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In this paper, we study the existence of a positive periodic solution for second-order singu-
lar differential equations with impulsive conditions. The proof is based on the mountain-
pass theorem. We show that this positive periodic solution is generated by impulses.
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1. Introduction

In this paper, we discuss the T -periodic solution for second-order non-autonomous singular problems

u′′(t) −
1

uα(t)
= e(t) (1.1)

under impulsive conditions

∆u′(tj) = Ij(u(tj)), j = 1, 2, . . . , p − 1, (1.2)

where α ≥ 1, e ∈ L1([0, T ], R) is T -periodic, ∆u′(tj) = u′(t+j ) − u′(t−j ) with u′(t±j ) = limt→t±j
u′(t); tj, j = 1, 2, . . . , p − 1,

are the instants where the impulses occur and 0 = t0 < t1 < t2 < · · · < tp−1 < tp = T , tj+p = tj + T ; Ij : R →

R(j = 1, 2, . . . , p − 1) are continuous and Ij+p ≡ Ij.
Impulsive differential equations have been studied by many authors [4,5,16,17,19,18,20]. Some classical tools have

been used to study such problems. These classical techniques include the coincidence degree theory of Mawhin [17], the
method of upper and lower solutions [4], some fixed point theorems [5], and variational methods [16,19,18,20,22,23,25].
In 2008, Tian and Ge [22] first studied the existence of solutions for impulsive differential equations by using a variational
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method. Later, Nieto and O’Regan [16] further developed the variational framework for impulsive problems and established
existence results for a class of impulsive differential equations with Dirichlet boundary conditions. From then on, the
variational method has been a powerful tool in many research fields, including the above-concerned impulsive problems
and homoclinic solutions for Hamiltonian systems [12–14,25].

On the other hand, during the last three decades, singular differential equations with different kinds of boundary condi-
tions have also been investigated extensively in the literature by using either topological methods or variational methods;
see [1–3,6,8–11,24] and the references therein. Here, we recall one famous result proved by Lazer and Solimini [11] in 1987.

Theorem 1.1 ([11]). Assume that e ∈ L1([0, T ], R) is T -periodic. Then problem (1.1) has a positive T-periodic weak solution if
and only if

 T
0 e(t)dt < 0.

Compared with the classical impulsive problems or singular problems, singular problems with impulsive effects have
been scarcely studied; see [7,21]. Therefore at this stage it is important to point out the dynamical differences between both
models. For example, from Theorem 1.1, if

 T
0 e(t)dt ≥ 0, then problem (1.1) does not have a positive T -periodic weak

solution. However, if the impulses happen, for this singular problem there may exist a positive T -periodic weak solution.
Inspired by the above facts, the aim of this paper is to reveal a new existence result on a positive T -periodic solution

for singular problem (1.1) when impulsive effects are considered, i.e., problem (1.1)–(1.2). Indeed, this periodic solution is
generated by impulses. Here, we say that a solution is generated by impulses if this solution is non-trivial when Ij ≢ 0 for
some 1 < j < p− 1, but it is trivial when Ij ≡ 0 for all 1 < j < p− 1. For example, if problem (1.1)–(1.2) does not possess a
positive periodic solution when Ij ≡ 0 for all 1 < j < p − 1, then a positive periodic solution u of problem (1.1)–(1.2) with
Ij ≢ 0 for some 1 < j < p − 1 is called a positive periodic solution generated by impulses; see [25].

Our result is presented as follows.

Theorem 1.2. Assume that the following hold.

(S1) e ∈ L1([0, T ], R) is T -periodic and
 T
0 e(t)dt ≥ 0.

(S2) There exist two constants m,M such that, for any s ∈ R,

m ≤ Ij(s) ≤ M, j = 1, 2, . . . , p − 1,

where m ≤ M < −
1

p−1

 T
0 e(t)dt ≤ 0.

Then problem (1.1)–(1.2) has at least a positive T-periodic solution.

2. Preliminaries

Set

H1
T = {u : R → R| u is absolutely continuous, u′

∈ L2((0, T ), R) and u(t) = u(t + T ) for t ∈ R}

with the inner product

(u, v) =

 T

0
u(t)v(t)dt +

 T

0
u′(t)v′(t)dt, ∀u, v ∈ H1

T .

The corresponding norm is defined by

∥u∥H1
T

=

 T

0
|u(t)|2dt +

 T

0
|u′(t)|2dt

 1
2

, ∀u ∈ H1
T .

Then H1
T is a Banach space (in fact it is a Hilbert space).

