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a b s t r a c t

We introduce and study the largest Banach space of analytic functions on the unit disc
which is solid for the coefficient-wise order and to which the classical Cesàro operator
C:H2

→ H2 can be continuously extended, while still maintaining its values in H2. Prop-
erties of this Banach space H(ces2) as well as a characterization of individual analytic
functions which belong to H(ces2) are presented. In addition, both the multiplier space
of H(ces2) and the spectrum of C : H(ces2) → H(ces2) are determined.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The study of optimal domains for certain operators is a tool for dealing with refinement of inequalities and extensions
of such operators. For instance, the Hausdorff–Young inequality asserts ∥f̂ ∥p′ ≤ ∥f ∥p for f ∈ Lp(T) with 1

p +
1
p′ = 1 and

1 ≤ p ≤ 2. Via a study of the optimal domain for the underlying kernel operator it is shown in [15] that there exists a
largest Banach function space Fp(T) having order continuous norm and satisfying Lp(T) ( Fp(T) ( L1(T), with continuous
inclusions, such that ∥f̂ ∥p′ ≤ ∥f ∥Fp(T) for all f ∈ Fp(T). A similar approach leads to a sharpening of Sobolev’s inequality in
rearrangement invariant spaces, with applications to compactness properties of Sobolev embeddings [4,5]. In [8] the Hardy
integral operator S: f →

1
x

 x
0 f (y) dy, x ∈ (0, ∞), for f ∈ L1loc(R

+), considered with values in a rearrangement invariant
space, is also treated from this viewpoint.

Consider now the Cesàro operator, given by

C(f )(z) :=

∞
n=0


1

n + 1

n
k=0

ak


zn (1)

with f (z) =


∞

0 akzk ∈ H(D) (the space of all analytic functions on the open unit disc D), which is bounded on the Hardy
space Hp

:= Hp(D) for every 1 ≤ p < ∞; see [18] and the references therein. In [6] it is shown that C has a continuous
optimal extension C: [ C,Hp

] → Hp where, relative to ∥f ∥[ C,Hp] := ∥C(f )∥Hp as its norm, [ C,Hp
] is a Banach space of

analytic functions on D determined by the property of being the largest amongst all Banach spaces of analytic functions
X such that C maps X continuously into Hp. For the particular case p = 2, this optimal domain [ C,H2

] is a Hilbert space
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characterized by

∞
n=0

anzn ∈ [ C,H2
] ⇐⇒


1

n + 1

n
k=0

ak


∈ ℓ2, (2)

with norm ∥


∞

0 anzn∥[ C,H2] := ∥( 1
n+1

n
0 ak)

∞

0 ∥ℓ2 [6, Theorem 3.8(iii)].
Unlike for H2, it is a priori unclear whether [ C,H2

], which is genuinely larger than H2, is solid for the pointwise order,
i.e., whether g ∈ [ C,H2

] whenever g ∈ H(D) satisfies |g(z)| ≤ |f (z)|, for all z ∈ D, with f ∈ [ C,H2
]. That this is so follows

from a growth characterization for elements of [ C,H2
], [6, Corollary 3.3], namely, f ∈ H(D) belongs to [ C,H2

] if and only
if  2π

0

 1

0

|f (reiθ )|2

|1 − reiθ |2
(1 − r) drdθ < ∞. (3)

There is also a significant interest in subspaces X ⊂ H(D) which are solid for the coefficient-wise order, i.e., the function
g(z) =


∞

0 bnzn ∈ X whenever |bn| ≤ |an|, for n ≥ 0, with f (z) =


∞

0 anzn ∈ X; see for example [14] and the references
therein. Whereas H2 is solid for this order, this property does not transfer to its optimal domain space [ C,H2

]. This follows
from (2) by considering g(z) = (1 − z)−1 and f (z) = (1 + z)−1.

So, it is meaningful to consider the solid core of the optimal domain space [ C,H2
], namely the largest of all subspaces

within [ C,H2
] which are solid for the coefficient-wise order. Direct inspection of (2) shows that this solid core of [ C,H2

]

is precisely the space

H(ces2) :=


∞
n=0

anzn ∈ H(D) :


1

n + 1

n
k=0

|ak|

∞

n=0

∈ ℓ2


,

which contains H2 as a (solid) subspace.
The aim of this paper is to study the spaceH(ces2) and the operatorC acting on it. IfH(ces2) is equippedwith its natural

norm (cf. (5) below), then C actually maps H(ces2) continuously into H2. In Section 2 we undertake a detailed analysis of
the Banach space of analytic functions H(ces2). For this purpose we need to consider the Cesàro operator acting on various
sequence spaces in CN. In particular, we characterize those analytic functions belonging to H(ces2) via a monotonicity
property of their Taylor coefficients (Theorem 2.8). Section 3 is devoted to identifying the continuous multiplication
operators on H(ces2), i.e., the multiplier space of H(ces2); these turn out to be precisely those given by multiplication via
analytic functions with absolutely summable Taylor coefficients (Theorem 3.1). There is a significant interest in identifying
the spectrum of the Cesàro operator acting in various Banach spaces of analytic functions; see [1,16], and the references
therein. In Section 4we show that the spectrum ofC:H(ces2) → H(ces2) is σ(C) = {z ∈ C : |1−z| ≤ 1}; see Theorem 4.1.
In view of these results we are in the interesting situationwhere the spectrum ofC:H(ces2) → H(ces2) coincideswith that
of the initial operator C:H2

