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Abstract

Fractal interpolation function defined through suitable iterated function system provides a method

to perturb a function f ∈ C(I) so as to yield a class of functions fα ∈ C(I), where α is a free

parameter, called scale vector. For suitable values of scale vector α, the fractal functions fα si-

multaneously interpolate and approximate f . Further, the iterated function system can be selected

suitably so that the corresponding fractal function fα shares the quality of smoothness or non-

smoothness of f . The objective of the present paper is to choose elements of the iterated function

system appropriately in order that fα preserves fundamental shape properties, namely positivity,

monotonicity, and convexity in addition to the regularity of f in the given interval. In particular,

the scale factors (elements of the scale vector) must be restricted to satisfy two inequalities that

provide numerical lower and upper bounds for the multipliers. As a consequence of this process,

fractal versions of some elementary theorems in shape preserving interpolation/approximation

are obtained. For instance, positive approximation (that is to say, using a positive function) is

extended to the fractal case if the factors verify certain inequalities.

Keywords: α-Fractal Function, Fractals, Shape Preserving Approximation, Müntz Polynomial.
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1. Introduction

One of the central themes in numerical analysis/approximation theory is to represent an ar-

bitrary function or a data set in terms of functions which are easier to describe and convenient to

use. When we have to deal with irregular forms, for instance, real world signals such as financial
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series, time series, climate data, and bioelectric recordings, traditional methods may not pro-

vide an approximant with a desired precision. Fractal functions form the basis of a constructive

approximation theory for non-differentiable functions.

The idea of interpolation and approximation using fractal methodology first appeared in the

work of Barnsley [1, 2]. Barnsley introduced fractal functions as continuous functions inter-

polating a given set of data points. Since its inception, fractal interpolation function has been

developed both in theory and applications by many authors, see for example [3, 4, 6, 9, 11, 12]

and references therein.

The methods in fractal approximation theory are based on iterated function system (IFS),

which are chosen suitably for different target functions. Given a continuous function f defined

on a real compact interval, Barnsley and Navascués have considered suitable IFS to construct

continuous functions fα that simultaneously interpolate and approximate f . The graph of fα

is a union of transformed copies of itself, and, in general, fα may have noninteger Hausdorff

and Minkowski dimensions. Due to these fractal characteristics, fα may be treated as the fractal

perturbation of f . In this way, every continuous function is generalized with a family of fractal

functions. The degrees of freedom offered by this procedure may be useful when some problems

combined with approximation and optimization have to be approached.

Navascués and group has studied various properties of the fractal perturbation fα of f and

proposed the fractal operator Fα : C(I) → C(I), where C(I) denotes the space of continuous

functions on a real compact interval I , that maps f �→ fα (see [13, 14, 15, 16, 17]). In this

fractal perturbation process, these studies concern mainly on two properties, namely smoothness

and approximation order among the various desirable properties of a good approximant. To be

precise, given a function f ∈ Cp(I), it is known how to select the elements of the IFS so that

the corresponding fractal function fα ∈ Cp(I). Similarly, for a given original function Φ with

its traditional approximant f , we can perturb f using fractal method so as to yield fα that has

same approximation order as that of f . However, in many problems arising in engineering and

science, one requires approximation methods to reproduce physical reality as close as possible.

Schematically, given a function or data set with a shape S one desires to represent it by a function

that approximates it well, and, in addition, has the same shape S. This kind of approximation

is called shape preserving approximation and arises quite naturally in fields such as computer

aided geometric design, robotics, data visualization, chemical and physical sciences, and reverse

engineering. Recently, our group has developed the shape preserving aspects of the cubic Her-

mite fractal interpolation function (FIF), the rational quadratic FIF and the rational cubic FIF in
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constructive manner (see [7, 8, 10]).

The aforementioned considerations naturally leads to the question: can we find fractal pertur-

bation fα of f that retains properties of f? The current article seeks to develop suitable methods

to choose elements of the IFS appropriately so that the corresponding fractal functions fα retain

the order of continuity and the fundamental shape properties, namely positivity, monotonicity,

and convexity of f . The selection of the parameters involves the boundedness of the scale factors

(components of the scale vector α) of the transformation, by means of two appropriate inequal-

ities. Interpolating a given data set within a prescribed frame is a basic requirement in image

compression. The parameter identification problem given in this article can be adapted to inter-

polate a given function f at specified knot points with the help of a fractal function fα whose

graph is contained in a prescribed axis-aligned rectangle. The method used here is more general

than that in the parameter identification problems discussed by Dalla et al. in [5, 11], wherein

the analysis depends heavily on the affinity of the maps in the IFS.

For the sake of simplicity, we have presented shape preserving aspects of the fractal pertur-

bation with the assumption that the function f ∈ C(I) being perturbed possesses uniform shape

property on the entire interval (see Theorems 3.1, 4.2, 5.1). However, f ∈ C(I) may not have a

uniform shape on the entire interval I and we may require the fractal function fα to preserve the

shape of f . For instance, suppose that a function f ∈ C(I) switches back and forth between non-

negativity and nonpositivity (say a finite number of times). To obtain a fractal function fα ∈ C(I)
that is copositive with f (i.e., f(x)fα(x) ≥ 0 for all x ∈ I), we shall proceed as follows. Sub-

divide I into subintervals Ii, i = 1, 2, . . . , r such that in a typical subinterval Is the function f

is either nonnegative or nonpositive throughout. In each subinterval Ii, we choose elements of

the IFS so as to meet the specifications in Theorem 3.1. Consequently, in each interval Ii we can

produce a fractal function fαi
which honour the nonnegativity/nonpositivity of f . Letting α to be

the r-rowed matrix whose rows are the scale vector αi, define fractal function fα in a piecewise

manner as fα|Ii = fαi
, i = 1, 2, . . . , r. The continuity of fα follows from the fact that each fαi

interpolates f at the end points of the interval Ii. The fractal function fα is copositive with f on

I . Similarly we can construct fractal function fα which is comonotonic/coconvex with f .

