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1. Introduction

The macroscopic dynamics of neural networks is often studied by means of neural field models. Here we consider a neural
field model of the Wilson-Cowan type [1-5]

%u(x, t) = —u(x, t) + / o, y)P(uy, t))dy, xeR, t>0. (1.1)
R
Eq. (1.1) describes the dynamics of the spatio-temporal electrical activity in neural tissue in one spatial dimension. Here
u(x, t) is interpreted as a local activity of a neural population at the position x € R and time t > 0. The second term on
the right hand side of (1.1) represents the synaptic input where P is a firing rate function. Typically P is a smooth function
that has sigmoidal shape (the shape of the logistic function). The spatial strength of the connectivity between the neurons
is modeled by means of a connectivity function w. We refer the reader to [1-5] for more details regarding the relevance of
Eq. (1.1) in neural field theory.

The most common ‘simplification’ of the model consists of replacing the smooth firing rate function by the unit step
function. The existence of solutions to a neural field equation with smooth firing rate functions can be studied using methods
of classical fixed point theory; see e.g. [6,7]. These methods have been applied to the particular type of neural field model by
various authors; see [8-11]. Dealing with the unit step function however leads to the discontinuity in the integral operator
involved in (1.1), which makes it impossible to apply the classical theory.

Despite difficulties in mathematical treatment, the mentioned ‘simplification’ allows to obtain closed form expressions
for solutions describing coherent structures like stationary localized solutions (bumps) and traveling fronts [5] as well as to
assess the stability of these structures using the Evans function approach [12]. To benefit from both representation of P it
is often conjectured that the ‘simplified’ model reproduces the essential features of the model with smooth P in the steep
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firing rate regimes. While this conjecture is supported by numerical simulations (see for example [13]) there are few and
far between works addressing this problem in a rigorous mathematical way. Namely, Potthast and Beim Graben provided
a rigorous approach to study global existence of solutions to the Wilson-Cowan type of the model with the smooth firing
rate function as well as with the unit step function, [11]. They demonstrated that the latter case requires more restrictions
on the choice of a functional space as well as some extra assumptions on w. In [14-16] the reader can find the analysis of
existence and stability of localized stationary solutions (bumps) for a special class of the firing rate functions, the functions
that are ‘squeezed’ between two unit step functions. This class of functions is also referred to as the smoothed Heaviside
functions [17]. It has been shown that if the both bump solutions to the model with the unit step functions are stable/unstable
then the bump in the framework of the corresponding smoothed Heaviside firing rate function has the same stability
property, [14-16]. To the best of our knowledge, no analysis has been done on the passage from a smooth to discontinuous
firing rate function in the framework of neural field models.

In the present paper we study the existence and continuous dependence of stationary solutions to (1.1) under the
transition from a smooth firing rate function to the unit step function. The stationary solutions of (1.1) are solutions to a
fixed point problem. We describe the fixed point problem in terms of a Hammerstein operator that is represented as the
superposition of a Nemytskii operator .~ : u — P(u(x)) and a linear integral operator. We study properties of the operators
when the firing rate function is represented as a one-parameter family of functions that approach the unit step function
with the step taking place in x = 6, when the steepness parameter goes to infinity. The main challenge here is to choose
function spaces and a suitable topology of the operators convergence that allow the continuous dependence properties of
solutions to be fulfilled.

We introduce the notion of the §-condition, the condition on a function, say u, to have finite number of only simple roots
to u(x) — 6; for details see Definition 3.4. We show that the Nemytskii operator in the limit case (when the steepness
parameter goes to infinity) preserves continuity if the functions from the operator domain satisfy the #-condition. We
demonstrate that the choice of the norm is crucial here since, e.g., the §-condition is achieved in W!*-norm but not
in Wh9-norms, ¢ < oo. Our main results are summarized in Theorems 3.14 and 3.15, which we will refer to as the
continuous dependence theorem and the existence theorem, respectively. These theorems enable us to show the existence
and continuous dependence of bumps on the steepness parameter when it approaches infinity. We provide two examples
of assumptions on w: one is for the inhomogeneous and one is for the homogeneous function w, to demonstrate the
applicability of our results. In particular, in the latter case we prove the existence of bumps in a steep firing rate regime
where the firing rate function takes values zero on a ray (—oo, 6). We emphasize that this result is more general than
results on the existence of bumps obtained in [ 14-16].

The paper is organized as follows. In Section 2 we explain our notations, prove some useful theorems, and state lemmas
from functional analysis, to which we refer in the subsequent sections. In Section 3 we give a detailed description of the
model. Next, we study continuity and compactness of the associated operators in Sobolev spaces, formulate and prove
the main theorems. In Section 4 we apply the results of Section 3 to prove continuous dependence of spatially localized
stationary solutions (bumps) of (1.1) on the steepness of the firing rate function for both inhomogeneous and homogeneous
connectivity functions, and show the existence of the bumps in the framework of the homogeneous w. Section 5 contains
conclusions and outlook.

2. Preliminaries

Let B be an open set of a real Banach space 8, then B denotes the closure of B in B. We use the notation deg(A, B, p) for
the degree defined for an operator A : B— 8, and p € 8. We use ind(A, B) for the topological index of A, [18].

Let WM(R, n), 1 < g < oo, denote a Sobolev space which consists of all functions w € LI(R, 1) such that their
generalized derivatives (with respect to the given measure ) dw/du = w belong to LY(R, ).

The element w € W1 9(R, ) then can be represented as

w(x) = w(0)+/ w(E)du(§). (2.1)
0
We consider the following two norms in W 9(R, )
lwlh = llwllia + 1@ ]l1a (2.2)
and
lwll2 = [w(©0)| + [|w]la (2.3)

where || - |14 is the norm in LY(R, p), i.e.,

1/q
lwlle = (/ |w(X)|qu(X)> , 1=g<oo
R
and

lwlliee = sup [w(x)].
XeR
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Theorem 2.1. The norms || - ||; and || - ||, are equivalent whenever w is finite.

Proof. From the representation (2.1) we have
lwlie = IIw(0)+/ wydu®) e < llw(0)] +/ lw)Idu )l
0 0
= |||w(0)|+/ [wWdu@) e = [@®]1Y(w0)] + [|D]];1).
R

Using the Holder inequality we get ||w||1 < [(@®) 1YY || ||10 where ¢ is defined by the equality 1/q 4+ 1/q’ = 1. Thus,
lwlie < [L@T7w©)] + p@®)|D 1. (2.4)
From (2.2) and (2.4) we obtain
lwlly < [e@)1NwO)| + w@®) W]l + [l
Therefore we get
lwll < Gllwlla, G = max {[@®)]V, 1+ w®)}.

In a similar way we estimate |w(0)|, i.e.,

lw(0)] = [®)] VI w(0)|lia = [L®R)] VI w(x) — / D)W e < [L@®1T Y (1wl + 1©]19) -
0

We have

lwlz < allwl, ¢ =[k@®] I+ 1.
Hence, we get

Gillwllz < llwlh = Gllwl2
with

L [p@))e
G=c'=capryr @ ma{@I 1+ um).

By definition the norms then are equivalent. O

We denote the norm in W14(R, ) by || - ly1.4-
Lemma 2.2. Let A be the following operator
A = [ ke pumdue). xe, (25)
R

where p is a finite complete measure on R and k(x, y) is measurable on R?. Let the following conditions be satisfied
(i) foranyx € R, k(x,-) € [’(R, u),

(ii) for any e > 0 there exist a finite partitioning of R into measurable sets, say D1, D,, ..., Dy, such that
sup |lk(x1,y) — kG2, Wy <&, j=1,2,...,n (2.6)
X1,%2€Dj

Then the integral operator A maps [P (R, () to L*° (R, ) and it is compact; see [19].