→ H2, but the multiplier space of H(ces2) is significantly smaller (being isomorphic to ℓ1) than
that of H2 (namely, H∞). It is also noteworthy that the solid space H(ces2) is in a certain sense ‘‘maximal’’. Namely, if one
considers C:H(ces2) → H(ces2), rather than C:H2

→ H2, then its optimal domain space [C, H(ces2)] contains [C,H2
] as

a proper subspace. Remarkably, however, the solid core of the larger space [C, H(ces2)] is again H(ces2), that is, no further
solid extension occurs; see Proposition 2.10.

2. The Banach space of analytic functions H(ces2)

A precise description of the analytic functions belonging toH(ces2) is possible. To establish this we need to study in some
detail the Cesàro operator acting on sequence spaces. We use the same notation for the Cesàro operator acting on functions
(via (1)) as for the Cesàro operator acting on sequences. Thus, writing elements of CN as a = (an)∞n=0, the Cesàro operator
C:CN

→ CN is given by

a = (an)∞0 −→ C(a) :=


1

n + 1

n
k=0

ak

∞

n=0

.

It is a bijection on CN with inverse C−1((bn)∞0 ) =

(n + 1)bn − nbn−1

∞
0 , where b−1 := 0. Let CN

+
denote the cone of all

non-negative sequences, in which case we have C(a) ∈ CN
+
whenever a ∈ CN

+
. Moreover, |C(a)| ≤ C(|a|) for a ∈ CN, where

|a| := (|an|)∞0 ∈ CN is the modulus of a in the complex vector lattice CN and ≤ is the coordinate-wise order in RN.
Recall that C: ℓ2

→ ℓ2 continuously with operator norm ∥C∥2 = 2 [11, Theorem 326]. Thus, we may also consider its
optimal domain, namely

[ C, ℓ2
] :=


a = (an)∞0 ∈ CN

: C(a) =


1

n + 1

n
k=0

ak

∞

n=0

∈ ℓ2


,
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which can be shown to be a Banach space for the norm

∥a∥[ C,ℓ2] := ∥C(a)∥ℓ2 =

 ∞
n=0

 1
n + 1

n
k=0

ak


2
1/2

.

Via the Cesàro operatorC: [ C, ℓ2
] → ℓ2 the Banach sequence space [ C, ℓ2

] is linearly isomorphic and isometric to ℓ2. How-
ever, unlike ℓ2, [ C, ℓ2

] is not solid for the coordinate-wise order (consider a := ((−1)n)∞0 ∈ [ C, ℓ2
]whereas |a| ∉ [ C, ℓ2

]).
The solid core of [ C, ℓ2

], with respect to the coordinate-wise order, is clearly the space
a = (an)∞0 ∈ CN

:


1

n + 1

n
k=0

|ak|

∞

n=0

∈ ℓ2


.

It is the known Banach sequence space ces2, equipped with the norm

∥a∥ces2 :=


∞
n=0


1

n + 1

n
k=0

|ak|

21/2

= ∥C(|a|)∥ℓ2 , (4)

which is thoroughly treated in [2]. Note that the positive cone of ces2 and that of [ C, ℓ2
] coincide. From the continuity of C

on ℓ2 it follows that ℓ2
⊆ ces2 ⊆ [ C, ℓ2

], with each inclusion continuous. Moreover, both embeddings are strict. It follows
from |C(a)| ≤ C(|a|) and (4) that C: ces2 → ℓ2 continuously.

Remark 2.1. (i) The largest amongst the spaces ℓp, for 1 ≤ p ≤ ∞, which satisfy ℓp
⊆ ces2 is ℓ2. The space ces2 ⊄ ℓ∞;

actually, it contains sequences with arbitrarily large terms. Indeed, given any increasing sequence of positive integers
(kn)∞0 , the element a =


∞

n=0 knein , where in = k2n(n + 1)4, belongs to ces2. Here en := (δin)
∞

i=0 for n ≥ 0.
(ii) Despite (i) there is still some control on the growth of the partial sums of elements from ces2. Indeed,

lim
n→∞

n
k=0

|ak|
√
n + 1

= 0, a ∈ ces2.

To see this, let n ∈ N and observe that

∥a∥2
ces2 ≥

∞
m=n


1

m + 1

m
k=0

|ak|

2

≥

∞
m=n


1

m + 1

n
k=0

|ak|

2

≥


n

k=0

|ak|

2
∞

m=n

1
(m + 1)2

≥


n

k=0

|ak|

2
1

n + 1
.

The claim now follows because


∞

m=n(
1

m+1

m
k=0 |ak|)2 → 0 as n → ∞.