In practice, there are many instances where we desire shape preserving approximants with

suitable derivatives of these approximants receiving varying irregularity that can be quantified in

terms of fractal dimension, and the introduction of shape preservation to the process of fractal

perturbation accomplishes this. In addition to be of independent interest, this shape preserving

fractal perturbation paves the way towards a fractal generalization of some of the fundamental

3



results in traditional shape preserving approximation theory. For instance, the uniform approx-

imation of a positive (nonnegative) function by means of a positive polynomial is extended to

the fractal analogue if the modulus of the scale vector satisfies a given inequality. The fractal

dimensions of these solutions provide an additional quantifier (or index) of the processes under

consideration.

Consequently, this article can also be viewed as an attempt for the exposition of fractal func-

tions to the field of shape preserving approximation and as a humble contribution to the claim

“fractals are everywhere” [2].

2. Fractal Functions Revisited

In this section we shall reintroduce the fractal interpolation problem which concerns us, recall

the associated fractal operator and some of their basic properties.

2.1. Iterated function system

Definition 2.1. Let X be a complete metric space. If wn : X → X, n = 1, 2, . . . ,M are con-

tinuous mappings, then I = {X;w1, w2, . . . , wM} is called an iterated function system (IFS). If

each of the maps wn is a contraction, then the IFS I is termed a contractive or hyperbolic IFS.

Given a metric d(., .) on X, there is a corresponding metric dH, called the Hausdorff metric, on

the collection H(X) of all nonempty compact subsets of X:

dH(B,C) := max
{
max
b∈B

min
c∈C

d(b, c),max
c∈C

min
b∈B

d(c, b)
}
.

The IFS I induces a set-valued Hutchinson map W : H(X) → H(X) defined by W (B) =
M⋃
n=1

wn(B). For B ⊆ X, k ∈ N, let W k(B) denotes the k-fold composition of W with itself and

define W 0 = I .

Definition 2.2. A set A ∈ H(X) is said to be an attractor of the IFS I if lim
k→∞

W k(B) = A for

all compact set B ⊆ X, where the limit is with respect to the Hausdorff metric. Set A is said to

be invariant if W (A) = A.

A basic result in the theory of IFS is the following:

Theorem 2.1. (Barnsley [2]). If the IFS I is contractive, then I has a unique attractor A which

is invariant under W .

4



2.2. Fractal interpolation function

This subsection provides a certain type of IFS whose attractor is the graph of a continuous

function.

Let x1 < x2 < · · · < xN be real numbers, and I = [x1, xN ] be the closed interval that contains

them. Let a set of data points {(xn, yn) ∈ I × R} be given. Set In = [xn, xn+1], and let

Ln : I → In, n ∈ J = {1, 2, . . . , N − 1} be contraction homeomorphisms such that:

Ln(x1) = xn, Ln(xN) = xn+1. (2.1)

Let −1 < αn < 1, n ∈ J , K = I×D, where D is a large enough compact subset of R. Suppose

N − 1 continuous mappings Fn : K → D be given satisfying:

|Fn(x, y)− Fn(x, y
∗)| ≤ |αn||y − y∗|; Fn(x1, y1) = yn, Fn(xN , yN) = yn+1. (2.2)

For n ∈ J , define the functions wn(x, y) =
(
Ln(x), Fn(x, y)

)
. The IFS {K;wn, n ∈ J} is

contractive with respect to a metric inducing the same topology as the Euclidean metric on R
2.

Let G := {h ∈ C(I) : h(x1) = y1, h(xN) = yN} be endowed with the uniform metric defined as

d∞(h1, h2) = max{|h1(x)− h2(x)| : x ∈ I}.

Theorem 2.2. (Barnsley [1]) We have the following:

(i) The IFS {K;wn, n ∈ J} has a unique attractor G such that G is the graph of a continuous

function g : I → R.

(ii) The function g interpolates the data set {(xn, yn) ∈ I×R : n = 1, 2, . . . , N}, i.e., g(xn) =

yn for n = 1, 2, . . . , N .

(iii) If T : G → G is defined by Th(x) = Fn

(
L−1
n (x), h ◦ L−1

n (x)
)
, x ∈ In, n ∈ J , and for all

h ∈ G, then T has a unique fixed point g, and g = lim
n→∞

T n(h) for any h ∈ G. Further, the

fixed point g is the function satisfying conditions in (i)-(ii).

Definition 2.3. The function g given in the previous theorem whose graph is the attractor of an

IFS is called a fractal interpolation function (FIF) or a self-referential function. Further, g

satisfies the functional equation:

g
(
Ln(x)

)
= Fn

(
x, g(x)

)
, x ∈ I, n ∈ J.
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FIFs generated by the following special types of IFS are extensively studied in the literature:

Ln(x) = anx+ bn, Fn(x, y) = αny + qn(x), n ∈ J. (2.3)

Following the prescription in (2.1), we obtain: an =
xn+1 − xn

xN − x1

, bn =
xNxn − x1xn+1

xN − x1

. The

multiplier αn such that −1 < αn < 1 is called a scale factor of the transformation wn and

α = (α1, α2, ..., αN−1) is called the scale vector of the IFS.

2.3. α-fractal function

Let f ∈ C(I). We consider here, the special case

qn(x) = f ◦ Ln(x)− αnb(x), x ∈ I, (2.4)

where b is a continuous function satisfying b(x1) = f(x1), b(xN) = f(xN), and b 	= f . This case

is proposed by Barnsley [1] and Navascués [12] as generalization of any continuous function.

