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a b s t r a c t

In this paper, we prove a blow-up criterion of strong solutions to 3D viscous isentropic
compressible magnetohydrodynamic equations. It is shown that if ρ and H satisfy
∥ρ∥L∞(0,T ;L∞) + ∥H∥L∞(0,T ;Lr ) < ∞, for any 24/5 ≤ r ≤ ∞ and 3µ > λ, then the strong
solutions to the Cauchy problem of the compressiblemagnetohydrodynamic equations can
exist globally on [0, T ]. In addition, initial vacuum is allowed.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

This paper is mainly concerned with the three-dimensional compressible magnetohydrodynamic (MHD) system as
follows:

ρt + div(ρu) = 0,

(ρu)t + div(ρu ⊗ u) + ∇


P +

1
2
|H|

2


= H · ∇H + µ∆u + (µ + λ)∇divu,

Ht + u · ∇H − H · ∇u + Hdivu = ν∆H, divH = 0,

(1.1)

for x ∈ R3 and t ≥ 0. The unknowns ρ, u, P and H represent the density, velocity, pressure and magnetic field respectively.
The constants µ > 0 and λ are viscosity constants, satisfying 3λ + 2µ ≥ 0, the constant ν > 0 is the magnetic diffusivity
acting as the magnetic diffusion coefficient of the magnetic field. Here we only consider the isentropic MHD flows in which
the equation of state has the form P(ρ) = aργ where γ > 1 and a > 0 are physical constants.

There have been numerous studies on the MHD problem by many physicists and mathematicians due to its physical
importance, complexity, rich phenomena and mathematical challenges; see, for example, [1,2,4–8,11–13,15,17,19,20,22,
24,25] and the references therein. Briefly, for the two-dimensional case, Kawashima [11] obtained the global existence of
smooth solutions to the general electro–magneto-fluid equations when the initial data are small perturbations of some
given constant states. Zhou–Fan in [25] established a regularity criterion for the 2D incompressible MHD system with zero
magnetic diffusivity. For the linearized 3D compressible MHD equations, Umeda, Kawashima and Shizuta [19] showed the
global existence and the time decay of smooth solutions.When the initial density is strictly positive, the local strong solution
to the compressible MHD with large initial data was obtained by Vol’pert and Khudiaev [20]. In the case that the initial
density need not be positive and may vanish in some open sets, the local well-posedness of strong solutions to the full
compressible MHD equations in three dimensions was investigated by Fan and Yu [6].
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On the other hand, many fundamental problems for MHD are still unsolved, even for the one-dimensional case, that the
global existence of classical solutions to the full perfect compressible MHD with large data remains unknown when all the
viscosity, heat conductivity, and magnetic diffusivity coefficients are constant, although the corresponding problem for the
Navier–Stokes equations was solved in [14] many years ago. This is mainly because of the presence of the magnetic field
and its interaction with the hydrodynamic motion in the MHD flow of large oscillation.

The main purpose in this paper is to give a blow-up criterion of strong solutions for compressible MHD (1.1) with initial
and boundary conditions:

(ρ, u,H)(x, 0) = (ρ0, u0,H0)(x) x ∈ R3,

(ρ, u,H)(x, t) → 0 |x| → ∞.
(1.2)

Before stating the main results, we explain the notations and conventions used throughout this paper. We denote
fdx =


Ω

fdx, ∂if =
∂ f
∂xi

, Lq = Lq(R3).

For 1 < r < ∞, the standard homogeneous and inhomogeneous Sobolev spaces are denoted as follows:
Dk,r

= {u ∈ L1loc | ∥∇
ku∥Lr < ∞}, ∥u∥Dk,r = ∥∇

ku∥Lr ,

W k,r
= Lr ∩ Dk,r , Dk

= Dk,2, D1
= {u ∈ L6 | ∥∇u∥L2 < ∞}.

Definition 1.1. A pair of functions (ρ, u,H) is called a strong solution to the problem (1.1)–(1.2), if for some 3 < q ≤ 6,ρ ≥ 0, ρ ∈ C(0, T ; L1 ∩ H1
∩ W 1,q),

u ∈ C(0, T ;D1
∩ D2) ∩ L2(0, T ;D2,q), H ∈ C(0, T ;H2) ∩ L2(0, T ;W 2,q)

ut ,Ht ∈ L2(0, T ;D1),
√

ρut ,Ht ∈ L∞(0, T ; L2),

and (ρ, u,H) satisfies (1.1) a.e. in R3
× (0, T ).

