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derived. Moreover, a sufficient condition for the existence of a densely defined 
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1. Introduction

The spectral theory for difference equations and systems, which include discrete analogs of Sturm–
Liouville and Hamiltonian systems of differential equations, has a long history and a considerable literature 
which we will not attempt to delineate here other than to cite the following works, and the references 
therein, to give the reader a sense of the scope of the subject in time and content, cf. [2,7,10–13,34,35,39]. 
In connection with this, the development of a Weyl–Titchmarsh theory for discrete Hamiltonian and 
symplectic systems parallel to that which exists for Hamiltonian systems of differential equations is of 
relatively recent origin, cf. [3–5,9,10,14,26,29,33,36,37]. Our current paper contributes to this ongoing de-
velopment.
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We investigate the nonhomogeneous problem as well as the basic development of linear relations associated 
with discrete symplectic systems written in the so-called time-reversed form given by

zk(λ) = Sk(λ)zk+1(λ) with Sk(λ) := Sk + λVk and k ∈ N0, (Sλ)

where λ ∈ C is the spectral parameter, N0 := [0, ∞) ∩Z, and Sk and Vk are complex 2n × 2n matrices such 
that

S∗
kJSk = J , S∗

kJVk is Hermitian, V∗
kJVk = 0, and Ψk := JSkJV∗

kJ � 0, (1.1)

where J represents a 2n × 2n skew-symmetric matrix given by J :=
(

0 I
−I 0

)
.

We note (viz. Lemma 2.2) that the first, second, and third identities in (1.1), i.e., (1.1)(i)–(iii), can be 
combined into the single equality

S
∗
k(λ̄)J Sk(λ) = J for all λ ∈ C and k ∈ N0, (1.2)

where S∗k(λ̄) := (Sk(λ̄))∗. Identity (1.2) justifies the terminology symplectic system for (Sλ), though sys-
tem (Sλ) corresponds to the well-known time-reversed discrete symplectic system introduced in [8, Remark 4]
only when λ ∈ R; particularly, the case when λ = 0. In addition, system (Sλ) can also be viewed as a pertur-
bation of the original symplectic system zk = Skzk+1, i.e., of (Sλ) with λ = 0, but for which the fundamental 
properties of symplectic systems remain true with appropriate, natural, modifications.

In [9,14], the Weyl–Titchmarsh theory was first established for discrete symplectic systems given by

zk+1(λ) = S
−1
k zk(λ), k ∈ N0, (1.3)

in which a special form for Vk is assumed; the proper generalization is later derived in [37], see also [38]. 
The results given in [37] for system (1.3) remain valid for system (Sλ) with standard changes given for the 
definition of the semi-inner product, viz. (2.13) (cf. [37, Theorem 2.8 and Section 4]), and for the associated 
weight function, viz. (1.1)(iv) (cf. [37, Identity (1.1)(iv)]).

Consideration here of the time-reversed form given in system (Sλ), rather than that given in system (1.3), 
is motivated, in part, by a desire to produce more natural calculations involving the semi-inner product and 
in particular a more natural form for a Green function associated with nonhomogeneous discrete symplectic 
systems, viz. Lemma 4.2. We can also associate with system (Sλ) a densely defined operator, because there 
is no shift in the associated semi-inner product (cf. Theorem 5.4 and [28]). Moreover, this approach will 
enable us in subsequent research to generalize these results and unify them with the continuous time case 
by means of the time scale theory.

Given the inherent semi-definiteness of the function Ψ defined in (1.1) (cf. (2.2)), it is natural to consider 
the construction of linear relations in association with (Sλ), their extensions and their associated spectral 
theory. The theory of linear relations provides powerful tools for the study of multivalued linear operators 
in a Hilbert space, especially for non-densely defined linear operators. The study of linear relations in this 
context traces back to [1]; see also [15–17,20] and the references therein. For linear Hamiltonian differential 
systems given by

−J z′(t) =
[
H(t) + λW (t)

]
z(t), (1.4)

where H(t) and W (t) are Hermitian and W (t) is positive semi-definite, this approach was initiated in [27]
and further developed, e.g., in [6,21,22,25].
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In [30], linear relations are considered in association with the linear Hamiltonian difference system

Δ
(
xk

uk

)
= (Hk + λWk)

(
xk+1
uk

)
, Hk :=

(
Ak Bk

Ck −A∗
k

)
, Wk :=

(
0 W

[1]
k

−W
[2]
k 0

)
, (1.5)

where Bk and Ck are Hermitian matrices, W [j]
k � 0, j = 1, 2, and the matrix Ãk := I−Ak is invertible. Here, 

we note that the invertibility assumption and the additional requirement W [1]
k (I − Ak)−1W

[2]
k ≡ 0 imply 

that system (1.5) can be written as a discrete system whose form is given by (Sλ); cf. [31, Formula (2.3)]. On 
the other hand, with the supplementary assumption concerning the invertibility of the n × n matrix in the 
left upper block of the matrix Sk(λ), k ∈ N0, system (Sλ) can be written as the linear Hamiltonian difference 
system but with a nonlinear dependence on the spectral parameter, see [38]. Moreover, using the time scale 
theory, see e.g. [18], it can be seen that the discrete symplectic systems given by (Sλ) provide a proper 
discrete analogue of linear Hamiltonian differential systems. Finally, let us note that system (Sλ) includes 
any even order Sturm–Liouville difference equation; cf. [8, Remark 2], [40], and see also Example 3.4.

Hence, we shall introduce minimal and maximal linear relations associated with our discrete symplectic 
system and establish fundamental properties for them in analogy with [25, Section 2] for system (1.4) and 
[30, Section 5] for system (1.5). Moreover, the reader can observe an essential difference, one which appears 
natural in the context of the time scale theory, in the assumptions for systems (1.4) and (Sλ) concerning 
the invertibility of W and Ψ , respectively. While the matrix W can be invertible, the matrix Ψk is singular 
for every k ∈ N0, see (1.1).

The remainder of this paper is organized as follows. In Section 2, we present fundamental properties 
of system (Sλ) and recall some basic facts from the theory of linear relations. In Section 3 we discuss 
the definiteness condition for system (Sλ), which plays a crucial role in the spectral theory, and derive 
some equivalent characterizations. A nonhomogeneous discrete symplectic system is studied in Section 4. 
Concluding with Section 5, the maximal and minimal linear relations associated with the discrete symplectic 
systems are introduced and their fundamental properties, such as a relationship between the deficiency 
indices of the minimal relation in a suitable Hilbert space and the number of square summable solutions 
of system (Sλ), are established. In this final section, we also present a sufficient condition providing the 
existence of a densely defined operator associated with the discrete symplectic system.

2. Preliminaries

2.1. Notation

Throughout this paper, matrices will be considered over the field of complex numbers C. For any λ ∈ C

we denote its imaginary part by �(λ). By Cr×s, r, s ∈ N, we mean the space of r× s complex matrices and 
C

r×1 will be denoted by Cr for r ∈ N. With M ∈ C
r×s, let M� denote the transpose, and let M∗ denote 

the adjoint or conjugate transpose of the matrix M ; for parameter dependent matrices, M∗(λ) := M(λ)∗. 
Let M � 0 and M � 0 indicate that M is positive or negative semi-definite, respectively. Similarly, M > 0
(respectively, M < 0) denotes a positive definite (respectively, negative definite) matrix. By J we denote 
the real 2n × 2n skew-symmetric matrix given as

J :=
(

0 In
−In 0

)
, (2.1)

where In is the n × n identity matrix.
If I denotes an interval in R, then the associated discrete interval in the set of integers, Z, is denoted 

by IZ := I ∩ Z. In particular, N = [1, ∞)Z, and N0 = [0, ∞)Z. However, in practice, IZ will be referred as 
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the discrete interval I. Hence, for the discrete interval I, by C(I)r×s we denote the space of sequences, 
defined on I, of complex r × s matrices, where typically r ∈ {n, 2n} and 1 � s � 2n. If S ∈ C(I)r×s, 
then S(k) := Sk for k ∈ I; if S(λ) ∈ C(I)r×s, then S(λ, k) := Sk(λ) for k ∈ I. When S ∈ C(I)m×s, and 
T ∈ C(I)s×n, then ST ∈ C(I)m×n, where (ST )k := SkTk, k ∈ I. The set C0(I)r×s represents the subspace 
of C(I)r×s consisting of sequences compactly supported in the discrete interval I. The symbol Δ means the 
forward difference operator acting on C(I)r×s, where (Δz)k := zk+1 − zk, for all k ∈ I and all z ∈ C(I)r×s. 
We shall also use the customary equivalence given by (Δz)k := Δzk. Moreover, we let zk|nm := zn − zm.

2.2. Time-reversed discrete symplectic systems

The basic relations given in the next lemma are easily shown and used throughout.

Lemma 2.1. The following is true with J defined as in (2.1), and S, V, Ψ ∈ C
2n×2n:

(i) S∗JS = J if and only if SJS∗ = J ;
(ii) S∗JS = J if and only if S−1 = −JS∗J ;
(iii) if V := J ∗ΨS = −J ΨS, where S∗JS = J , and

Ψ∗ = Ψ, ΨJ Ψ = 0, (2.2)

then

(
V∗JS

)∗ = V∗JS,
(
VJS∗)∗ = VJS∗, V∗JV = VJV∗= 0, (2.3)

and Ψ = JSJV∗J . However, if S∗JS = J and V ∈ C
2n×2n satisfies (2.3), then Ψ := JSJV∗J

satisfies (2.2), and V = J ∗ΨS.

Lemma 2.1 establishes a correspondence between the matrix pairs {S, Ψ} and {S, V} in which S satisfies 
S∗JS = J , Ψ satisfies (2.2) and V satisfies (2.3). The first part of the next result is also easily verified, 
while the second part follows as in the proof of [37, Lemma 2.2]. Let us note a typo in the latter reference, 
where the absolute value is missing.

Lemma 2.2. Let S(λ) = S + λV, where S, V ∈ C
2n×2n, λ ∈ C. Then S∗(λ̄)J S(λ) = J for all λ ∈ C if and 

only if S∗JS = J , and V satisfies (2.3). Moreover, |detS(λ)| = 1.

Relevant to these two lemmas, we assume that the next conditions hold for the remainder of the pa-
per.

Hypothesis 2.3. For S, Ψ ∈ C(N0)2n×2n, and for each k ∈ N0, the following is assumed:
(i) S∗

kJSk = J ;
(ii) Ψk satisfies (2.2) and Ψk � 0;
(iii) Sk(λ) := Sk + λVk, where Vk := −J ΨkSk.

Given this hypothesis, note that Vk satisfies (2.3) for all k ∈ N0, then by Lemma 2.1 we have

Ψk = JSkJV∗
kJ , k ∈ N0,

and by Lemma 2.2 also S∗k(λ̄)J Sk(λ) = J for all k ∈ N0 and all λ ∈ C.
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The discrete symplectic system in time-reversed form is now given by

zk(λ) = Sk(λ)zk+1(λ), k ∈ N0, (Sλ)

where z(λ) ∈ C(N0)2n×m, and 1 � m � 2n. In the future, (Sν) will denote a system of the form given in (Sλ)
with the parameter λ replaced by ν. Note that identity (1.2), the invertibility of Sk(λ) from Lemma 2.2, 
and J−1 = −J imply, for all k ∈ N0 and all λ ∈ C, that

S
−1
k (λ) = −J S

∗
k(λ̄)J , (2.4)

with the consequent existence of unique solutions on N0, z(λ) ∈ C
2n×m(N0), for system (Sλ).

Lemma 2.4 (Wronskian-type identity). Let λ ∈ C and m ∈ N. For solutions z(λ) ∈ C(N0)2n×m and z(λ̄) ∈
C(N0)2n×m of (Sλ) and (Sλ̄), respectively, we have, for all k ∈ N0,

z∗k(λ)J zk(λ̄) = z∗0(λ)J z0(λ̄).