Definition 2.4. The continuous function fα
Δ,b = fα whose graph is the attractor of the IFS

defined by (2.3)-(2.4) is referred to as α-fractal function associated with f with respect to b and

the partition Δ.

The operator T is defined in this case as:

Th(x) = Fn

(
L−1
n (x), h ◦ L−1

n (x)
)
= f(x) + αn(h− b) ◦ L−1

n (x) ∀ x ∈ In, n ∈ J,

and thus fα satisfies the functional equation:

fα(x) = f(x) + αn(f
α − b) ◦ L−1

n (x) ∀ x ∈ In, n ∈ J. (2.5)

Since fα may have nonintegral Hausdorff and Minkowski dimensions, the act of obtaining fα

from f may be referred to as fractal perturbation of f . Further, as α ∈ (−1, 1)N−1 is arbi-

trary, the above process associates an entire family of continuous functions F = {fα : α ∈
(−1, 1)N−1} with each fixed function f ∈ C(I).
Note that for any partition Δ : x1 < x2 < · · · < xN of I = [x1, xN ], fα interpolates

f at xn for n = 1, 2, . . . , N . Let |α|∞ := max{|αn| : n ∈ J}, and for g ∈ C(I), let

‖g‖∞ := max{|g(x)| : x ∈ I}. From (2.5), the following bound for the uniform error com-

mitted in the process of fractal perturbation can be easily deduced:

‖fα − f‖∞ ≤ |α|∞
1− |α|∞‖f − b‖∞. (2.6)
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Let ε > 0. Given f ∈ C(I), from (2.6) it follows that there exists α ∈ (−1, 1)N−1 satisfying

‖f−fα‖∞ < ε. Consequently, for suitable values of the scale factors, the map fα simultaneously

interpolates and approximates f . Further, depending on the values of the scale vector α, the

number of data points, and the choice of the base function b, fα is smooth or non-smooth,

providing more flexibility and diversity in the process of approximation.

Assume that the continuous function b occurring in (2.4) depends linearly on f , that is to say

bλg1+g2 = λbg1 + bg2 , then the map Fα : C(I) → C(I), f �→ fα defines a linear operator. The

following choices of b and properties of the corresponding bounded linear fractal operator Fα

are studied in the literature.

(i) b is a line passing through (x1, f(x1)) and (xN , f(xN)) (see [16]).

(ii) b = f ◦ c, where c : I → R is a continuous function satisfying c(x1) = x1 and c(xN) = xN

(see reference [12]).

(iii) b = vf , where v : I → R is a continuous function satisfying v(x1) = v(xN) = 1 (see [13]).

(iv) slightly more generally, b = Lf where L : C(I) → C(I) is a linear and bounded operator

with respect to the uniform norm or Lp-norm on C(I) ([13, 14, 15]).

It is worth mentioning here that the assumption of linear dependence of b on the map f allows

us to preserve the algebraic properties, like for instance, the constitution of Schauder bases for

spaces of functions, and helps to contribute to the fields of functional analysis and basic operator

theory.

3. Fractal Perturbation Preserving Positivity

Let f ∈ C(I). In the previous section, it was noted that for a fixed scale vector α ∈
(−1, 1)N−1, the function b ∈ C(I), b 	= f with b(x1) = f(x1), b(xN) = f(xN), and arbitrary

partition Δ of I , the fractal perturbation fα obtained via the IFS defined by

Ln(x) = anx+ bn, Fn(x, y) = αny + f ◦ Ln(x)− αnb(x), n ∈ J, (3.7)

preserves continuity of f and interpolates f . Further, with a suitable choice of α, fα approxi-

mates f sufficiently well.

In this section, we begin to associate the transformation f �→ fα with shape preservation require-

ment and ask the following question. Given f ∈ C(I), f(x) ≥ 0 for all x ∈ I , how do we choose

the IFS (3.7) so that the corresponding fractal function fulfills fα(x) ≥ 0 for all x ∈ I . Recall

that the elements of the IFS that we may have to choose appropriately are: (i) the scale vector α,

(ii) the continuous function b interpolating f at the end points of the interval, and perhaps (iii)
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the partition Δ.

For the duration of this section, let us introduce the following notation:

m∗ = min
x∈I

b(x), M∗ = max
x∈I

b(x); mn = min
x∈I

f
(
Ln(x)

)
, Mn = max

x∈I
f
(
Ln(x)

)
for n ∈ J .

Note that the existence of these parameters are ensured by the continuity of the corresponding

functions and the compactness of the domain. The next theorem establishes the conditions on the

elements of the IFS (3.7) so that the corresponding fractal function fα satisfies 0 ≤ fα(x) ≤ M ,

where M is a large enough positive constant. Though the desired positivity (nonnegativity) of fα

does not demand an upper bound for it, the proof of the following theorem should convince the

reader of the role of M in admitting negative values for the scale factors whilst maintaining the

nonnegativity of fα. If we do not like being forced to use an upper bound for fα in exchange for

the slightly increased generality of negative scale factors, we can certainly work with fα(x) ≥ 0

instead.

Theorem 3.1. Let f ∈ C(I) be such that f(x) ≥ 0 for all x ∈ I . Let Δ = {x1, x2, . . . , xN} be a

partition of I such that x1 < x2 < · · · < xN and b ∈ C(I) satisfy the conditions b(x1) = f(x1)

and b(xN) = f(xN). Then, the range of the fractal function fα corresponding to the IFS (3.7) is

contained in the interval [0,M ], provided the scale factors obey |αn| < 1 and

max
{
− mn

M −m∗
,−M −Mn

M∗

}
≤ αn ≤ min

{mn

M∗ ,
M −Mn

M −m∗

}
∀ n ∈ J,

where the constant M is a positive real number strictly greater than m∗ and ‖f‖∞. In case

of zero denominator (M∗ = 0), we avoid the corresponding term in the above inequality. In

particular, these conditions ensure positivity of fα.