The local well-posedness theorem of strong solutions to the compressible MHDwith vacuumwas proved by Fan–Yu [6].

Theorem 1.1. Assume that for some q ∈ (3, 6] the initial data (ρ0, u0,H0) satisfies

ρ0 ≥ 0, ρ0 ∈ L1 ∩ H1
∩ W 1,q, u0 ∈ D1

∩ D2, H0 ∈ H2, divH0 = 0, (1.3)

and the compatibility condition

− µ∆u0 − (µ + λ)∇divu0 + ∇


P(ρ0) +

1
2
|H0|

2


− H0 · ∇H0 = ρ
1/2
0 g (1.4)

for some g ∈ L2. Then there exist a positive time T ∈ (0, ∞) and a unique strong solution (ρ, u,H) to the problem (1.1) and
(1.2) in R3

× (0, T ].

Wewonder whether the strong solution blows up in finite time. The first attempt toward such problem is to investigate
the possible blow-up mechanism of the solution. Recently, many works are devoted to this subject for compressible MHD
or Navier–Stokes equations; cf. [9,10,18,23]. In particular, Sun–Wang–Zhang in [18] established the blow-up criterion of
strong solutions to 3D Navier–Stokes equations as follows: if T ∗ < ∞ is the maximal time of the existence of the strong
solutions, then

lim
T→T∗

∥ρ∥L∞(0,T ;L∞) = ∞.

Just because of the similarity of compressibleMHDwith theNavier–Stokes equations, some ideas used to get the blow-up
criterion of the strong solutions for the Navier–Stokes equations will be applied to deal with theMHD system. In our present
paper, we want to obtain a similar result for the compressible MHD system. This work is motivated by Xu–Zhang [23].

Our main result in this paper reads as follows.

Theorem 1.2. Assume that for some q ∈ (3, 6] the initial data (ρ0, u0,H0) satisfies (1.3) and (1.4). Let (ρ, u,H) be a strong
solution of the problem (1.1)–(1.2) satisfying Definition 1.1. If 0 < T ∗ < ∞ is the maximal time of existence, then

lim
T→T∗

(∥ρ∥L∞(0,T ;L∞) + ∥H∥L∞(0,T ;Lr )) = ∞, (1.5)

for any 24
5 ≤ r ≤ ∞, provided 3µ > λ.
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We should mention that the decomposition of the velocity u = v + ω plays a key role in our paper. More precisely, let v
solve the elliptic systemµ∆v + (µ + λ)∇divv = ∇


P +

1
2
|H|

2


in R3,

v(x, t) → 0 |x| → ∞,

(1.6)

then, from the momentum equation (1.1)2 and (1.6), it is easy to verify that ω satisfies
µ∆ω + (µ + λ)∇divω = ρu̇ − H · ∇H in R3,
ω(x, t) → 0 |x| → ∞.

(1.7)

2. Preliminaries

In this section, we state some known auxiliary lemmas which will be frequently used in the proof of Theorem 1.2. We
begin with the following well-known Gagliardo–Nirenberg inequality which can be found in [16].

Lemma 2.1. For p ∈ [2, 6], q ∈ (1, ∞), and r ∈ (3, ∞), there exists some generic constant C > 0 which may depend on q, r
such that for f ∈ H1 and g ∈ Lq ∩ D1,r , we have

∥f ∥Lp ≤ C∥f ∥(6−p)/2p
L2

∥∇f ∥(3p−6)/2p
L2

, (2.1)

∥g∥L∞ ≤ C∥g∥q(r−3)/(3r+q(r−3))
Lq ∥∇g∥3r/(3r+q(r−3))

Lr . (2.2)

Let U solve the following boundary value problem
µ∆U + (µ + λ)∇divU = F in R3,
U(x, t) → 0 |x| → ∞,

(2.3)

we state some classical estimates for the above strongly elliptic system.

