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1. Introduction

Cauchy’s problem in R
N for a generalization of the KdV–Burgers system is considered in Sobolev space (H p+1(RN ))m

(here u = (u1, . . . , um) is a vector valued function of x ∈ R
N ). We want to extend the results obtained recently in [9,10,4]

for the 1-D case to the higher space dimension N , concentrating here mainly on the existence and properties of the viscous
solution to the KdV–Burgers system (1.2). Such higher dimensional problems were studied earlier in [23,30,29]; the Cauchy
problem we study following that references has the form

ut +
N∑

i=1

∂

∂xi
∇Φ(u) +

N∑
j=1

∂

∂x j

N∑
i=1

∂2p

∂x2p
i

u = α�u + β

N∑
i=1

∂

∂xi
u, t > 0, x ∈R

N ,

u(0, x) = u0(x), x ∈R
N , (1.1)

where α > 0, 2p > N � 1 and Φ is a scalar function of the vector u(t, x) = (u1(t, x), . . . , um(t, x)); ∇ denotes the gradient
with respect to u. Decay of solutions of (1.1) as t → ∞ together with the sharp decay rates in L2(RN ), L∞(RN ) and Hk(RN )

were studied in [29,23]. Another possible form of asymptotic behavior of solutions is described in [28].

1.1. Setting of the problem and its parabolic regularization

By certain formal manipulations (1.1) will be rewritten in a slightly simpler form. To avoid having all the trajectories
convergent to 0 as t → ∞, we will enrich that simplified form of (1.1) adding the term g(x, u) to its right hand side;
consult [13, p. 370] and the references there for the discussion of physically relevant damping terms, see also [14,16,18] for
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considerations concerning 1-D KdV equation on R. Assumption I below on g(x, u) covers the choice in [13] (which is like
−γ u in this case). Consequently we will study the equation:

ut +
N∑

i=1

∂

∂xi
∇Φ(u) +

N∑
j=1

∂

∂x j

N∑
i=1

∂2p

∂x2p
i

u = α�u + g(x, u), t > 0, x ∈R
N ,

u(0, x) = u0(x), x ∈R
N . (1.2)

The parabolic regularization technique called also the method of vanishing viscosity is used in this paper to study Eq. (1.2),
which allows us to extend the strong regularity properties and estimates of solutions of the (2p + 2)-order parabolic ap-
proximations onto their (2p + 1)-order limit—the Korteweg–de Vries–Burgers (KdVB) system (1.2).

So, instead of the problem (1.2) we will study first its parabolic regularization having the form:

uε
t +

N∑
i=1

∂

∂xi
∇Φ

(
uε

) +
N∑

j=1

∂

∂x j

N∑
i=1

∂2p

∂x2p
i

uε = α�uε + ε(−1)p(�)p+1uε + g
(
x, uε

)
, t > 0, x ∈R

N ,

uε(0, x) = uε
0(x), x ∈R

N , (1.3)

where ε > 0 is the viscosity coefficient, that will later tend to 0+ . We obtain certain estimates for solutions uε to (1.3), which
we then extend on the limit problem (1.2) by letting ε → 0+ . We will study existence for the Cauchy problem (1.3) using
the theory of semigroups. Such approach, in case of systems of parabolic equations, was extended about 20 years ago; see
in particular [2,3,15].

Our main task will be to study the viscous solution u of (1.2), the unique limit of the regular solutions uε of (1.3) (see
Section 4). The term α� appearing in (1.2) caused that the system (1.2) possess some regularization effect. We will focus
on obtaining estimates of u expressing that effect; the corresponding estimates of the regularizations uε are ε independent.

In Section 2 we study local and global in time solvability of the auxiliary problem (1.3). Section 3 is devoted to the
higher order uniform in ε estimates of the solutions uε of (1.3). Such estimates are next extended to the viscous solutions
of (1.2) in Section 4. Asymptotic behavior of solutions to (1.3) and (1.2) is studied in Section 5.

Standard notation of the Sobolev spaces in used throughout the text. Letters c, C are used to denote various positive
constants. Sometimes we will also specify the quantities on which the constants depend. For r ∈ R the symbol r− denotes
a number strictly less than r (but close to it).

2. Solvability of an auxiliary problem (1.3)

2.1. Local solvability of (1.3)

We will use Dan Henry’s approach, extending to higher dimensions the considerations in [9]. To study (1.3) we need to
impose the set of conditions on the nonlinear terms Φ and g . The basic requirements are formulated below.

Note first that since Φ appears under the gradient, without loosing generality we will assume that Φ(0) = 0 (alternatively
replace Φ(s) by Φ(s) − Φ(0)). Further we formulate

Assumption I.

• Φ :Rm →R is C3(Rm) and satisfies Φ(0) = 0.
• g : RN × R

m → R
m , with g(x,0) = 0, is Lipschitz continuous with respect to u uniformly with respect to x ∈ R

N (with
the Lipschitz constant uniform in the sets R

N × [−M, M]m), and fulfills the condition

∃γ >0∃0�n∈L2(RN ) g(x, s) · s � −γ |s|2 + n(x)|s|, when x ∈R
N , s ∈R

m, (2.1)

where g(x, s) · s is the scalar product in R
m .

Remark 2.1. The simplest possible choice is g(x, s) = −γ s. Condition (2.1) is a one-sided bound at infinity for the growth
of g (when it is a source term). We can take for example:

gi(x, s) � −γ si + n(x)
(
si − s3

i

)
for si � 0, i = 1, . . . ,m,

gi(x, s) � −γ si + n(x)
(
si − s3

i

)
for si � 0, (2.2)

where 0 � n ∈ L2(RN ) ∩ L∞(RN ) is sufficiently smooth (for the further needs). This makes the global attractor not trivial
(equal to zero function); see [10, Appendix], where this problem was discussed. Letting gi(x, s) = −γ si + n(x)(si − s3

i ) for
|si| � ε , i = 1, . . . ,m, 0 < ε < 1, and ‘gluing’ these functions near si = 0 to fulfill further smallness restrictions (2.14), (3.5),
we get an example of nonlinearity g suitable throughout the paper. Extended discussion of such structural type assumption
on nonlinear term can be found in [6, p. 529].
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We need first to consider the main linear (product) operator of (1.3) on the space (H p+1(RN ))m with component, on
each space H p+1(RN ), that equals:

Aε = −ε(−1)p(�)p+1 + γ I, γ > 0. (2.3)

It is well known (e.g. [5]), that the operator Aε with the domain H2p+2(RN ), is sectorial positive on L2(RN ). Next, thanks
to the properties of the fractional power spaces, operator Aε is also sectorial on the space H−p(RN ); see [1, Chapter V.1]
for details.

It is also a familiar fact, that if Ai , i = 1, . . . ,m, with domains D(Ai) respectively, are sectorial positive operators on the
Banach spaces Xi , then the product operator A = (A1, . . . , Am), considered with the domain D(A1) × · · · × D(Am), will be
sectorial positive (product) operator on the space X1 × · · · × Xm (see e.g. [7, Example 1.3.2, p. 37]).

Consequently, the product operator Aε = (Aε, . . . , Aε) (m-times), will be sectorial positive on the product space
(H−p(RN ))m .

The next step is to check that the operator B = ∑N
j=1

∂
∂x j

∑N
i=1

∂2p

∂x2p
i

is a perturbation of Aε in (H−p(RN ))m in a sense of
[12, p. 177] or [7, p. 37]. We have:

Lemma 2.2. The operator B is a perturbation of Aε in (H−p(RN ))m, that means

∀0<μ�μ0∃C(μ)>0∀φ∈(H p+2(RN ))m ‖Bφ‖(H−p(RN ))m � μ‖Aεφ‖(H−p(RN ))m + C(μ)‖φ‖(H−p(RN ))m , (2.4)

μ0 > 0 is a constant. Consequently, the operator Aε + B is sectorial in (H−p(RN ))m, and the operator Aε + B +ωI is sectorial positive,
provided that ω > 0 is chosen sufficiently large.

Proof. Note first that the operator Aε defines a linear isomorphism from (H p+2(RN ))m onto (H−p(RN ))m (e.g. [5, Proposi-
tion 5.1]), and the expressions

‖Aεψ‖(H−p(RN ))m and ‖ψ‖(H p+2(RN ))m (2.5)

are equivalent norms of the space (H p+2(RN ))m . Note also an estimate

‖Bψ‖(H−p(RN ))m =
∥∥∥∥∥

N∑
j=1

∂

∂x j

N∑
i=1

∂2pψ

∂x2p
i

∥∥∥∥∥
(H−p(RN ))m

� C‖ψ‖(H p+1(RN ))m (2.6)

(C > 0 is a constant), being a consequence of the fact that any partial derivative ∂
∂xi

is a bounded linear operator from

Hs(RN ) to Hs−1(RN ) (for any s ∈ R). Using interpolation inequality, (2.5) and (2.6), we find that

‖Bψ‖(H−p(RN ))m � C‖ψ‖(H p+1(RN ))m � c‖ψ‖
2p+1
2p+2

(H p+2(RN ))m‖ψ‖
1

2p+2

(H−p(RN ))m

� μ‖Aεψ‖(H−p(RN ))m + C(μ)‖ψ‖(H−p(RN ))m , (2.7)

with arbitrary μ > 0. This finishes the proof. �
Remark 2.3. Since evidently the term α� is also a perturbation of Aε in H−p(RN ), increasing eventually the value of ω, we
claim that the operator

Aε = Aε + B − α� + ωI (2.8)

is sectorial positive on the space (H−p(RN ))m .