Proof. The condition that the function b agrees with the given positive function f at the extremes

of the interval I = [x1, xN ] ensures nonnegativity of the constant M∗. Since the fractal function

fα ∈ C(I) is constructed by iterating the functional equation:

fα
(
Ln(x)

)
= Fn

(
x, fα(x)

)
= αnf

α(x) + qn(x) = f
(
Ln(x)

)
+ αn(f

α − b)(x), x ∈ I,

for proving 0 ≤ fα(x) ≤ M for all x ∈ I , one merely needs to verify that 0 ≤ Fn(x, y) ≤ M

for all n ∈ J whenever (x, y) ∈ I × [0,M ].

Assume (x, y) ∈ I × [0,M ]. Consider the scale factors αn such that |αn| < 1. Firstly, consider

0 ≤ αn < 1.
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With this assumption, 0 ≤ y ≤ M implies qn(x) ≤ αny + qn(x) ≤ αnM + qn(x), where

qn(x) = f ◦ Ln(x)− αnb(x). Therefore, 0 ≤ Fn(x, y) = αny + qn(x) ≤ M holds if:

f ◦ Ln(x)− αnb(x) ≥ 0, f ◦ Ln(x)− αnb(x) ≤ M(1− αn) ∀ x ∈ I. (3.8)

Keeping f ◦Ln(x) ≥ mn and b(x) ≤ M∗ for all x ∈ I in mind, it can be readily verified that the

selection αn ≤ mn

M∗ fulfills the condition f ◦ Ln(x) − αnb(x) ≥ 0. Note also that if M∗ is zero,

then no additional conditions on the scale factors are needed to ensure f ◦ Ln(x)− αnb(x) ≥ 0.

Similarly, from f ◦ Ln(x) ≤ Mn and b(x) ≥ m∗ for all x ∈ I , we can assert that αn ≤ M−Mn

M−m∗

satisfies the second inequality in (3.8). Hence for (3.8) to be valid, we take the scale factors such

that αn ≤ min
{

mn

M∗ ,
M−Mn

M−m∗

}
.

Next, let −1 < αn ≤ 0. In this case, 0 ≤ y ≤ M implies αnM + qn(x) ≤ αny+ qn(x) ≤ qn(x).

Consequently, for 0 ≤ Fn(x, y) ≤ M it suffices to verify:

αnM + f ◦ Ln(x)− αnb(x) ≥ 0, f ◦ Ln(x)− αnb(x) ≤ M ∀ x ∈ I. (3.9)

Note that mn ≤ f ◦ Ln(x) and m∗ ≤ b(x) for all x ∈ I . From routine calculations, we infer that

αn ≥ −mn

M−m∗ satisfies αnM + f ◦ Ln(x)− αnb(x) ≥ 0. On similar lines, from f ◦ Ln(x) ≤ Mn

and b(x) ≤ M∗, it follows that the condition f ◦ Ln(x) − αnb(x) ≤ M is satisfied as long as

αn ≥ −M−Mn

M∗ . Combining these we deduce that (3.9) is valid for the scale factors defined by

αn ≥ max
{
− mn

M−m∗ ,−M−Mn

M∗

}
, accomplishing the proof. Note that in case of zero denominator

(M∗ = 0), we avoid the corresponding term.

Some remarks that supplement and extend the previous theorem are in order.

Remark 3.1. If it is enough to consider the nonnegative scale factors, then the first part of

the proof of the foregoing theorem gives the following condition on the scale factors for the

nonnegativity of fα : 0 ≤ αn ≤ mn

M∗ for all n ∈ J , where of course |αn| < 1 is assumed.

Remark 3.2. If f ∈ C(I) is nonpositive (i.e., f(x) ≤ 0 for all x ∈ I), then we may construct

fractal perturbation fα satisfying fα(x) ≤ 0 for all x ∈ I by employing Theorem 3.1 for the

positive function f̃ = −f and the associated function b̃ = −b. The conditions for m ≤ fα(x) ≤
0 for all x ∈ I can be obtained as: |αn| < 1 and

max
{
− m−mn

m∗
,− Mn

m−M∗

}
≤ αn ≤ min

{m−mn

m−M∗ ,
Mn

m∗

}
∀ n ∈ J.

Here the constant m that bounds fα from below is chosen to be a negative real strictly less than

M∗ and min
x∈I

f(x), and the term with a zero denominator is avoided.
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Remark 3.3. Let f ∈ C(I) stands for an approximant such as polynomial and spline used in

traditional approximation theory. Then, f is, in fact, infinitely differentiable except possibly at a

finite number of points. Consequently, f stands less satisfactory for (positive) approximation of

an original (positive) function Φ having non-differentiability on a dense subset of the interval I .

Assume that derivative f ′ does not agree with f(xN) − f(x1) in a non-empty open subinterval

of I . It is known [16] that for the fractal perturbation fα of f , where α satisfies |α|∞ > hΔ, hΔ

being the step of the partition Δ, the set of points of non-differentiability is dense on I . Hence,

by appropriate choice of a partition Δ, function b, and scale vector α, we may obtain a positive

approximant fα of Φ having irregularity in a dense set of points on I .

Examples: Let us consider I = [0, π] with a uniform partition of I having step size h = π
5
.

Let the original function be f(x) = sin x whose plot is given in Fig. 1(a). To obtain a fractal

function corresponding to f , we take b(x) = v(x)f(x) where v(x) = cos 2x. With scale vec-

tor α = (0.5,−0.5, 0.5,−0.5, 0.5), the corresponding α-fractal function sinα x is plotted in Fig.