Lemma 2.2. Let p ∈ (1, ∞) and U be a solution of (2.3), then there exists a constant C depending only on µ, λ and p such that
the following estimates hold:
(1) if F ∈ Lp, then

∥∇
2U∥Lp ≤ C∥F∥Lp; (2.4)

(2) if F = divf with f = (fi,j)2×2, fi,j ∈ Lp, then

∥∇U∥Lp ≤ C∥f ∥Lp; (2.5)

(3) if F = divf with f = (fi,j)2×2, fi,j ∈ L∞
∩ L2, then ∇U ∈ BMO(Ω) and

∥∇U∥BMO(Ω) ≤ C(∥f ∥L2 + ∥f ∥L∞). (2.6)

Here BMO(Ω) stands for the John–Nirenberg space of bounded mean oscillation whose norm is defined by

∥f ∥BMO(Ω) , ∥f ∥L2 + [f ]BMO(Ω),

with

[f ]BMO(Ω) , sup
x∈Ω,r∈(0,d)

1
|Ωr(x)|


Ωr (x)

|f (y) − fΩr (x)|dy,

and

fΩr (x) =
1

|Ωr(x)|


Ωr (x)

f (y)dy,

whereΩr(x) = Br(x)∩Ω, Br(x) is a ball with center x and radius r, d is the diameter ofΩ and |Ωr(x)| denotes the Lebesgue
measure of Ωr(x).

The next lemma is a variant of the Brezis–Wainger inequality [3], which together with Lemma 2.2 will be used to give
the gradient estimate of ρ.

Lemma 2.3. Let f ∈ W 1,q with q ∈ (3, ∞), then there exists a constant C depending on q such that

∥f ∥L∞ ≤ C(1 + ∥f ∥BMO ln(e + ∥f ∥W1,q)). (2.7)

The proof of Lemmas 2.2 and 2.3 can be found in [18].
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3. Regularity of ρ, u,H

Let (ρ, u,H) be a strong solution to the initial boundary problem (1.1)–(1.2) as described in Theorem 1.1. Here we take
a contradiction argument to complete the proof of Theorem 1.2. Thus, we now assume otherwise that

lim
T→T∗

(∥ρ∥L∞(0,T ;L∞) + ∥H∥L∞(0,T ;Lr )) ≤ M, (3.1)

where M is independent of T , 24
5 ≤ r ≤ ∞. Hereafter, we denote by C a general positive constant which may depend on

the initial data,M and the maximal existence time T ∗.
Then, it follows from the standard energy estimate that

Lemma 3.1. Under the conditions of Theorem 1.1, for any 0 ≤ T < T ∗, it holds that

sup
0≤t≤T

√
ρu

2
L2 + ∥H∥

2
L2 + ∥ρ∥Lγ ∩L1


+

 T

0
∥∇u∥2

L2 + ∥∇H∥
2
L2dt ≤ C . (3.2)

Lemma 3.2. Under the assumption of (3.1), if 3µ > λ, then one has for any 0 ≤ T < T ∗ that
ρ|u|4dx +

 T

0
∥u∇u∥2

L2dt ≤ C . (3.3)

Proof. Multiplying (1.1)2 by 4|u|2u, and integrating by parts over R3, one has from Lemma 4.2 in [21] that

d
dt


ρ|u|4dx + c1∥u∇u∥2

L2 ≤ C


ρ|u|4dx +


4|u|2u ·


−

1
2
∇|H|

2
+ H · ∇H


dx + C . (3.4)

For the second term on the right-hand side of (3.4), by integrating by parts and Young’s inequality, one has
4|u|2u ·


−

1
2
∇|H|

2
+ H · ∇H


dx ≤ C


|u|2|∇u||H|

2dx

≤ C


|u|2|∇u|2dx
 1

2


|u|2|H|
4dx

 1
2

≤
ϵ

2


|u|2|∇u|2dx + C(ϵ)


(|u|2)6dx

 1
6


(|H|
4)

6
5 dx

 5
6

≤
ϵ

2


|u|2|∇u|2dx + C(ϵ)


|u|2|∇u|2dx

 1
2

≤ ϵ


|u|2|∇u|2dx + C(ϵ). (3.5)

Choosing ϵ small enough, adding (3.5) to (3.4), and applying Gronwall’s inequality, one obtains the lemma immediately. �

Let ḟ and G be the material derivative, and effective viscous flux, which are defined, respectively, as follows:

ḟ = ft + u · ∇f , G = (2µ + λ)divu − P −
1
2
|H|

2. (3.6)

We have from (1.1)2 that

∆G = div(ρu̇ − H · ∇H). (3.7)

Now we can prove the following lemma which gives the L2-estimate of ∇u and ∇H .