Now, the problem (1.3) will be rewritten as an abstract parabolic equation in X = (H−p(RN ))m with sectorial positive
operator Aε :

uε
t + Aεuε = F

(
uε

) + (γ + ω)uε,

uε(0) = u0, (2.9)

where ω > 0 sufficiently large (γ > 0 arbitrary; see (2.3)). Here F(uε) = g(·, uε) − ∑N
i=1

∂
∂xi

∇Φ(uε) is the nonlinear term.
Our next task is to show that with the conditions of Assumption I the nonlinear term F is Lipschitz continuous on

bounded subsets as a map from (H p+1(RN ))m to X . More precisely, we need to prove:

Lemma 2.4. For arbitrary bounded set B ⊂ (H p+1(RN ))m, we have an estimate

∃C B>0∀φ,ψ∈B
∥∥F(φ) − F(ψ)

∥∥
(H−p(RN ))m � C B‖φ − ψ‖(H p+1(RN ))m . (2.10)
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Proof. Note first that with our assumption 2p > N � 1 the inclusion H p+1(RN ) ⊂ C1
b (RN ) holds (C1

b (RN ) is the space of all
C1(RN ) functions having first order derivatives bounded on R

N ), since p + 1 − N
2 > 1. Let B ⊂ (H p+1(RN ))m be bounded.

Due to the form of F we need to estimate:∥∥∥∥∥g(·, φ) − g(·,ψ) −
N∑

i=1

∂

∂xi
∇Φ(φ) +

N∑
i=1

∂

∂xi
∇Φ(ψ)

∥∥∥∥∥
(H−p(RN ))m

� LB‖φ − ψ‖(C1
b (RN ))m +

∥∥∥∥∥
N∑

i=1

∂

∂xi
∇Φ(φ) −

N∑
i=1

∂

∂xi
∇Φ(ψ)

∥∥∥∥∥
(H−p(RN ))m

,

where LB is the Lipschitz constant of g restricted to arguments from B . In the estimate of the second term we use the
assumption that Φ ∈ C3(Rm),∥∥∥∥∥

N∑
i=1

∂

∂xi
∇Φ(φ) −

N∑
i=1

∂

∂xi
∇Φ(ψ)

∥∥∥∥∥
(H−p(RN ))m

� C

∥∥∥∥∥
N∑

i=1

∂

∂xi
∇Φ(φ) −

N∑
i=1

∂

∂xi
∇Φ(ψ)

∥∥∥∥∥
(L2(RN ))m

� C
N∑

i=1

m∑
j=1

∥∥∥∥ ∂

∂xi

(
D jΦ(φ) − D jΦ(ψ)

)∥∥∥∥
L2(RN )

� cB‖φ − ψ‖(H1(RN ))m ,

D jΦ is the j-th component of ∇Φ , and we use the global Lipschitz continuity of D jΦ and its first derivatives on elements
of B . The proof is completed. �

Consequently, we have proved the following local existence result:

Theorem 2.5. When α > 0, 2p > N � 1, and Assumption I is satisfied, then the problem (1.3) possess a unique local in time mild
solution:

uε ∈ C
([0, τu0);

(
H p+1(

R
N))m) ∩ C

(
(0, τu0);

(
H p+2(

R
N))m)

, uε
t ∈ C

(
(0, τu0);

(
H (p+2)−(

R
N))m)

, (2.11)

where τu0 denotes the ‘lifetime’ of the local solution corresponding to u0 and (p + 2)− denotes any number strictly less than (p + 2).
Moreover, such local solution fulfills the Cauchy integral formula:

uε(t, u0) = e−Aεt u0 +
t∫

0

e−Aε (t−s)(F
(
uε(s, u0)

) + (γ + ω)uε(s, u0)
)

ds for 0 � t < τu0 . (2.12)

Once having stated the local existence result we are ready to study global solvability of (1.3) and existence of a semigroup
on (H p+1(RN ))m corresponding to it.

2.2. Global solvability of an auxiliary problem (1.3)

As usual, if we have sufficiently good a priori estimates of the above local in time solutions valid over their interval of
existence, the solutions will exist globally in time. In the sequel we will need the strengthened hypothesis concerning the
nonlinear terms.

Assumption II. In addition to Assumption I, we require that:

• Φ :Rm →R fulfills the growth conditions (Dk denotes the k-th partial derivative)

∃c>0∃q∈[1,1+ 2p
N )

∀s∈Rm∀1� j,k�m
∣∣D j DkΦ(s)

∣∣ � c
(|s| + |s|q). (2.13)

• g : RN ×R
m → R

m , with g(x,0) = 0, fulfills the growth condition

∃c>0∃r∈[2,2+ 2(p+1)
N )

∀x∈RN ∀s∈Rm
∣∣g(x, s)

∣∣ � c
(|s|2 + |s|r). (2.14)

Remark 2.6. For the future use observe, that if we accept a slower growth of nonlinear terms, then the growth restrictions
above will be replaced with:

∃c>0∃ 2p ∀s∈Rm∀1� j,k�m
∣∣D j DkΦ(s)

∣∣ � c
(
1 + |s|q), (2.15)
q< N
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and

∃c>0∃r∈[1,1+ 2(p+1)
N )

∀x∈RN ∀s∈Rm
∣∣g(x, s)

∣∣ � c
(|s| + |s|r). (2.16)

The estimates given in (2.21)–(2.23) under the assumptions (2.15) and (2.16) are similar as presented there, but instead
of the embedding L1(RN ) ⊂ H−p(RN ) we need to use L2(RN ) ⊂ H−p(RN ) with small modifications of exponents in these
calculations.

Lemma 2.7. The following estimates of the solution uε of (1.3) hold:

∥∥uε
∥∥2

(L2(RN ))m � max

{
‖u0‖2

(L2(RN ))m ,
‖n‖2

L2(RN )

γ

}
,

lim sup
t→∞

∥∥uε(t, ·)∥∥2
(L2(RN ))m �

‖n‖2
L2(RN )

γ
. (2.17)

Proof. Taking the scalar product of (1.3) with uε , we obtain:

1

2

d

dt

∥∥uε
∥∥2

(L2(RN ))m +
∫
RN

uε ·
N∑

i=1

∂

∂xi
∇Φ

(
uε

)
dx +

∫
RN

uε ·
N∑

j=1

∂

∂x j

N∑
i=1

∂2puε

∂x2p
i

dx

= −α

∫
RN

∣∣∇uε
∣∣2

dx +
∫
RN

ε(−1)p(�)p+1uε · uε dx +
∫
RN

g
(
x, uε

) · uε dx.

Since the two left hand side components vanish (see the explanation below), and∫
RN

ε(−1)p(�)p+1uε · uε dx = −ε

∫
RN

(−�)p+1uε · uε dx = −ε

∫
RN

∣∣(−�)
p+1

2 uε
∣∣2

dx � 0,

we obtain

1

2

d

dt

∥∥uε
∥∥2

(L2(RN ))m + α

∫
RN

∣∣∇uε
∣∣2

dx �
∫
RN

g
(
x, uε

) · uε dx.

Here we have used the equality:

∫
RN

uε ·
N∑

j=1

∂

∂x j

N∑
i=1

∂2puε

∂x2p
i

dx = −
∫
RN

N∑
j=1

∂

∂x j

N∑
i=1

∂2puε

∂x2p
i

· uε dx,

which is obtained by the (2p + 1) integration by parts (for dense set of smooth solutions), and

∫
RN

uε ·
N∑

i=1

∂

∂xi
∇Φ

(
uε

)
dx = −

∫
RN

N∑
i=1

m∑
k=1

∂uε
k

∂xi
DkΦ

(
uε

)
dx = −

∫
RN

N∑
i=1

∂

∂xi
Φ

(
uε

)
dx = 0

(where DkΦ denotes the k-th component of the vector ∇Φ). Now, by the assumption (2.1),

1

2

d

dt

∥∥uε
∥∥2

(L2(RN ))m + α

∫
RN

∣∣∇uε
∣∣2

dx + ε

∫
RN

∣∣(−�)
p+1

2 uε
∣∣2

dx � −γ
∥∥uε

∥∥2
(L2(RN ))m +

∫
RN

n(x)
∣∣uε

∣∣dx, (2.18)

which, with the use of the Cauchy inequality, assures uniform in time boundedness of the (L2(RN ))m norm of uε as reported
in (2.17).

Returning to Eq. (2.18) we can also check that

ε

T∫
0

∫
RN

∣∣(−�)
p+1

2 uε
∣∣2

dx dt � const for arbitrary T > 0. � (2.19)

With the above introductory (L2(RN ))m a priori estimate (2.17) and the growth restriction imposed on Φ we are able to
show, that the nonlinear term F(uε(t, ·)) is subordinated to the main part operator Aε (compare [7, p. 72] for more details).
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Generally speaking, under such condition the term F(uε(t, ·)) can be treated as having sublinear growth on the solution.
Consequently the local solution obtained in Theorem 2.5 will be extended globally in time.

The subordination condition reads:

∥∥F
(
uε(t, ·))∥∥

(H−p(RN ))m � c
(∥∥uε(t, ·)∥∥

(L2(RN ))m

)(
1 + ∥∥uε(t, ·)∥∥θ

(H p+1(RN ))m

)
, (2.20)

where θ ∈ (0,1) is a constant.
Here, Xα = (H p+1(RN ))m , the auxiliary space Y = (L2(RN ))m and, to estimate the left hand side in (H−p(RN ))m we will

use the embeddings of the conjugate spaces. More precisely, since 2p > N � 1 then (H p(RN ))m ⊂ (L∞(RN ))m , consequently
(L1(RN ))m ⊂ (H−p(RN ))m . We will thus start the estimates:

∥∥F
(
uε(t, ·))∥∥

(H−p(RN ))m �
∥∥g

(·, uε
)∥∥

(H−p(RN ))m +
∥∥∥∥∥

N∑
i=1

∂

∂xi
∇Φ

(
uε

)∥∥∥∥∥
(H−p(RN ))m

� c
∥∥g

(·, uε
)∥∥

(L1(RN ))m + c

∥∥∥∥∥
N∑

i=1

∂

∂xi
∇Φ

(
uε

)∥∥∥∥∥
(L1(RN ))m

. (2.21)

The first component is estimated with the use of Assumption II and the Nirenberg–Gagliardo inequality:

∥∥g
(·, uε

)∥∥
(L1(RN ))m � c

(∥∥uε
∥∥2

(L2(RN ))m + ∥∥uε
∥∥r

(Lr(RN ))m

)
� c

(∥∥∣∣uε
∣∣∥∥2

L2(RN )
+ ∥∥∣∣uε

∣∣∥∥r(1−θ)

L2(RN )

∥∥∣∣uε
∣∣∥∥rθ

H p+1(RN )

)
, (2.22)

where N(r−2)
2r(p+1)

� θ < 1
r , or r <

2(p+1)
N + 2.