Proof. This follows directly from Lemma 2.2 since

z∗k(λ)J zk(λ̄) = z∗k+1(λ)S∗k(λ)J Sk(λ̄)zk+1(λ̄) = z∗k+1(λ)J zk+1(λ̄),

for all k ∈ N0, λ ∈ C. �
Throughout, we shall let Φ(λ) ∈ C(N0)2n×2n denote a fundamental system of solutions for (Sλ). If this 

fundamental system is such that, for some k0 ∈ N0,

Φ∗
k0

(λ)JΦk0(λ̄) = J , (2.5)

then, as an immediate consequence of the preceding lemmas,

Φ∗
k(λ)JΦk(λ̄) = J , Φ−1

k (λ) = −JΦ∗
k(λ̄)J , Φk(λ)JΦ∗

k(λ̄) = J , (2.6)

for all k ∈ N0. When Φk0(λ) = Φk0(λ̄) = C ∈ C
2n×2n, note that (2.5) simply states that C is a symplectic 

matrix.
We associate with the homogeneous system (Sλ) the following nonhomogeneous system

zk(λ) = Sk(λ)zk+1(λ) − J Ψkfk, k ∈ N0, (Sf
λ)

where f ∈ C(N0)2n×m, 1 � m � 2n. In analogy to previous notation, (Sg
ν) denotes the nonhomogeneous 

system of the form given in (Sf
λ), but with λ replaced by ν and f replaced by g. When convenient, we shall 

suppress the dependence of z on λ when λ = 0. Note also that (Sλ) is equivalent to (S0
λ).

The next result presents an essential tool used throughout; cf. [37, Theorem 2.6] and [14, Identity (5.3)].

Theorem 2.5 (Extended Lagrange identity). Let λ, ν ∈ C and 1 � m � 2n. If z(λ) ∈ C(N0)2n×m and 
u(ν) ∈ C(N0)2n×m are solutions of systems (Sf

λ) and (Sg
ν), respectively, with f, g ∈ C(N0)2n×m. Then,

Δ
[
z∗k(λ)J uk(ν)

]
= (λ̄− ν)z∗k(λ)Ψkuk(ν) + f∗

kΨkuk(ν) − z∗k(λ)Ψkgk, (2.7)

z∗j (λ)J uj(ν)
∣∣k+1
0 = (λ̄− ν)

k∑
j=0

z∗j (λ)Ψjuj(ν) +
k∑

j=0
f∗
j Ψjuj(ν) −

k∑
j=0

z∗j (λ)Ψjgj . (2.8)
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Proof. By Lemma 2.1 (cf. (1.1)) and (2.4), we see that

Δ
[
z∗k(λ)J uk(ν)

]
=

[
S
−1
k (λ)zk(λ) − S

−1
k (λ)J Ψkfk

]∗J [
S
−1
k (ν)uk(ν) − S

−1
k (ν)J Ψkgk

]
− z∗k(λ)J uk(ν)

= z∗k(λ)
[
S
∗−1
k (λ)J S

−1
k (ν) − J

]
uk(ν) + f∗

kΨkuk(ν) − z∗k(λ)Ψkgk

= (λ̄− ν)z∗k(λ)Ψkuk(ν) + f∗
kΨkuk(ν) − z∗k(λ)Ψkgk,

which yields (2.7); which in turn, by summation, yields (2.8). �
Finally, the following equivalent expression of system (Sf

λ) will play a key role in the results established 
in Section 5.

Lemma 2.6. System (Sf
λ) can be written equivalently as

J
(
zk(λ) − Skzk+1(λ)

)
= λΨkzk(λ) + Ψkfk, k ∈ N0. (2.9)

Proof. Since one can easily observe from the identities in (2.3) that it holds

Sk(λ) = (I − λJ Ψk)Sk for all k ∈ N0, (2.10)

system (Sf
λ) can be also expressed as

zk(λ) = (I − λJ Ψk)Skzk+1(λ) − J Ψkfk, k ∈ N0. (2.11)

Since (I − λJ Ψk)−1 = (I + λJ Ψk), which follows immediately from (2.2), we obtain from (2.11) that

Skzk+1(λ) = zk(λ) + λJ Ψkzk(λ) + J Ψkfk, k ∈ N0,

which after multiplication by the matrix J from the left yields (2.9). �
If we denote the left side of (2.9) by

L
(
z(λ)

)
k

:= J
(
zk(λ) − Skzk+1(λ)

)
, (2.12a)

then it follows from Lemma 2.6 that system (Sf
λ) is equivalent to

L
(
z(λ)

)
k

= λΨkzk(λ) + Ψkfk, k ∈ N0. (2.12b)

Hence L represents a linear map on C(N0)2n×m with 1 � m � 2n, and (2.12) will be summarized by writing 
L (z(λ)) = λΨz(λ) + Ψf .

2.3. Sequence spaces

With respect to the assumption in Hypothesis 2.3 that Ψ ∈ C(N0)2n×2n is a sequence with positive 
semi-definite terms, we define a semi-inner product for C(N0)2n by

〈z, w〉Ψ,I :=
∑
k∈I

z∗kΨkwk, (2.13)

where z, w ∈ C(N0)2n, and I ⊆ N0 is a discrete subinterval. The associated linear space of all square 
summable sequences is denoted by
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�2Ψ (I) :=
{
z ∈ C(N0)2n

∣∣ ‖z‖Ψ,I < ∞
}
,

where ‖·‖Ψ,I :=
√

〈·, ·〉Ψ,I denotes the associated semi-norm. When I = N0 the corresponding semi-inner 
product and semi-norm will be denoted by 〈·,·〉Ψ , and ‖·‖Ψ , respectively. The quotient space obtained by 
factoring out the kernel of the semi-norm is denoted by

�̃2Ψ (I) := �2Ψ (I)/
{
z ∈ C(N0)2n

∣∣ ‖z‖Ψ,I = 0
}
.

Then, with respect to the equivalence classes z̃ ∈ �̃2Ψ (I), we see that �̃2Ψ (I) is a Banach space with respect to 
the norm generated by the quotient space map, π(z) = z̃, and a Hilbert space with respect to the associated 
inner product where 〈z̃, w̃〉Ψ,I := 〈z, w〉Ψ,I (cf. [31, Lemma 2.5]).

In light of this notation, we define

�2Ψ,0(N0) :=
{
z ∈ C0(N0)2n

∣∣ z0 = 0
}
,

and

�2Ψ,1(N0) :=
{
z ∈ C(N0)2n

∣∣ ∃N ∈ N0 such that Ψkzk = 0 for k � N
}
.

2.4. Linear relations

We now recall some basic facts from the theory of linear relations relevant to the case at hand; cf. 
[15–17,20]. Let H denote a Hilbert space over the field of complex numbers, C, with an inner product 〈·,·〉. 
A (closed) linear relation T in H is a (closed) linear subspace of the product space H 2 := H ×H , i.e., the 
Hilbert space of all ordered pairs {z, f} such that z, f ∈ H . The domain, range, kernel, and the multivalued 
part of T are respectively defined as

domT :=
{
z ∈ H

∣∣ ∃f ∈ H , {z, f} ∈ T
}
, ranT :=

{
f ∈ H

∣∣ ∃z ∈ H , {z, f} ∈ T
}
,

kerT :=
{
z ∈ H

∣∣ {z, 0} ∈ T
}
, mulT :=

{
f ∈ H

∣∣ {0, f} ∈ T
}
.

In general, we let T (z) := {f ∈ H | {z, f} ∈ T}, and note that a linear relation, T , is the graph of 
a linear operator in H when T (0) = {0}, i.e., when the subspace mulT is trivial. The inverse of T , denoted 
as T−1, is the linear relation

T−1 :=
{
{f, z}

∣∣ {z, f} ∈ T
}

and note that domT−1 = ranT , ranT−1 = domT , kerT−1 = mulT , and mulT−1 = kerT . The adjoint T ∗

of the linear relation T is defined by

T ∗ :=
{
{y, g} ∈ H 2 ∣∣ 〈z, g〉 = 〈f, y〉, ∀{z, f} ∈ T

}
. (2.14)

The definition of T ∗ reduces to the standard definition for the graph of the adjoint operator when T is 
a densely defined operator. Then T ∗ is a closed linear relation and we have

T ∗ = (T )∗, T ∗∗ = T , kerT ∗ = (ranT )⊥ = (ranT )⊥, and (domT )⊥ = mulT ∗, (2.15)

where T denotes the closure of T . A linear relation T is said to be symmetric (or Hermitian) if T ⊆ T ∗, 
and it is said to be self-adjoint if T ∗ = T . It is easily seen that T is a symmetric linear relation if and only 
if 〈z, g〉 = 〈f, y〉 for all {z, f}, {y, g} ∈ T .
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With λ ∈ C, and with T a linear relation, we define the linear relation, T − λI, by

T − λI :=
{
{z, f − λz}

∣∣ {z, f} ∈ T
}
, (2.16)

and note that (T − λI)∗ = T ∗ − λ̄I. Then,

Mλ(T ) := ran(T − λ̄I)⊥ (2.17)

is said to be the defect subspace of T and λ, and its dimension, i.e.,

dλ(T ) := dim
(
ran(T − λ̄I)⊥

)
, (2.18)

is said to be the deficiency index of T and λ. Since

ran(T − λ̄I)⊥ = ker
(
T ∗ − λI

)
=

{
z ∈ H

∣∣ {z, λz} ∈ T ∗},
the deficiency indices of T and T with the same λ are equal by (2.15); cf. [32, Lemma 2.4]. We let

d+(T ) := di(T ), d−(T ) := d−i(T ),

denote the so-called positive and negative deficiency indices of T , respectively. If T is a symmetric linear 
relation, the values of dλ(T ) are constant in the open upper and lower half-planes of C; cf. [32, Theorem 2.13]. 
The linear relation T has self-adjoint extensions if and only if the positive and negative deficiency indices 
are equal; cf. [17, Corollary 6.4]. Finally, for a closed symmetric linear relation T , it was shown in [25, 
Lemma 2.25], when λ ∈ R and ker(T − λI) = {0}, that

dλ(T ) � d±(T ). (2.19)

3. Definiteness

In this section, we characterize the definiteness condition associated with the semi-inner product (2.13)
when the sequence, Ψ ∈ C(N0)2n×2n, possesses positive semi-definite elements. This condition plays 
a significant role in the spectral theory, particularly the Weyl–Titchmarsh theory, associated with the linear 
expression L given in (2.12); cf. [37]. The condition is frequently called as the Atkinson condition; cf. [2, 
Inequality (3.7.10)]. Similar treatment in connection with the linear Hamiltonian differential and difference 
systems can be found in [6,25,30], respectively.

Definition 3.1. System (Sλ) is said to be definite on a nonempty discrete interval I ⊆ N0 if, for each λ ∈ C

and for every nontrivial solution z(λ) of system (Sλ), i.e., L (z(λ))k = λΨkzk(λ) for k ∈ I,∑
k∈I

z∗k(λ)Ψkzk(λ) > 0. (3.1)

Remark 3.2. Alternatively, the definiteness condition for (Sλ) can be stated in the following way: System (Sλ)
is definite on the discrete interval I ⊆ N0 when, for every λ ∈ C, every solution z(λ) of (Sλ), for which∑

k∈I
z∗k(λ)Ψkzk(λ) = 0, (3.2)

is trivial on I, i.e. zk(λ) = 0, k ∈ I, and as a consequence of invertibility for Sk(λ) (cf. (2.4)) trivial on N0. 
Furthermore, from the assumption that Ψk � 0, k ∈ N0, it follows from
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∑
k∈I

z∗k(λ)Ψkzk(λ) �
∑
k∈Î

z∗k(λ)Ψkzk(λ), I ⊆ Î ⊆ N0,

that the definiteness of (Sλ) on I implies definiteness of (Sλ) on every discrete interval superset Î, and 
in particular on N0. Hence, definiteness of system (Sλ) on some finite discrete subinterval I implies, for 
every λ ∈ C, that every nontrivial solution of (Sλ) has a nonzero semi-norm ‖·‖Ψ . The converse of this last 
statement will be shown in Lemma 3.5.