Lemma 3.3. Under the assumption of (3.1) and 3µ > λ, for any 0 ≤ T < T ∗, it holds that

sup
0≤t≤T

(∥∇u∥2
L2 + ∥∇H∥

2
L2) +

 T

0

√
ρut

2
L2 + ∥Ht∥

2
L2 + ∥∇H∥

2
H1dt ≤ C . (3.8)
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Proof. Multiplying (1.1)2, (1.1)3 by ut and Ht in L2, respectively, integrating the resulting equation by parts, we obtain after
summing up that

d
dt


µ

2
|∇u|2 +

µ + λ

2
(divu)2 +

ν

2
|∇H|

2dx +


ρ|ut |

2
+ |Ht |

2dx

=


Pdivutdx +

 
H · ∇H −

1
2
∇|H|

2


· utdx −


ρu · ∇u · utdx

+


H · ∇u · Htdx −


u · ∇H · Htdx −


H · Htdivudx

,

6
i=1

Ki. (3.9)

To deal with the first term on the right-hand side of (3.9), we notice that

Pt + div(Pu) + (γ − 1)P(divu) = 0. (3.10)

Hence, we infer from integration by parts and the definition of G that
Pdivutdx =

d
dt


Pdivudx −


Pu · ∇divudx + (γ − 1)


P(divu)2dx

=
d
dt


Pdivudx −

1
2µ + λ


Pu · ∇Gdx +

1
2(2µ + λ)


P2divudx

−
1

2(2µ + λ)


Pu · ∇|H|

2dx + (γ − 1)


P(divu)2dx

≤
d
dt


Pdivudx + C

√
ρu


L2 ∥∇G∥L2 + C∥H∥L2∥u∇H∥L2 + C∥∇u∥2

L2 + C

≤
d
dt


Pdivudx + ϵ1∥∇G∥

2
L2 + ∥u∇H∥

2
L2 + C∥∇u∥2

L2 + C, (3.11)

where we have used (3.1), (3.6) and Young’s inequality. Combining this with (3.7) and choosing ϵ1 small enough, one has

K1 ≤
d
dt


Pdivudx +

1
4

√
ρut

2
L2 + C(1 + ∥u∇u∥2

L2 + ∥H∇H∥
2
L2 + ∥u∇H∥

2
L2 + ∥∇u∥2

L2). (3.12)

Noticing divH = 0, one has from integrating by parts that

K2 = −


H · ∇ut · H −

1
2
|H|

2divutdx

= −
d
dt


H · ∇u · H −

1
2
|H|

2divudx +


Ht · ∇u · H + H · ∇u · Ht − H · Htdivudx

≤ −
d
dt


H · ∇u · H −

1
2
|H|

2divudx +
1
4
∥Ht∥

2
L2 + C∥H∇u∥2

L2 . (3.13)

For the last four terms on the right-hand side of (3.9), one has 6
i=3

Ki

 ≤
1
4

√
ρut

2
L2 + ∥Ht∥

2
L2


+ C(∥u∇H∥

2
L2 + ∥u∇u∥2

L2 + ∥H∇u∥2
L2). (3.14)

Thus, combining (3.9)–(3.14), one obtains

d
dt


µ

2
|∇u|2 +

µ + λ

2
(divu)2 +

ν

2
|∇H|

2dx +
1
2


ρ|ut |

2
+ |Ht |

2dx

≤
d
dt


Pdivu − H · ∇u · H +

1
2
|H|

2divudx + C∥∇u∥2
L2 + C

+ C(∥u∇H∥
2
L2 + ∥u∇u∥2

L2 + ∥H∇u∥2
L2 + ∥H∇H∥

2
L2). (3.15)
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For the last term on the right-hand side of (3.15), one has from (3.1) and the interpolation inequality that

∥u∇H∥L2 + ∥u∇u∥L2 + ∥H∇u∥L2 + ∥H∇H∥L2

≤ ∥|u|2∥
1
2
L6


∥∇u∥

L
12
5

+ ∥∇H∥
L
12
5


+ ∥H∥L4(∥∇u∥L4 + ∥∇H∥L4)