Given any subset A ⊆ {a ∈ CN
: lim sup n

√
|an| ≤ 1} we denote by H(A) the subset of H(D) consisting of those ana-

lytic functions whose sequence of Taylor coefficients belongs to A. In this manner H(ces2) arises from the sequence space
ces2. Moreover, H(ces2) becomes a Banach space of analytic functions on D relative to the norm ∥ · ∥H(ces2), where for
f (z) =


∞

0 anzn ∈ H(ces2),

∥f ∥H(ces2) :=


∞
n=0


1

n + 1

n
k=0

|ak|

21/2

= ∥(an)∞0 ∥ces2 . (5)

In particular, H(ces2) and ces2 are isometrically isomorphic. From ℓ2 ( ces2 ( [ C, ℓ2
] we have H2 ( H(ces2) ( [ C,H2

],
with continuous inclusions.

Remark 2.2. For 1 ≤ p < 2, we have Hp
⊈ H(ces2), since it was shown in [6, p. 280] that Hp

⊈ [ C,H2
], for 1 ≤ p < 2.

Unlike for H2, there exist functions in H(ces2) which fail to have a.e. boundary values. This follows from H2 ( H(ces2) and
a classical result of Littlewood stating that if (an) ∉ ℓ2 then, for almost all choices of signs (εn), with εn = ±1, the function

∞

0 εnanzn fails to have a.e. boundary values [9, Theorem A.5].

We now collect various Banach space properties of H(ces2).

Proposition 2.3. For H(ces2) the following assertions hold.

(i) The monomial functions {zn : n ≥ 0} are an unconditional, boundedly complete and shrinking basis for H(ces2).
(ii) H(ces2) is reflexive.
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(iii) Every f ∈ H(ces2) is the sum, in H(ces2), of its Taylor series.
(iv) Point evaluations on H(ces2) are continuous.

Proof. (i)–(iii). These assertions follow from the fact that there is an isometric isomorphism between H(ces2) and ces2.
(iv) This follows from the continuous inclusion H(ces2) ⊆ [ C,H2

] and continuity of point evaluations in [ C,H2
]

[6, Section 3]. �

Remark 2.4. In [ C,H2
] the set {zn+1

−zn : n ≥ 0} constitutes a basis [6, Proposition 3.8(iv)]. On the other hand, f ∈ [ C,H2
]

is the sum (in [ C,H2
]) of its Taylor series f (z) =


∞

n=0 anz
n if and only if

lim
n→∞

 n
k=0

ak


√
n + 1

= 0. (6)

To see this first note, for f ∈ [ C,H2
], that Cf is the sum of its Taylor series in H2, i.e., Cf (z) =


∞

n=0 bnz
n with (bn)∞0 :=

C((an)∞0 ). Since C is a (topological) isomorphism of the Frechét space H(D) onto itself and C−1(zn) = (n + 1)(zn − zn+1),
we have f (z) =


∞

n=0 bn(n + 1)(zn − zn+1) in [ C,H2
]. Rearranging the partial sums of this last series yields

n
k=0

bk(k + 1)(zk − zk+1) =

n
k=0

akzk −


n

k=0

ak


zn+1, n ≥ 0.

Since thenormof zn+1 in [ C,H2
] is equivalent to 1/

√
n + 1 forn ≥ 0, the claim follows. Condition (6) implies, via Remark 2.1

(ii), that functions in H(ces2) are always the sum, in [ C,H2
], of their Taylor series. This also follows from Proposition 2.3

(iii) and H(ces2) ⊆ [ C,H2
].

We now describe those functions which belong to H(ces2). For this we first need to describe the range C(ces2) ⊆ ℓ2 of
C: ces2 → ℓ2.

Denote by CN
⋆ the set of all (bn)∞0 ∈ CN

+
such that the sequence


(n + 1)bn

∞
0 is increasing, in which case

C(CN
+
) = CN

⋆ . (7)

Note that CN
⋆ is a cone in CN generating the full space CN, that is, CN

= (CN
⋆ − CN

⋆ ) + i(CN
⋆ − CN

⋆ ). The set of all non-negative
sequences (bn)∞0 ∈ ℓ2 for which the sequence


(n + 1)bn

∞
0 is increasing will be denoted by ℓ2

⋆ , i.e., ℓ
2
⋆ = ℓ2

∩ CN
⋆ .

The following striking property of the Cesàro operator and the space ces2 is due to G. Bennett [2, Theorem 20.31].

Theorem 2.5. Let a ∈ CN. Then a ∈ ces2 if and only if C(|a|) ∈ ces2.

With this property we can now prove the following result.

Proposition 2.6. The range of C: ces2 → ℓ2 is given by

C(ces2) =


b ∈ CN

: b = (b1 − b2) + i(b3 − b4),with bj ∈ ℓ2
⋆


.

Proof. Let us first establish that

C(ces2) ∩ CN
⋆ = ℓ2

∩ CN
⋆ = ces2 ∩ CN

⋆ . (8)

A chain of embeddings follows from C(ces2) ⊆ ℓ2
⊆ ces2. Let b ∈ ces2 ∩ CN

⋆ . By (7) there exists a ∈ CN
+
such that b = C(a).

That is, C(|a|) = C(a) = b ∈ ces2 which implies that a ∈ ces2; see Theorem 2.5. Consequently, b = C(a) ∈ C(ces2). Recall
that ℓ2

⋆ = ℓ2
∩ CN

⋆ . This, together with (8), shows that (b1 − b2) + i(b3 − b4) ∈ C(ces2) whenever bj ∈ ℓ2
⋆ .