In order to study problem (1.1)–(1.2), for any λ ∈ (0, 1), we consider the following modified problem:
u′′(t) + fλ(u(t)) = e(t), a.e. t ∈ (0, T ),
∆u′(tj) = Ij(u(tj)), j = 1, 2, . . . , p − 1, (2.1)

where fλ : R → R is defined by

fλ(s) =


−

1
sα

, s ≥ λ,

−
1
λα

, s < λ.

Following the ideas of [16,19,20], we introduce the following concept of a weak solution for problem (2.1).
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Definition 2.1. We say that a function u ∈ H1
T is a weak solution of problem (2.1) if T

0
u′(t)v′(t)dt +

p−1
j=1

Ij(u(tj))v(tj) −

 T

0
fλ(u(t))v(t)dt +

 T

0
e(t)v(t)dt = 0

holds for any v ∈ H1
T .

Let Fλ ∈ C1(R, R) be defined by

Fλ(s) =

 s

1
fλ(t)dt,

and consider the functional

Φλ : H1
T → R

defined by

Φλ(u) :=
1
2

 T

0
|u′(t)|2dt +

p−1
j=1

 u(tj)

0
Ij(s)ds −

 T

0
Fλ(u(t))dt +

 T

0
e(t)u(t)dt. (2.2)

Clearly, Φλ is well defined on H1
T , and is a continuously Gáteaux differentiable functional whose Gáteaux derivative is the

functional Φ ′

λ(u), given by

Φ ′

λ(u)v =

 T

0
u′(t)v′(t)dt +

p−1
j=1

Ij(u(tj))v(tj) −

 T

0
fλ(u(t))v(t)dt +

 T

0
e(t)v(t)dt, (2.3)

for any v ∈ H1
T . Moreover, it is easy to verify that Φλ is weakly lower semi-continuous. Indeed, if {un} ⊂ H1

T , u ∈ H1
T , and

un ⇀ u, then {un} converges uniformly to u on [0, T ] and un → u on L2([0, T ]), and combining the fact that lim infn→∞

∥un∥H1
T

≥ ∥u∥H1
T
, we have

lim inf
n→∞

Φλ(un) = lim inf
n→∞


1
2
∥un∥

2
H1
T

−
1
2

 T

0
|un(t)|2dt +

p−1
j=1

 un(tj)

0
Ij(s)ds

−

 T

0
Fλ(un(t))dt +

 T

0
e(t)un(t)dt



≥
1
2

 T

0
|u′(t)|2dt +

p−1
j=1

 u(tj)

0
Ij(s)ds −

 T

0
Fλ(u(t))dt +

 T

0
e(t)u(t)dt

= Φλ(u).

By the standard discussion, the critical points of Φλ are the weak solutions of problem (2.1); see [16,19].

3. Proof of the main result

Now, we give the proof of Theorem 1.2 by using the mountain-pass theorem; see [15].
Step 1. We verify that the functional Φλ satisfies the Palais–Smale condition.

Let a sequence {un} in H1
T satisfy that Φλ(un) is bounded and Φ ′

λ(un) → 0, i.e., there exist a constant c1 > 0 and a
sequence {ϵn}n∈N ⊂ R+ with ϵn → 0 as n → +∞ such that, for all n,

 T

0


1
2
|u′

n(t)|
2
− Fλ(un(t)) + e(t)un(t)


dt +

p−1
j=1

 un(tj)

0
Ij(s)ds

 ≤ c1, (3.1)

and, for every v ∈ H1
T ,

 T

0
[u′

n(t)v
′(t) − fλ(un(t))v(t) + e(t)v(t)]dt +

p−1
j=1

Ij(un(tj))v(tj)

 ≤ ϵn∥v∥H1
T
. (3.2)

Now we show that {un} is bounded in H1
T . Taking v(t) ≡ −1 in (3.2), one has

 T

0
[fλ(un(t)) − e(t)]dt −

p−1
j=1

Ij(un(tj))

 ≤ ϵn
√
T for all n.
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By (S1)–(S2), we have T

0
fλ(un(t))dt

 ≤ ϵn
√
T +

 T

0
e(t)dt +

p−1
j=1

|Ij(un(tj))|

≤ ϵn
√
T +

 T

0
e(t)dt + (p − 1)|m| := c2.

Note that, for any t ∈ [0, T ], fλ(un(t)) < 0. Thus T

0
|fλ(un(t))|dt =

 T

0
fλ(un(t))dt

 ≤ c2.