In the next lemma, we see that for (Sλ) to be definite on a discrete interval I, it suffices to verify (3.1)
for nontrivial solutions of the system for only one λ ∈ C.

Lemma 3.3. System (Sλ) is definite on the discrete interval I ⊆ N0 if and only if, for some λ0 ∈ C, each 
solution z(λ0) of (Sλ0), which satisfies ∑

k∈I
z∗k(λ0)Ψkzk(λ0) = 0, (3.3)

is trivial on I, i.e., zk(λ0) = 0 for k ∈ I.

Proof. We begin by assuming, for λ0 ∈ C, that each solution z(λ0) of (Sλ0) satisfying (3.3) is necessarily 
trivial on I, i.e., zk(λ0) = 0, k ∈ I. Let λ ∈ C be arbitrary and let z(λ) be a solution of system (Sλ) such 
that (3.2) holds. Given Remark 3.2, it suffices to show that z(λ) is trivial on I. However, since Ψkzk(λ) = 0
for k ∈ I, we see, by (2.12), that z(λ) is also a solution of system (Sλ0) on I. Then, by the assumed 
definiteness of (Sλ0) on I, (3.2) indeed implies that zk(λ) = 0, for k ∈ I. The converse is trivial. �
Example 3.4. The particular discrete symplectic systems investigated in [37, viz. Examples 5.1, 5.2, and 
5.3] are not definite, because they possess nontrivial solutions with semi-norm equal to zero. On the other 
hand, we can provide a simple example of system (Sλ) being definite on N0; cf. Theorem 3.11. Consider the 
following system:(

xk

uk

)
=

(
1 −1/pk+1

qk − λwk 1 + (λwk − qk)/pk+1

)(
xk+1
uk+1

)
with Ψk =

(
wk 0
0 0

)
, k ∈ N0, (3.4)

where {pk}∞k=0, {qk}∞k=0, and {wk}∞k=0 are real-valued sequences such that wk � 0, pk+1 > 0 for k ∈ N0 and 
wk > 0 for k ∈ [a − 1, b]Z, where a, b ∈ [1, ∞)Z and a � b. System (3.4) corresponds to the second order 
Sturm–Liouville difference equation Δ(pkΔyk−1) + qkyk = λwkyk. With respect to Lemma 3.3 it suffices to 
focus on the definiteness of this system only for λ = 0. Denote by z = (x, u)� a solution of system (3.4)
with λ = 0 such that Ψkzk = 0 for k ∈ N0, i.e., it holds

Δxk = uk+1

pk+1
, Δuk = −qkxk+1 + qk

pk+1
uk+1, and wkxk = 0, k ∈ N0. (3.5)

From the assumptions and the third condition in (3.5) we obtain xk ≡ 0 for k ∈ [a − 1, b]Z and then by the 
first equality in (3.5) also uk ≡ 0 for k ∈ [a, b]Z. Hence z ≡ 0 on [a, b]Z, which implies z ≡ 0 on N0, because 
the coefficient matrix in (3.4) is invertible. Therefore, system (3.4) is definite on [a, b]Z and, in fact, on the 
whole interval N0 by Remark 3.2. �

For the remainder of this section, we assume that Φ(λ) represents a fundamental system of the solutions 
for (Sλ) such that Φk0(λ) = I2n, for some k0 ∈ N0. Note, as a consequence, that the terms of Φ(λ) satisfy (2.6)
for all k ∈ N0.
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The next result provides a characterization for definiteness of (Sλ) which is analogous to that for (1.4), 
as seen in [6, Proposition 2.11].

Lemma 3.5. System (Sλ) is definite on N0 if and only if there exists a finite discrete interval I over which 
the system is definite.

Proof. From Remark 3.2 we see that definiteness of (Sλ) on a finite discrete interval I implies definiteness 
on N0. Thus, it remains to show the converse.

Assume that (Sλ) is definite on N0. In light of Lemma 3.3, we need only to show the existence of a finite 
discrete interval I over which (Sλ) is definite for one value λ0 ∈ C. Thus, let λ0 ∈ C and for each finite 
discrete subinterval I, define the set s(I):

s(I) :=
{
ξ ∈ C

2n
∣∣∣ ‖ξ‖ = 1,

∑
k∈I

ξ∗Φ∗
k(λ0)ΨkΦk(λ0)ξ = 0

}
,

where ‖·‖ denotes a norm for C2n; s(I) is compact and s(Î) ⊆ s(I) whenever I ⊆ Î.
Consider a collection {Im}m∈N of nested, finite, discrete intervals such that 

⋃
m∈N

Im = N0. Next, assume 
that there exists a vector ξ ∈ C

2n with ‖ξ‖ = 1 such that for every m ∈ N,∑
k∈Im

ξ∗Φ∗
k(λ0)ΨkΦk(λ0)ξ = 0.

As a consequence, ∑
k∈N0

ξ∗Φ∗
k(λ0)ΨkΦk(λ0)ξ = 0.

Then, definiteness on N0 of (Sλ) implies that Φk(λ0)ξ = 0 for all k ∈ N0, and hence that ξ = 0; thus 
contradicting the assumption that ‖ξ‖ = 1. As consequence, for the nested collection of compact sets given 
by {s(Im)}m∈N, ⋂

m∈N

s(Im) = ∅.

Thus, s(Im0) = ∅ for some m0 ∈ N, hence demonstrating the definiteness of (Sλ) on the finite discrete 
interval Im0 . �
Remark 3.6. Definiteness of (Sλ) on N0 plays a significant role in the development of the Weyl–Titchmarsh 
theory for the case of a positive semi-definite weight in the definition of semi-inner product. In [14, Hypoth-
esis 2.4] and [37, Hypothesis 4.11], existence is assumed for an N0 ∈ N0 such that

N0∑
k=0

z∗k(λ)Ψkzk(λ) > 0

for every λ ∈ C and every nontrivial solution, z(λ), of (Sλ). With respect to Lemma 3.5, this assumption 
is equivalent to the definiteness of (Sλ) on N0 for some λ ∈ C. Note also that [9, Assumption 2.2] requires 
satisfaction of inequality (3.1) on every nonempty finite subinterval of N0: a condition significantly stronger 
than requiring definiteness of (Sλ) on N0 as seen when (Sλ) is definite on [0, N0]Z ⊂ N0 and Ψk ≡ 0 for 
k � N0 + 1.
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We now give another characterization of the definiteness for (Sλ), analogous to that given for systems (1.4)
and (1.5) in [25, Sections 2.3 and 2.4] and [30, Sections 3 and 4], respectively.

For a discrete finite subinterval I ⊂ N0, with k0 ∈ I, we define the 2n × 2n positive semi-definite 
matrix

ϕ(λ, I) :=
∑
k∈I

Φ∗
k(λ)ΨkΦk(λ) (3.6)

in terms of the fundamental system Φ(λ) for (Sλ) where Φk0(λ) = I2n, for all λ ∈ C. While ϕ(λ, I) depends 
on λ and I, we next show that the kernel and the range of ϕ(λ, I) do not depend on λ, and hence that the 
rank of ϕ is independent of λ.

Lemma 3.7. For a discrete finite subinterval I ⊂ N0, the subspaces kerϕ(λ, I) and ranϕ(λ, I) are indepen-
dent of λ ∈ C.

Proof. Fix λ ∈ C and ξ ∈ kerϕ(λ, I), and let z := Φ(λ)ξ. Then z solves (Sλ) on I, i.e., L (z)k = λΨkzk for 
k ∈ I, while satisfying the initial condition zk0 = ξ. As a consequence, Ψkzk = ΨkΦk(λ)ξ = 0 for k ∈ I. Note, 
for an arbitrary ν ∈ C, that z also solves (Sν) on I, i.e., L (z)k = ν Ψkzk, k ∈ I, with zk0 = Φk0(ν)ξ = ξ. 
Hence, z = Φ(λ)ξ = Φ(ν)ξ, which implies

0 = ξ∗ϕ(λ, I)ξ =
∑
k∈I

z∗kΨkzk = ξ∗ϕ(ν, I)ξ.

Therefore, kerϕ(λ, I) ⊆ kerϕ(ν, I). By reversing the roles of λ and ν we obtain kerϕ(λ, I) = kerϕ(ν, I)
for all λ, ν ∈ C. The independence of ranϕ(λ, I) on λ ∈ C follows from the fact that as defined in (3.6), 
ϕ(λ, I) is Hermitian; thus, ranϕ(λ, I) = ranϕ∗(λ, I) = kerϕ(λ, I)⊥. �

In general, given Lemma 3.7, we shall suppress λ in the following notation: kerϕ(λ, I) ≡ kerϕ(I), 
ranϕ(λ, I) ≡ ranϕ(I), and rankϕ(λ, I) ≡ rankϕ(I) for λ ∈ C.

Lemma 3.8. There exists a discrete finite interval I, with k0 ∈ I ⊂ N0, such that for any discrete finite 
interval Î satisfying I ⊆ Î ⊂ N0,

rankϕ(I) = rankϕ(Î), ranϕ(I) = ranϕ(Î). (3.7)

Proof. For discrete finite intervals I and Î of N0, where k0 ∈ I ⊆ Î ⊂ N0, by the definition of ϕ in (3.6), 
we see that kerϕ(Î) ⊆ kerϕ(I). Then, given that ϕ is Hermitian, we see that

ranϕ(I) = kerϕ(I)⊥ ⊆ kerϕ(Î)⊥ = ranϕ(Î),

and hence that rankϕ(I) � rankϕ(Î). Since rankϕ(·) � 2n, there must be a finite discrete interval I such 
that rankϕ(Î) = rankϕ(I), and ranϕ(Î) = ranϕ(I) for all finite discrete intervals Î containing I. �

Next, we describe the connection between the definiteness of (Sλ) and the matrix ϕ(λ, I) for a finite 
discrete interval I ⊂ N0.

Theorem 3.9. For a discrete finite interval I ⊂ N0, and with ϕ(λ, I) defined in (3.6), the following statements 
are equivalent:

(i) rankϕ(I) = 2n.
(ii) kerϕ(I) = {0}.
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(iii) For some λ ∈ C, every nontrivial solution, z(λ), of (Sλ) satisfies 
∑

k∈I z∗k(λ)Ψkzk(λ) > 0.
(iv) For some λ ∈ C, a solution, z(λ), of (Sλ) is necessarily trivial, i.e. zk(λ) = 0, k ∈ I, when ∑

k∈I z∗k(λ)Ψkzk(λ) = 0.

Proof. Equivalence of (i) and (ii) is clear, while equivalence of (iii) and (iv) follows form Lemma 3.3. It 
suffices then to show that statements (ii) and (iii) are equivalent.

Assume that (ii) is true. Any nontrivial solution z(λ) of (Sλ) can be expressed as z(λ) = Φ(λ)ξ for some 
ξ ∈ C

2n \ {0}. By (ii), ϕ(λ, I)ξ �= 0, and by the positive semi-definiteness of ϕ(λ, I), we see that∑
k∈I

z∗k(λ)Ψkzk(λ) =
∑
k∈I

ξ∗Φ∗
k(λ)ΨkΦk(λ)ξ = ξ∗ϕ(λ, I)ξ > 0.

Conversely, assume that (iii) is true, and for ξ ∈ C
2n \ {0} let z(λ) := Φ(λ)ξ. Then z(λ) is a nontrivial 

solution of (Sλ) and, by (iii),

ξ∗ϕ(λ, I)ξ =
∑
k∈I

z∗k(λ)Ψkzk(λ) > 0.

Thus ϕ(λ, I)ξ �= 0, and hence kerϕ(I) = {0}; implying that statement (ii) is satisfied. �
As a consequence of Lemma 3.5 and Theorem 3.9 we get the following corollary, cf. [25, Definition 2.14].