≤ C∥u∇u∥
1
2
L2


∥∇u∥

3
4
L2

∥∇u∥
1
4
L6

+ ∥∇H∥

3
4
L2

∥∇H∥

1
4
L6


+ C(∥∇u∥L4 + ∥∇H∥L4)

≤ δ(∥∇u∥L6 + ∥∇H∥L6) + C


∥u∇u∥
2
3
L2 + 1


(∥∇u∥L2 + ∥∇H∥L2). (3.16)

By the standard Lp-estimate, one deduces from (1.6) and (1.7) that

∥∇u∥L6 ≤ ∥∇v∥L6 + ∥∇ω∥L6

≤ C(∥P∥L6 + ∥|H|
2
∥L6 + ∥∇

2ω∥L2)

≤ C

1 + ∥H∇H∥L2 +

√
ρut


L2 + ∥u∇u∥L2


. (3.17)

Similarly, one has

∥∇H∥L6 ≤ ∥∇
2H∥L2 ≤ C(∥Ht∥L2 + ∥u∇H∥L2 + ∥H∇u∥L2). (3.18)

Thus, putting (3.17) and (3.18) into (3.16), choosing δ small enough, one gets

∥u∇H∥L2 + ∥u∇u∥L2 + ∥H∇u∥L2 + ∥H∇H∥L2

≤
1
4

√
ρut


L2 + ∥Ht∥L2


+ C


∥u∇u∥

2
3
L2 + 1


(∥∇u∥L2 + ∥∇H∥L2) + C . (3.19)

Then, putting (3.16) and (3.19) into (3.15), by Gronwall’s inequality, and noticing that
Pdivu − H · ∇u · H +

1
2
|H|

2divudx ≤
µ

4
∥∇u∥2

L2 + C,

one gets from (3.3) that

sup
0≤t≤T

(∥∇u∥2
L2 + ∥∇H∥

2
L2) +

 T

0

√
ρut

2
L2 + ∥Ht∥

2
L2dt ≤ C . (3.20)

On the other hand, (3.18) combined with (3.19) and (3.20), completes the proof of Lemma 3.3. �

Next we prove the boundedness of
√

ρu̇

L2 , ∥Ht∥L2 and ∥∇H∥H1 by using the compatibility condition (1.4).

Lemma 3.4. Under the assumption of (3.1) and 3µ > λ, for any 0 ≤ T < T ∗, one has

sup
0≤t≤T

√
ρu̇

2
+ ∥Ht∥

2
L2 + ∥∇H∥

2
H1


+

 T

0
∥∇u̇∥2

L2 + ∥∇Ht∥
2
L2dt ≤ C . (3.21)

Proof. Operating u̇j
[∂/∂t+div(u·)] to both sides of (1.1)2, summingwith respect to j, and integrating the resulting equation

over R3, one obtains
1
2

d
dt


ρ|u̇|2dx = −


u̇j

[∂jPt + div(∂jPu)]dx −


u̇j

[∂j(H iH i
t) + div(H i∂jH iu)]dx

+


u̇j

[∂t(H i∂iH j) + div(H i∂iH ju)]dx + µ


u̇j

[∆uj
t + div(u∆uj)]dx

+ (µ + λ)


u̇j

[∂t∂jdivu + div(u∂jdivu)]dx ,

5
i=1

Ii. (3.22)

Using (3.10), (3.1) and integrating by parts, one has

I1 =


[−ρP ′(ρ)∂iui∂ju̇j

+ P(ρ)∂i(ui∂ju̇j) − P(ρ)∂j(ui∂iu̇j)]dx

=


[−ρP ′(ρ)∂iui∂ju̇j

+ P(ρ)∂iui∂ju̇j
− ∂jui∂iu̇jP(ρ)]dx

≤ δ∥∇u̇∥2
L2 + C(δ).
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Integrating by parts, one obtains from (3.8), Hölder and interpolation inequalities that

I2 =


(∂ju̇jH iH i

t + ∂ku̇juk∂jH iH i)dx

≤ ∥∇u̇∥L2(∥H∥L6∥Ht∥L3 + ∥u∥L6∥H∥L6∥∇H∥L6)

≤ ∥∇u̇∥L2


∥Ht∥

1
2
L2∥∇Ht∥

1
2
L2 + ∥∇H∥H1


≤ δ∥∇u̇∥2

L2 + C(δ)(∥Ht∥L2∥∇Ht∥L2 + ∥∇H∥
2
H1).