To estimate the second component we need to use the assumption (2.13):

∥∥∥∥∥
N∑

i=1

∂

∂xi
∇Φ

(
uε

)∥∥∥∥∥
(L1(RN ))m

� c
∥∥(∣∣uε

∣∣ + ∣∣uε
∣∣q)∣∣∇uε

∣∣∥∥
L1(RN )

� c
∥∥∣∣uε

∣∣∥∥
L2(RN )

∥∥∣∣∇uε
∣∣∥∥

L2(RN )
+ c

∥∥∣∣uε
∣∣∥∥q

L2q(RN )

∥∥∣∣∇uε
∣∣∥∥

L2(RN )
. (2.23)

Now, due to the Nirenberg–Gagliardo inequality

∥∥∣∣∇uε
∣∣∥∥

L2(RN )
� c

∥∥∣∣uε
∣∣∥∥ p

p+1

L2(RN )

∥∥∣∣uε
∣∣∥∥ 1

p+1

H p+1(RN )

(since 2p > N then 1
p+1 < 2

N+2 < 1). Also, again by the Nirenberg–Gagliardo inequality,

∥∥∣∣uε
∣∣∥∥q

L2q(RN )
� c′∥∥∣∣uε

∣∣∥∥θq
L2(RN )

∥∥∣∣uε
∣∣∥∥(1−θ)q

H p+1(RN )
,

where (1 − θ)q = N(q−1)
2(p+1)

< 1 − 1
p+1 , since q ∈ [1,1 + 2p

N ) by (2.13). Thus, the subordination condition (2.20) holds. Conse-
quently, the local solution to (1.3) constructed in Theorem 2.5 will be extended globally in time defining on the phase space
(H p+1(RN ))m a semigroup:

Sε(t)u0 := uε(t, u0), t � 0, ε > 0, (2.24)

where we temporarily express the dependence of the solution on initial data u0. We recall here the regularity of that
semigroup, as reported in (2.12):

Sε(·)u0 ∈ C
([0,∞); (H p+1(

R
N))m) ∩ C

(
(0,∞); (H p+2(

R
N))m)

,

Sε(·)u0 ∈ C1((0,∞); (H (p+2)−(
R

N))m)
. (2.25)

3. Smooth global solutions to (1.3)

We will concentrate on the studies of regular viscous solutions to (1.2). We need first to investigate the smooth solutions
of (1.3) and then a limit passage ε → 0+ , where we focus on the regularization effect of the viscosity term α�uε . From
now on, to get the estimates uniform in ε , the following sharper assumptions are required.
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Assumption III. In addition to Assumption I we require that:

• N = 1,2,3; the space dimensions that are most interesting in applications.
• Φ : Rm →R is C p+2(Rm), with Φ(0) = 0, fulfills the growth conditions

∃c>0∃q′< 4−N
4

∀s∈Rm∀1� j1, j2,k�m
∣∣D j1 D j2 DkΦ(s)

∣∣ � c
(
1 + |s|q′)

when N = 2,3. (3.1)

Moreover we assume

∃c>0∃q< 2
N
∀s∈Rm∀1� j,k�m

∣∣D j DkΦ(s)
∣∣ � c

(
1 + |s|q), (3.2)

and the, following from it (see Observation 3.1), consequences

∃c>0∀s∈Rm∀1�k�m
∣∣DkΦ(s)

∣∣ � c
(|s| + |s|q+1), (3.3)

∃c>0∀s∈Rm
∣∣Φ(s)

∣∣ � c
(|s|2 + |s|q+2). (3.4)

• g : RN ×R
m → R

m is C p(RN ×R
m), with g(x,0) = 0, fulfills the growth condition

∃c>0∃r<1+ 4
N
∀x∈RN ∀s∈Rm

∣∣g(x, s)
∣∣ � c

(|s|2 + |s|r). (3.5)

• ∃c>0∃r′<4∀x∈RN ∀s∈Rm∀i=1,...,m

∣∣∣∣∂ g(x, s)

∂si

∣∣∣∣ � c
(|s| + |s|r′)

when N = 2,3. (3.6)

• ∃c>0∃w�1∀s∈Rm∀x∈RN ∀i=1,...,N
∣∣Di g(x, s)

∣∣ � c
(|s|2 + |s|w)

, (3.7)

where w < 7 when N = 3 (recall that Di denotes the i-th partial derivative).

The following elementary observation will be used to bound the lower order derivatives of Φ from (3.2):

Observation 3.1. Let Φ : Rm →R be C3(Rm), Φ(0) = 0, and satisfy the growth restriction

∃c>0∃q>0∀s∈Rm∀1� j,k�m
∣∣D j DkΦ(s)

∣∣ � c
(
1 + |s|q).

Then we have an estimate:∣∣DkΦ(s)
∣∣ � cm

(|s| + |s|q+1).
Indeed,

DkΦ(s) = Dk
(
Φ(s) − Φ(0)

)
= Dk

(
Φ(s1, s2, . . . , sm) − Φ(0, s2, . . . , sm) + Φ(0, s2, . . . , sm) − Φ(0,0, s3, . . . , sm) + · · · − Φ(0,0, . . . ,0)

)
= Dk

(
m∑

j=1

D jΦ(s̃ j)s j

)
,

and consequently,

∣∣DkΦ(s)
∣∣ �

m∑
j=1

c
(
1 + |s̃ j |q

)|s| � cm
(
1 + |s|q)|s| = cm

(|s| + |s|q+1).
Remark 3.2. There are several restrictions imposed on the constants appearing in the paper: the space dimension N , the
exponent p, the exponents of admissible growth of nonlinear terms Φ and g . The limitation imposed on p and N is the,
valid throughout the text, assumption 2p > N � 1. It was essential in the proof of Lemma 2.4 and Theorem 2.5. Further
limitation on the space dimension N and the growth of nonlinear terms is needed for smooth solutions. Assumption III
is essential if we want, in the proof of (H1(RN ))m a priori estimate, the term α�uε together with the a priori estimate
in (L2(RN ))m to control the nonlinear components in Eq. (1.3). In the light of Assumption III the space dimension N will

be restricted to N = 1,2,3 and the function Φ(s) will grow like |s|(2+ 2
N )− for N = 1,2,3 (see also Remark 3.5), while the

nonlinear term g(x, s) will grow like |s|(1+ 4
N )− in these dimensions.

We start with obtaining a priori estimates of uε , taking care that they are uniform in ε > 0. Such estimates will be next
inherited by the viscous solutions of (1.2).
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Remark 3.3. In this paper, in the process of estimating the Hq(RN ) type norms of uε in (3.8) or, even more, in (3.21), we
return to an old idea of ‘multiplying’ Eq. (1.3) by another elliptic operator; see [17, Chapter 3, Remark 8.3], or the source
paper by P.E. Sobolevskij [24]. While in that references the order of the two elliptic operators should be the same (and
equal to 2), here we need to consider a generalization of that idea when the two elliptic operators (one in the equation and
another one we are multiplying by) have eventually different orders.

Lemma 3.4. Under Assumption III the global solutions uε of (1.3) are bounded in (H1(RN ))m uniformly in t � 0 and in ε > 0.

Proof. Note first, that the expression

(
‖φ‖2

L2(RN )
+

N∑
i=1

∥∥∥∥∂ lφ

∂xl
i

∥∥∥∥
2

L2(RN )

) 1
2

,

defines an equivalent norm of Hl(RN ) (see e.g. [26, Remark 2.3.3]). To get an exact form of the (H1(RN ))m a priori estimate
we multiply (1.3) by −�uε :

−
∫
RN

uε
t · �uε dx −

∫
RN

(
N∑

i=1

∂

∂xi
∇Φ

(
uε

) +
N∑

j=1

∂

∂x j

N∑
i=1

∂2p

∂x2p
i

uε

)
· �uε dx

= −
∫
RN

(
α�uε + ε(−1)p(�)p+1uε + g

(
x, uε

)) · �uε dx. (3.8)

We will transform the components one by one. We have:

−
∫
RN

uε
t · �uε dx = 1

2

d

dt

∫
RN

N∑
i=1

∣∣∣∣ ∂

∂xi
uε

∣∣∣∣
2

dx,

∫
RN

N∑
j=1

∂

∂x j

N∑
i=1

∂2p

∂x2p
i

uε ·
N∑

i=1

∂2

∂x2
i

uε dx = 0,

and

ε

∫
RN

(−1)p+1(�)p+1uε · �uε dx � 0, (3.9)

through (p + 2) integrations by parts. To estimate the nonlinear terms we will use Assumption III. We have

∫
RN

(
−

N∑
i=1

∂

∂xi
∇Φ

(
uε

) + g
(
x, uε

)) · �uε dx

� c

(
N∑

i=1

m∑
j,k=1

∥∥∥∥Dk D jΦ
(
uε

)∂uε
j

∂xi

∥∥∥∥
L2(RN )

+ ∥∥g
(·, uε

)∥∥
(L2(RN ))m

)∥∥uε
∥∥

(H2(RN ))m . (3.10)

The term ‖g(·, uε)‖(L2(RN ))m is estimated as follows

∥∥g
(·, uε

)∥∥
(L2(RN ))m � c

(∥∥∣∣uε
∣∣∥∥2

L4(RN )
+ ∥∥∣∣uε

∣∣∥∥r
L2r(RN )

)
� c

(∥∥∣∣uε
∣∣∥∥

L2(RN )

)(∥∥∣∣uε
∣∣∥∥ N

4
H2(RN )

+ ∥∥∣∣uε
∣∣∥∥θ

H2(RN )

)
, (3.11)

where θ = N(r−1)
4 < 1.