Theorem 2.3. Let D be a closed bounded subset of a real Banach space 8B, A be a closed subset of R, and an operator T(A, u) :
A x D — 8B be continuous with respect to both variables and collectively compact (i.e., T(A x D) is a pre-compact set in B).
Assume that A, — A* and T (A, u,) = u,. Then the equation T(A*, u) = u has at least one solution. Moreover, any limit point
of the sequence {uy} is a solution of this equation, i.e., if u,, — u* then u* is a solution of T(A*, u*) = u*.

Proof. The sequence {u,} defined by T (A,, u,) = u, is a pre-compact set due to T is collectively compact. Thus, there exist
convergent subsequences of {u,},i.e., {u,,} — u* € D.The continuity of T yields limy, _, oo T(Ap,, Up,) = T(A*, u*) =u*. O

Remark 2.4. If u* is unique in D then u, has only one limit point, that is, u, — u*.

Lemma 2.5 (Homotopy Invariance). Let D be an open bounded subset of a real Banach space 8. Suppose that {h.} is a homotopy
of operators hy : D — B for t € [0, 1], and assume that h, — I is collectively compact. If h.f % p forany f € dDandt € [0, 1],
then deg(h, D, p) is independent of t; see [20].
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3. Main results

The stationary Wilson-Cowan model (1.1) is equivalent to the fixed point problem
u= #u, (3.1)
where # is the Hammerstein operator

L () dy) (32)

(FHu)(x) = /

R
and

w(A) = fp(y)dy
A

is an arbitrary probability measure which is absolutely continuous with respect to the Lebesgue measure (i.e., u(R) = 1
and 1 (A) > 0 whenever the Lebesgue measurable set A has a positive Lebesgue measure). This can be achieved by putting
some necessary properties on the function p.

We assume that the function w(x, y) is a measurable function satisfying the following assumptions:

(i) forany x € R, w(x, -) € LI(R), i.e.,

Vx € R / lw(x, y)|dy < oo,
R

(ii) w is differentiable a.e. with respect to the first variable and
w,(x,) €L, (R) Vx€eR,

(iii) w is bounded, i.e.,
IC >0 |k, y)| <C Vx,y eR,

(iv) foranyy € R limy_ o w(x,y) = 0.

The function P can be interpreted as a probability function of firing. Thus, P is a map from R to [0, 1]. We consider the
special family of P: P(u) = S(8, u) where § takes values from (0, oo]. We assume that S satisfies the following properties:

(i) S:(0,00) x R — [0, 1] is a continuous function,

(ii) S(B, -) is monotonically non-decreasing,

(iii) S(B, -) = S(Bo, -) uniformlyonR as § — By € (0, 00),

(iv) as B — oo S(B, u) approaches S(oo, u) uniformly on (—o00, 8 — €] U [0 + €, 00) for any ¢ > 0, where S(o0, u) is the
unit step function

0, u<9®
S(oo,u):{1 0> 0

with some threshold value 6 > 0.
The Hammerstein operator (3.2) can be represented as the superposition
(Fu)(x) = (£ o Nu)(x)

of the linear operator

mmwzf”“”wwmm (3.3)
r 1)
and the Nemytskii operator
Wy = 2% pu). (3.4)
pX)

Here p; is an auxiliary function satisfying the following properties

(i) 0 < p1(x) < C,,, where C,, > 0,

(ii) supp(p1) 2 supp(p),
(iii) |@(0,y)| < Cop1(y) Vy € Rand C, > 0.

We set p1(x)/p(x) = 0and p(x)/p1(x) = 0forallx € R\ supp(p1).

Remark 3.1. In particular, one can assume p; = p. However, in order to keep the theory as general as possible, we allow
p1 to differ from p. In Section 4 we make use of this difference. See Example 4.5.
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When we want to emphasize that some particular property is valid only for operators corresponding to S(8, ), B €
(0, 00) or S(o0, -) we use the subindexes 8 and oo, respectively. That is, we denote the Hammerstein operator (3.2) and the
Nemytskii operator (3.4) as #pg, # and Mg, No. When a property is valid for an operator with any P : R — [0, 1] we do
not use any subindex, e.g., #, V.

Lemma 3.2. Let 2 : IP(R, ) — LY(R, ), 1 < p, g < oo be an operator defined as

~ Wy (X, ¥)
Q = | =22 uy)du®y). 35
(£2v)(x) /Rp(x)p](y)u(y) w(y) (35)

Then, the operator §2 in (3.3) is a map from L[P(R, u) to WULA(R, w) and (a) it is a continuous operator if and only if Qis
continuous, (b) it is a compact operator if and only if £2 is a compact operator.

Proof. We formally apply (2.1) to the element (£2u)(x). We have

(Qu)(x) = (2u)(0) + / Quy)du(y)
0

where
0,
@ = [ O yyduty).
r 1)
and
~ d(2u)(x) / W (x,y)
2 == | X d .
(@0 du R p(X)m(V)u(y) #0)
Using properties of p; we get
0,
[(2u)(0)| = /w( y)UO’)dM(V)‘ < Collullp. (3.6)
r P1(¥)

Further, 2 is a map from [P (R, u) to LY(R, ), hence £2 maps [P (R, u) to WHI(R, ).
To prove (a) continuity and (b) compactness of £2 we introduce a linear operator § : W'P(R, u) — R x IP(R, u) such
that

d .
I=(1 92 frw=wO R Faw= g w=bel(LR).
The inverse operator § ' : R x IP(R, i) — W'P(R, ) then is given as
g '(a,u)=a +/ udup), (a,u) € R x [P(R, p).
0

It is easy to check that ¢ is a homeomorphism: Indeed ¢ is an isomorphism [21] and linear continuous. Thus, !
is continuous by the Banach theorem [22]. We present the proof of (b). The operator 2, : LP(R,x) — R given by
(20u)(x) = (L2u)(0) is compact as soon as it is bounded, which is the case due to the estimate (3.6). Therefore, for
any bounded subset D C [P(R, ) there is a corresponding pre-compact subset (§2oD, 2D) C R x L[P(R, w) which is
homeomorphic to £2D. Hence, §2D is a pre-compact set in Vyl’p(R, ) and £2 is a compact operator.

Let us assume now that §2 is a compact operator, while £2 is not compact. Then, for any bounded D we get a pre-compact
set £2D which is homeomorphic to the non pre-compact set (2D, §2D). This contradiction completes the proof. To prove
(a) one can proceed in a similar way assuming boundedness of a set D instead of pre-compactness. O

Lemma 3.3. If p;(x)/p(x) belongs to LP(R, 1) the Nemytskii operator & maps W' (R, ) to [P(R, ), 1 < p,q < oo.
Moreover Ng, B < oo, is continuous. The operator N is discontinuous on WLI(R, n), 1 < q < oo.

Proof. First of all, we notice that due to the boundedness of P, i.e., |P(u)| < 1, we have

e PR, p).

‘;01 (*) P1(X)
p(X) p ()
Hence, the Nemytskii operator is a map from W 9(R, 1) to LP(R, /). Moreover, S(8, -) satisfies to the Caratheodory
conditions [19,20]. We conclude that the Nemytskii operator .V is continuous [19,20].