Similarly,

I3 =


−∂iu̇j(H jH i

t + H iH j
t) − ∂ku̇jH i∂iH jukdx

≤ δ∥∇u̇∥2
L2 + C(δ)(∥Ht∥L2∥∇Ht∥L2 + ∥∇H∥

2
H1)

where we have used the fact that divH = 0. Integrating by parts, we obtain

I4 = −µ


(∂ku̇j∂ku

j
t + ∂iu̇jui∆uj)dx

= −µ


(∂ku̇j∂ku

j
t − ∂2

iku̇
jui∂kuj

− ∂iu̇j∂kui∂kuj)dx

= −µ


(|∇u̇|2 + ∂ku̇j∂iui∂kuj

− ∂ku̇j∂kui∂iuj
− ∂iu̇j∂kui∂kuj)dx

≤ −
3µ
4

∥∇u̇∥2
L2 + C∥∇u∥4

L4 ,

and similarly,

I5 ≤ −
µ + λ

2
∥divu̇∥2

L2 + C∥∇u∥4
L4 .

Then, putting the estimates of Ii (i = 1, . . . , 5) into (3.22) and taking δ small enough, we obtain

d
dt


ρ|u̇|2dx +


|∇u̇|2dx ≤ C(∥Ht∥L2∥∇Ht∥L2 + ∥∇H∥

2
H1 + ∥∇u∥4

L4 + 1). (3.23)

To estimate ∥Ht∥L2 , we differentiate (1.1)3 with respect to t , multiply the resulting equations by Ht in L2, and integrate
by parts over R3 to get

1
2

d
dt


|Ht |dx + ν


|∇Ht |

2dx

=


(H · ∇ut − ut · ∇H − Hdivut) · Htdx +


(Ht · ∇u − u · ∇Ht − Htdivu) · Ht

, J1 + J2. (3.24)

Since ut = u̇ − u · ∇u, integrating by parts and using (3.8), we deduce

J1 =


(H · ∇u̇ − u̇ · ∇H − Hdivu̇) · Htdx +


(Hi∂iH

j
t − Hk∂jHk

t )(u · ∇uj)dx

≤ C(∥H∥L6∥Ht∥L3∥∇u̇∥L2 + ∥u̇∥L6∥∇H∥L2∥Ht∥L3) + ∥H∥L12∥∇Ht∥L2∥∇u∥L4∥u∥L6

≤ C


∥Ht∥
1
2
L2∥∇Ht∥

1
2
L2∥∇u̇∥L2 + ∥∇u̇∥L2∥Ht∥

1
2
L2∥∇Ht∥

1
2
L2


+ C∥∇Ht∥L2∥∇u∥L4

≤ ϵ2∥∇Ht∥
2
L2 + ϵ3∥∇u̇∥2

L2 + C(ϵ2, ϵ3)(∥Ht∥
2
L2 + ∥∇u∥2

L4).

Next, integrating by parts and using the interpolation inequality, we have

J2 =

 
Ht · ∇u −

1
2
Htdivu


· Ht ≤ C∥Ht∥

2
L4 ≤ ϵ2∥∇Ht∥

2
L2 + C(ϵ2)∥Ht∥

2
L2 .

Thus, plugging the estimates of J1 and J2 into (3.24) and choosing ϵ2 > 0 small enough, we have

1
2

d
dt


|Ht |dx +

ν

2


|∇Ht |

2dx ≤ ϵ3∥∇u̇∥2
L2 + C(ϵ3)(∥Ht∥

2
L2 + ∥∇u∥2

L4).
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This, together with (3.23), taking ϵ3 > 0 small enough, yields

d
dt


ρ|u̇|2 + |Ht |

2dx +


|∇u̇|2 + |∇Ht |

2dx ≤ C(∥Ht∥
2
L2 + ∥∇H∥

2
H1 + ∥∇u∥4

L4 + 1). (3.25)

To deal with the right-hand side of (3.25), we first make use of (1.6)–(1.7) to infer from the standard Lp-estimate and
(2.4)–(2.5) that