On the other hand, take, in (3.2), v(t) ≡ wn(t) := un(t) − ūn, where ūn =
1
T

 T
0 un(t)dt . By Proposition 1.1 of [15], we have

c3∥wn∥H1
T

≥

 T

0
[w′

n(t)
2
− fλ(un(t))wn(t) + e(t)wn(t)]dt +

p−1
j=1

Ij(un(tj))wn(tj)

≥ ∥w′

n∥
2
L2 − (c2 + ∥e∥L1)∥wn∥L∞ + (p − 1)m∥wn∥L∞

= ∥w′

n∥
2
L2 − (c2 + ∥e∥L1 − (p − 1)m)∥wn∥L∞

≥ ∥w′

n∥
2
L2 − c4∥wn∥H1

T
,

where c3 and c4 are two positive constants. Thus,
∥w′

n∥
2
L2 ≤ (c3 + c4)∥wn∥H1

T
.

Consequently, using the Wirtinger inequality, we get the existence of c5 > 0 such that

∥u′

n∥
2
L2 ≤ c5. (3.3)

Now, suppose that
∥un∥H1

T
→ +∞ as n → +∞.

Since (3.3) holds, we have, passing to a subsequence if necessary, that either
Mn := max un → +∞ as n → +∞, or
mn := min un → −∞ as n → +∞.

(i) Assume that the first possibility occurs. By (S2) and the fact that fλ < 0, one has T

0
[Fλ(un(t)) − e(t)un(t)] dt −

p−1
j=1

 un(tj)

0
Ij(s)ds

=

 T

0

 Mn

1
fλ(s)ds −

 Mn

un(t)
fλ(s)ds


− e(t)un(t)


dt −

p−1
j=1


|Mn|

0
Ij(s)ds −

p−1
j=1

 un(tj)

|Mn|

Ij(s)ds

≥

 T

0
Fλ(Mn)dt −

 T

0
Mne(t)dt − max

t∈[0,T ]

|Mn − un(t)|
 T

0
|e(t)|dt − (p − 1)M|Mn|

+ (p − 1)m max
t∈[0,T ]

∥ Mn| − un(t)|

≥ TFλ(Mn) − Mn

 T

0
e(t)dt − (p − 1)MMn − ∥e∥L1 |Mn − mn| + (p − 1)m|Mn − mn|

= TFλ(Mn) − Mn

 T

0
e(t)dt + (p − 1)M


− ∥e∥L1


 t̂n

t̄n
u′

n(t)dt

+ (p − 1)m


 t̂n

t̄n
u′

n(t)dt


≥ TFλ(Mn) − Mn

 T

0
e(t)dt + (p − 1)M


−

∥e∥L1 − (p − 1)m

  T

0
|u′

n(t)|dt,

where un(t̂n) = Mn and un(t̄n) = mn. Thus, using the Hölder inequality, one has

− Mn

 T

0
e(t)dt + (p − 1)M


+ TFλ(Mn) ≤

 T

0
[Fλ(un(t)) − e(t)un(t)] dt

−

p−1
j=1

 un(tj)

0
Ij(s)ds +

√
T

∥e∥L1 − (p − 1)m


∥u′

n∥L2 . (3.4)
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If α = 1, then Fλ(Mn) = − lnMn. By (S2), one has

−Mn

 T

0
e(t)dt + (p − 1)M


− T lnMn → +∞ as n → +∞.

If α > 1, then Fλ(Mn) = −
1

α−1


1

Mα−1
n

− 1

. By (S2), one has

−Mn

 T

0
e(t)dt + (p − 1)M


−

1
α − 1


1

Mα−1
n

− 1


→ +∞ as n → +∞.

From (3.1) and (3.3), we see that the right-hand side of (3.4) is bounded, which is a contradiction.
(ii) Assume that the second possibility occurs, i.e., mn → −∞ as n → +∞. We replace Mn by −mn in the preceding

arguments, and we also get a contradiction. So {un} is bounded in H1
T .

Since H1
T is a reflexive Banach space, there exists a subsequence of {un}, denoted again by {un} for simplicity, and u ∈ H1

T
such that un ⇀ u in H1

T ; then, by the Sobolev embedding theorem, we get un → u in C([0, T ]) and un → u in L2([0, T ]). So

 T

0
(fλ(un(t)) − fλ(u(t)))(un(t) − u(t))dt → 0,

p−1
j=1

(Ij(un(tj)) − Ij(u(tj)))(un(tj) − u(tj)) → 0, T

0
e(t)(un(t) − u(t))dt → 0,

(Φ ′

λ(un) − Φ ′

λ(u))(un − u) → 0, as n → ∞.