Corollary 3.10. System (Sλ) is definite on N0 if and only if, for some finite discrete interval I ⊂ N0, one of 
the conditions listed in Theorem 3.9 is satisfied.

For the special case of linear dependence on λ as studied in [9,14], i.e., where the spectral parameter λ
appears only in the second equation of the system, we can show the following sufficient condition for the 
definiteness of system (Sλ) on N0; q.v. Example 3.4.

Theorem 3.11. Let λ ∈ C and Sk(λ) =
(

Ak Bk

Ck−λWkAk Dk−λWkBk

)
with Ak, Bk, Ck, Dk, Wk ∈ C

n×n satisfy 

identity (1.2) for all k ∈ N0. If there exists an index l ∈ [1, ∞)Z such that the matrices Bl−1, Wl−1, and Wl

are invertible (in fact, Wl−1 and Wl are positive definite), then system (Sλ) is definite on N0.

Proof. First we note that the form of the matrix Sk(λ) implies Ψk = diag{Wk, 0} for all k ∈ N0 by (1.1)(iv). 
Let z(λ) = (x(λ), u(λ))� be any nontrivial solution of (Sλ) such that Ψkzk(λ), i.e., Wkxk(λ) = 0, for k ∈ N0. 
By Lemma 3.3 we have to show that z(λ) ≡ 0 on N0. From the invertibility of Wl−1 and Wl we obtain 
xl−1(λ) = xl(λ) = 0. Hence

0 = xl−1(λ) = Al−1xl(λ) + Bl−1ul(λ) = Bl−1ul(λ)

and the invertibility of Bl−1 implies also ul(λ) = 0, i.e., zl(λ) = 0. Since the matrix Sk(λ) is invertible for 
every k ∈ N0, it follows z(λ) ≡ 0 on N0. �
4. Nonhomogeneous problem

The origin of the Weyl–Titchmarsh theory for discrete symplectic systems can be found in [9,14], where 
the system with the spectral parameter appearing only in the second equation was studied. Recently, these 
results were generalized and further extended for discrete symplectic systems with general linear dependence 
on the spectral parameter in [37]. Given that Weyl–Titchmarsh theory has been established for discrete 
symplectic systems of the form (1.3), one can verify that these results remain valid for the time-reversed 
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symplectic systems (Sλ) with appropriate changes in the definition of the semi-inner product and its weight 
matrix as noted in the introduction.

In this section, we take the nonhomogeneous problem into consideration as in [14, Section 5] and begin 
by recalling some fundamental results from [37] which are related to the study of system (Sf

λ) and refer the 
reader to [37] for more details.

Throughout this section, we assume that system (Sλ) is definite on N0, and fix the matrix α ∈ Γ , where

Γ :=
{
α ∈ C

n×2n : αα∗ = I, αJα∗ = 0
}
.

By Φ(λ, α) we denote the fundamental matrix of system (Sλ) such that Φ0(λ, α) = (α∗, −Jα∗), and we 
emphasize its partition into 2n × n blocks by the notation Φ(λ, α) := (Z(λ, α), Z̃(λ, α)).

For M ∈ C
n×n the function

Xk(λ) := Φk(λ, α)
(
I M∗ )∗ (4.1)

represents a Weyl solution (cf. [37, Definition 2.11]), and the set

Dk(λ) :=
{
M ∈ C

n×n : Ek(M) � 0
}
, where Ek(M) := iδ(λ)X ∗

k (λ)JXk(λ)

and δ(λ) := sgn�(λ), is said to be the Weyl disk; cf. [37, Definition 3.1]. Since system (Sλ) is assumed 
to be definite on N0, the set D+(λ) := limk→∞ Dk(λ) exists and it is closed, convex and nonempty; cf. 
[37, Definition 3.10]. It is also well known that the columns of the Weyl solution X (λ) defined as in (4.1)
for k ∈ N0 through M ∈ D+(λ) are linearly independent square summable solutions of (Sλ); cf. [37, 
Theorem 4.2]. Thus system (Sλ) has at least n (the limit point case) and at most 2n (the limit circle case) 
linearly independent square summable solutions.

By M+(λ) we denote the half-line Weyl–Titchmarsh M(λ)-functions, defined in accordance with [37, 
Remark 3.17], and note that

M∗
+(λ) = M+(λ̄), λ ∈ C \ R. (4.2)

If systems (Sλ) and (Sν), where λ, ν ∈ C \ R, are both in the limit point or in the limit circle case, then

lim
k→∞

X+∗
k (λ)JX+

k (ν) = 0, (4.3)

where X+(λ) and X+(ν) represent Weyl solutions for systems (Sλ) and (Sν) defined by (4.1) for k ∈ N0, 
corresponding to the matrices M+(λ) and M+(ν), respectively; cf. [37, Theorem 4.12].

For λ ∈ C \ R and k, l ∈ N0 we introduce the Green function

Gk,l(λ) :=
{
Z̃k(λ)X+∗

l (λ̄), k ∈ [0, l]Z,
X+

k (λ)Z̃∗
l (λ̄), k ∈ [l + 1,∞)Z.

(4.4)

In the literature, we also find the terminology resolvent kernel for an analogous function in the continuous 
time case; cf. [23, p. 15]. The function Gk,l(λ) can be equivalently written as

Gk,l(λ) =
{
X+

k (λ)Z̃∗
l (λ̄), l ∈ [0, k − 1]Z,

Z̃k(λ)X+∗
l (λ̄), l ∈ [k,∞)Z.

(4.5)

Lemma 4.1. Let α ∈ Γ , λ ∈ C \ R, and system (Sλ) be definite on N0. Then

X+
k (λ)Z̃∗

k(λ̄) − Z̃k(λ)X+∗
k (λ̄) = J for all k ∈ N0. (4.6)
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Proof. Identity (4.6) then follows by a direct calculation from the definition of X+(·) and identities (2.6)(iii) 
and (4.2). �

In the next lemma, some fundamental properties of the Green function, G(λ), are established. We note 
that the given identities are presented in a more symmetric form, with respect to the variables k, l, than 
the corresponding identities for the Green function in the case of the discrete symplectic system with the 
special linear dependence on the spectral parameter given in [14, Lemma 5.1].

Lemma 4.2. Let α ∈ Γ , λ ∈ C \ R, and system (Sλ) be definite on N0. Then the function G·,·(λ) possesses 
the following properties:

(i) G∗
k,l(λ) = Gl,k(λ̄) for all k, l ∈ N0 such that k �= l;

(ii) G∗
k,k(λ) = Gk,k(λ̄) + J for all k ∈ N0;

(iii) for every k, l ∈ N0 such that k /∈ T (l), the function G·,l(λ) solves the homogeneous system (Sλ) on the 
set T (l), where

T (l) := {τ ∈ N0 : τ �= l};

(iv) Gk,k(λ) = Sk(λ)Gk+1,k(λ) − J for every k ∈ N0;
(v) the columns of G·,l(λ) belong to �2Ψ (N0) for every l ∈ N0 and the columns of Gk,·(λ) belong to �2Ψ (N0)

for every k ∈ N0.

Proof. The first property follows directly from the definition of Gk,l(λ) in (4.4). The second property can 
be obtained from (4.4) by means of identity (4.6). To prove the third property, it is necessary to distinguish 
between k and l in the relation: the statement follows from the fact that the functions X+(λ) and Z̃(λ)
solve system (Sλ) with respect to k. Property (iv) can be proven using the definition of G(λ) in (4.4) and 
identities (4.2) and (2.6). Finally, the columns of G·,l(λ) belong to �2Ψ (N0) for every l ∈ N0 by the definition 
of the Green function, because

∥∥G·,l(λ)ej
∥∥2
Ψ

= e∗jX+
l (λ̄)

(
l∑

k=0

Z̃∗
k(λ)ΨkZ̃k(λ)

)
X+∗

l (λ̄)ej

+ e∗j Z̃l(λ̄)
( ∞∑

k=l+1

X ∗+
k (λ)ΨkX+

k (λ)
)
Z̃∗
k(λ̄)ej < ∞,

while the columns of Gk,·(λ) are in �2Ψ (N0) for every k ∈ N0 by part (i). �
We associate with the nonhomogeneous system (Sf

λ) the function

ẑk(λ) =
∞∑
l=0

Gk,l(λ)Ψlfl, k ∈ N0, (4.7)

which is well defined for all f ∈ �2Ψ (N0), because the columns of Gk,·(λ) are square summable by the previous 
lemma. In addition, by (4.5), we can write

ẑk(λ) =
{

k−1∑
l=0

+
∞∑
l=k

}
Gk,l(λ)Ψlfl = X+

k (λ)
k−1∑
l=0

Z̃∗
l (λ̄)Ψlfl + Z̃k(λ)

∞∑
l=k

X+∗
l (λ̄)Ψlfl. (4.8)

Similarly as in [14, Theorem 5.2] we show that the above defined function ẑ(λ) represents a square summable 
solution of system (Sf ).
λ
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Theorem 4.3. Let α ∈ Γ , λ ∈ C \ R, f ∈ �2Ψ (N0), and system (Sλ) be definite on N0. The function ẑ(λ)
defined in (4.7) solves system (Sf

λ), satisfies the initial condition αz0(λ) = 0, is square summable, i.e., 
ẑ(λ) ∈ �2Ψ (N0), and it holds

∥∥ẑ(λ)
∥∥
Ψ

� 1
|�(λ)| ‖f‖Ψ . (4.9)

In addition, if system (Sλ) is in the limit point or limit circle case for all λ ∈ C \ R, then

lim
k→∞

X+∗
k (ν)J ẑk(λ) = 0 for every ν ∈ C \ R. (4.10)

Proof. The form of ẑk(λ) given in (4.8) together with a similar expression of ẑk+1(λ), the facts that X+(λ)
and Z̃(λ) solve (Sλ), and identity (4.6) yield

ẑk(λ) − Sk(λ)ẑk+1(λ) = X+
k (λ)

k−1∑
l=0

Z̃∗
l (λ̄)Ψlfl + Z̃k(λ)

∞∑
l=k

X+∗
l (λ̄)Ψlfl

− Sk(λ)X+
k+1(λ)

k∑
l=0

Z̃∗
l (λ̄)Ψlfl − Sk(λ)Z̃k+1(λ)

∞∑
l=k+1

X+∗
l (λ̄)Ψlfl

= −
[
X+

k (λ)Z̃∗
k(λ̄) − Z̃k(λ)X+∗

k (λ̄)
]
Ψkfk = −J Ψkfk,

i.e., the function ẑ(λ) solves system (Sf
λ). The fulfillment of the boundary condition follows by the simple 

calculation

αẑ0(λ) = αZ̃0(λ)
∞∑
l=0

X+∗
l (λ̄)Ψlfl = −αJα∗

∞∑
l=0

X+∗
l (λ̄)Ψlfl = 0,

because Z̃0(λ) = −Jα∗ and α ∈ Γ .
Next, we prove the estimate in (4.9) which together with the assumption f ∈ �2Ψ (N0) will imply that 

ẑ(λ) ∈ �2Ψ (N0). For every r ∈ N0 we define the function

f
[r]
k :=

{
fk, k ∈ [0, r]Z,
0, k ∈ [r + 1,∞)Z,

and the function

ẑ
[r]
k (λ) :=

∞∑
l=0

Gk,l(λ)Ψlfl =
r∑

l=0

Gk,l(λ)Ψlfl.