1(b). It can be seen from the figure that this fractal perturbation does not preserve positivity of

the original function. Next, we calculate the scale factors as per the prescription in Theorem

3.1, where M is taken to be 1. The corresponding positive α-fractal function with the choice

α = (0,−0.15, 0,−0.15, 0) is plotted in Fig. 1(c). Note that the fractal function sinα x agrees

with original function sin x in those subintervals wherein the corresponding scale factors are

equal to zero. In this way, perturbation can be confined in a small portion of the domain, if in

this part the underlying signal displays some complex disturbance. It is also worth noting that

the fractal trigonometric function satisfies the condition 0 ≤ sinα x ≤ 1 for x ∈ I .

Even though the main intent of this section is to produce positivity preserving fractal pertur-
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functions by the solid lines.
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bation corresponding to a continuous function, in what follows, we provide two theorems to

illustrate the application of this procedure in the field of shape preserving (fractal) approxima-

tion.

It is well-known that every continuous function on a real compact interval is uniformly approx-

imable by algebraic polynomials. The fractal version of this Weierstrass theorem is established

recently by Navascués [12]. This next theorem incorporates the positivity of the original function

in the fractal polynomial approximant.

Theorem 3.2. (Positive fractal polynomial approximation). Let f be a continuous function de-

fined on I satisfying f(x) ≥ 0 for all x ∈ I . To each ε > 0, there corresponds a fractal

polynomial pα such that pα(x) ≥ 0 for all x ∈ I and ‖f − pα‖∞ < ε.

Proof. Let ε > 0 and f ∈ C(I) be such that f(x) ≥ 0. By classical Weierstrass theorem there

exists a polynomial q such that ‖f − q‖∞ < ε
4
. For x ∈ I , define p(x) = q(x) + ε

4
. Then,

p(x) = q(x)− f(x) + f(x) +
ε

4
≥ −‖f − q‖∞ + f(x) +

ε

4
> f(x) ≥ 0.

Also, ‖f − p‖∞ ≤ ‖f − q‖∞+ ‖q− p‖∞ ≤ ε
2
. Therefore it follows that there exists an algebraic

polynomial p satisfying p(x) ≥ 0 and ‖f − p‖∞ ≤ ε
2
. Let pα be a positive fractal perturbation of

p, where the scale vector is so chosen that |α|∞ < ε
ε+2‖p−b‖∞ . We have

‖f − pα‖∞ ≤ ‖f − p‖∞ + ‖p− pα‖∞,

≤ ‖f − p‖∞ +
|α|∞

1− |α|∞‖p− b‖∞,

=
ε

2
+

ε

2
= ε.

The first of the above steps is justified by the triangle inequality, second is consequent upon (2.6),

and last one is a matter of direct verification from the prescribed condition on α.

Remark 3.4. The above theorem can also be approached as follows. If f ∈ C(I), f(x) ≥ 0,

then the Bernstein polynomial of f , Bn(f), is positive for any n. Choose Bn(f) sufficiently close

to f . Now find positivity preserving fractal perturbation Bα
n (f) of this Bn(f) so that the uniform

error in perturbation is small enough. Then, Bα
n (f) will provide the desired positive fractal

polynomial approximant of f .

Here we consider I = [0, 1]. Let Λ = {λi}∞i=0 with 0 = λ0 < λ1 < . . . be a sequence of distinct

nonnegative real numbers. The collection {xλ0 , xλ1 , xλ2 , . . . , xλm} is called a (finite) Müntz
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system. The linear space Mm(Λ) = span{xλ0 , xλ1 , xλ2 , . . . , xλm} is called a Müntz space. That

is, Müntz space is the collection of Müntz polynomials p(x) =
m∑
i=0

cix
λi , ci ∈ R. For a scale

vector α = (−1, 1)N−1, the set Mα
m(Λ) = span{(xλ0)α, (xλ1)α, (xλ2)α, . . . , (xλm)α} is the set of

fractal Müntz polynomials. This concept of fractal Müntz polynomials and their properties are

introduced by Navascués and Chand [13]. Our next theorem deals with the approximation of a

continuous function by a copositive fractal Müntz polynomial.

Theorem 3.3. (Copositive fractal Müntz polynomial approximation). Let [0, 1] be partitioned

into k subintervals by the points Δ : 0 = x0 < x1 < · · · < xk = 1. Suppose that f is

a continuous function that is alternately nonnegative and nonpositive on the intervals (0, x1),

(x1, x2), . . . , (xk−1, 1). Let Λ = {λi}∞i=0 be a sequence of nonnegative real numbers with the

following properties: (i) 0, 1, . . . , k − 1 ∈ Λ, (ii) lim
i→∞

λi = ∞, (iii)
∞∑
i=1

1
λi

= ∞. Then, for given

ε > 0, there exists a corresponding piecewise defined fractal Müntz polynomial pα such that pα

is copositive with f and ‖f − pα‖∞ < ε.

Proof. With the hypotheses of the theorem, there exists a (classical) Müntz polynomial p(x) =
N∑
i=0

aix
λi that is copositive with f enjoying ‖f − p‖∞ < ε

2
(see [19]).

Consider the function p on [0, 1] which is alternately nonnegative and nonpositive on the intervals

(0, x1), (x1, x2), . . . , (xk−1, 1). Let Ii = [xi−1, xi], i ∈ J∗ = {1, 2, . . . , k}. In each Ii, choose a

partition Δi, continuous function bi, and scale vector αi so as to meet the conditions prescribed

in Theorem 3.1. In addition, the scale factors are so chosen that |αi|∞ < ε
2(‖p‖∞+|B|)+ε

. Here

|B| = max
i∈J∗ ‖bi‖Ii , where ‖.‖Ii denotes the uniform norm on Ii. Let pα be defined on I in a

piecewise manner by pα|Ii = pα
i
, where α is a matrix whose rows are the scale vectors αi. Then,

pα is copositive with p (consequently, with f ). Using the definition of uniform norm, inequality

(2.6), and the condition on the scale vector αi, we obtain:

‖pα − p‖∞ = max{|pα(x)− p(x)| : x ∈ I} = max
i∈J

max{|pαi

(x)− p(x)| : x ∈ Ii},

≤ max
i∈J

|αi|∞
1− |αi|∞‖p− bi‖Ii ≤ max

i∈J
|αi|∞

1− |αi|∞
(‖p‖∞ + |B|),

≤ (‖p‖∞ + |B|) ε

2
(‖p‖∞ + |B|) =

ε

2
.