∥∇u∥4
L4 ≤ C(∥∇v∥

4
L4 + ∥∇ω∥

4
L4)

≤ C(∥P∥
4
L4 + ∥H2

∥
4
L4 + ∥∇ω∥

2
L2∥∇ω∥

2
L∞)

≤ C

1 + ∥H∥

4
L∞∥H∥

4
L4 + (∥∇u∥L2 + ∥∇v∥L2)

5
2 ∥∇

2ω∥

3
2
L6


≤ C


1 + ∥H∥

2
L6∥∇H∥

2
L6 + (∥ρu̇∥L6 + ∥H∇H∥L6)

3
2


≤ δ∥∇u̇∥2

L2 + C(1 + ∥∇H∥
3
H1), (3.26)

where one has used (2.2). Note that from (3.18) and (2.2),

∥∇H∥H1 ≤ C(∥Ht∥L2 + ∥u∥L6∥∇H∥L3 + ∥H∥L∞∥∇u∥L2 + ∥∇H∥L2)

≤ C

1 + ∥Ht∥L2 + ∥∇H∥

1
2
H1


,

and hence,

∥∇H∥H1 ≤ C(1 + ∥Ht∥L2). (3.27)

This, together with (3.26), leads to

∥∇u∥4
L4 ≤ δ∥∇u̇∥2

L2 + C(1 + ∥Ht∥
3
L2). (3.28)

Now, choosing δ small enough, we see from (3.23), (3.25) and (3.28) that

d
dt


ρ|u̇|2 + |Ht |

2dx +


|∇u̇|2 + |∇Ht |

2dx ≤ C(1 + ∥Ht∥
3
L2),

fromwhich and the fact that ∥Ht∥
2
L2

∈ L1(0, T ) due to (3.8), we immediately obtain (3.21) by applying Gronwall’s inequality
and the compatibility condition. We also deduce the boundedness of ∥∇H∥H1 from (3.27) and (3.21). �

4. High order regularity estimates

With the estimates obtained in Section 3 in hand, we start to improve the regularity of (ρ, u,H) in the following lemmas.
First, we give the higher regularity of ω.

Lemma 4.1. Under the assumption of (3.1) and 3µ > λ, for any 0 ≤ T < T ∗ and 3 < q ≤ 6, it holds that T

0
(∥∇2w∥

2
Lq + ∥∇ω∥

2
L∞)dt ≤ C . (4.1)

Proof. We will use the following interpolation inequality

∥f ∥Lq ≤ C∥f ∥L2 + C∥∇f ∥L2 , 2 ≤ q ≤ 6. (4.2)

From (4.2) and the Sobolev embeddingW 1,q ↩→ L∞ for 3 < q ≤ 6 and the interpolation inequality, one has

∥∇ω∥L∞ ≤ C(∥∇ω∥Lq + ∥∇
2ω∥Lq)

≤ C(∥∇ω∥L2 + ∥∇
2ω∥L2 + ∥∇

2ω∥Lq)

≤ C∥ρu̇∥Lq + C∥∇H∥Lq + C
≤ C(∥ρu̇∥L2 + ∥ρu̇∥L6) + C

≤ C∥∇u̇∥L2 + C . (4.3)

By (3.21) and (4.3), one completes the proof of Lemma 4.1. �

With Lemma 4.1 in hand, we will give the gradient estimates of the density.
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Lemma 4.2. Under the assumption of (3.1) and 3µ > λ, one has for any 0 ≤ T < T ∗ and 3 < q ≤ 6 that

sup
0≤t≤T

(∥ρ∥H1∩W1,q + ∥∇u∥H1) +

 T

0
∥∇

2u∥2
Lq + ∥∇

2H∥
2
Lq + ∥∇u∥2

L∞dt ≤ C . (4.4)

Proof. The proof follows the idea in [18]. First, differentiating (1.1)1 with respect to xi andmultiplying the resulting equation
by |∂iρ|

q−2∂iρ in L2, we have after integrating by parts and summing them up

d
dt

∥∇ρ∥
q
Lq ≤ C∥∇u∥L∞∥∇ρ∥

q
Lq + C∥∇

2u∥Lq∥∇ρ∥
q−1
Lq ,

that is
d
dt

∥∇ρ∥Lq ≤ C∥∇u∥L∞∥∇ρ∥Lq + C∥∇
2u∥Lq

≤ C(∥∇v∥L∞ + ∥∇ω∥L∞)∥∇ρ∥Lq + C(∥∇2v∥Lq + ∥∇
2ω∥Lq)