The function ẑ[r]
k (λ) solves system (Sf

λ) with f replaced by f [r]. Applying the extended Lagrange identity 
from Theorem 2.5, we obtain

lim
k→∞

ẑ
[r]∗
k+1(λ)J ẑ

[r]
k+1(λ) = ẑ

[r]∗
0 (λ)J ẑ

[r]∗
0 (λ) + (λ̄− λ)

∞∑
k=0

ẑ
[r]∗
k (λ)Ψkẑ

[r]
k (λ)

+
∞∑
k=0

f
[r]∗
k Ψkẑ

[r]
k (λ) −

∞∑
k=0

ẑ
[r]∗
k (λ)Ψkf

[r]
k . (4.11)

Since Z̃0(λ) = −Jα∗ and α ∈ Γ , we see that
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ẑ
[r]∗
0 (λ)J ẑ

[r]∗
0 (λ) =

(
r∑

l=0

X+∗
l (λ̄)Ψlfl

)∗

Z̃∗
0 (λ)J Z̃0(λ)

(
r∑

l=0

X+∗
l (λ̄)Ψlfl

)
= 0,

where, for every k ∈ [r + 1, ∞)Z, we can write

ẑ
[r]
k (λ) = X+

k (λ)gr(λ), where gr(λ) :=
r∑

l=0

Z̃∗
l (λ̄)Ψlfl. (4.12)

This, together with the fact M+(λ) ∈ D+(λ), yields

1
λ̄− λ

lim
k→∞

ẑ
[r]∗
k+1(λ)J ẑ

[r]
k+1(λ) = iδ(λ)

2|�(λ)| g
∗
r (λ)

(
lim
k→∞

X+∗
k+1(λ)JX+

k+1(λ)
)
gr(λ)

= 1
2|�(λ)| g

∗
r (λ)

(
lim
k→∞

Ek+1
(
M+(λ)

))
gr(λ) � 0.

Using the Cauchy–Schwarz inequality, Ψ � 0, and identity (4.11), we see that

∥∥ẑ[r](λ)
∥∥2
Ψ

=
∞∑
k=0

ẑ
[r]∗
k (λ)Ψkẑ

[r]
k (λ) � 1

2i�(λ)

(
r∑

k=0

f
[r]∗
k Ψkẑ

[r]
k (λ) −

r∑
k=0

ẑ
[r]∗
k (λ)Ψkf

[r]
k

)

� 1
|�(λ)|

∣∣∣∣∣
r∑

k=0

ẑ
[r]∗
k (λ)Ψkf

[r]
k

∣∣∣∣∣
� 1

|�(λ)|

(
r∑

k=0

ẑ
[r]∗
k (λ)Ψkẑ

[r]
k (λ)

)1/2( r∑
k=0

f
[r]∗
k Ψkf

[r]
k

)1/2

� 1
|�(λ)|

∥∥ẑ[r](λ)
∥∥
Ψ

∥∥f [r]∥∥
Ψ
,

thereby yielding the inequality

∥∥ẑ[r](λ)
∥∥
Ψ

� 1
|�(λ)|

∥∥f [r]∥∥
Ψ

� 1
|�(λ)| ‖f‖Ψ . (4.13)

For any k, r ∈ N0, we now see that

ẑk(λ) − ẑ
[r]
k (λ) =

∞∑
l=r+1

Gk,l(λ)Ψlfl.

Let m ∈ [0, r]Z be fixed. By the definition of G(λ) in (4.4), we obtain for every k ∈ [0, m]Z that

ẑk(λ) − ẑ
[r]
k (λ) = Z̃k(λ)

∞∑
l=r+1

X+∗
l (λ̄)Ψlfl. (4.14)

Since the columns of X+(λ̄) and the function f belong to �2Ψ (N0), it follows that the right-hand side of (4.14)
tends to zero as r → ∞ for every k ∈ [0, m]Z. Hence ẑ[r] converges uniformly to the function ẑ(λ) on the 
interval [0, m]Z. Since ẑ(λ) = ẑ[r](λ) on [0, m]Z and Ψ � 0, we see by (4.13) that

m∑
ẑ
[r]∗
k (λ)Ψkẑ

[r]
k (λ) �

∥∥ẑ[r](λ)
∥∥2
Ψ

� 1
|�(λ)|2 ‖f‖

2
Ψ .
k=0
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Then, as a consequence of the uniform convergence for r → ∞ on [0, m]Z, we see that

m∑
k=0

ẑ∗k(λ)Ψkẑk(λ) � 1
|�(λ)|2 ‖f‖

2
Ψ . (4.15)

Upon taking the limit for m → ∞ in (4.15) the desired estimate in (4.9) follows.
Finally, to establish the existence of the limit in (4.10), assume that system (Sλ) is in the limit point case 

for all λ ∈ C \ R. From the extended Lagrange identity in Theorem 2.5, for any k, r ∈ N0, we obtain

[
X+∗

j (ν)J ẑ
[r]
j (λ)

]k+1
0 = (ν̄ − λ)

k∑
j=0

X+∗
j (ν)Ψj ẑ

[r]
j (λ) −

k∑
j=0

X+∗
j (ν)Ψjf

[r]
j (λ). (4.16)

For k ∈ [r + 1, ∞)Z identity (4.12) holds, and, by (4.3), we obtain

lim
k→∞

X+∗
k+1(ν)J ẑ

[r]
k+1(λ) = lim

k→∞
X+∗

k+1(ν)JX+
k+1(λ)gr(λ) = 0.

In the limit, as k → ∞, (4.16) yields

X+∗
0 (ν)J ẑ

[r]
0 (λ) = (λ− ν̄)

∞∑
j=0

X+∗
j (ν)Ψj ẑ

[r]
j (λ) +

∞∑
j=0

X+∗
j (ν)Ψjf

[r]
j (λ). (4.17)

It was proven earlier that ẑ[r](λ) converges uniformly on finite subintervals of N0 as r → ∞. Then, 
from (4.17), we see that

X+∗
0 (ν)J ẑ0(λ) = (λ− ν̄)

∞∑
j=0

X+∗
j (ν)Ψj ẑj(λ) +

∞∑
j=0

X+∗
j (ν)Ψjfj(λ). (4.18)

On the other hand, by the extended Lagrange identity, for every k ∈ N0, we obtain

[
X+∗

j (ν)J ẑj(λ)
]k+1
0 = (ν̄ − λ)

k∑
j=0

X+∗
j (ν)Ψj ẑj(λ) −

k∑
j=0

X+∗
j (ν)Ψjfj(λ). (4.19)

Letting k → ∞ in (4.19), and using inequality (4.18), the limit in (4.10) is established.
An argument, similar to that given above, can be used in the limit circle case to show the existence of 

the limit in (4.10), because all solutions of (Sλ) are square summable. However, an alternative and more 
direct method of the proof is available.

By (4.8) we have for every k ∈ N0 that

X+∗
k (ν)J ẑk(λ) = X+∗

k (ν)JX+
k (λ)

k−1∑
l=0

Z̃∗
l (λ̄)Ψlfl + X+∗

k (ν)J Z̃k(λ)
∞∑
l=k

X+∗
l (λ̄)Ψlfl. (4.20)

The limit of the first term on the right-hand side in (4.20) is equal to zero because X+∗
k (ν)JX+

k (λ) tends to 
zero by (4.3) and it is multiplied by a sum which converges as k → ∞. The second term on the right-hand 
side of (4.20) tends also to zero, because the columns of Z̃(λ) are square summable. This implies that the 
function X+∗(ν)J Z̃(λ) is bounded and it is multiplied by a sum converging to zero as k → ∞; thereby 
establishing the limit in (4.10). �

In the last result of this section, we extend [14, Corollary 5.3] to the case of general linear dependence 
on the spectral parameter.
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Corollary 4.4. Let α ∈ Γ , λ ∈ C \R, f ∈ �2Ψ (N0), and v ∈ C
n. Let system (Sλ) be definite on N0, and define 

the function

ŷk(λ) := X+
k (λ)v + ẑk(λ), k ∈ N0, (4.21)

where ẑ(λ) is given in (4.7). Then, ŷ(λ) represents a square summable solution of system (Sf
λ) satisfying 

the initial condition α ŷ0(λ) = v and

∥∥ŷ(λ)
∥∥
Ψ

� 1
|�(λ)| ‖f‖Ψ +

∥∥X+(λ)v
∥∥
Ψ
. (4.22)

If system (Sλ) is in the limit point or in the limit circle case for all λ ∈ C \ R, we have

lim
k→∞

X+∗
k (ν)J ŷk(λ) = 0 for every ν ∈ C \ R. (4.23)

Moreover, in the limit point case, the function ŷ(λ) is the unique square summable solution of system (Sf
λ)

satisfying α ŷ0(λ) = v, while in the limit circle case ŷ(λ) is the unique solution of (Sf
λ) being in �2Ψ (N0) such 

that α ŷ0(λ) = v and

lim
k→∞

X+∗
k (λ̄)J ŷk(λ) = 0. (4.24)

Proof. Since X+(λ)v solves system (Sλ) and Φ0(λ, α) = (α∗, −Jα∗), it follows from Theorem 4.3 that ŷ(λ)
solves the nonhomogeneous system (Sf

λ) and satisfies α ŷ0(λ) = αX+
0 (λ) v = v. The estimate in (4.22)

follows directly from (4.21) and (4.9) by the triangle inequality. The limit in (4.23) follows in the limit circle 
or in the limit point case from (4.3), (4.10), and from the calculation

lim
k→∞

X+∗
k (λ̄)J ŷk(λ) = lim

k→∞

{
X+∗

k (λ̄)JX+
k (λ) + X+∗

k (λ̄)J ẑk(λ)
}

= 0.

Finally, we prove the uniqueness of the solution in the limit point and in the limit circle case. Assume that 
y[1](λ) and y[2](λ) are two square summable solutions of (Sf

λ) satisfying α y
[1]
0 (λ) = v = α y

[2]
0 (λ). Then the 

function yk(λ) := y
[1]
k (λ) − y

[2]
k (λ), k ∈ N0, represents a square summable solution of system (Sλ), which 

satisfies α y0(λ) = 0. Since y(λ) = Φ(λ, α) c for some c ∈ C
2n, the initial condition α y0(λ) = 0 implies that 

yk(λ) = Z̃k(λ) d for some d ∈ C
n. If system (Sλ) is in the limit point case, we have y(λ) /∈ �2Ψ (N0) for d �= 0, 

because the columns of Z̃(λ) do not belong to �2Ψ (N0) in this case; cf. [37, Theorem 4.4]. Therefore d = 0
and the uniqueness follows. On the other hand, in the limit circle case we obtain from the previous part of 
the proof, from the limit in (4.24), and from the first identity in (2.6) that

0 = lim
k→∞

X+∗
k (λ̄)JΦk(λ, α)

(
0
d

)
= lim

k→∞

(
I M∗

+(λ̄)
)
Φ∗
k(λ̄, α)JΦk(λ, α)

(
0
d

)
= d,

which implies the uniqueness of the solution ŷ(λ) also in this case. �
5. Maximal and minimal linear relations

5.1. Linear relations and definiteness

We now return to the topic of linear relations introduced in Section 2.4 and focus on a pair of linear 
relations defined in terms of the linear map, L , introduced in (2.12) in association with the discrete sym-
plectic system (Sλ). We point out that similar results in association with linear Hamiltonian differential 
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and difference systems can be found in [6,25,30]. We first introduce the maximal linear relation, Tmax, as 
a subspace of �̃2Ψ (N0)2 := �̃2Ψ (N0) × �̃2Ψ (N0) defined by

Tmax :=
{
{z̃, f̃} ∈ �̃2Ψ (N0)2

∣∣ ∃u ∈ z̃ such that L (u) = Ψf
}
. (5.1)

Note that when L (u) = Ψf , then L (u) = Ψg for all g ∈ f̃ . Similarly, we define a pre-minimal linear 
relation, T0, by

T0 :=
{
{z̃, f̃} ∈ �̃2Ψ (N0)2

∣∣ ∃u ∈ z̃ ∩ �2Ψ,0(N0) such that L (u) = Ψf
}
⊆ Tmax, (5.2)

and, by (2.16), we define

T0 − λI :=
{
{z̃, f̃} ∈ �̃2Ψ (N0)2

∣∣ ∃u ∈ z̃ ∩ �2Ψ,0(N0) such that L (u) − λΨu = Ψf
}
⊆ Tmax − λI. (5.3)

The consideration of linear relations in our current context is natural given that the weight represented 
by Ψ , present in (Sf

λ) and the sequence spaces associated with Tmax and Tmin, has terms none of which are 
positive definite, but all of which are positive semi-definite; cf. (2.2). A simple example for (Sf

λ), analogous 
to that found in [25, Section 2] in association with (1.4), illustrates.