Using Agmon’s inequality [25, p. 52]

‖|uε |‖L∞(RN ) �

⎧⎪⎪⎨
⎪⎪⎩

c′‖|uε |‖
1
2

H
N
2 −1

(RN )
‖|uε |‖

1
2

H
N
2 +1

(RN )
N even,

c′‖|uε |‖
1
2

N−1
N

‖|uε |‖
1
2

N+1
N

N odd,

(3.12)
H 2 (R ) H 2 (R )
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we obtain

∥∥∥∥Dk D jΦ
(
uε

)∂uε
j

∂xi

∥∥∥∥
L2(RN )

�
∥∥Dk D jΦ

(
uε

)∥∥
L∞(RN )

∥∥∥∥∂uε
j

∂xi

∥∥∥∥
L2(RN )

� c
(∥∥∣∣uε

∣∣∥∥q
L∞(RN )

+ 1
)∥∥∣∣uε

∣∣∥∥ 1
2
L2(RN )

∥∥∣∣uε
∣∣∥∥ 1

2
H2(RN )

� c
(∥∥∣∣uε

∣∣∥∥
L2(RN )

)∥∥∣∣uε
∣∣∥∥ Nq+2

4
H2(RN )

. (3.13)

Note that in (3.12) we need to have N
2 + 1 � 2 (N even); equivalently N = 2. For N odd, we require N+1

2 � 2; equivalently
N = 1,3. Finally, to bound the H2(RN ) norm of the solution uε , we need to use a version of the Calderon–Zygmund estimate

−α

∫
RN

�uε · �uε dx � −c(α)
∥∥uε

∥∥2
(H2(RN ))m + α

∥∥uε
∥∥2

(L2(RN ))m , (3.14)

which has the coefficients α, c(α) > 0 independent of ε .
Collecting the above estimates we obtain:

1

2

d

dt

∫
RN

N∑
i=1

∣∣∣∣ ∂

∂xi
uε

∣∣∣∣
2

dx + c(α)
∥∥uε

∥∥2
(H2(RN ))m

� α
∥∥uε

∥∥2
(L2(RN ))m + c

(∥∥uε(t, ·)∥∥
(L2(RN ))m

)(
1 + ∥∥uε(t, ·)∥∥θ

(H2(RN ))m

)∥∥uε
∥∥

(H2(RN ))m , (3.15)

where θ < 1 as above. Consequently, by the Young inequality,

d

dt

∫
RN

N∑
i=1

∣∣∣∣ ∂

∂xi
uε

∣∣∣∣
2

dx + c(α)
∥∥uε

∥∥2
(H2(RN ))m � C

(∥∥uε(t, ·)∥∥
(L2(RN ))m

)
,

the estimate being uniform in ε > 0. Together with (2.17) this brings us the, uniform in ε and in t ∈ [0,∞), estimate of the
(H1(RN ))m norm of uε(t, ·)

∥∥uε(t, ·)∥∥
(H1(RN ))m � c0

(∥∥uε(t, ·)∥∥
(L2(RN ))m

)
, t ∈ [0,∞). � (3.16)

Remark 3.5. It is easy to see, that the same reasoning (especially (3.13)) allows us to estimate the (H1(RN ))m norm of uε

uniformly in ε if we let θ = 1 in (3.15) but require the coefficient c(‖|uε |‖L2(RN )) there to be sufficiently small compared to
c(α) introduced in (3.14). Extending this observation we will describe next the form of Φ admitted by the above estimates.

When N = 1 we will assume that

∣∣Φ(s)
∣∣ � C(α)|s|4 + a polynomial of |s| of order 3, (3.17)

in space dimension N = 2 we need to have

∣∣Φ(s)
∣∣ � C(α)|s|3 + a polynomial of |s| of order 2, (3.18)

where C(α) > 0 are sufficiently small constants relatively to the coefficient α in (1.2). So, when N = 2, Φ will be in particular
a third order polynomial with small positive main coefficient. It is difficult to write explicitly the smallness restriction on
the main coefficient. Instead one can think of the nonlinearity Φ satisfying

∣∣Φ(s)
∣∣ � c|s|3− + a polynomial of |s| of order 2, (3.19)

since |s|3− � ε|s|3 + C(ε)|s| holds for arbitrary small ε > 0. Similar observation is true for the estimate (3.23) below and the
resulting estimate of the solutions, when N = 2.

For N = 3, the situation is a bit more delicate since now the growth of nonlinear term Φ allowed in (3.13) is like

∣∣Φ(s)
∣∣ � C(α)|s| 8

3 + a polynomial of |s| of order 2, (3.20)

where C(α) > 0 is sufficiently small relatively to the coefficient α. Thus, Φ is not a pure polynomial in that case.
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3.1. Third a priori estimate of the global solutions to (1.3)

We get the H p+1(RN ) a priori estimate by induction. In such estimates we need to use the formula for high derivative of
composite function, as stated e.g. in [11], known under the name of the generalized Bruno formula. Since

∫
RN

N∑
j=1

∂

∂x j

N∑
i=1

∂2p

∂x2p
i

uε ·
N∑

i=1

∂2l+2

∂x2l+2
i

uε dx = 0,

multiplying Eq. (1.3) by (−1)l+1 ∑N
i=1

∂2l+2

∂x2l+2
i

uε , integrating by parts, we obtain

1

2

d

dt

∫
RN

N∑
i=1

∣∣∣∣ ∂ l+1

∂xl+1
i

uε

∣∣∣∣
2

dx + cα
∥∥uε

∥∥2
(Hl+2(RN ))m − α

∥∥uε
∥∥2

(L2(RN ))m + ε

∫
RN

(−�)p+1uε · (−1)l+1
N∑

i=1

∂2l+2

∂x2l+2
i

uε dx

� c

(∥∥∇Φ
(
uε

)∥∥
(L2(RN ))m +

N∑
i=1

∥∥∥∥∂ l+1∇Φ(uε)

∂xl+1
i

∥∥∥∥
(L2(RN ))m

)∥∥uε
∥∥

(Hl+2(RN ))m

+ c

(∥∥g
(·, uε

)∥∥
(L2(RN ))m +

N∑
i=1

∥∥∥∥∂ l g(·, uε)

∂xl
i

∥∥∥∥
(L2(RN ))m

)∥∥uε
∥∥

(Hl+2(RN ))m . (3.21)

The term ‖g(·, uε)‖(L2(RN ))m is estimated as in (3.11). To bound the component ‖∇Φ(uε)‖(L2(RN ))m we need to use the
assumption (3.3). We have

∥∥∇Φ
(
uε

)∥∥
(L2(RN ))m � c

(∥∥uε
∥∥

(L2(RN ))m + ∥∥uε
∥∥q+1

(L2q+2(RN ))m

)
� c

(∥∥∣∣uε
∣∣∥∥

Hl(RN )

)
.

Note that to bound the term ‖ ∂l g(·,uε )

∂xl
i

‖(L2(RN ))m we need to estimate the following expressions:

∥∥Dl
i g

(·, uε
)∥∥

(L2(RN ))m ,

m∑
j1

∥∥∥∥Dl−1
i

∂ g(·, uε)

∂uε
j1

∂uε
j1

∂xi

∥∥∥∥
(L2(RN ))m

, . . . ,

m∑
j1... jl

∥∥∥∥ ∂ l g(·, uε)

∂uε
j1

. . . ∂uε
jl

∂uε
j1

∂xi
· · · ∂uε

jl

∂xi

∥∥∥∥
(L2(RN ))m

,

m∑
j1

∥∥∥∥Dl−2
i

∂ g(·, uε)

∂uε
j1

∂2uε
j1

∂x2
i

∥∥∥∥
(L2(RN ))m

, . . . ,

m∑
j1... jl−1

∥∥∥∥ ∂ l−1 g(·, uε)

∂uε
j1

. . . ∂uε
jl−1

∂2uε
j1

∂x2
i

∂uε
j2

∂xi
· · ·

∂uε
jl−1

∂xi

∥∥∥∥
(L2(RN ))m

, . . . ,

m∑
j1

∥∥∥∥Di
∂ g(·, uε)

∂uε
j1

∂ l−1uε
j1

∂xl−1
i

∥∥∥∥
(L2(RN ))m

, . . . ,

m∑
j1, j2

∥∥∥∥∂2 g(·, uε)

∂uε
j1
∂uε

j2

∂ l−1uε
j1

∂xl−1
i

∂uε
j2

∂xi

∥∥∥∥
(L2(RN ))m

,

m∑
j1

∥∥∥∥∂ g(·, uε)

∂uε
j1

∂ luε
j1

∂xl
i

∥∥∥∥
(L2(RN ))m

.