Let now b ∈ C(ces2) and set a = C−1(b) ∈ ces2. Observe that (ℜa)+ and (ℜa)− are disjointly supported sequences. Thus,
|a| ≥ |ℜa| ≥ max{(ℜa)+, (ℜa)−}. As ces2 is solid, a ∈ ces2 implies that (ℜa)+, (ℜa)− ∈ ces2. A similar argument applies to
ℑa. Since (ℜa)+ ∈ ces2 ∩ CN

+
, by (8) we have

C((ℜa)+) ∈ C(ces2) ∩ C(CN
+
) = C(ces2) ∩ CN

⋆ = ℓ2
∩ CN

⋆ = ℓ2
⋆.

A similar argument applies to (ℜa)−, (ℑa)+, and (ℑa)−. Since

b = C(a) = C((ℜa)+) − C((ℜa)−) + iC((ℑa)+) − iC((ℑa)−),

the claim is established. �

Corollary 2.7. For g ∈ H(D) we have g ∈ H(C(ces2)) precisely when

g = (g1 − g2) + i(g3 − g4), gj ∈ H(ℓ2
⋆).
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Let ℓ2
•
denote the set of all non-negative increasing sequences (an)∞0 ∈ CN satisfying (an/(n + 1))∞0 ∈ ℓ2.

Theorem 2.8. A function f ∈ H(D) belongs to H(ces2) if and only if

f (z) = (1 − z)

(h1(z) − h2(z)) + i(h3(z) − h4(z))


, hj ∈ H(ℓ2

•
).

Proof. Since C is injective, a ∈ ces2 if and only if C(a) ∈ C(ces2). Thus, f ∈ H(ces2) if and only if C(f ) ∈ H(C(ces2)). From
Corollary 2.7 this occurs precisely when

C(f ) = (g1 − g2) + i(g3 − g4), gj ∈ H(ℓ2
⋆).

The known integral expression C(f )(z) =
1
z

 z
0

f (ξ)

1−ξ
dξ , for z ∈ D, yields f (z) = (1 − z)(zC(f )(z))′. Thus, f ∈ H(ces2) if

and only if

f (z) = (1 − z)

z ·

(g1 − g2) + i(g3 − g4)

′

, gj ∈ H(ℓ2
⋆).

Given (bn)∞0 ∈ CN set an := (n + 1)bn, for n ≥ 0. Then (bn)∞0 ∈ ℓ2
⋆ if and only if (an)∞0 ∈ ℓ2

•
. For g(z) :=


∞

0 bnzn we
have 

zg(z)
′

=

∞
n=0

(n + 1)bnzn =

∞
n=0

anzn.

Then g ∈ H(ℓ2
⋆) if and only if (bn)∞0 ∈ ℓ2

⋆ , which occurs if and only if (an)∞0 ∈ ℓ2
•
, equivalently if and only if h(z) :=

(zg(z))′ ∈ H(ℓ2
•
). �

Remark 2.9. The previous result has an analogue for the optimal domain [ C,H2
]. To see this, let f ∈ H(D). Then h(z) :=

f (z)/(1 − z) ∈ H(D) and so h(z) =


∞

0 anzn. In view of condition (3) it follows that f ∈ [ C,H2
] if and only if 2π

0

 1

0

|f (reiθ )|2

|1 − reiθ |2
(1 − r) drdθ = 2π

∞
n=0

|an|2

(2n + 2)(2n + 1)
< ∞, (9)

which holds if and only if (an/(n + 1))∞0 ∈ ℓ2; see also [6, Proposition 3.2]. Thus, the difference between the solid core
H(ces2) of [ C,H2

] and the optimal domain [ C,H2
] itself arises from the fact that

(a1 − a2) + i(a3 − a4) : aj ∈ ℓ2
•


(

(xn) : (xn/(n + 1))∞0 ∈ ℓ2


,

where aj ∈ CN
+
are increasing sequences with (ajn/(n + 1))∞0 ∈ ℓ2. Note, via (9) withM2(r, h) :=

 2π
0 |h(reiθ )|2 dθ

1/2
, that

[ C,H2
] = (1 − z) ·


h ∈ H(D) :

 1

0
(1 − r)(M2(r, h))2 dr < ∞


.

The space H(ces2) also arises via a different procedure. The operator C:H2
→ H2 is a positive operator when considered

as acting between complex Banach lattices (for the coefficient-wise order in H2). So, we may look for continuous H2-valued
extensions of C to larger Banach spaces of analytic functions (i.e., containing H2 continuously) which are solid for the
coefficient-wise order. The (optimal) continuous extension C: [ C,H2

] → H2 is not such an extension because [ C,H2
]

is not solid. Of course, the largest of these solid spaces for which such a continuous extension is possible is the solid core
H(ces2) of [ C,H2

].
We end this section with a remarkable stability property of H(ces2). The optimal domain [C, H(ces2)] of the continuous

Cesàro operator C:H(ces2) → H(ces2) contains [ C,H2
] as a proper subspace (as [ C, ℓ2

] ( [C, ces2]). Surprisingly, even
though the target spaceH(ces2) is now substantially larger thanH2, no further solid extension occurs. This is a consequence
of the particular property of the Cesàro operator stated in Theorem 2.5.