Example 5.1. For the system (Sf
0 ) with n = 1, let

Sk =
(

1 0
0 1

)
, Ψk =

(
1 0
0 0

)
, fk =

(
f

[1]
k

f
[2]
k

)
, zk =

(
xk

uk

)
, k ∈ N0. (5.4)

Then L (z) and (Sf
0 ), respectively, can be written as

L (z) =
(

0 −1
1 0

)
Δz, Δz =

(
Δx

Δu

)
=

(
0

−f [1]

)
. (5.5)

Then, for any f ∈ �2Ψ (N0),

z0 = 0, zk =
(

0
−
∑k−1

j=0 f
[1]
j

)
, k ∈ N,

is a solution of (Sf
0) in (5.5). In particular, z ∈ 0̃ and as a consequence, {0̃, f̃} ∈ Tmax for any f̃ �= 0̃. Hence, 

mulTmax, as defined in Section 2.4, is nontrivial, and Tmax, while a linear relation, is not a linear operator. 
Note also that a solution of (Sf

0 ) in (5.5) which is an element of �2Ψ,0(N0) of necessity is such that xk = 0
for all k ∈ N0 with the consequence that domT0 = {0̃}. �

The system (Sλ) given by (5.4) in Example 5.1 is not definite. The next result, characterizes definiteness 
of (Sλ) in terms of the domain of Tmax.

Theorem 5.2. System (Sλ) is definite on N0 if and only if for any {z̃, f̃} ∈ Tmax there exists a unique u ∈ z̃

such that L (u) = Ψf .

Proof. Assume that system (Sλ) be definite. Let {z̃, f̃} ∈ Tmax, let z[1], z[2] ∈ z̃, and let y := z[1] − z[2]. 
Then y ∈ 0̃ ∈ �̃2Ψ (N0), and hence Ψkyk = 0, for all k ∈ N0. Moreover, L (y) = 0 implies that y is a solution 
of (Sλ) for λ = 0. Then, by Remark 3.2, the definiteness of (Sλ) implies that y = 0.

To show the converse, assume that there is only one u ∈ z̃ for which L (u) = Ψf , when {z̃, f̃} ∈ Tmax. 
Let I ⊂ N0 be a discrete finite interval such that rankϕ(I) is maximal; cf. Lemma 3.8. If rankϕ(I) < 2n, 
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then there is η ∈ C
2n \ {0} such that η∗ϕ(0, I)η =

∑
k∈I η∗Φ∗

kΨkΦkη = 0, where Φk = Φk(0). If ∑
k∈N0

η∗Φ∗
kΨkΦkη = 0, then u = Φη ∈ �2Ψ (N0). Moreover, L (u) = 0, and u ∈ 0̃. Given that 0 is the 

unique sequence in 0̃ satisfying L (z) = 0, then u = Φη = 0 and as a consequence, η = 0, which contradicts 
the assumption that η �= 0. Hence, there is a discrete finite interval superset, Î, of I such that ϕ(0, ̂I)η �= 0. 
As a result, kerϕ(Î) ⊂ kerϕ(I), and hence, ranϕ(I) ⊂ ranϕ(Î); thereby contradicting the maximality of 
rankϕ(I). Thus, rankϕ(I) = 2n and (Sλ) is definite by Theorem 3.9. �
Remark 5.3. Example 5.1 shows that the linear relation given by L does not determine an operator; neither 
its domain is dense in �̃2Ψ (N0). Moreover, consider the definite system in (3.4) from Example 3.4 with 
pk ≡ 1, qk ≡ 0, and wk ≡ 1 for all k ∈ N0. If we put f0 =

( 1
0

)
and fk =

( 0
0

)
for k ∈ N with the notation 

fk = (f [1]
k , f [2]

k )� for k ∈ N0, then the corresponding nonhomogeneous system (Sf
0), i.e.,

(
xk

uk

)
=

(
1 −1
0 1

)(
xk+1
uk+1

)
+
(

0
f

[1]
k

)
,

possesses the solution zk =
( xk

uk

)
such that z0 =

( 0
1

)
and zk =

( 0
0

)
for k ∈ N, i.e., there exists f̃ �= 0̃ such that 

{0̃, f̃} ∈ Tmax. This shows that definiteness of system (Sλ) does not suffice to prove that mulTmax = {0̃}, 
cf. [33].

Thus, to guarantee that the linear relation defines an operator, we need to assume explicitly that 
mulTmax = {0̃}, i.e., if there exists z ∈ 0̃ such that L (z) = Ψf for f ∈ �2Ψ (N0) on N0, then z ≡ 0, cf. 
[24, p. 666]. In other words, we assume the definiteness of system (Sf

0) for every f ∈ �2Ψ (N0). In addition, 
this assumption implies that system (Sλ) is definite as it follows from the choice f ≡ 0, by Theorem 3.9(iii) 
and Corollary 3.10. This assumption establishes the density of domT0 in �̃2Ψ (N0), cf. [24, Theorem 7.6]. As 
noted in [3], a similar assumption is also needed for operators associated with system (1.5) in [31].

Theorem 5.4. If system (Sf
0) is definite on N0, then domT0 is dense in �̃2Ψ (N0).

Proof. Assume that domT0 is not dense in �̃2Ψ (N0). Then there exists f̃ ∈ dom(T0)⊥ such that ‖f‖Ψ �= 0. 
Let z̃ ∈ domT0 be such that L (z) = Ψf and ỹ ∈ domT0 be such that L (y) = Ψg for some g ∈ �2Ψ (N0). 
Then, by the extended Lagrange identity from Theorem 2.5, we obtain

〈g, z〉Ψ − 〈y, f〉Ψ = lim
k→∞

y∗k+1J zk+1 − y∗0J z0 = 0,

because y, z ∈ �2Ψ,0(N0), i.e., we have

〈g, z〉Ψ = 〈y, f〉Ψ = 0. (5.6)

Since g ∈ �2Ψ (N0) was chosen arbitrarily and z ∈ �2Ψ,0(N0), we can take g = z and the solution of L (y) = Ψz

can be obtained as yk = ΦkJ
∑k−1

j=0 Φ∗
jΨjzj . Then, (5.6) implies that 〈z, z〉Ψ = 0, i.e., Ψkzk = 0 on N0. Thus 

we have L (z) = Ψf and z ∈ 0̃, which yields z ≡ 0 by the definiteness assumption for system (Sf
0). Then 

Ψkfk = 0 on N0, i.e., f ∈ 0̃, and the density of domT0 in �̃2Ψ (N0) is thus established. �
5.2. The orthogonal decomposition of sequence spaces

Next, we introduce a linear map which will allow an orthogonal decomposition of �̃2Ψ (I), where I ⊂ N0

denotes a discrete finite interval. First, note that the sum 
∑

k∈I Φ∗
k(λ̄)Ψkuk is independent of u ∈ z̃ ∈ �̃2Ψ (I), 

and let Kλ,I denote the linear map defined by
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Kλ,I : �̃2Ψ (I) → C
2n, Kλ,I(z̃) :=

∑
k∈I

Φ∗
k(λ̄)Ψkzk,

which we will abbreviate as KI when λ = 0.

Lemma 5.5. Let I ⊂ N0 denote a finite discrete subinterval, and let λ ∈ C. Then, ranKλ,I is independent 
of λ ∈ C; in particular,

ranKλ,I =
{
ξ ∈ C

2n ∣∣ ΨkΦk(λ̄)ξ = 0, ∀k ∈ I
}⊥ = ranϕ(I). (5.7)

Furthermore, �̃2Ψ (I) admits the following orthogonal sum decomposition:

�̃2Ψ (I) = kerKλ,I ⊕
{
z̃ ∈ �̃2Ψ (I)

∣∣ z = Φ(λ̄)ξ, ξ ∈ ranϕ(I)
}
. (5.8)

Proof. For any ξ ∈ C
2n and ũ ∈ �̃2Ψ (I),

〈
ξ,Kλ,I(ũ)

〉
C2n =

∑
k∈I

ξ∗Φ∗
k(λ̄)Ψkuk =

〈
Φ(λ̄)ξ, u

〉
Ψ,I .

Hence, K∗
λ,I : C2n → �̃2Ψ (I), where K∗

λ,I(ξ) = z̃, and z = Φ(λ̄)ξ, for ξ ∈ C
2n. In particular,

ranK∗
λ,I =

{
z̃ ∈ �̃2Ψ (I)

∣∣ z = Φ(λ̄)ξ, ξ ∈ C
2n},

and

kerK∗
λ,I =

{
ξ ∈ C

2n ∣∣ ∥∥Φ(λ̄)ξ
∥∥
Ψ,I = 0

}
=

{
ξ ∈ C

2n ∣∣ ΨkΦk(λ̄)ξ = 0, ∀k ∈ I
}
.

Thus, the first of the equalities in (5.7) follows from the fact that ranKλ,I = ker(K∗
λ,I)⊥.

Next, note that �̃2Ψ (I) = kerKλ,I ⊕ ker(Kλ,I)⊥ = kerKλ,I ⊕ ranK∗
λ,I . Let ξ ∈ C

2n, and ξ = η + ζ, where 
η ∈ ranKλ,I , and ζ ∈ ran(Kλ,I)⊥ = kerK∗

λ,I . Then, let z = Φ(λ̄)ξ, u = Φ(λ̄)η, and v = Φ(λ̄)ζ, and note 
that ‖v‖Ψ,I = ‖Φ(λ̄)ζ‖Ψ,I = 0. Thus, ṽ = 0̃ ∈ �̃2Ψ (I), and as a consequence, z̃ = ũ, and hence

ranK∗
λ,I =

{
z̃ ∈ �̃2Ψ (I)

∣∣ z = Φ(λ̄)η, η ∈ ranKλ,I
}
.

Thus, to complete the demonstration of (5.7) and (5.8), it remains to show that ranKλ,I = ranϕ(I).
Let z̃ ∈ �̃2Ψ (I). Then z̃ = ṽ + ũ, where ṽ ∈ kerKλ,I , and u = Φ(λ̄)η, where η ∈ ranKλ,I . Then,

Kλ,I(z̃) = Kλ,I(ũ) =
∑
k∈I

Φ∗
k(λ̄)ΨkΦk(λ̄)η = ϕ(λ, I)η,

and hence, ranKλ,I ⊆ ranϕ(I). On the other hand, if ξ ∈ C
2n and z = Φ(λ̄)ξ, then

ϕ(λ, I)ξ =
∑
k∈I

Φ∗
k(λ̄)ΨkΦk(λ̄)ξ =

∑
k∈I

Φ∗
k(λ̄)Ψkzk = Kλ,I(z̃),

thus showing that ranKλ,I = ranϕ(I). �
In analogy with Kλ,I , we define the linear map

Kλ : �̃2Ψ,1(N0) → C
2n, Kλ(z̃) :=

∑
Φ∗
k(λ̄)Ψkzk,
k∈N0
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which we abbreviate as K when λ = 0. We note that the sum 
∑

k∈N0
Φ∗
k(λ̄)Ψkuk is independent of u ∈

z̃ ∈ �̃2Ψ,1(N0).
For the next two lemmas, recall from Lemma 3.8 (viz. (3.7)) that there is a discrete finite interval I ⊂ N0

for which rankϕ(I) is maximal; that is, rankϕ(Î) = rankϕ(I), for any discrete finite interval Î such that 
I ⊆ Î. By (5.7), it also follows that if I is a discrete finite interval for which rankϕ(I) is maximal, then 
ranKλ,Î = ranKλ,I , when Î is a discrete finite interval for which I ⊆ Î.