(3.22)

Now we present the calculations for l = 1. This case is the most complicated for the estimates. The case l � 2 is similar,
but easier. Using Assumption III we have

∥∥∥∥∂ g(·, uε)

∂xi

∥∥∥∥
(L2(RN ))m

�
∥∥Di g

(·, uε
)∥∥

(L2(RN ))m +
m∑
j

∥∥∥∥∂ g(·, uε)

∂uε
j

∂uε
j

∂xi

∥∥∥∥
(L2(RN ))m

� c
(∥∥uε

∥∥2
(L4(RN ))m + ∥∥uε

∥∥w
(L2w (RN ))m + (∥∥uε

∥∥
(L∞(RN ))m + ∥∥uε

∥∥r′
(L∞(RN ))m

)∥∥uε
∥∥

(H1(RN ))m

)
when N = 2,3 (here w < 7 when N = 3; r′ < 4). Next, thanks to the estimate (3.12) and Nirenberg–Gagliardo inequality, we
obtain∥∥∥∥∂ g(·, uε)

∂xi

∥∥∥∥
(L2(RN ))m

� c
(∥∥uε

∥∥
(H1(RN ))m

)

×

⎧⎪⎪⎨
⎪⎪⎩

1 N = 1,

1 + ‖uε‖
1
4
(H3(RN ))m + ‖uε‖

r′
4
(H3(RN ))m N = 2,

1 + ‖uε‖wθ
3 N m + ‖uε‖

1
4

3 N m + ‖uε‖
r′
4

3 N m N = 3, θ = max{0, w−3 }.

(H (R )) (H (R )) (H (R )) 4w
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The term ‖ ∂2∇Φ(uε )

∂x2
i

‖(L2(RN ))m is estimated similarly to the term ‖ ∂ g(·,uε )
∂xi

‖(L2(RN ))m . We have

∥∥∥∥Dk D j1Φ
(
uε

)∂2uε
j1

∂x2
i

∥∥∥∥
L2(RN )

� c
∥∥uε

∥∥ 1
2
(H1(RN ))m

∥∥uε
∥∥ 1

2
(H3(RN ))m

(
1 + ∥∥uε

∥∥q
(L∞(RN ))m

)

� c
(∥∥uε

∥∥
(H1(RN ))m

) ×

⎧⎪⎨
⎪⎩

‖uε‖
1
2
(H3(RN ))m N = 1,

‖uε‖
1
2
(H3(RN ))m + ‖uε‖

q+2
4

(H3(RN ))m N = 2,3,

and ∥∥∥∥Dk D j1 D j2Φ
(
uε

)∂uε
j1

∂xi

∂uε
j2

∂xi

∥∥∥∥
(L2(RN ))m

� c
∥∥Dk D j1 D j2Φ

(
uε

)∥∥
L∞(RN )

(∥∥∥∥∂uε
j1

∂xi

∥∥∥∥
2

L4(RN )

+
∥∥∥∥∂uε

j2

∂xi

∥∥∥∥
2

L4(RN )

)

� c
(∥∥uε

∥∥
(H1(RN ))m

) ×

⎧⎪⎨
⎪⎩

‖uε‖
N
4
(H3(RN ))m N = 1,

‖uε‖
N
4
(H3(RN ))m + ‖uε‖

q′+N
4

(H3(RN ))m N = 2,3.

By (3.16) we already have an estimate of uε in (H1(RN ))m . Consequently, when N = 1 the solution is bounded in (L∞(RN ))m

and since Φ ∈ C3(Rm) the term ‖Dk D j1 D j2Φ(uε)‖L∞(RN ) above is bounded. When N = 2,3, we need to use Assump-
tion III, (3.1). The second step of induction (l = 1) shows that the (H2(RN ))m norm of uε is bounded uniformly in ε > 0.
Since, in Assumption III, we limit the space dimension to N � 3 such estimate gives also the (L∞(RN ))m estimate of uε .
Consequently, when N = 2,3, in further considerations the functional arguments of Φ and g as well as of their derivatives
are bounded.

When l � 2 we present next the calculations for a few components; the way of handling another components is very
similar. Since the term containing first order derivative of g will always be present in the calculations, we start with that
term.

Using Assumption III, the estimate (3.12) and Nirenberg–Gagliardo inequality, we obtain

∥∥∥∥∂ g(·, uε)

∂uε
j1

∂ luε
j1

∂xl
i

∥∥∥∥
(L2(RN ))m

� c
(∥∥∣∣uε

∣∣∥∥
L∞(RN )

+ ∥∥∣∣uε
∣∣∥∥r′

L∞(RN )

)∥∥∣∣uε
∣∣∥∥

Hl(RN )
� c′′(∥∥∣∣uε

∣∣∥∥
Hl(RN )

)
.

We estimate another components of (3.22). We have,

∥∥∥∥∂2 g(·, uε)

∂uε
j1
∂uε

j2

∂ l−kuε
j1

∂xl−k
i

∂kuε
j2

∂xk
i

∥∥∥∥
(L2(RN ))m

�
∥∥∥∥∂2 g(·, uε)

∂uε
j1
∂uε

j2

∥∥∥∥
(L∞(RN ))m

∥∥∥∥∂ l−kuε
j1

∂xl−k
i

∥∥∥∥
L4(RN )

∥∥∥∥∂kuε
j2

∂xk
i

∥∥∥∥
L4(RN )

� c
(∥∥∣∣uε

∣∣∥∥
Hl(RN )

)
,

and when l � 3 and k1 + k2 + k3 = l,∥∥∥∥ ∂3 g(·, uε)

∂uε
j1
∂uε

j2
∂uε

j3

∂k1 uε
j1

∂xk1
i

∂k2 uε
j2

∂xk2
i

∂k3 uε
j2

∂xk3
i

∥∥∥∥
(L2(RN ))m

�
∥∥∥∥ ∂3 g(·, uε)

∂uε
j1
∂uε

j2
∂uε

j3

∥∥∥∥
(L∞(RN ))m

∥∥∥∥∂k1 uε
j1

∂xk1
i

∥∥∥∥
L4(RN )

∥∥∥∥∂k2 uε
j2

∂xk2
i

∥∥∥∥
L8(RN )

∥∥∥∥∂k3 uε
j2

∂xk3
i

∥∥∥∥
L8(RN )

� c
(∥∥∣∣uε

∣∣∥∥
Hl(RN )

)
.

The term ‖ ∂l+1∇Φ(uε )

∂xl+1
i

‖(L2(RN ))m is estimated similarly to the term ‖ ∂l g(·,uε )

∂xl
i

‖(L2(RN ))m . We have (compare (3.12))

∥∥∥∥Dk D j1Φ
(
uε

)∂ l+1uε
j1

∂xl+1
i

∥∥∥∥
L2(RN )

� c
∥∥∣∣uε

∣∣∥∥ 1
2
Hl(RN )

∥∥∣∣uε
∣∣∥∥ 1

2
Hl+2(RN )

(
1 + ∥∥∣∣uε

∣∣∥∥q
L∞(RN )

)

� c
(∥∥∣∣uε

∣∣∥∥
Hl(RN )

)∥∥∣∣uε
∣∣∥∥ 1

2
Hl+2(RN )

.

Using the Nirenberg–Gagliardo inequality we get, for 1 � ν � l − 1,

∥∥∥∥Dk D j1 D j2Φ
(
uε

)∂ l−νuε
j1

∂xl−ν
i

∂νuε
j2

∂xν
i

∥∥∥∥
L2(RN )

� 1

2

∥∥∥∥Dk D j1 D j2Φ
(
uε

)∥∥∥∥
L∞(RN )

(∥∥∥∥∂ l−νuε
j1

∂xl−ν
i

∥∥∥∥
2

L4(RN )

+
∥∥∥∥∂νuε

j2

∂xν
i

∥∥∥∥
2

L4(RN )

)

� c
(∥∥∣∣uε

∣∣∥∥
l N

)∥∥∣∣uε
∣∣∥∥2

l−1,4 N � c
(∥∥∣∣uε

∣∣∥∥
l N

)
. (3.23)
H (R ) W (R ) H (R )
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Collecting the above estimates we obtain:

1

2

d

dt

∫
RN

N∑
i=1

∣∣∣∣ ∂ l+1

∂xl+1
i

uε

∣∣∣∣
2

dx + cα
∥∥uε

∥∥2
(Hl+2(RN ))m + ε

∫
RN

(−�)p+1uε · (−1)l+1
N∑

i=1

∂2l+2

∂x2l+2
i

uε dx

� α
∥∥uε

∥∥2
(L2(RN ))m + c

(∥∥uε(t, ·)∥∥
(Hl(RN ))m

)(
1 + ∥∥uε(t, ·)∥∥θ

(Hl+2(RN ))m

)∥∥uε
∥∥

(Hl+2(RN ))m , (3.24)

where θ < 1. Consequently,

d

dt

∫
RN

N∑
i=1

∣∣∣∣ ∂ l+1

∂xl+1
i

uε

∣∣∣∣
2

dx + c′(α)
∥∥uε

∥∥2
(Hl+2(RN ))m � C

(∥∥uε(t, ·)∥∥
(Hl(RN ))m

)
,

with constant independent of ε . Together with earlier (Hl(RN ))m estimate this gives us the, uniform in ε and in t ∈ [0,∞),
estimate of the (Hl+1(RN ))m norm of uε(t, ·) for all 1 < l � p:∥∥uε(t, ·)∥∥

(Hl+1(RN ))m)
� C0

(∥∥uε(t, ·)∥∥
(Hl(RN ))m

)
, t ∈ [0,∞). (3.25)

In particular we have thus estimated the (H p+1(RN ))m norm of uε , uniformly in ε > 0 and in t � 0. Since, due to the
Calderon–Zygmund estimate

−ε

∫
RN

(−�)p+1uε · (−1)p+1
N∑

i=1

∂2p+2

∂x2p+2
i

uε dx � −cε
∥∥uε

∥∥2
(H2p+2(RN ))m + ε

∥∥uε
∥∥2

(L2(RN ))m ,

returning to (3.24), integrating it over (0, T ) and using (3.25), we obtain also the estimates

α

T∫
0

∥∥uε(t, ·)∥∥2
(H p+2(RN ))m dt � C1

(∥∥uε(t, ·)∥∥
(H1(RN ))m , T

)
, (3.26)

ε

T∫
0

∥∥uε(t, ·)∥∥2
(H2p+2(RN ))m dt � C1

(∥∥uε(t, ·)∥∥
(H1(RN ))m , T

)
. (3.27)