≤ C(1 + ∥∇v∥L∞ + ∥∇ω∥L∞)∥∇ρ∥Lq + C(1 + ∥∇
2w∥Lq), (4.5)

where one has used (2.4) and (4.2). To close (4.5), one has to bound ∥∇v∥L∞ . In fact, (2.6) and (2.7) show that if 3 < q ≤ 6
then

∥∇v∥L∞ ≤ C(1 + ∥∇v∥BMO ln(e + ∥∇
2v∥Lq))

≤ C

1 +

P +
1
2
|H|

2

L∞

+

P +
1
2
|H|

2

L2


ln(e + ∥∇

2v∥Lq)

≤ C(1 + ln(e + ∥∇ρ∥Lq) + ln(e + ∥∇H∥Lq))

≤ C(1 + ln(e + ∥∇ρ∥Lq)). (4.6)

Substituting (4.6) into (4.5), we obtain

d
dt

(e + ∥∇ρ∥Lq) ≤ C(1 + ∥∇ω∥L∞)∥∇ρ∥Lq + C ln(e + ∥∇ρ∥Lq)∥∇ρ∥Lq + C(1 + ∥∇
2ω∥Lq). (4.7)

Set

f (t) = e + ∥∇ρ∥Lq , g(t) = 1 + ∥∇ω∥L∞ + ∥∇
2ω∥Lq .

By (4.7), we get

f ′(t) ≤ Cg(t)f (t) + Cf (t) ln f (t) + Cg(t),

which yields

(ln f (t))′ ≤ Cg(t) + C ln f (t), (4.8)

due to f (t) > 1. Note that (4.1) implies T

0
g(t)dt ≤ C,

which together with (4.8) and Gronwall’s inequality yields

sup
0≤t≤T

ln f (t) ≤ C .

Consequently,

sup
0≤t≤T

∥∇ρ∥Lq ≤ C for any q ∈ (3, 6]. (4.9)

From (4.9) and the Sobolev embedding theorem, for 3 < q ≤ 6, we get T

0
∥∇v∥

2
L∞dt ≤

 T

0
∥∇v∥

2
Lq + ∥∇

2v∥
2
Lqdt ≤ C . (4.10)

This, combining with (4.1), deduces T

0
∥∇

2u∥2
Lq + ∥∇u∥2

L∞dt ≤ C . (4.11)
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Moreover, the standard L2-estimate of the elliptic system and (1.1)2, together with (3.21), imply

∥∇
2u∥L2 ≤ C

√
ρu̇


L2 + ∥∇ρ∥L2 + ∥H∇H∥L2


≤ C(1 + ∥∇ρ∥L2),

which, combined with (4.5) (with q = 2), (4.11) and Gronwall’s inequality, yields

sup
0≤t≤T

∥∇ρ∥L2 ≤ C .

From this, we have

∥∇
2u∥L2 ≤ C .

We now estimate ∥∇
2H∥Lq . Indeed, using (3.4), (3.21) and the interpolation inequality, we have from (1.1)3 and the

Lp-estimate of the elliptic system that T

0
∥∇

2H∥
2
Lqdt ≤ C

 T

0
∥Ht∥

2
Lq + ∥∇u∥2

Lq + ∥∇H∥
2
Lqdt ≤ C

 T

0
∥∇Ht∥

2
L2dt + C ≤ C .

This completes the proof of Lemma 4.2. �

As in [23], we have the following lemma.

Lemma 4.3. Under the assumption of (3.1) and 3µ > λ, for any 0 ≤ T < T ∗, it holds that

sup
0≤t≤T

√
ρut

2
L2 +

 T

0
∥∇ut∥

2
L2dt ≤ C . (4.12)

5. Proof of Theorem 1.2

In viewof (4.4) and (3.21), it is clear that the functions (ρ, u,H)(x, t = T ∗) = limt→T∗(ρ, u,H)have the same regularities
imposed on the initial data (1.3) at the time t = T ∗. Therefore, we can take (ρ, u,H)|t=T∗ as initial data and apply the local
existence theorem (cf. Theorem 1.1) to extend the local strong solutions beyond T ∗. This contradicts the assumption on T ∗.
The proof of Theorem 1.2 is therefore completed.
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