U is an isolated
fixed point of the operator H∞ on Be(U, ε). Therefore, without loss of generality we assume that Be(U, ε) does not contain
any other fixed points than U . We emphasize here, that U is not an isolated fixed point of H∞ on W 1,∞(R, µ) due to the
translation invariance of bumps in a homogeneous neural field. �

Due to Lemma 4.8 and definition of the topological fixed point index we have

deg(H∞ − I, Be(U, ε), 0) = ind(H∞, Be(U, ε)).

We notice that H∞ maps Be(U, ε) into a manifold EM ⊂ W 1,∞(R, µ), where EM = {v : v = W (· + c) − W (· − c), c ∈

[m,M]}. The interval [m,M] is chosen in a such way that it contains cu for all u ∈ Be(U, ε). By Lemma 3.6 this is possible to
achieve if one chooses, for example,m = 0, and M = b(N,1).

We define φ : [m,M] → EM where φ(c) = v(x) ≡ W (x + c) − W (x − c), x ∈ R. Next, we show that φ is a
homeomorphism.

Lemma 4.9. The map φ is a homeomorphism from [m,M] to EM , and EM is ANR.2

Proof. Firstwe show thatφ is bijection. It is a surjection since EM is defined as an image of [m,M]. To prove thatφ is injection
we assume the contrary: Let c1, c2 ∈ [m,M] and c1 ≠ c2 imply v1 = v2. From v1 = v2 and v1, v2 ∈ W 1,∞(R, µ) it follows
that |v1(x) − v2(x)| = 0 for almost all x ∈ R. Applying the mean value theorem we get

|v1(x) − v2(x)| = |W (x + c1) − W (x − c1) − W (x + c2) + W (x − c2)|
= |ϖ(x + ξ) + ϖ(x − η)||c1 − c2| = 0, a.e. on R (4.17)

2 Absolute Neighborhood Retract, see [18].
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where ξ, η ∈ [c1, c2]. As c1 ≠ c2 we have

ϖ(x + ξ) = −ϖ(x − η) a.e. on R,

or, that is equivalent,

ϖ(x + 2(ξ + η)) = ϖ(x) a.e. on R.

The last equality contradicts with the property (iv) of ω. Thus, φ is a bijective map. Next, we observe that φ is differentiable
for all c ∈ [m,M] and φ′(c) ≠ 0. Indeed, as we assume the contrary we get

ϖ(x + c) = −ϖ(x − c), a.e. on R

which implies 4c periodicity of ϖ . This contradicts with the property (iv) of ω. Hence, we conclude that φ defines a
homeomorphism on [m,M]. Moreover, since [m,M] is a closed convex subset on R then it is ANR. By properties of
homeomorphism φ([m,M]) = EM is ANR too. �

Let H ′
∞

be the excision of H∞ on EM ∩ Be(U, ε), i.e.,

H ′

∞
= H∞|EM∩Be(U,ε) : EM ∩ Be(U, ε) → EM . (4.18)

The fixed pointU belongs to EM∩Be(U, ε) and thus, by the property of the topological fixed point index [18]H ′
∞

is admissible3
compact map and

ind(H∞, Be(U, ε)) = ind(H ′

∞
, EM ∩ Be(U, ε)).

Next, we apply the topological invariance property of the index and get

ind(H ′

∞
, EM ∩ Be(U, ε)) = ind(φ−1

◦ H ′

∞
◦ φ, D)

where D denotes the following set φ−1(H∞(EM ∩ Be(U, ε))).
We prove the following lemma which enables us to compute ind(φ−1

◦ H ′
∞

◦ φ, D).

Lemma 4.10. There exist such δ > 0 that D = φ−1(H∞(EM ∩ Be(U, ε))) ⊃ [a − δ, a + δ].

Proof. The map c̄ : u → cu is defined for all u ∈ Be(U, ε). Let v(x) = W (x + c) − W (x − c), c ∈ [m,M]. Then using the
norm (2.3) inW 1,∞(R, µ), the equality (4.13), and the mean value theorem we have

∥U − v∥W1,∞ = (∥ϖ(ξ1) + ϖ(η1)∥L∞ + ∥ϖ(x + ξ2) + ϖ(x − η2)∥L∞) |c − a|,

ξi, ηi ∈ [c, a], i = 1, 2. Thus, using (4.11) we get

∥U − v∥W1,∞ ≤ 4C |c − a| < ε,

for all c ∈ [a − δ, a + δ], where δ < ε/4C . From this observation we conclude that

c̄(B(U, ε) ∩ EM) ⊃ [a − δ, a + δ]

which implies

H∞(Be(U, ε) ∩ EM) ⊃ Eδ = {v : v = W (· + c) − W (· − c), c ∈ [a − δ, a + δ]}.