3.2. Higher order, uniform in ε , estimates of uε

We will finally describe the, uniform in ε > 0, estimate of the (H p+2(RN ))m norms of uε . Such estimates are possible
thanks to the presence of the viscosity term α� in Eq. (1.3). Since, for the global solutions constructed in Theorem 2.5,
the initial data u0 ∈ (H p+1(RN ))m only, we need first to justify the uniform in ε > 0 smoothing action of Eq. (1.3). More
precisely, we need to show that uε(t, ·) enters (H p+2(RN ))m for t > 0, uniformly with respect to ε . Let Φ ∈ C p+4(RN ) and
g ∈ C p+2(RN ×R

m).
The way of getting such estimate is known. We need to multiply Eq. (1.3) by t(−1)p+2 ∑N

i=1
∂2p+4uε

∂x2p+4
i

and proceed as in

the third a priori estimate. The only difference is connected with the term containing time derivative, which is transformed
as follows:∫

RN

uε
t · t(−1)p+2

N∑
i=1

∂2p+4uε

∂x2p+4
i

dx = 1

2

∫
RN

t
∂

∂t

N∑
i=1

∣∣∣∣∂ p+2uε

∂xp+2
i

∣∣∣∣
2

dx

= 1

2

d

dt

∫
RN

t
N∑

i=1

∣∣∣∣∂ p+2uε

∂xp+2
i

∣∣∣∣
2

dx − 1

2

∫
RN

N∑
i=1

∣∣∣∣∂ p+2uε

∂xp+2
i

∣∣∣∣
2

dx. (3.28)

Calculations very similar to the third a priori estimate lead us to the conclusion valid, however, on bounded time intervals:

1

2

d

dt

∫
RN

t
N∑

i=1

∣∣∣∣∂ p+2uε

∂xp+2
i

∣∣∣∣
2

dx � −c(α)t
∥∥∣∣uε

∣∣∥∥2
H p+3(RN ))

+ αt
∥∥∣∣uε

∣∣∥∥2
L2(RN )

+ c
(√

t
∥∥∣∣uε

∣∣∥∥θ

H p+3(RN )

)√
t
∥∥∣∣uε

∣∣∥∥
H p+3(RN )

+ 1

2

∫
N

N∑
i=1

∣∣∣∣∂ p+2uε

∂xp+2
i

∣∣∣∣
2

dx, t ∈ [0,1], (3.29)
R
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where we take t ∈ [0,1] for example and the last term was estimated already in (3.26), uniformly in ε . This gives us the,
uniform in ε > 0 and t ∈ [0,1], estimate

√
t
∥∥∣∣uε

∣∣∥∥
H p+2(RN )

� const, (3.30)

expressing the regularization effect of Eq. (1.3).
Thanks to (3.30) we can assume that the values ‖|uε(1, ·)|‖H p+2(RN ) are bounded uniformly in ε > 0, and consider our

global solutions of (1.3) for t � 1 with ‘initial data’ uε(1, ·) ∈ (H p+2(RN ))m . An estimate, very similar to the third a priori
estimate, valid for t � 1 will give us next the uniform in time t � 1 bound∥∥uε

∥∥
(H p+2(RN ))m � const, t � 1, (3.31)

with the constant uniform in ε > 0 and for t � 1.

4. Viscous solutions

In this section we get the solution to (1.2) as a limit, when ε → 0+ , of the global smooth solutions to parabolic regu-
larization (1.3). In the process of passing to the limit, ε → 0+ , an essential role is played by the estimate of the difference
(uε1 − uε2) in (L2(RN ))m . Such estimate will prove uniqueness of such limit, and also uniqueness of the viscous solution
obtained in such a way.

Lemma 4.1. The following estimate of the difference (uε1 − uε2) of the two solutions to (1.3) corresponding to different ε ’s holds:∥∥uε1 − uε2
∥∥

(L2(RN ))m � c|ε1 − ε2| 1
2 , t ∈ [0, T ], (4.1)

where the constant c = c(T ) is independent of ε .

Proof. Subtracting (1.3) written for uε2 from (1.3) written for uε1 , defining U := uε1 − uε2 , and choosing ε1 � ε2 > 0, we
obtain:

Ut +
N∑

i=1

∂

∂xi

(∇Φ
(
uε1

) − ∇Φ
(
uε2

)) +
N∑

j=1

∂

∂x j

N∑
i=1

∂2p

∂x2p
i

U

= α�U + ε1(−1)p(�)p+1U + (ε1 − ε2)(−1)p(�)p+1uε2 + (
g
(
x, uε1

) − g
(
x, uε2

))
, t > 0, x ∈ R

N ,

U (0, x) = 0, x ∈R
N . (4.2)

Next we multiply (4.2) by U in (L2(RN ))m , to get

1

2

d

dt

∫
RN

|U |2 dx +
∫
RN

N∑
i=1

∂

∂xi

(∇Φ
(
uε1

) − ∇Φ
(
uε2

)) · U dx + α

∫
RN

|∇U |2 dx + ε1

∫
RN

∣∣(−�)
p+1

2 U
∣∣2

dx

� (ε2 − ε1)

∫
RN

(−�)
p+1

2 uε2 · (−�)
p+1

2 U dx +
∫
RN

(
g
(
x, uε1

) − g
(
x, uε2

)) · U dx, (4.3)

where we neglect the vanishing components, and use the equality (valid for smooth solutions)

(−1)p
∫
RN

(�)p+1uε2 · U dx = (−1)2p+1
∫
RN

(−�)p+1uε2 · U dx = −
∫
RN

(−�)
p+1

2 uε2 · (−�)
p+1

2 U dx. (4.4)

Now, thanks to the uniform in time and in ε estimates of uε in (C1
b (RN ))m and in (H p+1(RN ))m , and the assumed regularity

of Φ and g , using Cauchy’s inequality, we get:

−
∫
RN

N∑
i=1

∂

∂xi

(∇Φ
(
uε1

) − ∇Φ
(
uε2

)) · U dx =
∫
RN

N∑
i=1

(∇Φ
(
uε1

) − ∇Φ
(
uε2

)) · ∂

∂xi
U dx

� L

∫
RN

|U ||∇U |dx � α

∫
RN

|∇U |2 dx + cα

∫
RN

|U |2 dx, (4.5)

with similar estimate for the term containing g . Note that ε1 −ε2 � ε1, so that even when ε1 → 0, we have a subordination:
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(ε1 − ε2)

∣∣∣∣
∫
RN

(−�)
p+1

2 uε2 · (−�)
p+1

2 U dx

∣∣∣∣ � ε1

∫
RN

∣∣(−�)
p+1

2 U
∣∣2

dx + ε1 − ε2

4

∫
RN

∣∣(−�)
p+1

2 uε2
∣∣2

dx. (4.6)

Consequently, we obtain an estimate

1

2

d

dt

∫
RN

|U |2 dx � c

∫
RN

|U |2 dx + ε1 − ε2

4
const, (4.7)

which, through explicit integration, using (3.27), gives the required bound (4.1), since U (0) = 0. Note that the const depends

on the bound for ‖(−�)
p+1

2 uε2‖L2(RN ) and the Lipschitz constants for ∇Φ and g . �
Remark 4.2. There are several ways of passing with ε to 0+ to get the viscous solution of (1.2). Further we will follow the
classical approach of J.L. Lions [19], which relates such a limit to a solution of the limiting equation. But, if we wish to stay
inside the frame of the dynamical systems only, we will consider a convergence of the trajectories. More precisely, consider
the limits of the global solutions of (1.3) in the space C([0, T ]; (H p(RN ))m). Once we stated the estimates (4.1) and (3.25)
saying that the solutions to (1.3) are bounded in (H p+1(RN ))m uniformly in ε > 0, by interpolation argument we find that:

sup
t∈[0,T ]

∥∥uε1(t, ·) − uε2(t, ·)∥∥
(H p(RN ))m

� sup
t∈[0,T ]

∥∥uε1(t, ·) − uε2(t, ·)∥∥ p
p+1

(H p+1(RN ))m

∥∥uε1(t, ·) − uε2(t, ·)∥∥ 1
p+1

(L2(RN ))m

� c|ε1 − ε2|
1

p+1 sup
t∈[0,T ]

(∥∥uε1(t, ·)∥∥ p
p+1

(H p+1(RN ))m + ∥∥uε2(t, ·)∥∥ p
p+1

(H p+1(RN ))m

)
� const |ε1 − ε2|

1
p+1 , (4.8)

with the const uniform in ε′s. The last estimate shows that {uεi } is a Cauchy sequence in the space C([0, T ]; (H p(RN ))m).
Letting ε2 → 0, we can get the limiting trajectory u(t, ·) and some of its properties.

Similar estimate, based on (3.31), shows the convergence in (H (p+2)− (RN ))m:

sup
t∈[1,T ]

∥∥uε1(t, ·) − uε2(t, ·)∥∥
(H(p+2)− (RN ))m � const |ε1 − ε2|1− (p+2)−

p+2 , (4.9)

valid, however, on compact time intervals t ∈ [τ , T ], separated from t = 0 (we set t � 1 above, for simplicity, recall also that
T > 1 is an arbitrary fixed number).

4.1. Viscous solutions of (1.2)

We will describe now the process of passing with ε to 0+ to get the viscous solutions of (1.2). That notion is similar to
the viscosity solutions introduced by P.L. Lions and G. Barles for the Hamilton–Jacobi type equations. The, classical nowadays,
procedure of passing to the limit was used first in the studies of the Burgers equation (see e.g. [22]) and extended later
significantly in [19]. Thus, we will sketch it here only without discussing the details.

We start with formulating the existence result.

Theorem 4.3. There exists a unique viscous solution u of (1.2) having the following regularity properties:

‖u‖L∞(0,∞;(H p(RN ))m) � const, t � 0, ‖ut‖L∞(0,T ;(H−p(RN ))m) � const, T > 0,

‖u‖L∞(0,∞;(H(p+2)− (RN ))m)
� const for t � 1,

where const are the same as for uε ’s and T is arbitrary.