Proposition 2.10. The largest solid space of analytic functions on D which C maps continuously into H(ces2) is H(ces2) itself.

Proof. Let X be any solid subspace of [C, H(ces2)], i.e.,C(X) ⊂ H(ces2)with X solid for the coefficient-wise order. If f (z) =
∞

0 anzn ∈ X , then also h(z) :=


∞

0 |an|zn ∈ X and hence, C(h) =


∞

0 (C(|a|))nzn ∈ H(ces2), i.e., C(|a|) ∈ ces2. Then
Theorem 2.5 implies that a ∈ ces2 and so f ∈ H(ces2). Accordingly, X ⊆ H(ces2). �



392 G.P. Curbera, W.J. Ricker / J. Math. Anal. Appl. 407 (2013) 387–397

3. The multipliers of H(ces2)

Given any Banach space of analytic functions it is always desirable to identify its multipliers. For H(ces2) this means to
determine all continuous operatorsMϕ given by multiplication via a function ϕ ∈ H(D):

H(ces2) ∋ f → Mϕ(f ) := f ϕ ∈ H(ces2). (10)

Denote by M(H(ces2)) the space of all such continuous multiplication operators on H(ces2). It is a subspace of the Banach
space L(H(ces2)) of all bounded linear operators on H(ces2) and is closed for the operator norm ∥ · ∥op. Since point eval-
uations on H(ces2) are continuous, it follows from the Closed Graph Theorem that if ϕ ∈ H(D) satisfies f ϕ ∈ H(ces2)
whenever f ∈ H(ces2), then necessarily Mϕ ∈ M(H(ces2)). By an abuse of language, on occasions we will identify the
multiplication operatorMϕ with the function (symbol) ϕ and refer to ϕ as amultiplier on H(ces2). Thus, in [6, Theorem 3.7]
it was shown that M([ C,H2

]) = H∞. Consider now ℓ1 as a commutative, unital Banach algebra relative to convolution and
equipped with its usual norm ∥(bn)∞0 ∥1 =


∞

0 |bn| for (bn)∞0 ∈ ℓ1.

Theorem 3.1. As Banach algebras and with equality of norms,

M(H(ces2)) =


ϕ(z) =

∞
n=0

bnzn : (bn)∞0 ∈ ℓ1


( H∞.

Moreover, the spectrum

σ(Mϕ) = ϕ(D), ϕ ∈ M(H(ces2)).

Proof. Multiplication of functions in H(D) corresponds to convolution of their sequences of Taylor coefficients, i.e.,
∞
n=0

anzn


∞
m=0

bmzm


=

∞
k=0


k

j=0

ajbk−j


zk.

Consequently, an analytic functionϕ(z) =


∞

0 bnzn defines an element ofM(H(ces2)) via (10) preciselywhen the sequence
b = (bn)∞0 of its Taylor coefficients defines a bounded convolution operator Tb on ces2:

ces2 ∋ a = (an)∞0 −→ Tb(a) := a ∗ b =


k

j=0

ajbk−j

∞

k=0

∈ ces2.

Due to the isometric isomorphism between H(ces2) and ces2, we have ∥Mϕ∥op = ∥Tb∥op.
Suppose first that b = (bn)∞0 ∈ ℓ1. Let a = (an)∞0 ∈ ces2. To show that a ∗ b ∈ ces2 we need to verify that C(|a ∗ b|) ∈ ℓ2,

where

C(|a ∗ b|) =


1

n + 1

n
k=0

 k
j=0

ajbk−j


∞

n=0

. (11)

Now, the n-th coordinate of C(|a ∗ b|) satisfies


C(|a ∗ b|)


n =

1
n + 1

n
k=0

 k
j=0

ajbk−j

 ≤
1

n + 1

n
k=0

k
j=0

|aj| |bk−j|

=
1

n + 1

n
j=0

|aj|
n−j
i=0

|bi| ≤ ∥b∥ℓ1 ·
1

n + 1

n
j=0

|aj|

= ∥b∥ℓ1 ·

C(|a|)


n.

Since a ∈ ces2, we haveC(|a|) ∈ ℓ2. Consequently,C(|a∗b|) ∈ ℓ2, so that a∗b ∈ ces2. Moreover, ∥a∗b∥ces2 ≤ ∥b∥ℓ1 ·∥a∥ces2 ,
i.e., ∥Tb∥op ≤ ∥b∥ℓ1 .

Now let Tb, with b = (bn)∞0 ∈ CN, be a bounded convolution operator on ces2. To show that b ∈ ℓ1 we prove, for every
N ∈ N, that

N
0 |bi| ≤ ∥Tb∥op. So, let N ∈ N be fixed.