To show that N, is not continuous on W4(R, p) it is enough to give an example. Consider u,(x) = +1/nand u(x) = 4.
We have (Nooly) (x) = p1(x)/p(x) foralln € N and Noou = 0. When n — oo we get

P(u)‘ < ‘

lup — ullyre — 0, and || Nty — Noolllp = llp1/pllp # 0. O
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Fig. 1. The #-condition in W (R, u) for N = 4.

Definition 3.4. Let 6 > 0 be fixed. We say that u € W4(R, ) satisfies the §-condition if

e the function u(x) — 6 has finitely many simple roots (i.e. u(a) = 6 always implies u'(a) # 0);
e there exist o > 0and A > O such that u(x) < 6 — o forall |x| > A.

Remark 3.5. Definition 3.4 implies that if u € WU9(R, u) satisfies the #-condition then the number of intersections
u(x) = 6 is an even number.

Lemma 3.6. Let & > 0 be fixed and let U € W (R, ) satisfies the 8-condition. Assume that the equation U(x) = 6 has N
solutions. Then there exists ¢ > 0 such that foranyu € B(U,e) = {u: |lu — Ul < &}

e the function u satisfies the 6-condition;
e the equation u(x) = 6 has exactly N solutions.

Proof. Here we are going to use || - [|,y1.00 given by (2.2). Let U satisfy the -condition, and a®: a® < a®**D k=1,... N,
be all solutions of the equation U(x) = 6. Due to these assumptions there exist a positive ¢ and the points b% D) b(" 2,
k=0,...,N,satisfying

a® < p®D < p*2 gD —1 N -1,
bOD — _oo,  pOD g g D N2
such that

e UX) >0+ 2eifxe (b*V p*2) k=2m—1,0<k <N;
e Ux) <0 —2¢ifxe (b®V p*2) k=2m,0<k<N;
o U] > 2Meifx € (b*? b*k+1.D) 0 < k < N — 1, where M = sup,cp p(x).

Letu € B(U, ¢). Clearly,
lu(x) —U®X)| < &, [u'(x) —U'(x)| <ep(x) ae.xeR.

This implies the following estimates:

ux) >0 +¢ ifxe (*®V, p*?), k=2m—1, 0 <k <N; (A1)
ux) <0 —e ifxe d*®V b*?) k=2m, 0 <k <N; (A2)
W' (x)| > Me ifxe %P p*H1IDy 0<k<N-—1. (A3)

Therefore, the equation u(x) = 6 has a unique solution in each interval (%2, p*+1.1) 0 < k < N — 1, while |t/ (x)| > Me
within any of these intervals. Remembering that b©®? = —o0 and that u(x) <  forx > b™:V yield exactly N solutions of
the equation u(x) = 6, and all of these solutions must be simple. Fig. 1 illustrates graphically Lemma 3.6 for N = 4. Here
we have plotted schematically a function u € B(U, ¢), where U has N = 4 intersections withu = 6. O

Lemma 3.7. Let & > 0 be fixed and let U € WY(R, u), 1 < q < oo, satisfy the §-condition. For any ¢ > 0 the ball
B(U,e) ={u: |lu—Ul|y1q < €} contains functions which do not satisfy the 6-condition.
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Fig. 2. The violation of the §-condition in W"9(R, ) for q < oo.

Proof. For the proof we give the following example

Ux) — U@ —1/n) +0, x € (—oo0,aV —1/n)
2
un(x) = 16, U [a? —1/n,a% + 1/n] (37)
U®) — U@® + 1/n) + 0, xe @ + 1/n, +00).

We consider the norm in W4(R, ) given by (2.3). Without loss of generality, we assume that one of a¥, j = 1, 2, is equal
to zero. Then, it is easy to see that

un = Ullwra = llin — Ulle = (U/

< A(ula® = 1/n, a® + 1/n] + ula® — 1/n,a® + 1/n1)"

a(’)+1/n

1/q
IU(X)I"dM(X)>

0 — 1/n

where A = sup {U(x)}, forx € [a® —1/n, a® +1/n]J[a® — 1/n, a® +1/n]. Thus, ||u, — U||y1q — 0asn — oo, i.e., for
any ¢ > 0 there exist such n, that ||u, — U||y1,4 < € foralln > n,. In Fig. 2 we have plotted the graphs of U(x) (red solid
line) and u*(x) (blue solid line), where u*(x) is an example of (3.7) for some n* < n,, together with the constant function 6.
From the figure it is clear that u*(x) does not satisfy the 8-condition. O

Theorem 3.8. Let & > 0 be fixed, U(x) € WI(R, u) satisfies the #-condition and U(x) = 6 has, say, N solutions a?,
a?,...,a™. Let py(x)/p(x) belong to [P(R, 1). (a) There exist & > 0 such that Ny : B(U, &) = {u: |u — U100 < &} —
[P(R, w) is continuous when 1 < p < oo. (b) The operator Ny, : B(U, &) — L* (R, w) is continuous provided that there exist
some § > 0 that supp(p;) ((@® —§,a® + 8) = @ foranyk = 1,2, ..., N. Otherwise, i.e., if for any § > 0 there exist some

k such that supp(p1) ﬂ(a(i‘) —8,a® + 8) £ ¢, we get discontinuity of Nxo : B(U, &) — L¥(R, ).

Proof. Let us consider u,, u € B(U, &) C W' (R, ) such that ||u, — u||y1.c — 0. By Lemma 3.6 it is always possible to
choose ¢ in a such way that both u, and u satisfy the 6-condition and the equations u,(x) = 6, u(x) = 6 possess N simple

roots each. We denote these roots as ay’ for the first equation, and a((] ) for the second, k= 1,..., N.
We derive the estimate

[(NooUn) (X) — (N (X)| = |01(X)/ 0 ()| X (),
where

1, xe U[a(k) a(k)

0, 0therw1se

x(x) =

Here [x1, x;] defines the interval [x;, xo] when x, > x; and [xy, x1] if X, < X;.
First we consider p < oo. Then, after the lemma (follows below), the case p = oo will be considered. When 1 < p < oo
we have the following equality

p

p1(X)
px)

1/p
X (X)dM(X)) .

| (Noot) () — (Noo) ) 12 = ( /
R
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Using now the Holder inequality we get
1/p
p1(X)

p 1/p N
([R () x(x)du(@) < llp1/pllee (u (H[aﬁ’ag]»

Since [p1(x)/p(x)| € IP(R,u) C L*[R,pn) then ||p1/pllie < C,, where C, > 0 is some constant. If now

M(Uf al aff‘), ag‘)]) — 0asn — oo we get the continuity of N, : B(U, &) — LP(R, u). To prove that we use the following
lemma. O

Lemma 3.9. For any u,, u € B(U, &) C W (R, w) such that ||u, — |10 — O we have af — af’.

Proof. For our proof we use the norm (2.2) of W% (R, ). From |lu, — ]| y1.00 — O follows that sup,.p |, (%) —u(x)| — 0.
Let us assume the contrary, i.e., there is k = k* such that af*"’ ad a(()k*). This means that

(oo > 0) (YN e N) @it = N) : [a*” —al”| > op.
Then we have

sup|un(x)—u(x>|>|un(a(’”) u@ ) =16 — u@®)| = [u@”) — u@)|.

Due to the transversality condition on the intersection of any u(x) € B(U, ¢) and 8 we have |u(a) —u(b)| > « if |[a—b| > op.
Therefore we get

(VN € N) (@1 > N) : sup |uz(x) — ux)| > k.