(3.5)

By (2.3), we have

(Φ ′

λ(un) − Φ ′

λ(u))(un − u) =

 T

0
|u′

n − u|2dt +

 T

0
e(t)(un(t) − u(t))dt

+

p−1
j=1

(Ij(un(tj)) − Ij(u(tj)))(un(tj) − u(tj))

−

 T

0
(fλ(un(t)) − fλ(u(t)))(un(t) − u(t))dt. (3.6)

By (3.5) and (3.6), and since un → u in L2([0, T ]), we have ∥un − u∥H1
T

→ 0 as n → ∞. That is, {un} strongly converges to u

in H1
T , which means that the Palais–Smale condition holds for Φλ.

Step 2. Let

Ω =


u ∈ H1

T | min
t∈[0,T ]

u(t) > 1


,

and

∂Ω = {u ∈ H1
T |u(t) ≥ 1 for all t ∈ (0, T ), ∃tu ∈ (0, T ) : u(tu) = 1}.

We show that there exists d > 0 such that infu∈∂Ω Φλ(u) ≥ −d whenever λ ∈ (0, 1).
For any u ∈ ∂Ω , there exists some tu ∈ (0, T ) such that mint∈[0,T ] u(t) = u(tu) = 1. By (2.2), (S2), and extending the

functions by T -periodicity, we have

Φλ(u) =

 tu+T

tu


1
2
|u′(t)|2 − Fλ(u(t)) + e(t)u(t)


dt +

p−1
j=1

 u(tj)

0
Ij(s)ds

≥
1
2

 tu+T

tu
|u′(t)|2dt +

 tu+T

tu
e(t)(u(t) − 1)dt +

 tu+T

tu
e(t)dt

+

p−1
j=1

 1

0
Ij(s)ds +

p−1
j=1

 u(tj)

1
Ij(s)ds

≥
1
2
∥u′

∥
2
L2 − ∥e∥L1 max

t∈[0,T ]

(u(t) − 1) − ∥e∥L1 + (p − 1)m max
t∈[0,T ]

(u(t) − 1) + (p − 1)m

=
1
2
∥u′

∥
2
L2 − ∥e∥L1

 ťu

tu
u′(t)dt − ∥e∥L1 + (p − 1)m

 ťu

tu
u′(t)dt + (p − 1)m
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≥
1
2
∥u′

∥
2
L2 −


∥e∥L1 − (p − 1)m

  tu+T

tu
|u′(t)|dt − ∥e∥L1 + (p − 1)m,

where ťu ∈ [0, T ] and maxt∈[0,T ] u(t) = u(ťu). Applying the Hölder inequality, we get

Φλ(u) ≥
1
2
∥u′

∥
2
L2 −

√
T

∥e∥L1 − (p − 1)m


∥u′

∥L2 − ∥e∥L1 + (p − 1)m.

The above inequality shows that

Φλ(u) → +∞ as ∥u′
∥L2 → +∞.

For any u ∈ ∂Ω , it is easy to verify the fact that ∥u∥H1
T

→ +∞ is equivalent to ∥u′
∥L2 → +∞. Indeed, when ∥u′

∥L2

→ +∞, it is clear that ∥u∥H1
T

→ +∞. When ∥u∥H1
T

→ +∞, if not, we assume that ∥u′
∥L2 is bounded; then ∥u∥L2 → +∞.

Since mint∈[0,T ] u(t) = 1, we have

u(t) − 1 =

 t

tu
u′(s)ds ≤

 T

0
|u′(s)|ds ≤

√
T
 T

0
|u′(t)|2dt

 1
2

.

Therefore, u is bounded in L2(0, T ), which is a contradiction. Hence

Φλ(u) → +∞ as ∥u∥H1
T

→ +∞, ∀u ∈ ∂Ω,

which shows that Φλ is coercive. Thus it has a minimizing sequence. The weak lower semi-continuity of Φλ yields

inf
u∈∂Ω

Φλ(u) > −∞.

It follows that there exists d > 0 such that infu∈∂Ω Φλ(u) > −d for all λ ∈ (0, 1).
Step 3. We prove that there exists λ0 ∈ (0, 1) with the property that, for every λ ∈ (0, λ0), any solution u of problem (2.1)
satisfying Φλ(u) > −d is such that minu∈[0,T ] u(t) ≥ λ0, and hence u is a solution of problem (1.1)–(1.2).

Assume on the contrary that there are sequences {λn}n∈N and {un}n∈N such that

(i) λn ≤
1
n ;

(ii) un is a solution of (2.1) with λ = λn;
(iii) Φλn(un) ≥ −d;
(iv) mint∈[0,T ] un(t) < 1

n .