In order to estimate ∥Tb∥op from below, recall that

∥Tb∥op = sup
a∈ces2

∥a ∗ b∥ces2

∥a∥ces2
= sup

a∈ces2

∥C(|a ∗ b|)∥ℓ2

∥C(|a|)∥ℓ2
. (12)
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FixM ∈ N. For each (aM , . . . , aM+N) ∈ CN+1 set

a :=

M+N
i=M

aiei ∈ ces2. (13)

First we estimate the norm of a in ces2 from above. Since an = 0, for n < M and also for n > M + N , we conclude that

(C(|a|))n =



0, if n < M,

1
n + 1

n
j=M

|aj|, ifM ≤ n < M + N,

1
n + 1

M+N
j=M

|aj|, if n ≥ M + N.

Consequently, we have that

C(|a|) ≤


M+N
j=M

|aj|


∞
i=M

ei
i + 1

= ∥a∥ℓ1

∞
i=M

ei
i + 1

.

Hence, for any a of the form (13),

∥C(|a|)∥ℓ2 ≤ ∥a∥ℓ1

 ∞
i=M

ei
i + 1


ℓ2

≤
1

√
M

∥a∥ℓ1 . (14)

Next we estimate the norm of a ∗ b in ces2 from below. Since an = 0, for n < M , it is clear that (a ∗ b)n = 0 whenever
n < M . Thus, for the Cesàro means (11) we have


C(|a ∗ b|)


n =



0, if n < M,

1
n + 1

n
k=M

|a ∗ b|k, ifM ≤ n < M + N,

1
n + 1

M+N
k=M

|a ∗ b|k, if n = M + N,

1
n + 1


M+N
k=M

|a ∗ b|k +

n
k=M+N+1

|a ∗ b|k


, if n > M + N.

Consequently,


C(|a ∗ b|)


n ≥


0, if n < M + N,

1
n + 1

M+N
k=M

|a ∗ b|k, if n ≥ M + N.

Setting

S :=

M+N
k=M

|a ∗ b|k,

it follows that

C(|a ∗ b|) ≥ S
∞

i=M+N

ei
i + 1

.

Hence,

∥C(|a ∗ b|)∥ℓ2 ≥ S

 ∞
i=M+N

ei
i + 1


ℓ2

≥
S

√
M + N + 1

. (15)

We now require an alternative expression for S. Since an = 0 for n < M , observe that

S =

M+N
k=M

|a ∗ b|k =

M+N
k=M

 k
j=0

ajbk−j

 =

M+N
k=M

 k
j=M

ajbk−j

 ,
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that is,

S = |aMb0| + |aMb1 + aM+1b0| + · · · + |aMbN + · · · + aM+Nb0|.

A close inspection shows, by setting

BNa :=


b0 0 · · · 0
b1 b0 · · · 0
...

...
...

bN bN−1 · · · b0




aM
aM+1

...
aM+N

 ,

that S = ∥BNa∥ℓ1 . Then (15) becomes

∥C(|a ∗ b|)∥ℓ2 ≥
∥BNa∥ℓ1

√
M + N + 1

.

This inequality and (14), together with (12), yield for all a of the form (13) withM ∈ N arbitrary that

∥Tb∥op ≥ sup
a,M

√
M

√
M + N + 1

∥BNa∥ℓ1

∥a∥ℓ1
= ∥BN∥ℓ1N+1→ℓ1N+1

.

The matrix BN has operator norm ∥BN∥ℓ1N+1→ℓ1N+1
=
N

0 |bi|. Consequently, b = (bn)∞0 ∈ ℓ1 and ∥Tb∥op ≥ ∥b∥ℓ1 .
Concerning the spectrum, it is routine to check that M(H(ces2)) is a closed subalgebra of L(H(ces2)) which is also

inverse closed. Hence, σ(Mϕ) coincides with the spectrum of ϕ as an element of the Banach algebra ℓ1. Since ℓ1 is generated
(as a Banach algebra) by e1 = (0, 1, 0, . . .) and the maximal ideal space of ℓ1 can be identified with D [7, Theorem 4.6.9] it
follows from Theorem 2.3.30 (see also pp. 158–160 of [7]) that the spectrum of ϕ(z) =


∞

0 bnzn, considered as the element
(bn)∞0 of ℓ1, is precisely ϕ(D). �

Remark 3.2. (i) Every function h(z) =


∞

0 bnzn from H(D) induces a linear map Tb:CN
→ CN via the Toeplitz matrix

Tb :=


b0 0 0 · · ·

b1 b0 0 · · ·

b2 b1 b0 · · ·

...
...

...

 .

Theorem 3.1 implies that Tb maps ces2 into itself if and only if b ∈ ℓ1.
(ii) Theorem 3.1 shows that the multipliers for H(ces2) form a lattice for the coefficient-wise order. This is not so for the

multipliers of H2 and [ C,H2
], both of which have H∞ as their multiplier space.

4. The operator C on H(ces2)

In a classical paper the authors studyC: ℓ2
→ ℓ2 and show that its spectrum is σ(C) = {z ∈ C : |1−z| ≤ 1} [3, Theorem

2(6)]. Recall that its operator norm is ∥C∥2 = 2. In order to treatC:H(ces2) → H(ces2) it is useful to identify the dual space
H(ces2)′ of H(ces2). The isometric isomorphism between H(ces2) and ces2 yields the identification H(ces2)′ = H(ces′2)
(where ces′2 is the dual space of ces2) with the duality given by

⟨f , g⟩ :=

∞
n=0

anbn,

for elements f (z) =


∞

0 anzn ∈ H(ces2) and g(z) =


∞

0 bnzn ∈ H(ces′2).
The dual space of ces2 was identified by Jagers [13]. G. Bennett has given a more tractable isomorphic identification [2,

Corollary 12.17]. Namely, consider the Banach space

d(2) :=


b = (bn)∞0 :


sup
k≥n

|bk|
∞

n=0
∈ ℓ2


,

equipped with the norm

∥b∥d(2) :=


∞
n=0

sup
k≥n

|bk|2
1/2

.