Lemma 5.6. Let I ⊂ N0 be a discrete finite interval for which rankϕ(I) is maximal. Then, ranKλ =
ranϕ(I), for all λ ∈ C; in particular, ranKλ is independent of λ.

Proof. Let z̃ ∈ domKλ = �̃2Ψ,1(N0). Then, there exists an N ∈ N0 such that Ψkzk = 0 for k � N ; 
hence, z ∈ �2Ψ ([0, N ]Z), and z̃ ∈ �̃2Ψ ([0, N ]Z) = domKλ,[0,N ]Z . In particular, Kλ,[0,N ]Z(z̃) = Kλ(z̃), and 
thus, ranKλ ⊆ ranKλ,[0,N ]Z . Without loss of generality, we may assume that I ⊆ [0, N ]Z, and hence that 
ranKλ,I = ranKλ,[0,N ]Z ⊇ ranKλ.

Conversely, suppose that z̃ ∈ �̃2Ψ (I) = domKλ,I . Let u ∈ �2Ψ,1(N0) be defined by

uk =
{
zk, k ∈ I,
0, k /∈ I.

Then, Kλ,I(z̃) =
∑

k∈I Φ∗
k(λ̄)Ψkzk =

∑
k∈N0

Φ∗
k(λ̄)Ψkuk = Kλ(ũ). Hence, ranKλ,I ⊆ ranKλ, thus ranKλ =

ranKλ,I ; which by Lemma 5.5 yields ranKλ = ranϕ(I). �
Lemma 5.7. Let I ⊂ N0 be a discrete finite interval for which rankϕ(I) is maximal. Then,

�̃2Ψ,1(N0) = kerKλ ⊕
{
z̃ ∈ �̃2Ψ,1(N0)

∣∣ z = Φ(λ̄)ξ, ξ ∈ ranϕ(I)
}

and codim(kerKλ) = rankϕ(I).

Proof. In the complete analogy with the argument given in the proof of Lemma 5.5, one can show that

�̃2Ψ,1(N0) = kerKλ ⊕ ker(Kλ)⊥ = kerKλ ⊕ ranK∗
λ,

where

ranK∗
λ =

{
z̃ ∈ �̃2Ψ,1(N0)

∣∣ z = Φ(λ̄)ξ, ξ ∈ ranϕ(I)
}
,

and that

ran(Kλ)⊥ = kerK∗
λ =

{
ξ ∈ C

2n ∣∣ ∥∥Φ(λ̄)ξ
∥∥
Ψ

= 0
}

=
{
ξ ∈ C

2n ∣∣ ΨkΦk(λ̄)ξ = 0, ∀k ∈ N0
}
.

Let ξj , j = 1, . . . , m, denote a basis for ranϕ(I) = ranKλ, let u[j] := Φ(λ̄)ξj , and thus ũ[j] ∈ ranK∗
λ, for 

j = 1, . . . , m. Suppose that 
∑m

j=1 αj ũ
[j] = 0̃ ∈ �̃2Ψ,1(N0). Then, ΨkΦk(λ̄)(

∑m
j=1 αjξj) = 0, for all k ∈ N0. As 

a consequence,

m∑
j=1

αjξj ∈ ranKλ ∩ ran(Kλ)⊥ = {0},

and hence, αj = 0, j = 1, . . . , m; thus, ũ[j] ∈ ranK∗
λ, j = 1, . . . , m, are independent in �̃2Ψ,1(N0). Hence, 

codim(kerKλ) = dim(ran(K∗
λ)) = rankϕ(I). �
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5.3. The minimal relation and its deficiency indices

Before we define the minimal linear relation Tmin and establish the fundamental relation between Tmax
and Tmin, we prove two auxiliary lemmas.

Lemma 5.8. We have kerKλ ⊆ ran(T0 − λI) for every λ ∈ C.

Proof. Let λ ∈ C and f̃ ∈ kerKλ ⊆ �̃2Ψ,1(N0). Then, there is N ∈ N0 such that Ψkgk = 0 for all k � N and 
all g ∈ f̃ . Moreover, Kλ(f̃) =

∑
k∈N0

Φ∗
k(λ̄)Ψkgk = 0 for all g ∈ f̃ .

For g ∈ f̃ , we note that

zk := −Φk(λ)J
∞∑
j=k

Φ∗
j (λ̄)Ψjgj =

{
−Φk(λ)J

∑N−1
j=k Φ∗

j (λ̄)Ψjgj , k ∈ [0, N − 1]Z,
0, k ∈ [N,∞)Z,

(5.9)

defines a sequence z ∈ �2Ψ (N0) such that L (z) = λΨz + Ψg (cf. [19, Theorem 3.17]) for which z0 =
Φ0(λ)JKλ(g) = 0. Thus, as defined, z ∈ �2Ψ,0(N0) and satisfies L (z) − λΨz = Ψg; thereby showing that 
f̃ ∈ ran(T0 − λI); cf. (5.3). �
Lemma 5.9. We have 〈f̃ , ỹ〉Ψ = 〈z̃, ̃g〉Ψ for every {z̃, f̃} ∈ T0 and {ỹ, ̃g} ∈ Tmax.

Proof. Let {z̃, f̃} ∈ T0 and {ỹ, ̃g} ∈ Tmax. Let z ∈ �2Ψ,0(N0) such that L (z) = Ψf , and let y ∈ �2Ψ (N0) such 
that L (y) = Ψg. Then, by the extended Lagrange identity in (2.8) with λ = ν = 0, we see that

〈z, g〉Ψ,[0,k]Z = −z∗jJ yj
∣∣k+1
0 +

k∑
j=0

f∗
j Ψjyj = −z∗jJ yj

∣∣k+1
0 + 〈f, y〉Ψ,[0,k]Z .

However, z ∈ �2Ψ,0(N0) implies that z0 = 0 and that zk = 0 for sufficiently large k ∈ N0. As a consequence 
we see that 〈z, g〉Ψ = 〈f, y〉Ψ , and hence, 〈u, g〉Ψ = 〈f, w〉Ψ for all u ∈ z̃, and w ∈ ỹ. �

By Lemma 5.9 and (2.14), one obtains

T0 ⊆ Tmax ⊆ T ∗
0 , (5.10)

from which we conclude that T0 is symmetric in �̃2Ψ (N0)2, and hence closable. We then define the minimal 
operator, Tmin, by

Tmin := T0.

Another approach to defining a minimal operator is to let Tmin := T ∗
max; cf. [25, Definition 2.3] and [6, 

Identity (4.2)]. In the examples cited, this is equivalent to our choice of definition for Tmin. The next 
theorem demonstrates this for the operators at hand. We note also that an alternative demonstration of the 
next result can be patterned after that presented in [6, pp. 1354–1355] using the results in Section 4 and [6, 
Proposition A.2].

Theorem 5.10. For Tmax and T0 as defined in (5.1) and (5.2), respectively,

T ∗
0 = T ∗

min = Tmax. (5.11)
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Proof. By (5.10), note that Tmax ⊆ T ∗
0 = T0

∗ = T ∗
min. Thus, it remains to show that T ∗

0 ⊆ Tmax; or 
equivalently, given {z̃, f̃} ∈ T ∗

0 , that there is a v ∈ z̃ ∈ �̃2Ψ (N0) such that L (v) = Ψf .
Now, let {ũ, ̃g} ∈ T0 and note that there exists y ∈ ũ such that y ∈ �2Ψ,0(N0) and L (y)k = Ψkgk for 

k ∈ N0. Next let w ∈ C(N0)2n be a sequence such that L (w) = Ψf , where f̃ ∈ T ∗
0 (z̃). Then, by the 

Lagrange identity (2.8), we see that 〈w, g〉Ψ,[0,k]Z = w∗
jJ yj |k+1

0 + 〈f, y〉Ψ,[0,k]Z . Given that y0 = 0 and the 
yk = 0 for sufficiently large k ∈ N0, we see that 〈w, g〉Ψ = 〈f, y〉Ψ . From the definition of T ∗

0 , note that 
〈z̃, ̃g〉Ψ = 〈f̃ , ̃u〉Ψ . As a consequence, 〈z−w, g〉Ψ = 0 for any z ∈ z̃ ∈ domT ∗

0 , and any g ∈ g̃ ∈ ranT0. Recall 
from Lemma 5.8, with λ = 0, that kerK ⊆ ranT0 ⊆ �̃2Ψ,1(N0). Then, for every g ∈ g̃ ∈ kerK we see that 
〈z−w, g〉Ψ = 0, and that 

∑
k∈N

Φ∗
kΨkgk = 0 (i.e., Φk = Φk(0)); and as a consequence, for any ξ ∈ C

2n, that

∞∑
k=0

(zk − wk − Φkξ)∗Ψkgk = 0. (5.12)

Next, let I ⊂ N0 be a finite discrete interval such that rankϕ(I) = m � 2n is maximal as noted 
in Lemma 3.8. Then, by Lemma 5.7, we see that �̃2Ψ,1(N0) = kerK ⊕ kerK⊥ and that there is a basis, 
ỹ[1], . . . , ỹ[m] ∈ �̃2Ψ,1(N0), for kerK⊥, in which y[j] = Φξ[j], and where ξ[j], j = 1, . . . , m, forms a basis for 
ranϕ(I). Then, there is discrete finite interval Î = [0, N ]Z, where I ⊆ Î, for which

Ψky
[j]
k = 0, k � N, j = 1, . . . ,m. (5.13)

Now, suppose that g̃ ∈ kerKλ,Î , then, for j = 1, . . . , m,

〈
y[j], g

〉
Ψ,Î =

∑
k∈Î

ξ[j]∗Φ∗
kΨkgk = ξ[j]∗Kλ,Î(g̃) = 0;

and thus, ỹ[j] ∈ ker(Kλ,Î)⊥, for j = 1, . . . , m.
Let x ∈ �2Ψ,1(N0) be defined by

xk =
{
zk − wk, k ∈ Î,
0, k ∈ N0 \ Î,

where {z̃, f̃} ∈ T ∗
0 and w ∈ C(N0)2n with L (w) = Ψf . Now, x̃ ∈ �̃2Ψ (I) and, by Lemma 5.5, there is 

ṽ ∈ ker(Kλ,Î)⊥, where v = Φη for some η ∈ ranϕ(Î), such that x̃ − ṽ ∈ kerKλ,Î . As a consequence 

〈x̃− ṽ, ỹ[j]〉Ψ,Î = 0 for all j = 1, . . . , m. Then, by (5.13), we obtain, for j = 1, . . . , m, that

∑
k∈N0

(zk − wk − Φkη)∗Ψky
[j]
k =

∑
k∈Î

(zk − wk − Φkη)∗Ψky
[j]
k =

〈
x̃− ṽ, ỹ[j]〉

Ψ,Î = 0. (5.14)

Together, (5.12) and (5.14) show that 〈z − w − Φη, h〉Ψ = 0 for all h ∈ �2Ψ,1(N0); in particular, for

hk =
{
zk0 − wk0 − Φk0η, k = k0,

0, k ∈ N0 \ {k0}.

Thus, for any k0 ∈ N0, we see that Ψk0(zk0 −wk0 −Φk0η) = 0, and hence ‖z − (w + Φη)‖Ψ = 0. In summary, 
we get that w+Φη ∈ z̃ where {z̃, f̃} ∈ T ∗

0 , and further that L (w+Φη) = L (w) = Ψf ; hence, showing that 
T ∗

0 ⊆ Tmax. �
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Recalling the definition of deficiency subspaces and indices from Section 2.4 (viz. (2.17), (2.18)), let

Mλ :=
{
z ∈ �2Ψ (N0)

∣∣ L (z)k = λΨkzk, k ∈ N0
}
, dλ := dimMλ,

M̃λ :=
{
z̃ ∈ �̃2Ψ (N0)

∣∣ {z̃, λz̃} ∈ Tmax = T ∗
min

}
, d̃λ := dim M̃λ.