XeR

By definition sup,p |u,(x) — u(x)| diverges. Then ||u, — ul|y 1. diverges too. This contradiction completes the proof of the
lemma. O

Next, we consider the case p = co. We get

[INoottn — NooU[lre = sup [(Neoln) (x) — (Noolt) (X)| = ap,

XeR

where «;, is a smallest value that p{x : [(Nooln)(X) — (Noo)(X)| > o} = 0, i.e,,
an = sup |p1(X)/p()], Q= U[a(") ay’].
xeqQ

Let us assume first that there is some § > 0 such that supp(p;) ((@a® — §,a® +8) = @forany k = 1,2, ..., N. This
means that supp(p1) (] Q = @ which implies &, = 0. Thus, N, is continuous. Assume now that supp(p1) (]Q # @. Due

to p1(x) > 0 forall x € supp(p;1) we have o, = 0 if and only ifa,(qk) = a(()k), forallk = 1, 2, ..., N.That is not necessarily the
case, thus, N, discontinuous on B(U, ¢). O

Remark 3.10. We notice here that the assumption supp(o1) [ (@®—¢,a®+8) = @forallk = 1,2, ..., Nisnotinteresting
here, as it breaks properties of the model. Thus, further we exclude these types of p; from consideration.

Theorem 3.11. Let 6 be fixed, U(x) € WH(R, u), 1 < q < oo, satisfies the O-condition. There exist no such ¢ > 0 that
Noo : B(U, &) € WH(R, u) — [P(R, ), 1 < p < oo is continuous operator.

Proof. In Lemma 3.7 it has been shown that for any ¢ > 0 there exists some n, that u,, given by (3.7), for all n > n, belongs
to the ball B(U, ¢). We fix n* = n,/, and denote u* = Un, - Then we consider the sequence u(x) given as

1
0 — o sin(zn*(x — ap)), x e [a® —1/n*, aV + 1/n*]
yk
= 1
() 0+ o sin(rn*(x — a)), x € [a® —1/n*, a® 4+ 1/n*]
vk
u*(x), otherwise

where y is a positive constant. We have plotted the graphs of U(x) (red solid line), u*(x) (blue solid line), and u(x) (blue
dashed line) in Fig. 2 together with the constant 6. First, we prove that u, — u* and show that there exists y = y* such
that u* € B(U, &). Next we prove that || Neol — Naoll*||» does not converges to zero.
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Without loss of generality we assume that one of a?, j = 1, 2 is equal to zero. We calculate the norm of |u(x) — u*(x)|
using (2.3) and derive the following inequality
q 1/q
dx

1/‘1 ] 2 ]/q
< nn*yk (Z|<a /n*) — (a /n%)| gl e

From this inequality we see that ||uy — u*|l14 — 0 as k — oo. Moreover, as we assign y* = 2/(emwn*) we get
lux — u*|lyra < &/2. We have

~ ~ -1
lue — ullwig = i — wlle = 1 — @) p ™ (%) l19

2 a(i)+l/n*
Z /a<f>1/n*

j=1

cos(zzn*(x — a¥))

Tn*yk

luk — Ullwra < llug — ulyra + lu* = Ullyra <&/24+¢/2 =¢,

fork=1,2,...,ie,u, € BlU,¢)forallk € N.
Using the definition of N, we have

p1(x) 2 0 . 0 i
[(Noolt) (X) — (NUF)(X)| = mv X U[a —1/n*,a¥ + /n*]

0, otherwise.

Due to p1(x)/p(x) > 0we have || (Nooty) (X) —(Nu*)(x)||p = 6 > 0independently of k. Hence, we conclude that (N uy) (x)
does not converges to (N u*)(x). It completes our proof. O

Now we consider the Nemytskii operator A3 when § is not fixed, but belongs to (0, oc]. Then, N is a map (0, co] x
B(U, &) C WH®(R, u) — WH™(R, ). We have the following lemma.

Lemma 3.12. Let @ > Obefixed, U € W' (R, u) satisfy the §-condition, p1/p € L'(R, u) and B(U, &) = {u : [[u—U|ly1.00 <
¢}. The operator Ng : (0, oo] x B(U, &) — LY(R, ) is continuous at By € (0, oo] uniformly for allu € B(U, ).

Proof. By Lemma 3.3 and Theorem 3.8 N is a map from (0, oo] x B(U, ¢) to L'(R, ). Using properties of p; we have

Mg — Nyl = Cpy / IS(B, u(x)) — S(00, u(x))|dx.
R
For By < oo from uniform convergence S(8,z) — S(By, z) we get pointwise convergence S(8, u(x)) — S(Bo, u(x)).
Boundedness of S allows us to applying the Lebesgue dominated convergence theorem. Thus, we get
Vg — Mgy llt — O, YueB(U,e). (3.8)
When /30 oo the proof is not so straightforward. By Lemma 3.6 there is ¢ > 0 such that for given U there are defined

b%d (k =1,...,N,i=1,2) such that for any u € B(U, &) the conditions (A1)-(A3) are satisfied. We have

[Ng — Noollpt < Cp, / IS(B, u(x)) — S(oo, u(x))|dx

pk.2)

/ IS(B, u(x)) — S(o0, u(x))|dx = C,, (21 + X2), (3.9)

where
p(k.2)

5 = Z f 1S(B, u(x) — S(00, u(x)ldx

and
pl+1,1)

N—-1
5 = Z/b IS(B, u(x)) — S(00, u(x))|dx.

Notice, that X’; contains only the integrals over such intervals that S(co, u(x)) does not have singularities; see for example
Fig. 1.
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Let us consider first X; and then X,. Using (A1)-(A2) we have

N/2 p2m,2) N/2—1 p@m+12)
= fb L, 15(B.uG) = S(00, u(0)ldx + Z / IS(B. u(x)) — S(00, u(x))|dx
N/2 p(2m.2) N/2-1 b(2m+1.2)
< / S(B.0 —e)dx+ Y / (1—S(B,0 + &))dx
(2m,1) m=0 b(2m+‘],‘l)
N/2 N/2—-1
f 5(,3, 9 _ 8) Z(b(Zm,Z) _ b(ZmJ)) + (1 _ S(ﬂ, 0 + 8)) Z (b(2m+1,2) _ b(2m+1,1)).
m=0 m=0

Using the property (iii) of S(8, x) we have ¥; — 0as 8 — oo.
Consider now the second termin (3.9). On each interval [b%2 | p*+1.1] the function u(x) is monotone. Using the condition
(A3) we get

Umax

1
| ,(x)| = Ve IS(B,y) — S(o0, y)dy,

Umax
zas [ s - st
Umin Umin
where M = sup,cp p(X), Unin = infyeg U(x), and Upax = Sup,er U(x). Since S(B,x) — S(oco,x) as B — oo almost
everywhere on R (see property (iii) of S(8, x)) and |S(8,x)| < 1for all 8 € (0, oc], then by the Lebesgue dominance
convergence theorem, the integral in the last inequality converges to 0 as 8 — oo. Combining the results for ¥'; and X, we
complete the proof. O

Theorem 3.13. Let 0 > 0 be fixed and let U € WH*°(R, ) satisfy the 9-condition. We define a set Q as Q = supp(p) and a
ballB(U, ¢) = {u: |lu — Ully1.~ < &}. If the following condition is fulfilled

&Y D - . (3.10)
Px)p1(¥y)

then there exists ¢ > 0 that the Hammerstein operator #g : (0, oo] x B(U, ¢) is continuous at By € (0, oo] uniformly for all
ueBU,e).

sup <Sup
xeQ \yeQ

Proof. We consider the norm of | (#Hgu) (x) — (Hg,u)(x)| in W1o(R, ) given by (2.3). Here u is an arbitrary function from
the ball B(U, €). We have

g1t — FHpouullwrco = [(Hp1)(0) — (Hpo) (0)] + [|(82 0 Np)tt — (2 © Ny )l

Here 2 is given as in (3.5). We consider the first and the second term separately.

|(Hpu)(0) — (Hp,w) (0)] =

(0,y)
/ (S(B, u)) — S(Bo, uy))du(y)
R

)
a)(O ¥ o1
S(B, — S(Bo. d
o) H () H (B, ) = (o, uy) M(y)‘

IA

Cw||JV§u — Nﬂ0u||L1.