Then ces′2 is isomorphic to d(2) and its duality with ces2 is given by

⟨a, b⟩ :=

∞
n=0

anbn, a ∈ ces2, b ∈ d(2).
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However, the dual norm of ces′2 is only equivalent to that of d(2). This fact will not interfere with any of our results. The
sequence b̃ = (b̃n)∞0 given by b̃n := supk≥n |bk|, n ≥ 0, is called the least decreasing majorant of (bn)∞0 ∈ CN. Note that,
even though ces′2 ≃ d(2) ( ℓ2 (e.g. x =


∞

0 2−ne22n ∈ ℓ2
\ ces′2), all non-negative and eventually decreasing sequences

from ℓ2 do belong to ces′2.

Theorem 4.1. For the Cesàro operator C:H(ces2) → H(ces2) we have that ∥C∥op = 2 and

σ(C) = {z ∈ C : |1 − z| ≤ 1}.

Proof. Due to the isometric isomorphism between the spaces H(ces2) and ces2, it suffices to study the problem for
C: ces2 → ces2.

We first show that ∥C∥op ≤ 2 for the continuous operator C: ces2 → ces2. Since |C(a)| ≤ C(|a|), for a ∈ ces2, we have

∥C(a)∥ces2 = ∥C(|C(a)|)∥ℓ2 ≤ ∥C(C(|a|))∥ℓ2 ≤ ∥C∥2 · ∥C(|a|) ∥ℓ2 = 2∥a∥ces2 ,

that is, ∥C∥op ≤ 2.
To show that the point spectrum σp(C) of C is empty, suppose that λ ∈ σp(C). Choose 0 ≠ a ∈ ces2 such that C(a) =

λa. A direct algebraic calculation (as in the proof of part (3) of Theorem 2 of [3]) yields |an| ≥ |an−1| for n ≥ 1. Thus,
|an| ≥ |aN | > 0 for n ≥ N with N the smallest natural number such that aN ≠ 0. This implies that C(|a|) ≥ u with un = 0
for n < N and un = |aN | > 0 for n ≥ N . But, u ∉ ℓ2 and so C(|a|) ∉ ℓ2 which is a contradiction. Hence, σp(C) = ∅.

Let C ′: ces′2 → ces′2 be the dual operator of C, i.e.,

C ′((xn)∞0 ) =


∞
k=n

xk
k + 1

∞

n=0

, (xn)∞0 ∈ ces′2.

We now show that σp(C
′) = U where

U = {z ∈ C : |1 − z| < 1}.

Let λ ∈ σp(C
′). Then C ′(x) = λx for some 0 ≠ x = (xn)∞0 in ces′2. But, ces

′

2 ⊆ ℓ2 and so x ∈ ℓ2, i.e., λ is an eigenvalue of the
Hilbert space adjoint operator C∗

= C ′ of C: ℓ2
→ ℓ2. By Theorem 2(5) of [3] we have that λ belongs to U, i.e., σp(C

′) ⊆ U.
In order to establish the reverse inclusion, observe that direct algebraic calculations (as in the proof of part (4) of Theorem
2 of [3]) yield: if C ′(x) = λxwith x ≠ 0, then necessarily λ ≠ 0, x0 ≠ 0 and

xn = x0 ·

n
j=1


1 −

1
jλ


, n ≥ 1.

We need to verify that this x belongs to ces′2 = d(2) whenever λ ∈ U, i.e., the least decreasing majorant x̃ of x belongs to ℓ2.
The identities

|xn|2

|xn−1|
2

=

1 −
1
nλ

2 = 1 −
2ℜ(λ)

n|λ|2
+

1
n2|λ|2

, (16)

imply that |xn| ≤ |xn−1| whenever the right-side of (16) is at most 1, i.e., if ℜ(λ) ≥ 1/(2n) for all n ≥ 1. For each λ ∈ U we
have ℜ(λ) > 0. Thus there exists n0 such that, for n ≥ n0, we have |xn| ≤ |xn−1|. Hence (x̃)n = |xn| for n ≥ n0, and so x̃ ∈ ℓ2

if and only if x ∈ ℓ2. But, (16) and the Raabe–Duhamel criterion [12, Chapter I, Sections 20–21] imply that x ∈ ℓ2 whenever
2ℜ(λ)

|λ|2
> 1. This last condition is precisely |1 − λ| < 1, that is, λ ∈ U. Accordingly, σp(C

′) = U.
It follows from σp(C) = ∅ and Corollary II.5.3(iii) and (vi) of [10] that σr(C) = σp(C

′) = U. Accordingly, we have that
U = σr(C) ∪ σp(C) ⊆ σ(C) and so U ⊆ σ(C). In particular, 2 ∈ σ(C) and so also ∥C∥op ≥ 2. Hence, ∥C∥op = 2.