The proof can be completed by invoking the triangle inequality ‖f − pα‖∞ ≤ ‖f − p‖∞+‖pα−
p‖∞.
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4. Fractal Perturbation Preserving C1-Continuity and Monotonicity

Let f ∈ C1(I) be monotone, say nondecreasing. In this section, we identify the elements of

the IFS (3.7) in order that the corresponding fractal function fα shares the same regularity and

monotonicity as that of f .

We begin our analysis by recalling the following theorem which proves the existence of differ-

entiable FIFs and gives the conditions for their existence.

Theorem 4.1. (Barnsley and Harrington [4]). Let {(xn, yn) : n = 1, 2, . . . , N} be a given

data set with x1 < x2 < · · · < xN . Let Ln(x) = anx + bn, n ∈ J , satisfy (2.1) and Fn(x, y) =

αny+qn(x), n ∈ J , satisfy (2.2). Suppose that for some integer p ≥ 0, |αn| < apn and qn ∈ Cp(I),

n ∈ J . Let

Fn,k(x, y) =
αny+q

(k)
n (x)

akn
, y1,k =

q
(k)
1 (x1)

ak1−α1
, yN,k =

q
(k)
N−1(xN )

akN−1−αN−1
, k = 1, 2, . . . , p.

If Fn−1,k(xN , yN,k) = Fn,k(x1, y1,k) for n = 2, 3, . . . , N − 1 and k = 1, 2, . . . , p, then the

IFS
{
I × R;

(
Ln(x), Fn(x, y)

)
, n ∈ J

}
determines a FIF f ∈ Cp[x1, xN ], and f (k) is the FIF

determined by
{
I × R;

(
Ln(x), Fn,k(x, y)

)
, n ∈ J

}
for k = 1, 2, . . . , p.

Assume |αn| < apn, n ∈ J . Then, to obtain a fractal perturbation fα ∈ Cp(I) corresponding to

a given f ∈ Cp(I), it is enough to find the conditions on function b so that the IFS defined by

(3.7) fulfills the conditions of the above theorem. In the reference [17], Navascués and Sebastián

have undertaken this project, assuming a uniform partition. For the sake of completeness and

record, we include a fairly self-contained and expanded rendition of this argument here. The

advantage of the present analysis is that we can now allow non-uniform partition and unequal

scale factors in different subintervals that cater to situations one encounters in practice. The

conditions prescribed in the above theorem are

Fn−1,k(xN , yN,k) = Fn,k(x1, y1,k), for n = 2, 3, . . . , N − 1, and k = 1, 2, . . . , p, (4.10)

where Fn,k(x, y) = αny+q
(k)
n (x)

akn
. As Ln(x) = anx + bn, we have q

(k)
n (x) = aknf

(k)
(
Ln(x)

) −
αnb

(k)(x) for all k = 0, 1, . . . , p. Therefore, (4.10) may be recast as follows:

αn−1

akN−1−αN−1
[akN−1f

(k)(xN)− αN−1b
(k)(xN)] + akn−1f

(k)(xn)− αn−1b
(k)(xN)

akn−1

=

αn

ak1−α1
[ak1f

(k)(x1)− α1b
(k)(x1)] + aknf

(k)(xn)− αnb
(k)(x1)

akn
.

(4.11)
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If we consider the conditions (4.12), then both terms of (4.11) agree with f (k)(xn), and the

conditions (4.10) are satisfied.

b(k)(x1) = f (k)(x1), b
(k)(xN) = f (k)(xN), k = 0, 1, . . . , p. (4.12)

In particular, for f ∈ C1(I) the following conditions on b ∈ C1(I) ensure that the corresponding

fractal function fα constructed via the IFS (2.3)-(2.4) belongs to C1(I).

b(x1) = f(x1), b(xN) = f(xN), b
′(x1) = f ′(x1), b

′(xN) = f ′(xN). (4.13)

For instance, b may be taken as the cubic Hermite interpolant corresponding to f .

As indicated at the start of the section, we now turn to the task of preserving monotonicity of f

in the fractal perturbation. The modus operandi is already inherent in the proof of Theorem 3.1.

In order to best describe it, we need the following notation.

d∗ = min
x∈I

b′(x), D∗ = max
x∈I

b′(x); dn = min
x∈I

f ′(Ln(x)
)
, Dn = max

x∈I
f ′(Ln(x)

)
for n ∈ J .

Our next theorem may now be stated.

Theorem 4.2. Let f ∈ C1(I) be a monotone increasing function. Let Δ = {x1, x2, . . . , xN} be a

partition of I satisfying x1 < x2 < · · · < xN and b ∈ C1(I) satisfy the conditions b(x1) = f(x1),

b(xN) = f(xN), b′(x1) = f ′(x1), b′(xN) = f ′(xN). Then, for a large enough positive real M ,

the fractal function fα corresponding to the IFS (3.7) is C1-smooth and satisfies 0 ≤ (fα)′(x) ≤
M (and hence, in particular, fα is monotone), provided the scale factors obey |αn| < an and

max
{
− andn

M − d∗
,−an(M −Dn)

D∗

}
≤ αn ≤ min

{andn
D∗ ,

an(M −Dn)

M − d∗

}
∀ n ∈ J.