By Lemma 3.12|(#gu)(0) — (Hpg,u)(0)| uniformly converges to zero.
Under the conditions of the theorem £2 : L'(R, 1) — L®(R, ) is bounded. Indeed, using the Hélder inequality we get

w} (X, ) D
_— < X
pX)p1(y)

[1(£2 0 Np)u — (£2 0 Np)ullpe < C || Ngtt — Npoullp-

1S2v||0 < Cllullpr, Cg = sup (sup
xeQ \yeQ

Then it is easy to see that

Applying Lemma 3.12 we complete our proof. O

We formulate our main theorem.

Theorem 3.14 (Continuous dependence). Let > 0 be fixed and U € W' (R, n) satisfy the 6-condition. Assume that
1<p<ooand pi/p € IP(R, ), the operator 2 in (3.3) is a compact operator from [P (R, 1) to WH®(R, ), and (3.10) is
satisfied. If there exist solutions of the equation #gug = ug which belong to B(U,e) = {u : |[u — Ully1~ < &} for any
B € [Cg, o0], Cg > 0, then there exist a solution of H..u = u and it is a limit point of the net {ug}. Moreover, if the solution of
Hooll = U, say u*, is unique then {ug} — u*.
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Proof. We base our proof on Theorem 2.3. We choose D (in Theorem 2.3) to be a closure of B(U, ¢) = {u : lu—Ul|yy1.0 < €},
and A = 1/B and, thus, A = [0, 1/Cg]. The operator #g = Hy; : A x B{U,&) — WUL(R, w) is continuous as a
superposition of continuous operators, £2 and Ny, foreach A € A.The operator §2 : [P(R, u) — WL(R, w) is continuous
by the conditions of the theorem, and continuity of Ny, : B(U, &) — [P(R, u) follows from Lemma 3.3 (for . > 0) and
Theorem 3.8 (for A = 0). Moreover, from Theorem 3.13 we conclude that J#;,, : A x B(U, &) — W1L(R, w) is continuous
with respect to both variables.

The observation that the operators #f;,, are collectively compact as a superposition of a compact operator £2 and
collectively bounded operators -V, completes the proof. O

It is usually much easier to study the existence of solutions (which satisfy the 6-condition) of the fixed point problem
Hooll = u than Hgu = u, B < oo. The next theorem allows us to prove the existence of the fixed points of #y using some
knowledge about the fixed point of the limit problem. We give more details on the existence of fixed points of #,, in the
next section.

Theorem 3.15 (Existence). Let the conditions of Theorem 3.14 be satisfied, i.e, 6 > 0 be fixed, U € WL (R, u) satisfy the
0-condition, p1/p € IP(R, u), 1 < p < oo, the operator 2 : [P(R, u) — WI(R, ) is compact, and (3.10) is fulfilled. Let
By define an open subset of B(U, ¢) = {u : |lu — Ully1.00 < €}.If U is a unique fixed point of the operator #, on By such that
deg(Ho — I, By, 0) # 0, then Fg possesses a fixed point ug € By forany g > 1.

Proof. We define h; (u) = (H, —I)(u), wherel is anidentity operator, t € [0, 1],and k > 1. We show that h; is a homotopy,
i.e., (a) continuous with respect to t and u for all t € [0, 1] and u € B, (b) h;(u) # Oforanyt € [0, 1] and u € 9By. The
property (a) is satisfied. Indeed #/; is continuous (for details see the proof of Theorem 3.14) and thus, #,; —I is continuous
as well.

In the proof of (b) we first observe that #.,u # u for all u € 3B, since U is a unique solution on By and U € By. Assume
that #gu # u for all u € 9By does not hold true, i.e., there exist {u,} € 9By such that #g,u, = u,. From Theorem 3.14
it follows that u, — uy € 9By where uy = FH,Up. This contradiction competes the proof of (b). It is easy to see that h;
satisfies the conditions of Lemma 2.5 and thus, deg(h;, By, 0) = deg(# — I, By, 0) £ O forany t € [0, 1]. This implies the
existence of solutions of #/.u = u belongingto By € B(U,¢). O

4. Bumps in neural field model

Definition 4.1. Letd > 0 be fixed, and U be a stationary solution of (1.1) where P(u) = S(oco, u).AsetR[U] = {x : U(x) > 60}
is called an excited region of U, [4].

Definition 4.2. Let & > 0 be fixed, and U be a stationary solution of (1.1) where P(u) = S(oo, u). If the excited region of
U is such that R[U] = Jp_,[a®~", a®¥] and U'(a®) # 0,k = 1, ..., 2N then U(x) is called a bump, or more specificity,
N-bump.

The existence of 1-bump solutions was studied in [4]. Later, 2-bumps and multibumps were considered in [23,24]. In all
these cases the connectivity function was assumed to be translation homogeneous, i.e., w(x,y) = @ (x — y) where w (z)
is an even function. These type of solutions were linked to the mechanisms of the working memory, representations in the
head-direction system, and feature selectivity in the visual cortex; see [5] and references therein.

Remark 4.3. Although the condition U’'(a®) # 0,k = 1, ..., 2N was not postulated in [4], it was used for studying stability
of these bumps.

Theorem 4.4. A bump solution of (1.1) with P(u) = S(oo, u) belongs to W1 (R, w) and satisfy the 0-condition.
Proof. By Definition 4.2 and (3.1) a bump is given as

Ux) = / w(x,y)dy. (4.1)
RIU]
We use the norm (2.3) and get the following estimate

IUllwiee =

p(X) wy (X, y)dy’

XER R[U]

/ (0, y)dy‘ + sup
R[U]

< / (0, y)]dy + M sup / W, Yy, M = sup p(x).
R[U] R[U]

XeR XeR

Applying the property (i) of w to the first term of the sum, and the property (ii) to the second, we get |[U|yy1.00 < 00,
ie,ue WHe(R, n).
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Next, we show that U satisfies the 6-condition. By the definition of bumps the first condition of Definition 3.4 is fulfilled.
To show that the second one is fulfilled as well we consider the limit

lim U(x) = lim w(x, y)dy.
]

|x|—00 |x]— 00 RIU

The properties (iii) and (iv) of w allows us to apply the Lebesgue dominated convergence theorem, i.e., we get
limx— o0 U(x) = 0. This observations complete the proof. O

Below we give two examples where quite simple requirements on w(x, y) allow us to choose p, o1 in a such way that all
conditions of Theorem 3.14 are satisfied.