Proof. In (2.17), (3.25), (4.9), we have shown the ε independent estimates of the approximating solutions uε :∥∥uε(t, ·)∥∥
(L2(RN ))m � const,

∥∥uε(t, ·)∥∥
(H p+1(RN ))m � const, (4.10)

and ∥∥uε(t, ·)∥∥
(H p+2(RN ))m � const, t � 1, (4.11)

with the constants independent of ε . It follows further from (3.27) that

√
ε
∥∥uε

∥∥
2 2p+2 N m � const(T ), (4.12)
L (0,T ;(H (R )) )
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again with the constant independent of ε . The above bounds, uniform in ε > 0, allow us to pass to the limit over a subse-
quence, in the following spaces (compare [19]):

uε → u weak star in L∞(
0, T ; (H p(

R
N))m)

,

uε → u weak star in L∞(
1, T ; (H (p+2)−(

R
N))m)

,

εuε → 0 in L2(0, T ; (H2p+2(
R

N))m)
. (4.13)

It follows next from the estimates (4.8), (3.25) and the embedding C([0, T ]; (H (p+1)− (RN ))m) ⊂ C([0, T ]; (C1
b (RN ))m) (where

2p > N and (p + 1)− is close to (p + 1)), that

uε → u uniformly in
([0, T ] ×R

N)m
. (4.14)

This information allows us to pass to the limit in nonlinear terms.
Now, we can look at (1.3) as an equation in (H−p(RN ))m . In Section 2.1 formula (2.9) the Cauchy problem (1.3) was

written in a form

uε
t + Aεuε = F

(
uε

) + (γ + ω)uε, (4.15)

as an equation in (H−p(RN ))m . According to Lemma 2.4, the nonlinear term F : (H p+1(RN ))m → (H−p(RN ))m . Further, by
Lemma 2.2, the operator Aε defines a linear isomorphism from (H p+2(RN ))m onto (H−p(RN ))m , and B is a perturbation
of Aε in (H−p(RN ))m , consequently Aε acts from (H p+2(RN ))m onto (H−p(RN ))m as well. Therefore (4.15) can be seen as
an equality of functionals on an arbitrary ‘test function’ φ ∈ (H p(RN ))m . In particular uε

t calculated from (4.15):

uε
t = −Aεuε + F

(
uε

) + (γ + ω)uε

will have the norm in L∞(0, T ; (H−p(RN ))m) bounded uniformly in ε . Consequently, since (H−p(RN ))m is Hilbert,

uε
t → ut weak star in L∞(

0, T ; (H−p(
R

N))m)
. (4.16)

We thus claim that (which is, however, weaker than (4.14))

u ∈ C
([0, T ]; (L2(

R
N))m)

, (4.17)

by the Lions lemma (e.g. [25, p. 71]).
Next, using the uniform in ε estimates (2.17), (3.25), (3.27), we can let ε → 0+ in (4.15) written as an equation in

(H−p(RN ))m . Moreover, due to (4.12), the term∣∣(ε(−�)p+1uε,φ
)
−p

∣∣ � ε
∥∥(−�)p+1uε

∥∥
(H−p(RN ))m‖φ‖(H p(RN ))m � εc

∥∥uε
∥∥

(H p+2(RN ))m‖φ‖(H p(RN ))m (4.18)

(where (·,·)−p denotes the duality between (H−p(RN ))m and (H p(RN ))m) will vanish when ε → 0+; see (4.13). Con-
sequently, the limit function u = limε→0+ uε , announced in Remark 4.2, will be an (H−p(RN ))m solution of the limit
problem (1.2) having additional properties inherited from the corresponding properties of uε :∥∥u(t, ·)∥∥

(H p+1(RN ))m � const,
∥∥ut(t, ·)

∥∥
(H−p(RN ))m � const, t � 0,∥∥u(t, ·)∥∥

(H(p+2)− (RN ))m � const for t � 1, (4.19)

with the same constants as for the uε . Our task now is to study its properties in more details. �
4.2. Further properties of the viscous solutions of (1.2)

Recall first that, due to Lemma 4.1, viscosity limit in (1.3) is independent of the choice of a sequence εn → 0. We discuss
next continuity of the viscous solution with respect to initial data u0.

Remark 4.4. Viscous solution of (1.2) is continuous in (H p(RN ))m with respect to initial data. Let uε
1, uε

2 be two solu-
tions of (1.3), with the same ε > 0 but different initial data uε

1(0, x), uε
2(0, x). By a reasoning very similar to the proof of

Lemma 4.1 (but with ε1 = ε2 = ε and V (0, x) = uε
1(0, x)−uε

2(0, x) �= 0) one can get the estimate of the difference V = uε
1 −uε

2
having the form:∥∥V (t, ·)∥∥

(L2(RN ))m �
∥∥V (0, ·)∥∥

(L2(RN ))m ect, t � 0. (4.20)

Using (3.25), the last estimate will be strengthened to an estimate in (H p(RN ))m:

∥∥V (t, ·)∥∥
(H p(RN ))m �

∥∥V (t, ·)∥∥ 1
p+1

(L2(RN ))m

∥∥V (t, ·)∥∥ p
p+1

(H p+1(RN ))m � const
(∥∥V (0, ·)∥∥

(L2(RN ))m ect) 1
p+1 , (4.21)

justifying continuity in (H p(RN ))m of the viscous solutions with respect to initial data.
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Following [10] we introduce now the notion of the weak solution of (1.2).

Definition 4.5. If u0 ∈ (H p(RN ))m , then u is called a weak solution of (1.2) corresponding to u0, if:

• u ∈ C([0, T ]; (H p(RN ))m) ∩ L2(0, T ; (H p+1(RN ))m) for any T > 0, and u(0) = u0,
• there is a sequence of initial data {u0n} ⊂ (H p+1(RN ))m convergent to u0 in (H p(RN ))m , such that the corresponding

viscous solutions un of (1.2) fulfill

un → u in C
([0, T ]; (H p(

R
N))m)

.

• Eq. (1.2) is fulfilled by u in (H−p(RN ))m .

Note, that weak solutions are global in time and define a semigroup S(t)u0 = u(t, u0), t � 0, on the phase space
(H p(RN ))m . Existence and uniqueness of such weak solutions is evident thanks to the properties of viscous solutions con-
structed in previous section. We will use weak solutions constructing the global attractor for (1.2).

5. Asymptotic behavior of solutions to (1.2)

We will study existence of the global attractor for the semigroups generated by (1.2) and the approximating prob-
lems (1.3) on (H p(RN ))m .

5.1. Tail estimates in L2(R)

Thanks to the regularity estimates given in Section 3.2, the necessary asymptotic compactness will be deduced by the
tail estimates (as in [21,27,10]), and interpolation inequalities.

In the following we will obtain for solutions uε of (1.3) the, so called, tail estimates in (L2(RN ))m as introduced in [27]:

Lemma 5.1. Let Assumption III be satisfied and let ε ∈ (0,1]. Then, for each η > 0 and arbitrary u0 ∈ (H p+1(RN ))m, there exist
k = k(η,‖u0‖(L2(RN ))m ) and T = T (η,‖u0‖(L2(RN ))m ) such that the corresponding to u0 solution uε(t) of (1.3) satisfies

∫
Ok

∣∣uε(t)
∣∣2

dx � η for all t � T , (5.1)

where Ok = {x ∈ R: |x| � k}.

Proof. Choose a smooth function θ(·) such that 0 � θ(s) � 1 for any s ∈ R
+ , and

θ(s) = 0 for 0 � s � 1, and θ(s) = 1 for s � 2.

Then there exists a constant C0 such that |θ ′(s)| + |θ ′′(s)| + · · · + |θ(p)(s)| � C0 for any s ∈ R
+ . We recall here also the,

uniform in ε > 0 and for t � 1, estimates (3.31) of uε in (H p+2(RN ))m .

Taking the scalar product of (1.3) with θ(
|x|2
k2 )uε , we obtain

1

2

d

dt

∫
RN

θ

( |x|2
k2

)∣∣uε
∣∣2

dx +
∫
RN

θ

( |x|2
k2

)
uε ·

N∑
i=1

∂

∂xi
∇Φ

(
uε

)
dx +

∫
RN

θ

( |x|2
k2

)
uε ·

N∑
j=1

∂

∂x j

N∑
i=1

∂2puε

∂x2p
i

dx

= α

∫
RN

θ

( |x|2
k2

)
uε · �uε dx +

∫
RN

ε(−1)p(�)p+1uε · θ
( |x|2

k2

)
uε dx +

∫
RN

g
(
x, uε

) · θ
( |x|2

k2

)
uε dx. (5.2)

We will transform the components one by one. At first, integrating by parts, we have

∫
RN

θ

( |x|2
k2

)
uε ·

N∑
i=1

∂

∂xi
∇Φ

(
uε

)
dx = −

∫
RN

N∑
i=1

2xi

k2
θ ′

( |x|2
k2

)(
uε · ∇Φ

(
uε

) − Φ
(
uε

))
dx. (5.3)

Then, combining with (3.3) and (3.4), we deduce that
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∣∣∣∣
∫
RN

θ

( |x|2
k2

)
uε ·

N∑
i=1

∂

∂xi
∇Φ

(
uε

)
dx

∣∣∣∣ � 2
√

2C0

k

( ∫
RN

∣∣uε · ∇Φ
(
uε

)∣∣dx +
∫
RN

∣∣Φ(
uε

)∣∣dx

)

� c

k

(∥∥∣∣uε
∣∣∥∥

L2(RN )

∥∥∣∣∇Φ
(
uε

)∣∣∥∥
L2(RN )

+ ∥∥∣∣uε
∣∣∥∥2

L2(RN )
+ ∥∥∣∣uε

∣∣∥∥q+2
Lq+2(RN )

)
�

c(‖|uε |‖H1(RN ))

k
. (5.4)

Secondly, note that

∫
RN

θ

( |x|2
k2

)
uε ·

N∑
j=1

∂

∂x j

N∑
i=1

∂2puε

∂x2p
i

dx = −
N∑

j=1

N∑
i=1

(
θ ′

( |x|2
k2

)
2x j

k2
uε + θ

( |x|2
k2

)
∂uε

∂x j

)
· ∂2puε

∂x2p
i

dx. (5.5)

By (p − 1) integrations by parts the last component is transformed below. The next to last component will be estimated in
a similar way.