Here M may be chosen as a positive real number strictly greater than d∗ and ‖f ′‖∞. Also, in

case of zero denominator (D∗ = 0), we avoid the corresponding term in the above inequality.

Proof. In light of the discussion we had until now in this section, it follows that the stated condi-

tions on the scale factors and the function b ensure C1-continuity of the fractal function fα. Since

(fα)′ is a fractal function corresponding to the IFS {I × R; (Ln(x), Fn,1(x, y))} (see Theorem

4.1), by the property of the attractor of the IFS, we have the following: 0 ≤ (fα)′(x) ≤ M for

all x ∈ I is true if 0 ≤ Fn,1(x, y) =
αny+q′n(x)

an
≤ M for all (x, y) ∈ I × [0,M ]. We begin with

the assumption (x, y) ∈ I × [0,M ].

Firstly, let 0 ≤ αn < an. With this nonnegativity assumption on the scale factor, we note
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that: 0 ≤ y ≤ M implies q′n(x) ≤ αny + q′n(x) ≤ αnM + q′n(x). Therefore, for the desired

0 ≤ Fn,1(x, y) = αny+q′n(x)
an

≤ M constraint, it is enough to verify the inequality constraints

q′n(x) ≥ 0 and αnM + q′n(x) ≤ anM , where q′n(x) = anf
′(Ln(x))− αnb

′(x).

The conditions f ′(Ln(x)
) ≥ dn and b′(x) ≤ D∗ being true for all x ∈ I , we deduce that

q′n(x) ≥ 0 for αn ≤ andn
D∗ . It is worth to note here that if D∗ = 0, then no additional constraint

on the scale factor is required for q′n(x) ≥ 0. Similarly, since f ′(Ln(x)
) ≤ Dn and b′(x) ≥ d∗

for all x ∈ I , we infer that αnM + q′n(x) ≤ anM , whenever αn ≤ an(M−Dn)
M−d∗ .

Now assume −an < αn ≤ 0. In this case, 0 ≤ y ≤ M implies that αnM + q′n(x) ≤
αny + q′n(x) ≤ q′n(x). Consequently, for 0 ≤ Fn,1(x, y) =

αny+q′n(x)
an

≤ M , it suffices to verify

the two inequalities αnM + q′n(x) ≥ 0 and q′n(x) ≤ anM . Once again utilizing the definitions

of dn, d∗, Dn, and D∗, the analysis which run on lines similar to those followed in the first part

provides the conditions αn ≥ −andn
M−d∗ and αn ≥ an(Dn−M)

D∗ , which ensure the desired inequalities.

Combination of the obtained conditions on the scale factors completes the proof.

Examples: Fig. 2(a) represents the function f(x) = x2 in the interval I = [0, 1]. With respect to

a partition with step h = 1
4
, function b(x) = 3x2−2x3

1+2x(1−x)
, and scale vector α = (0.2, 0.2, 0.2, 0.2),

its corresponding fractal function (x2)α is constructed and displayed in Fig. 2(b). In spite of the

fact that the original function is monotone, the corresponding α-fractal function does not satisfy

monotonicity condition. We elect M = 2 and obtain the scale factors as per the specifications

in Theorem 4.2. With α = (0, 0.06,−0.06, 0), the perturbation process yields the monotonicity

preserving fractal polynomial (x2)α given in Fig. 2(c). Here, the original function and the fractal

function almost coincide due to small magnitudes of the scale factors.
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Figure 2: Function x2 and its fractal perturbations, where the data points are given by the circles and the relevant

functions by the solid lines.

As a consequence of this monotonicity preserving fractal perturbation process, we have the fol-
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lowing fractal analogue of Wolibner’s theorem [21].

Theorem 4.3. (Monotone fractal polynomial interpolation) Let (xi, yi), i = 1, 2, . . . , n be a set

of data such that x1 < x2 < · · · < xn and yi 	= yi+1, i = 1, . . . , n − 1. Then, there exists a

fractal function pα defined in a piecewise manner by pα
∣∣
Ii=[xi,xi+1]

= pα
i
, where each pα

i
is a

fractal polynomial with the following properties: pα(xi) = yi, i = 1, 2, . . . , n, sgn [(pα)′(x)] =

sgn [Δyi], x ∈ [xi, xi+1], where Δyi = yi+1 − yi.

Proof. With the stated assumptions, Wolibner’s theorem ensures that there exists an algebraic

polynomial p with the properties p(xi) = yi, i = 1, 2, . . . , n, sgn [p′(x)] = sgn [Δyi], x ∈
Ii = [xi, xi+1], where Δyi = yi+1 − yi. In each subinterval Ii = [xi, xi+1], we select a partition

Δi, scale vector αi, and function bi so that the fractal perturbation pα
i

has same monotonicity

property as that of p. Let α be a matrix whose rows are the scale vectors αi and define the fractal

function pα by pα
∣∣
Ii
= pα

i
. Then, pα provides the fractal function sought for.

Our next theorem points to the approximation of a continuous function by a comonotone (piece-

wise defined) fractal Müntz polynomial whose classical counterpart can be consulted in [19]. It

can be argued in the same way as the corresponding copositive result (see Theorem 3.3), and

hence the proof is omitted.

Theorem 4.4. (Comonotone fractal Müntz polynomial approximation) Let [0, 1] be partitioned

into k subintervals by the points Δ : 0 = x0 < x1 < · · · < xk = 1. Suppose that f

is a continuous function that is alternately nondecreasing and nonincreasing on the intervals

(0, x1), (x1, x2), . . . , (xk−1, 1). Let Λ = {λi}∞i=0 be a sequence of nonnegative real numbers

with the following properties: (i) 0, 1, . . . , k ∈ Λ, (ii) lim
i→∞

λi = ∞, (iii)
∞∑
i=1

1
λi

= ∞. Then,

for given ε > 0, there is a corresponding fractal function pα defined in a piecewise manner

pα
∣∣
Ii=[xi−1,xi]

= pα
i
, i = 1, 2, . . . , k, where each pα

i
is a Müntz polynomial such that pα is

comonotone with f and ‖f − pα‖∞ < ε.