Example 4.5. For any w such that

< Ce W™V m=1,2, C,a,b>0, (4.2)

"mw(x,y)
oxm

the conditions of Theorem 3.14 are satisfied.
Proof. We set

pr) =e M, pkx) = ge—f""', (43)
for some positive & and S. To satisfy the first condition of Theorem 3.14 (p1/p € [P(R, u), 1 < p < o0), it is sufficient to
fulfill the following inequality p(« — 8) + 8 > 0 or, equivalently,

a>0 ifp=1, and B>apif p>1.

Let us now focus on the second condition of Theorem 3.14 (2 is compact). By Lemma 3.2 it is sufficient to prove compactness
of £2 given by (3.5). We use Lemma 2.2. We denote the kernel of the operator §2 as k(x, y). Using the estimates (4.2) and
(4.3) we have

C

lk(x, y)| < 2Ee*(afot)\x\e*(bﬂ‘f)lyl7 (4.4)
and

K ()| < | X%, V)| + 10" (%) / p (O || (%, ¥)|

e P1()px)
< loaxy) |(ng “(l‘;’;(x’ D eI @i gt
P1Y)pX o

Moreover, the requirement

a>a, b>4, (4.5)

implies that both conditions of Lemma 2.2 are satisfied. While it is obvious that k(x, -) € jid (R, u) for almost all x € R, (2.6)
is needed to be explained. We notice that

k(x, y)| < Cie™™,  [K,(x,y)| < Ge™ M, (4.6)
X

where c = a — o > 0, and Cy, G, > 0. First, we assign A to be some constant larger than c~! In(2C; /¢). Then, for |x| > A
we have Cie™“X < g/2 and forany x1, x5 : |x1] > A, [x2] > A we get

lk(x1,y) — k(x2, )] < Ci(e™ Ml 4 e72ly < ¢/2 4 6/2 = &. (4.7)
Next, using the mean value theorem we have
k(x1,y) — k(x2, )| < k(X y)(x2 — x1)]
< Ge™Mx, — x| < Golxa — x4, (4.8)
where X = Ax; + (1 — Axy), A € [0, 1]. We definesome A : 0 < A < ¢/C, and set
D1 = (00, —A), D, = (A, —A+ A), D3 =(—A+ A, —-A+2A),...,Dp = (—A+nA, +00),

where n is defined in a such way that —A 4+ nA > A, e.g., n = [2A/A] + 1. Therefore, (2.6) is fulfilled for j = 1, n due to
(4.7),and forj = 2,3, ..., n— 1due to (4.8). Thus, under assumptions (4.5) the operator £2 maps L” (R, u) to L*° (R, ) and
is compact.
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Combining all the restrictions on «, 8 we have

O<a<a O0<pB<b ifp=1,
O<a<a ap <B<b ifp>1.

It is clear that for any given a, b > 0,and 1 < p < oo it is always possible to choose « and g satisfying (4.9).
Finally, using (4.4) it is easy to see that (3.10) is valid. O

The case when w(x,y) = @ (x — y) seems to be more complicated. The main difficulty here is that the kernel of the
operator £2 becomes unbounded along the line y = x. We have not found a general approach how to deal with this problem.
However, the theory developed in previous section works very well for the family of firing rate functions, S(8, u), which
possesses the following property:

S(B,uy=0 forallu<H6—1, and B > 0. (4.10)

Example 4.6. Let w be given as w(x, y) = @ (x — y) with @ (z) such that
w™@) <™, m=1,2¢c>0. (4.11)

In addition to the properties of S, we assume (4.10). Then there exist such 7 > 0 that the conditions of Theorem 3.14 are
satisfied.

Proof. Let > 0 be fixed and U € W™ (R, ) satisfy the §-condition. Moreover, assume that U(x) = 6 has N solutions.
Then, by Lemma 3.6 there exist such & > 0,and b©®?, b™'V thatforanyu € B(U, &) = {u : |[u—U||y1. < &} the following
inequality U(x) < 6 — e forallx € (—oo, b@2) U (b™-D 00) is valid.
We introduce a set D = [b©®?, p®-D]. Next, we set T < ¢ and define
_ _ o™ —p®?), xeD,
px) = p1(x) = {07 xd&D.
This definition of p implies that I*(R, i) = L*(D) and W¥(R, u) = WHS(D) forany 1 < s < co. By Lemma 3.3 and
Theorem 3.8 .V is a continuous map from B(U, ¢) to LP(D). Using Lemmas 2.2 and 3.2 we next show that the operator £2 is
compact operator from [ (D) to W1°°(D). The operator £2 is given by

(Qu)(x) = / w'(y —x)u(y)dy, xeD.
D

Due to the estimate (4.11) the first condition of Lemma 2.2 is satisfied. It remains to check the second condition of Lemma 2.2.
Making use of the mean value theorem and (4.11) for m = 2, we get

o' (x1 —y) — @' =Wy < @' &= lplx2 —x] < Clxg —xi].
Here we assume X = Ax; + (1 — Ax3), A € [0, 1]. Similarly to Example 4.5 we choose some A : A < ¢/C and set
Dy = (0%, 6@ + 4), Dy = @ +4,0%? +24),...,D, = 0P +na, b™Y),

where n is defined in a such way that b®? 4+ nA < bV and b@? + (n + 1A > b®™ D eg,n = [NV — b©?)/A].
Thus, by Lemma 2.2 2 : [P(R, n) — L®(R, w) is compact. This implies £2 : [P(R, i) — W>(R, 1) be a compact operator;
see Lemma 3.2. Finally, we remark that (3.10) is fulfilled. Hence, all the conditions of Theorem 3.14 are verified.

In neural field theory one often assumes that w(x, y) is given as a homogeneous and distant dependent function,
ie., w(x,y) = @ (x —y), where & is an even function. In this case any stationary solution of (1.1) is translation invariant.
A typical example of a homogeneous connectivity function @ is

@ (x) = Mie ™M — Mye ™ My > My, my > m,. (4.12)

This function is called a ‘Mexican-hat’ function and models a neural network with local excitation and distal inhibition. This
function satisfies (4.11) and thus it is a particular case of Example 4.6. The existence of 1- and 2-bumps for the model (1.1)
with P(-) = S(o0, -) and this type of connection was shown in [4] and [23], respectively.

Next, we formulate our second theorem which rigorously shows that the bumps solutions in the steep firing rate regime
approach the bumps solutions of the stationary Wilson—-Cowan model in the unit step function approximation of the firing
rate function.

1 i.e., if U(x) is a solution so is U(x + ¢) for any ¢ € R.
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Theorem 4.7. Assume that w(x,y) = @ (x — y) with @ be an even function satisfying (4.11). Let 6 > 0 be fixed and
U be a symmetric 1-bump solution of (1.1) where P(-) = S(oo, -). Moreover, we let S(B, -) satisfy the condition (4.10).
Then, there exists ¢ > 0 such that for any t < ¢ and all B > 1 the operator #g has a fixed point ug € B.(U, &) =
{u — even function:||lu — U|ly 1.~ < &}. Moreover, ug depends continuously on §, i.e., ug — U as g — o0.

The proof of the theorem involves some knowledge of degree theory and topological fixed point index theory. We do not
recall any definitions and properties here but refer a reader to [18].