Since fλn < 0 and
 T
0 [fλn(un(t)) − e(t)]dt = 0, one has

∥fλn(un(·))∥L1 ≤ c7, for some constant c7 > 0.

Hence

∥u′

n∥L∞ ≤ c8, for some constant c8 > 0. (3.7)

From Φλn(un) ≥ −d it follows that there must exist two constants l1 and l2, with 0 < l1 < l2, such that

max{un(t); t ∈ [0, T ]} ⊂ [l1, l2].

If not, un would tend uniformly to 0 or +∞. In both cases, by (S1)–(S2) and (3.7), we have

Φλn(un) → −∞ as n → +∞,

which contradicts Φλn(un) ≥ −d.
Let τ 1

n , τ 2
n be such that, for n sufficiently large,

un(τ
1
n ) =

1
n

< l1 = un(τ
2
n ).

Multiplying the equation u′′
n(t) + fλ(un(t)) = e(t) by u′

n, and integrating it on [τ 1
n , τ 2

n ], or on [τ 2
n , τ 1

n ], we get

Ψ :=

 τ2
n

τ1
n

u′′

n(t)u
′

n(t)dt +

 τ2
n

τ1
n

fλn(un(t))u′

n(t)dt

=

 τ2
n

τ1
n

e(t)u′

n(t)dt. (3.8)

It is easy to verify that

Ψ = Ψ1 +
1
2
[u′2

n (τ 2
n ) − u′2

n (τ 1
n )],
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where

Ψ1 =

 τ2
n

τ1
n

fλn(un(t))u′

n(t)dt.

From (S1), (3.4) and (3.8), it follows that Ψ is bounded, and consequently Ψ1 is bounded.
On the other hand, it is easy to see that

fλn(un(t))u′

n(t) =
d
dt

[Fλn(un(t))].

Thus, we have

Ψ1 = Fλn(l1) − Fλn


1
n


.

From the fact that Fλn

 1
n


→ +∞ as n → +∞, we obtain Ψ1 → −∞, i.e., Ψ1 is unbounded. This is a contradiction.

Step 4. Φ has a mountain-pass geometry for λ ≤ λ0.
Fixing λ ∈ (0, λ0], one has

Fλ(0) =

 0

1
fλ(s)ds = −

 1

0
fλ(s)ds

= −

 λ

0
fλ(s)ds −

 1

λ

fλ(s)ds

=
1

λα−1
−

 1

λ

fλ(s)ds,

which implies that

Fλ(0) > −

 1

λ

fλ(s)ds =

 λ

1
fλ(s)ds = Fλ(λ).

Thus we have

Φλ(0) = −TFλ(0) < −TFλ(λ)

=


T ln λ, if α = 1,

−
T

α − 1


1

λα−1
− 1


, if α > 1. (3.9)

Consider λ ∈ (0, λ0] ∩ (0, e−d) ∩


0,


T
T+d(α−1)

1/(α−1)

. Thus it follows from (3.9) that Φλ(0) < −d.

Also, using (S2), we can choose a constant R > 1 sufficiently large such that

−


M(p − 1) +

 T

0
e(t)dt


R −

T
α − 1


1 −

1
Rα−1


> d,

and

−


M(p − 1) +

 T

0
e(t)dt


R − T ln R > d.

Thus, R ∈ H1
T , and

Φλ(R) =

p−1
j=1

 R

0
Ij(s)ds − TFλ(R) + R

 T

0
e(t)dt

≤


M(p − 1)R + T ln R + R

 T

0
e(t)dt, if α = 1

M(p − 1)R +
T

α − 1


1 −

1
Rα−1


+ R

 T

0
e(t)dt, if α > 1

=



M(p − 1) +

 T

0
e(t)dt


R + T ln R, if α = 1

M(p − 1) +

 T

0
e(t)dt


R +

T
α − 1


1 −

1
Rα−1


, if α > 1

< −d.
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Since Ω is a neighborhood of R, 0 ∉ Ω , and

max{Φλ(0), Φλ(R)} < inf
x∈∂Ω

Φλ(u),

Step 1 and Step 2 imply that Φλ has a critical point uλ such that

Φλ(uλ) = inf
h∈Γ

max
s∈[0,1]

Φλ(h(s)) ≥ inf
x∈∂Ω

Φλ(u),

where

Γ = {h ∈ C([0, 1],H1
T ) : h(0) = 0, h(1) = R}.

Since infu∈∂Ω Φλ(uλ) ≥ −d, it follows from Step 3 that uλ is a positive solution of problem (1.1)–(1.2). The proof of the main
result is complete.
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