For the reverse inclusion σ(C) ⊆ U consider first (C − λI)−1:CN
→ CN. For λ ∈ C \ {0, 1, 1

2 ,
1
3 , . . .} the matrix for

(C − λI)−1
= (cnm)∞n,m=0 is given by, [17, Theorem 3],

cnm =



−1

(n + 1)λ2
n

k=m


1 −

1
(k+1)λ

 , if 0 ≤ m < n,

n + 1
1 − (n + 1)λ

, ifm = n,

0, if n < m.
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We write

(C − λI)−1
= Dλ −

1
λ2

Eλ,

where the diagonal operator Dλ = (dnm)∞n,m=0 is given by dnn =
n+1

1−(n+1)λ with dnm = 0 in all other cases, and the lower
triangular operator Eλ = (enm)∞n,m=0 is specified as follows: for each n ≥ 0 define

enm =


1

(n + 1)
n

k=m


1 −

1
(k+1)λ

 , if 0 ≤ m < n,

0, if n ≤ m,

(17)

for all m ≥ 0.
Let dλ := inf{|λ −

1
k | : k ≥ 1} > 0. Then Dλ is bounded on ces2 since

Dλ(a)

n

 =

 (n + 1)an
1 − (n + 1)λ

 =

 an
1

n+1 − λ

 ≤
|an|
dλ

, n ≥ 0.

Thus, |Dλ(a)| ≤
1
dλ

|a|. Since ces2 is solid, if a ∈ ces2 it follows that Dλ(a) ∈ ces2 and ∥Dλ(a)∥ces2 ≤
1
dλ

∥a∥ces2 . Accordingly,
Dλ: ces2 → ces2 is bounded with ∥Dλ∥op ≤

1
dλ
. Consequently, (C − λI)−1 is bounded on ces2 precisely when Eλ is.

For the case when ℜλ ≤ 0, with λ ≠ 0, we claim that Eλ is bounded on ces2 and so λ is in the resolvent set of C. To see
this observe that 1

1 −
1

(k+1)λ


 ≤ 1 ⇐⇒ |λ| ≤

λ −
1

k + 1

 ⇐⇒ ℜλ ≤
1

2(k + 1)
.

It follows from (17) that |enm| ≤
1

n+1 , for 0 ≤ m < n. Consequently, |Eλ(a)| ≤ C(|a|). Again, due to the fact that ces2 is
solid, if a ∈ ces2 then C(|a|) ∈ ℓ2

⊆ ces2 and so Eλ(a) ∈ ces2 with ∥Eλ(a)∥ces2 ≤ ∥C(|a|)∥ces2 ≤ ∥C∥op∥a∥ces2 . Accordingly,
Eλ: ces2 → ces2 is bounded and ∥Eλ∥op ≤ ∥C∥op = 2.

Since ∥C∥op = 2 ensures that {z ∈ C : |z| > 2} is a subset of the resolvent set ρ(C) of C, it remains to show that the set

D :=

z ∈ C : |z| ≤ 2, ℜ(z) > 0, |z − 1| > 1


⊆ ρ(C).

For this purpose D can be described via the family of circles Γα = {z ∈ C : ℜ( 1
z ) = α} for 0 < α < 1

2 with Γα having
centre 1

2α > 1 and radius 1
2α (note, for any z ∈ C, that |z − 1| > 1 if and only if ℜ( 1

z ) < 1
2 ). Indeed,

D =

z ∈ C : |z| ≤ 2


∩

 
0<α< 1

2

Γα


.

Let λ ∈ D . Then λ ∈ Γα for some α = ℜ( 1
λ
) ∈ (0, 1

2 ). Consequently, ℜ(1 −
1
kλ ) = 1 −

α
k , for k ≥ 1. Given a ∈ ces2 it

follows from (17) that

Eλ(a)


0 = 0 and, for n ≥ 1, that

Eλ(a)

n

 =


1

n + 1

n−1
m=0

am
n

k=m


1 −

1
(k+1)λ




≤
1

n + 1

n−1
m=0

|am|

n
k=m

1 −
1

(k+1)λ


≤

1
n + 1

n−1
m=0

|am|

n
k=m

ℜ 1 −
1

(k+1)λ


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=
1

n + 1

n−1
m=0

|am|

n
k=m


1 −

α
k+1


=


E 1

α
(|a|)


n
.

Thus, |Eλ(a)| ≤ E 1
α
(|a|). Since 0 < α < 1

2 we have that 1
α

> 2 and so 1
α
belongs to the resolvent set ofC. Thus, E 1

α
is bounded

on ces2. Since a ∈ ces2 implies |a| ∈ ces2, we have E 1
α
(|a|) ∈ ces2. Thus, Eλ(a) ∈ ces2 with ∥Eλ(a)∥ces2 ≤ ∥E 1

α
∥op∥a∥ces2 .

Accordingly, Eλ: ces2 → ces2 is bounded (with ∥Eλ∥op ≤ ∥E 1
α
∥op) and so also (C − λI)−1 is bounded. �
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