Proof. We notice that all conditions of Theorem 3.14 are fulfilled; see Example 4.6. This means that if u = #gu possesses
a solution ug € B(U, ¢) forall Cg < B < oo thenug — U. It remains to show that such ug exist. For that we are going to
use Theorem 3.15 where we choose By = B.(U, ¢). To be able to apply Theorem 3.15 we need to show that (a) U is a unique
fixed point of #Ho, in B.(U, ¢) and (b) deg(#~, — I, B.(U, €, 0)) # 0.

By Theorem 4.4, U satisfies the #-condition and U € W'*°(R, ). By Lemma 3.6 there exists ¢ > 0 such that any
ueBU,e¢e)={u:|lu=Uly.e~ < €} satisfies the 6-condition and possesses exactly two intersections with the straight line
6. Obviously, the same properties are valid for u € B.(U, ¢), i.e., for any u € B.(U, ¢) there is ¢, > 0 such that u(£c,) = 6,
u'(£c,) # 0. For u = U we denote the intersections as +a.

We define an auxiliary function

W(x):/ @ (y)dy.
0

Then, for any u € B.(U, ¢) there is defined v(x) = (Hoott)(x) = W(x 4 c¢,) — W(x — ¢,). In particular, we have
Ux)=Wx+a) —-Wkx-a), (4.13)
where

W(2a) =0, w(2a) < 0. (4.14)

Lemma 4.8. A symmetric 1-bump, U, is a unique fixed point of #, on B.(U, ¢).

Proof. Let us assume the contrary. Then there exist a sequence {u,} € B.(U, ¢) such thatu, — U and #H.u, = u,. Similarly
to (4.13) and (4.14) we have

upn(X) = W(x +a,) — Wk —ap) (4.15)
with
WQ2a) =0, @(2a,) <0 (4.16)

where we set a, = ¢y,

From Lemma 3.9 we have a, — a. The condition @ (2a) < 0 implies that any vicinity of a contains such a, that
W (2a,) # 6. This contradicts with (4.16) and thus, with u, being a fixed point of #.,. We conclude that U is an isolated
fixed point of the operator #., on B.(U, €). Therefore, without loss of generality we assume that B, (U, ¢) does not contain
any other fixed points than U. We emphasize here, that U is not an isolated fixed point of #,, on W (R, ) due to the
translation invariance of bumps in a homogeneous neural field. O

Due to Lemma 4.8 and definition of the topological fixed point index we have
deg(}(oo - Iv Be(Ua 8)5 O) = lnd(ﬂOOs BE(Uv 8))

We notice that ¢, maps B.(U, €) into a manifold Eyy € W (R, n), where Ey = {v : v = W(-+¢) —W(-—¢), c €
[m, M]}. The interval [m, M] is chosen in a such way that it contains ¢, for all u € B.(U, ¢). By Lemma 3.6 this is possible to
achieve if one chooses, for example, m = 0,and M = b™:V,

We define ¢ : [m,M] — Ey where ¢(c) = v(x) = WE +c) — W& — c), x € R. Next, we show that ¢ is a
homeomorphism.

Lemma 4.9. The map ¢ is a homeomorphism from [m, M] to Ey;, and Ey; is ANR.?

Proof. First we show that ¢ is bijection. It is a surjection since Ey,; is defined as an image of [m, M]. To prove that ¢ is injection
we assume the contrary: Let ¢q, c; € [m, M] and ¢; # ¢, imply v{ = v,. From vy = v, and vy, v; € WL (R, ) it follows
that [v1(x) — v2(x)| = 0 for almost all x € R. Applying the mean value theorem we get
[v1(%) —v2(X)| = [Wx+c) —WE—c1) = WEx+c) + WE—c)
=|lox+& +o*—n)|lcit —cz] =0, a.e.onR (4.17)

2 Absolute Neighborhood Retract, see [18].
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where &, n € [cq, c3]. As ¢1 # c; we have
w(x+&)=—w(x—n) ae onR,
or, that is equivalent,
w(x+2(¢+n) =w() ae.onR.

The last equality contradicts with the property (iv) of w. Thus, ¢ is a bijective map. Next, we observe that ¢ is differentiable
forall c € [m, M] and ¢’(c) # 0. Indeed, as we assume the contrary we get

w(x+c)=—-w((x—c), ae.onR

which implies 4c periodicity of . This contradicts with the property (iv) of w. Hence, we conclude that ¢ defines a
homeomorphism on [m, M]. Moreover, since [m, M] is a closed convex subset on R then it is ANR. By properties of
homeomorphism ¢([m, M]) = Ey; is ANRtoo. O

Let #, be the excision of #., on Ey N B.(U, ¢), i.e.,

H = Hoolp, e - Ew NBe(U, &) — Eu. (4.18)

The fixed point U belongs to EyyNB, (U, ¢) and thus, by the property of the topological fixed point index [18] 7. is admissible>
compact map and

ind(Hso, Be(U, €)) = ind(H.,, Ey N Be(U, €)).
Next, we apply the topological invariance property of the index and get
ind(#.,, Em N Be(U, &)) = ind(¢ " o H., 0 ¢, D)

where D denotes the following set ¢~ (Hso (Ey N Be(U, €))).
We prove the following lemma which enables us to compute ind(¢~' o H 09, D).

Lemma 4.10. There exist such 8§ > 0 that D = ¢~ (Hse(Ey NBe(U, €))) D [a— 8, a+ §].

Proof. The map ¢ : u — ¢, is defined for allu € B.(U, ¢). Let v(x) = W(x + ¢) — W(x — ¢), ¢ € [m, M]. Then using the
norm (2.3) in W (R, ), the equality (4.13), and the mean value theorem we have

U —vlwie = (@) + @)l + (& + &) + @ (x — n2)ll) [c —al,
&, ni € [c,al,i =1, 2. Thus, using (4.11) we get
lU = vyt <4Clc —al| <e,
forallc € [a— 6, a+ 8], where § < &/4C. From this observation we conclude that
c(B(U,e)NEy) Dla—3d,a+ 4]

which implies

Hoo(Be(U,e) NEy) DEs={v:v=W(+c¢c)—W(—c),cela—35,a+ 6]}
Furthermore, it follows that

¢ (Hoo(Be(U, &) NEy)) D¢~ "(Es) =[a—8,a+35]. O

Finally, we have all the ingredients to calculate ind(¢~! o #., o ¢, D). We define the finite dimension operator
T = ¢~ o #, o ¢ which, as we have shown above, maps [a — §,a + §] — [m, M]. It is easy to check that a is a fixed
point of T, i.e., T(a) = a. Moreover a is an isolated fixed point of T. The latter statement follows from U being the isolated
fixed point of J#¢,, and topological invariance property of the index. The topological index of a finite dimensional map can
be calculated as

ind(T, D) = sgn(T’(a) — 1);

see [25].

The following equality holds true for allc € [a — §, a + §]

W(T()4+c)—W(T(c)—c)=6.

3 A continuous map g : B— B is called admissible provided B is an open subset of B and the fixed point set of g is compact; see [18].
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Using the implicit function theorem and the chain rule for differentiation we find
T'(a) = @ (0) + w(2a).
w (0) + @ (2a)
Thus, we have
deg(Hso, B.(U, €), 0) = ind(T, D) = sgn(w (2a)) = 1.