−
∫
RN

θ

( |x|2
k2

) N∑
j=1

∂uε

∂x j
·

N∑
i=1

∂2puε

∂x2p
i

dx

=
∫
RN

N∑
j=1

N∑
i=1

θ ′
( |x|2

k2

)
2xi

k2

∂uε

∂x j
· ∂2p−1uε

∂x2p−1
i

dx +
∫
RN

N∑
j=1

N∑
i=1

θ

( |x|2
k2

)
∂2uε

∂x j∂xi
· ∂2p−1uε

∂x2p−1
i

dx

= −
∫
RN

N∑
j=1

N∑
i=1

θ ′′
( |x|2

k2

)
4x2

i

k4

∂uε

∂x j
· ∂2p−2uε

∂x2p−2
i

dx −
∫
RN

N∑
j=1

N∑
i=1

θ ′
( |x|2

k2

)
2

k2

∂uε

∂x j
· ∂2p−2uε

∂x2p−2
i

dx

− 2
∫
RN

N∑
j=1

N∑
i=1

θ ′
( |x|2

k2

)
2xi

k2

∂2uε

∂xi∂x j
· ∂2p−2uε

∂x2p−2
i

dx −
∫
RN

N∑
j=1

N∑
i=1

θ

( |x|2
k2

)
∂3uε

∂x j∂x2
i

· ∂2p−2uε

∂x2p−2
i

dx = · · ·

= (−1)p
∫
RN

N∑
j=1

N∑
i=1

(
θ(p−1)

( |x|2
k2

)
(2xi)

p−1

k2(p−1)

∂uε

∂x j
· ∂ p+1uε

∂xp+1
i

+ · · · + θ

( |x|2
k2

)
∂ puε

∂x j∂xp−1
i

· ∂ p+1uε

∂xp+1
i

)
dx.

The last component above is transformed next:

∫
RN

θ

( |x|2
k2

) N∑
j=1

N∑
i=1

∂ puε

∂x j∂xp−1
i

· ∂ p+1uε

∂xp+1
i

dx

= −
∫
RN

θ ′
( |x|2

k2

) N∑
j=1

N∑
i=1

2xi

k2

∂ puε

∂x j∂xp−1
i

· ∂ puε

∂xp
i

dx −
∫
RN

θ

( |x|2
k2

) N∑
j=1

N∑
i=1

∂ p+1uε

∂x j∂xp
i

· ∂ puε

∂xp
i

dx

= −
∫
RN

θ ′
( |x|2

k2

) N∑
j=1

N∑
i=1

2xi

k2

∂ puε

∂x j∂xp−1
i

· ∂ puε

∂xp
i

dx + 1

2

∫
RN

θ ′
( |x|2

k2

) N∑
j=1

N∑
i=1

2x j

k2

∣∣∣∣∂ puε

∂xp
i

∣∣∣∣
2

dx.

Consequently, we obtain an estimate extending (5.5)∣∣∣∣
∫
RN

θ

( |x|2
k2

)
uε ·

N∑
j=1

∂

∂x j

N∑
i=1

∂2puε

∂x2p
i

dx

∣∣∣∣
� C(p)C0

k

∫
RN

N∑
i=1

(
N∑

j=1

∣∣∣∣∂ p+1uε

∂x j∂xp
i

∣∣∣∣
∣∣∣∣∂ puε

∂xp
i

∣∣∣∣ + · · · + ∣∣uε
∣∣∣∣∣∣∂ puε

∂xp
i

∣∣∣∣
)

dx � C(p)C0

k

∥∥∣∣uε
∣∣∥∥2

H p+1(RN )
. (5.6)

Further components in (5.2) are transformed as follows:

α

∫
N

θ

( |x|2
k2

)
uε · �uε dx = −α

∫
N

N∑
i=1

θ ′
( |x|2

k2

)
2xi

k2
uε · ∇uε dx − α

∫
N

θ

( |x|2
k2

)∣∣∇uε
∣∣2

dx, (5.7)
R R R
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and, due to (2.1),∫
RN

g
(
x, uε

) · θ
( |x|2

k2

)
uε dx �

∫
RN

θ

( |x|2
k2

)(
−γ

2

∣∣uε
∣∣2 + n2(x)

)
dx. (5.8)

Finally, we deal with the viscosity term. We have

−
∫
RN

(−�)p+1uε · θ
( |x|2

k2

)
uε dx

= −
∫
RN

N∑
i=1

(
θ ′

( |x|2
k2

)
2xi

k2
uε + θ

( |x|2
k2

)
∂uε

∂xi

)
· ∂

∂xi
(−�)puε dx

=
∫
RN

N∑
i=1

θ ′′
( |x|2

k2

)
4x2

i

k4
uε · (−�)puε dx + 2

∫
RN

N∑
i=1

θ ′
( |x|2

k2

)
2xi

k2

∂uε

∂xi
· (−�)puε dx

+
∫
RN

θ ′
( |x|2

k2

)
2N

k2
uε · (−�)puε dx +

∫
RN

θ

( |x|2
k2

)
�uε · (−�)puε dx, (5.9)

and further∫
RN

θ

( |x|2
k2

)
�uε · (−�)puε dx

=
∫
RN

N∑
i=1

(
θ ′

( |x|2
k2

)
2xi

k2
�uε + θ

( |x|2
k2

)
∂

∂xi
�uε

)
· ∂

∂xi
(−�)p−1uε dx

=
∫
RN

N∑
i=1

θ ′′
( |x|2

k2

)
4x2

i

k4
(−�)uε · (−�)p−1uε dx +

∫
RN

N∑
i=1

θ ′
( |x|2

k2

)
2N

k2
(−�)uε · (−�)p−1uε dx

+ 2
∫
RN

N∑
i=1

θ ′
( |x|2

k2

)
2xi

k2

∂

∂xi
(−�)uε · (−�)p−1uε dx −

∫
RN

θ

( |x|2
k2

)
(−�)p−1uε · (−�)2uε dx. (5.10)

Integrating by parts the components in (5.9) and (5.10) many times we obtain

−ε

∫
RN

(−�)p+1uε · θ
( |x|2

k2

)
uε dx � cε

k

∥∥∣∣uε
∣∣∥∥2

H p+1(RN )
. (5.11)

Consequently, we can rewrite (5.2) as

d

dt

∫
RN

θ

(
x2

k2

)∣∣uε
∣∣2

dx + γ

∫
RN

θ

(
x2

k2

)∣∣uε
∣∣2

dx + 2α

∫
RN

θ

( |x|2
k2

)∣∣∇uε
∣∣2

dx � c

k

∥∥∣∣uε
∣∣∥∥2

H p+1(RN )
+ 2

∫
|x|�k

n2(x)dx.

(5.12)

On the other hand, since n ∈ L2(R), then∫
|x|�k

n2(x)dx → 0 as k → ∞.

Hence, combining with the H p+1(R) estimate (3.25), we have that: given η > 0, then for t � Q 2(‖u0‖(L2(RN ))m ) and k large
enough,

d

dt

∫
RN

θ

(
x2

k2

)∣∣uε
∣∣2

dx + γ

∫
RN

θ

(
x2

k2

)∣∣uε
∣∣2

dx + 2α

∫
RN

θ

(
x2

k2

)∣∣∇uε
∣∣2

dx � ηγ

2
, (5.13)

which implies (5.1) through a direct application of the Gronwall inequality. �
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Lemma 5.2. Under Assumption III, the semigroups {Sε(t)}t�0 are uniformly in ε > 0 asymptotically compact in (H p+1(RN ))m.

Proof. From Lemmas 3.4 and 5.1 we know that {Sε(t)}t�0 introduced in (2.24) are uniformly in ε > 0 asymptotically com-
pact in (L2(RN ))m . Then, combining with the, uniform in ε > 0 and for t � 1, estimate (3.31) of uε in (H p+2(RN ))m , the
asymptotic compactness in (H p+1(RN ))m follows directly from interpolation inequality. �
Remark 5.3. As a consequence of the abstract results in [25,20], asymptotic compactness reported in Lemma 5.2 and the
uniform in ε > 0 estimate (3.31), the semigroups {Sε(t)}t�0 possess (H p+1(RN ))m global attractors Aε , ε > 0.

A corresponding result concerning the limiting semigroup S(t) follows directly from our previous considerations. It states
that (see [8] for the definition of the bi-spaces global attractor)

Lemma 5.4. Let Assumption III be satisfied. Then the semigroup S(t) of global weak solutions of (1.2) has an ((H p(RN ))m,

(H p+1(RN ))m) global attractor A. The attractor A is invariant, compact in (H p+1(RN ))m and attracts every (H p(RN ))m bounded set
in (H p+1(RN ))m topology. It is also bounded in (H (p+2)− (RN ))m.

Remark 5.5. We will discuss further relations between the attractors Aε , ε > 0, and A. Using an abstract criterion in
[20, p. 916, (H.1a)], it is easy to check that the family of the global attractors {Aε}ε∈[0,1] , where we denote A = A0, is
upper semicontinuous at ε = 0. Indeed, thanks to the estimate (3.31), the approximating solutions uε , ε > 0, enter for t � 1
a bounded set B ⊂ (H p+2(RN ))m , uniformly in ε > 0. It is next evident from Definition 4.5 and (4.19), that the global
attractor A0 corresponding to (1.2) is bounded in (H (p+2)− (RN ))m . Consequently,

A =
⋃

λ∈[0,1]
Aε (5.14)

is bounded in (H (p+2)− (RN ))m . Together with the, following from the tail estimates, (L2(RN ))m asymptotic compactness,
this shows that the set A is precompact in (H p+1(RN ))m . The second part of the condition (H.1a) in [20] follows directly
from the Definition 4.5. Thus, the family of global attractors {A}ε∈[0,1] is upper semicontinuous at ε = 0 in (H p+1(RN ))m .
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