5. Fractal Perturbation Preserving C2-Continuity and Convexity

Given a function f ∈ C2(I) which is convex, the goal of this section is to identify suitable

IFS so that the perturbation produced in f retains the C2-continuity and convexity. That is, we

wish fα ∈ C2(I) and (fα)′′(x) ≥ 0 for all x ∈ I . We merely state the required conditions in the

following theorem, for the proof is now a familiar terrain (the reader is urged to look back at the

proof of Theorem 4.2 if needed).
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Theorem 5.1. Let f ∈ C2(I) be a convex function. Let Δ : x1 < x2 < · · · < xN be a partition of

I and b ∈ C2(I) satisfy the conditions b(k)(x1) = f (k)(x1), b(k)(xN) = f (k)(xN), for k = 0, 1, 2.

Then, for a large enough positive real M , the fractal function fα corresponding to the IFS (3.7) is

C2-continuous and satisfies 0 ≤ (fα)′′(x) ≤ M (and hence in particular fα is convex), provided

the scale factors obey |αn| < a2n and

max
{
− a2nsn

M − s∗
,−a2n(M − Sn)

S∗

}
≤ αn ≤ min

{a2nsn
S∗ ,

a2n(M − Sn)

M − s∗

}
∀ n ∈ J,

where sn = min
x∈I

f ′′(Ln(x)
)
, Sn = max

x∈I
f ′′(Ln(x)

)
, s∗ = min

x∈I
b′′(x), S∗ = max

x∈I
b′′(x). Here

M may be chosen as a positive real number strictly greater than s∗ and ‖f ′′‖∞, and the terms

with zero denominator (S∗ = 0) are avoided.

As a consequence of the above theorem, we have the following fractal version of Pál’s theorem

[18]. Proof follows on lines similar to Theorem 3.2. It is worthwhile to mention here that Pál’s

theorem is probably one of the first results on the topic of shape preserving approximation.

Theorem 5.2. (Convex fractal polynomial approximation) Let f be a convex function on an

interval [a, b]. Then, for any ε > 0, there exists a convex fractal polynomial pα such that ‖f −
pα‖∞ < ε.

Let us recall a slightly general concept of shape in the following. For a function f : [0, 1] → R,

the j-th forward differences Δj
hf(x), 0 ≤ h ≤ 1

j
, x ∈ [0, 1 − jh] is defined as Δj

hf(x) :=
j∑

k=0

(−1)j−k

(
j

k

)
f(x + kh), for all j = 0, 1, . . . . A function f is called j-convex on [0, 1] if

all the j-th forward differences are nonnegative. If f (j) exists, a simple application of the mean

value theorem shows that the condition f (j)(x) ≥ 0 for all x ∈ [0, 1] implies f is j-convex on

[0, 1]. Given a function f ∈ Cp(I) satisfying f (p)(x) ≥ 0 for all x ∈ I , the methods given here

can be extended to obtain fractal perturbation fα ∈ Cp(I) for which f (p)(x) ≥ 0 for all x ∈ I .

As a consequence, we have the following result whose traditional counterpart follows from the

properties of the Bernstein polynomials [19].

Theorem 5.3. (j-convex fractal polynomial approximation) Let f be a continuous function on

[0, 1] with the property that the j-th forward difference Δjf ≥ 0, where j is some nonnegative

integer (i.e., f is j-convex on [0, 1]). Then, for given ε > 0, there exists a fractal polynomial pα

with
(
pα
)(j)

(x) ≥ 0 on [0, 1] such that ‖f − pα‖∞ < ε.
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6. Concluding Remarks

The method of generalizing a continuous function f defined on a real compact interval by

means of fractal methods so as to obtain a function or rather a family of functions fα is well-

known in fractal literature. For suitable values of the scale vector α, the fractal function fα

simultaneously interpolates and approximates f . In this paper, we have developed methods to

identify the elements of the IFS so that the corresponding FIF fα preserves fundamental shape

properties such as positivity, monotonicity, and convexity in addition to the order of continuity

inherent in the original function f . The method of finding fractal perturbation retaining basic

shape property of an original function turns out to be a cornerstone to obtain fractal versions of

some fundamental results in shape preserving approximation. On the other hand, the practical

advantage gained by this process is the following. Treating f ∈ Cp(I) itself as a shape pre-

serving traditional approximant for an original function or a data set, its shape preserving fractal

perturbation fα ∈ Cp(I) has the additional advantage that (fα)(p) may be of varying irregularity

(smooth to nowhere differentiable). In this case, larger the value of |α|∞ with respect to the

interpolation step, more pronounced is the irregularity in the fractal function (fα)(p) (measured

in terms of fractal dimension), and the fractal dimension of (fα)(p) may be used as a quantitative

parameter for the analysis of the underlying experimental process.

For the reasons of convenience, and because of the fact that most of the monotone functions ap-

pearing in the traditional approximation theory are differentiable, we have taken f ′(x) ≥ 0 as the

definition of a monotone function. However, it is to be noted that the definition of monotonicity

of a function does not presume its differentiability. Therefore, it is of interest to see if monotonic-

ity preserving fractal perturbation can be constructed for a continuous monotone function, which

is not known to be smooth. Similar question applies to convexity, and we leave these questions

open. In this connection, we would like to point out that Vasilyev [20] has constructed monotone

and convex fractal interpolation function g ∈ C(I) for a prescribed data set. He considers any-

way a particular case, namely, the affine IFS.
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