Furthermore, it follows that

φ−1(H∞(Be(U, ε) ∩ EM)) ⊃ φ−1(Eδ) = [a − δ, a + δ]. �

Finally, we have all the ingredients to calculate ind(φ−1
◦ H ′

∞
◦ φ, D). We define the finite dimension operator

T = φ−1
◦ H ′

∞
◦ φ which, as we have shown above, maps [a − δ, a + δ] → [m,M]. It is easy to check that a is a fixed

point of T , i.e., T (a) = a. Moreover a is an isolated fixed point of T . The latter statement follows from U being the isolated
fixed point of H∞ and topological invariance property of the index. The topological index of a finite dimensional map can
be calculated as

ind(T , D) = sgn(T ′(a) − 1);

see [25].
The following equality holds true for all c ∈ [a − δ, a + δ]

W (T (c) + c) − W (T (c) − c) = θ.

3 A continuous map g : B → B is called admissible provided B is an open subset of B and the fixed point set of g is compact; see [18].



350 A. Oleynik et al. / J. Math. Anal. Appl. 398 (2013) 335–351

Using the implicit function theorem and the chain rule for differentiation we find

T ′(a) =
ϖ(0) + ϖ(2a)
ϖ(0) + ϖ(2a)

.

Thus, we have

deg(H∞, Be(U, ε), 0) = ind(T , D) = sgn(ϖ(2a)) = 1.

Combining all the results, we get that there exists Cβ ≫ 1 that u = Hβu possesses a solution uβ ∈ Be(U, ε) for all β > Cβ

and uβ → U . We also notice here that uβ is a symmetric function which satisfy the θ-condition and has two intersection
points with straight line θ . �

5. Conclusions and outlook

In the present paper we have studied the properties of the one-parameter family of Hammerstein operators Hβ ,
0 < β ≤ ∞ given by (3.2). Fixed points of an operator belonging to this family are stationary solutions of (1.1). For
functions in W 1,q(R, µ), 1 ≤ q ≤ ∞ we have introduced the definition of the θ-condition, which means that we consider
functions with a finite number of intersection points with the line u = θ . We have shown that the continuous dependence
theorem (Theorem 3.14) holds in a vicinity of a function U ∈ W 1,∞(R, µ) satisfying the θ-condition, while for the case
U ∈ W 1,q(R, µ), 1 ≤ q < ∞ the conditions of the theorem are not satisfied. Next, with Theorem 3.15 we show that if H∞

possess an unique fixed point with some additional assumptions, then the solutions of the fixed point problem Hβu = u
exist for β > Cβ . This theorem allows us to prove the existence of multibump solutions of (1.1) with sigmoidal firing rate
functions.

We believe that these results can be very useful in neural-field theory.We have given two examples of restrictions on the
connectivity functions (onewith inhomogeneous connectivity and the second one for homogeneous connectivity) where all
the conditions of the continuous dependence theorem are satisfied. Moreover, for a homogeneous type of connectivity we
have proved the existence of 1-bump solutions for (1.1)with steep gradient continuous firing rate function, S(β, ·), satisfying
the condition (4.10). Although the latter condition imposes restrictions on the choice of S(β, ·), we would like to emphasize
that this result is more general than one obtained in [14,15]. Here we would like to point out that the results of this paper
can be useful for studying not only continuous dependence and existence of bumps but also stability of these solutions. The
methods for studying stability of bumps, Evans function technique and Amari approach, assume that small perturbation of a
bump solution possess the same number of intersection with a straight line θ as a bump itself. As we have shown, this is the
case only if we work in the Sobolev spaceW 1,∞(R, µ). However, if one studies stability of bump inW 1,q(R, µ), 1 ≤ q < ∞,
then any vicinity of a bump contains functions which do not satisfy the θ-condition, and thus, these stability approaches do
not work.
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