Combining all the results, we get that there exists Cg >> 1thatu = Fgu possesses a solutionug € B.(U, ¢) forall > (g
and ug — U. We also notice here that ug is a symmetric function which satisfy the -condition and has two intersection
points with straight line6. O

5. Conclusions and outlook

In the present paper we have studied the properties of the one-parameter family of Hammerstein operators #g,
0 < B < oo given by (3.2). Fixed points of an operator belonging to this family are stationary solutions of (1.1). For
functions in W 9(R, ), 1 < q < oo we have introduced the definition of the #-condition, which means that we consider
functions with a finite number of intersection points with the line u = 6. We have shown that the continuous dependence
theorem (Theorem 3.14) holds in a vicinity of a function U € W1 (R, u) satisfying the #-condition, while for the case
Ue WY, 1), 1 < q < oo the conditions of the theorem are not satisfied. Next, with Theorem 3.15 we show that if s,
possess an unique fixed point with some additional assumptions, then the solutions of the fixed point problem #gu = u
exist for 8 > Cg. This theorem allows us to prove the existence of multibump solutions of (1.1) with sigmoidal firing rate
functions.

We believe that these results can be very useful in neural-field theory. We have given two examples of restrictions on the
connectivity functions (one with inhomogeneous connectivity and the second one for homogeneous connectivity) where all
the conditions of the continuous dependence theorem are satisfied. Moreover, for a homogeneous type of connectivity we
have proved the existence of 1-bump solutions for (1.1) with steep gradient continuous firing rate function, S(8, -), satisfying
the condition (4.10). Although the latter condition imposes restrictions on the choice of S(8, -), we would like to emphasize
that this result is more general than one obtained in [14,15]. Here we would like to point out that the results of this paper
can be useful for studying not only continuous dependence and existence of bumps but also stability of these solutions. The
methods for studying stability of bumps, Evans function technique and Amari approach, assume that small perturbation of a
bump solution possess the same number of intersection with a straight line 8 as a bump itself. As we have shown, this is the
case only if we work in the Sobolev space W 1> (R, ). However, if one studies stability of bump in W'4(R, 1), 1 < q < oo,
then any vicinity of a bump contains functions which do not satisfy the 6-condition, and thus, these stability approaches do
not work.

Acknowledgments

The authors would like to thank Professor Yury Nepomnyashchikh (Dept. of Mathematics and Informatics, Eduardo
Mondlane University, Mozambique) for fruitful and stimulating discussions during the preparation of this paper, and
Professor Valerii Obukhovskii (Dept. of Mathematics, Voronezh State University, Russia) for useful remarks. John Wyller also
wishes to thank the School of Mathematical Sciences, University of Nottingham and Professor Stephen Coombes (School of
Mathematical Sciences, University of Nottingham, United Kingdom) for the kind hospitality during the stay. This research
was supported by the Norwegian University of Life Sciences. The work has also been supported by The Research Council
of Norway under the grant No. 178892 (eNEURO-multilevel modeling and simulation of the nervous system) and the grant
No. 178901 (Bridging the gap: disclosure, understanding and exploitation of the genotype-phenotype map).

References

[1] H.R. Wilson, ].D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons, Biophysical Journal 12 (1972) 1-24.
[2] H.R. Wilson, ].D. Cowan, A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue, Kybernetik 13 (1973) 55-80.
[3] S. Amari, Homogeneous nets of neuron-like elements, Biol. Cybernet. 17 (1975) 211-220.
[4] S. Amari, Dynamics of pattern formation in literal-inhibition type neural fields, Biol. Cybernet. 27 (1977) 77-87.
[5] S. Coombes, Waves, bumps, and patterns in neural field theories, Biol. Cybernet. 93 (2005).
[6] J.K. Hale, S.M.V. Lunel, Introduction to Functional Differentail Equations, Springer Verlag, 1993, p. 447.
[7] E. Zeidler, Nonlinear Functional Analysis, vol.1: Fixed-Point Theorems, Springer, 1986, p. 909.
[8] O.Faugeras, F. Grimbert, J.-J. Slotine, Absolute stability and complete synchronization in a class of neural field models, SIAM ]J. Appl. Math. 63 (2008)
205-250.
[9] G.B. Ermentrout, ]J.B. McLeod, Existence and uniqueness of travelling waves for a neural network in: Proceedings of the Royal Society of Edinburgh
123A, 1993, pp. 461-478.
[10] G.Faye, O. Faugeras, Some theoretical and numerical results for delayed neural field equations, Physica D 239 (2010) 561-579.
[11] R. Potthast, P. Beim Graben, Existence and properties of solutions for neural field equations, Math. Methods Appl. Sci. 33 (8) (2010) 935-949.
[12] S.Coombes, M.R. Owen, Evans functios for integral field equations with Heavisite firing rate function, SIAM Journal on Applied Dynamical Systems 34
(2004) 574-600.
[13] J. Wyller, P. Blomquist, G.T. Einevoll, Turing instability and pattern formation in a two-population neuronal network model, Physica D 225 (2007)
7593.



A. Oleynik et al. / ]. Math. Anal. Appl. 398 (2013) 335-351 351

[14] K. Kishimoto, S. Amari, Existence and stability of local excitations in homogeneous neural fields, J. Math. Biol. 7 (1979) 303-318.

[15] A. Oleynik, A. Ponosov, J. Wyller, Iterative schemes for bump solutions in a neural field model, In Anna Oleynik, Ph.D. Thesis: Mathematical aspects of
localized activity in neural models, ISBN 978-82-575-1000-8, ISSN 1503-1667, 2011, Aas, Norway, pp. 15-32.

[16] V. Kostrykin, A. Oleynik, On the existence of unstable bumps in neural networks, 2011, Preprint arXiv:1112.2941 [math.DS].

[17] S. Coombes, H. Schmidt, Neural fields with sigmoidal firing rates: Approximate solutions, Discrete Contin. Dyn. Syst. 28 (2010) 1369-1379.

[18] A. Granas, The Leray-Schuder index and the fixed point theorey for arbitrary ANRs, Bull. Soc. Math. France 100 (1972) 209-228.

[19] M.A. Krasnosel’skii, A.I. Koshelev, S.G. Mikhlin, L.S. Rakovshchik, V.Ya. Stet’senko, P.P. Zabreiko, Integral Equations, Noordhoff International Publishing,
Leyden, 1975, p. 443.

[20] V. Hutson, J.S. Pym, M.J. Cloud, Applications of Functional Analysis and Operator Theory, 2nd Edition, vol. 200, Elsevier, 2005.

[21] N. Azbelev, V. Maksimov, L. Rakhmatullina, Introduction to the Theory of Functional Differential Equations: Methods and Applications, Hindawi
Publishing Corporation, New York, Cairo, 2007, p. 314.

[22] A.N.Kolmogorov, S.V. Fomin, Introductory Real Analasis, Dover Publications Inc, 1975, p. 403.

[23] C.R.Laing, W.C. Troy, Two-bump solutions of Amari-type models pf neuronal patter formation, Physica D 178 (2003) 190-218.

[24] C. Laing, W.C. Troy, B. Gutkin, G.B. Ermentrout, Multiple bumps in a neural model of working memory, SIAM J. Appl. Math. 63 (2005) 62-97. 1.

[25] M.A. Krasnosel’skii, P.P. Zabreiko, Geometrical methods of nonlinear analysis, in: Grundlehren Der Mathematischen Wissenschaften, in: A Series of
Comprehensive Studies in Mathematics, vol. 263, Springer Verlag, Berlin-Heidelberg-New York-Tokyo, 1984, p. 409.


http://arxiv.org/1112.2941

	On the properties of nonlinear nonlocal operators arising in neural field models
	Introduction
	Preliminaries
	Main results
	Bumps in neural field model
	Conclusions and outlook
	Acknowledgments
	References