In other words, the subspace Mλ ⊆ �2Ψ (N0) consists of all square summable solutions of (Sλ), while dλ
denotes the number of linearly independent square summable solutions of (Sλ). Then, M̃λ = M̃λ(Tmin)
represents the deficiency space, and d̃λ = d̃λ(Tmin) the deficiency index, for Tmin and λ ∈ C. It was shown 
in Theorem 5.10 that Tmin is a closed, symmetric linear relation, and hence d̃λ is constant on each of the 
open upper and lower half-planes of C; cf. [32, Theorem 2.13]. Thus we let d̃+ := d̃i = d̃λ, for λ ∈ C+, 
and d̃− := d̃−i = d̃λ, for λ ∈ C−. Then, with the aid of [6, Proposition A.1] we obtain the following 
von Neumann decomposition of the maximal linear relation Tmax in terms of the minimal linear relation 
Tmin and the defect subspaces M̃λ and M̃λ̄, i.e.,

Tmax = Tmin � M̃λ � M̃λ̄,

where the direct sum � is orthogonal if λ = ±i.
Assuming that rankϕ(I) is maximal, as described in Lemma 3.8, we next show a relationship between 

dλ and d̃λ.

Theorem 5.11. Let I ⊂ N0 be a discrete finite interval such that rankϕ(I) is maximal. Then, for any λ ∈ C,

dλ = d̃λ + 2n− rankϕ(I). (5.15)

Proof. Let λ ∈ C, and z̃ ∈ M̃λ. Then there exists z ∈ z̃ which solves system (Sλ), i.e., z ∈ Mλ. With π1
denoting the restriction of the quotient space map of Section 2.3 given by π1 := π|Mλ

: Mλ → M̃λ, we note 
that

kerπ1 =
{
z ∈ �2Ψ (N0)

∣∣ L (z)k = λΨkzk and Ψkzk = 0 for k ∈ N0
}
.

Then z ∈ kerπ1 if and only if z = Φξ for some ξ ∈
⋂

n∈N0
kerϕ([0, n]Z) = kerϕ(I). Hence dim(kerπ1) =

dim(kerϕ(I)) = 2n − rankϕ(I). Since the map π1 is surjective,

dimMλ = dim M̃λ + dim(kerπ1),

which implies (5.15). �
The following properties for dλ and d̃λ are a direct consequence of (5.15).

Corollary 5.12. Let λ ∈ C. Then,
(i) d̃λ = dλ if and only if system (Sλ) is definite on N0;
(ii) dλ − d̃λ is nonnegative and constant for λ ∈ C;
(iii) dλ is constant in C+ := {λ ∈ C | �(λ) > 0} and in C− := {λ ∈ C | �(λ) < 0}.

Proof. The first statement follows directly from (5.15) and Theorem 3.9, while the second statement is 
a consequence of (5.15) and Lemma 3.7. Since the linear relation T0 is symmetric (cf. (5.10)), the number d̃λ
is constant in C+ and C− by [32, Theorem 2.13]. Hence, the value of dλ is also constant in C+ and C− by 
Theorem 5.11, and by the independence of rankϕ(I) on the value of λ established in Lemma 3.7. �
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Remark 5.13. The last statement of Corollary 5.12 extends the enumeration and analysis of linearly inde-
pendent square summable solutions for system (Sλ) found in [37] (viz. [37, Theorem 4.9]) by showing that 
r(λ) defined in [37, Identity (4.1)] is constant in C+ and C−.

Theorem 5.14. For λ ∈ C we have

ker(Tmin − λI) = {0̃}. (5.16)

Moreover, for every λ ∈ R we have d̃λ � d̃±.

Proof. First, note that �̃2Ψ,1(N0) is dense in �̃2Ψ (N0). Then, for λ ∈ C and f̃ ∈ �̃2Ψ,1(N0), and with z ∈ �2Ψ,1(N0)
as defined in (5.9), we note, by the construction given in Lemma 5.8, that {z̃, f̃} ∈ Tmax − λI. This shows 
that �̃2Ψ,1(N0) ⊆ ran(Tmax − λI) and hence that ran(Tmax − λI) is dense in �̃2Ψ (N0) for any λ ∈ C. As 
a consequence of (5.11), we get that ker(Tmin − λI) = ran(Tmax − λ̄I)⊥ = {0̃}.

The remaining assertion follows from [25, Lemma 2.25] and (5.16), as noted in the comments associated 
with (2.19) at the end of Section 2.4. �

By Corollary 3.10, Corollary 5.12(i), and Theorem 5.14 we obtain the following statement.

Corollary 5.15. When system (Sλ) is definite on N0, then dλ � d± for any λ ∈ R.
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[7] J.M. Berezans’kĭı, Expansions in Eigenfunctions of Selfadjoint Operators, translated from Russian by R. Bolstein, J.M. 

Danskin, J. Rovnyak and L. Shulman, Transl. Math. Monogr., vol. 17, American Mathematical Society, Providence, 1968.
[8] M. Bohner, O. Došlý, Disconjugacy and transformations for symplectic systems, Rocky Mountain J. Math. 27 (3) (1997) 

707–743.
[9] M. Bohner, S. Sun, Weyl–Titchmarsh theory for symplectic difference systems, Appl. Math. Comput. 216 (10) (2010) 

2855–2864.
[10] S.L. Clark, F. Gesztesy, On Weyl–Titchmarsh theory for singular finite difference Hamiltonian systems, J. Comput. Appl. 

Math. 171 (1–2) (2004) 151–184.
[11] S.L. Clark, F. Gesztesy, M. Zinchenko, Weyl–Titchmarsh theory and Borg–Marchenko-type uniqueness results for CMV 

operators with matrix-valued Verblunsky coefficients, Oper. Matrices 1 (4) (2007) 535–592.
[12] S.L. Clark, F. Gesztesy, M. Zinchenko, Borg–Marchenko-type uniqueness results for CMV operators, Skr. K. Nor. Vidensk. 

Selsk. (1) (2008) 1–18.

http://refhub.elsevier.com/S0022-247X(14)00654-4/bib72413631s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib6676413634s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib68423133s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib68423133s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib68422E666F4E31313A4A4445412E61s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib68422E666F4E31313A4A4445412E61s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib68422E666F4E31313A4A4445412E62s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib68422E666F4E31313A4A4445412E62s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib6A422E73482E68737664532E72573131s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib6A422E73482E68737664532E72573131s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib6A6D423638s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib6A6D423638s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib6D422E6F443937s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib6D422E6F443937s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib6D422E73533130s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib6D422E73533130s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib736C432E66473034s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib736C432E66473034s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib736C432E66472E6D5A3037s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib736C432E66472E6D5A3037s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib736C432E66472E6D5A3038s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib736C432E66472E6D5A3038s1


S.L. Clark, P. Zemánek / J. Math. Anal. Appl. 421 (2015) 779–805 805
[13] S.L. Clark, F. Gesztesy, M. Zinchenko, Minimal rank decoupling of full-lattice CMV operators with scalar- and matrix-
valued Verblunsky coefficients, in: M. Bohner, Z. Došlá, G. Ladas, M. Ünal, A. Zafer (Eds.), Difference Equations and 
Applications, Proceedings of the Fourteenth International Conference on Difference Equations and Applications, Istanbul, 
2008, Uğur–Bahçeşehir University Publishing Company, 2009, pp. 19–59.

[14] S.L. Clark, P. Zemánek, On a Weyl–Titchmarsh theory for discrete symplectic systems on a half line, Appl. Math. Comput. 
217 (7) (2010) 2952–2976.

[15] E.A. Coddington, Extension Theory of Formally Normal and Symmetric Subspaces, Mem. Amer. Math. Soc., vol. 134, 
American Mathematical Society, Providence, 1973.

[16] R. Cross, Multivalued Linear Operators, Monogr. Textb. Pure Appl. Math., vol. 213, Marcel Dekker, New York, 1998.
[17] A. Dijksma, H.S.V. de Snoo, Self-adjoint extensions of symmetric subspaces, Pacific J. Math. 54 (1974) 71–100.
[18] O. Došlý, R. Hilscher, Disconjugacy, transformations and quadratic functionals for symplectic dynamic systems on time 

scales, J. Difference Equ. Appl. 7 (2) (2001) 265–295.
[19] S. Elaydi, An Introduction to Difference Equations, third edition, Undergrad. Texts Math., Springer, New York, 2005.
[20] S. Hassi, H.S.V. de Snoo, F.H. Szafraniec, Componentwise and Cartesian decompositions of linear relations, Dissertationes 

Math. (Rozprawy Mat.) 465 (2009) 59.
[21] S. Hassi, H.S.V. de Snoo, H. Winkler, Boundary-value problems for two-dimensional canonical systems, Integral Equations 

Operator Theory 36 (4) (2000) 445–479.
[22] I.S. Kac, Linear relations generated by canonical differential equations, Funct. Anal. Appl. 17 (4) (1983) 315–317. Trans-

lated from: Funktsional. Anal. i Prilozhen. 17 (4) (1983) 86–87 (in Russian).
[23] V.I. Kogan, F.S. Rofe-Beketov, On square-integrable solutions of symmetric systems of differential equations of arbitrary 

order, Proc. Roy. Soc. Edinburgh Sect. A 74 (1974/1975) (1976) 5–40.
[24] A.M. Krall, M(λ) theory for singular Hamiltonian systems with one singular point, SIAM J. Math. Anal. 20 (3) (1989) 

664–700.
[25] M. Lesch, M.M. Malamud, On the deficiency indices and self-adjointness of symmetric Hamiltonian systems, J. Differential 

Equations 189 (2) (2003) 556–615.
[26] S.J. Monaquel, K.M. Schmidt, On M -functions and operator theory for non-self-adjoint discrete Hamiltonian systems, in: 

Special Issue: 65th Birthday of Prof. Desmond Evans, J. Comput. Appl. Math. 208 (1) (2007) 82–101.
[27] B.C. Orcutt, Canonical differential equations, Doctoral dissertation, University of Virginia, ProQuest LLC, Ann Arbor, 

1969.
[28] G. Ren, On the density of the minimal subspaces generated by discrete linear Hamiltonian systems, Appl. Math. Lett. 27 

(2014) 1–5.
[29] G. Ren, Y. Shi, The defect index of singular symmetric linear difference equations with real coefficients, Proc. Amer. Math. 

Soc. 138 (7) (2010) 2463–2475.
[30] G. Ren, Y. Shi, Defect indices and definiteness conditions for a class of discrete linear Hamiltonian systems, Appl. Math. 

Comput. 218 (7) (2011) 3414–3429.
[31] Y. Shi, Weyl–Titchmarsh theory for a class of discrete linear Hamiltonian systems, Linear Algebra Appl. 416 (2–3) (2006) 

452–519.
[32] Y. Shi, The Glazman–Krein–Naimark theory for Hermitian subspaces, J. Operator Theory 68 (1) (2012) 241–256.
[33] Y. Shi, H. Sun, Self-adjoint extensions for second-order symmetric linear difference equations, Linear Algebra Appl. 434 (4) 

(2011) 903–930.
[34] B. Simon, Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory, Amer. Math. Soc. Colloq. Publ., vol. 54, 

American Mathematical Society, Providence, 2005.
[35] B. Simon, Orthogonal Polynomials on the Unit Circle, Part 2: Spectral Theory, Amer. Math. Soc. Colloq. Publ., vol. 54, 

American Mathematical Society, Providence, 2005.
[36] R. Šimon Hilscher, P. Zemánek, Weyl disks and square summable solutions for discrete symplectic systems with jointly 

varying endpoints, Adv. Difference Equ. 2013 (232) (2013) 1–18 (electronic).
[37] R. Šimon Hilscher, P. Zemánek, Weyl–Titchmarsh theory for discrete symplectic systems with general linear dependence 

on spectral parameter, J. Difference Equ. Appl. 20 (1) (2014) 84–117.
[38] R. Šimon Hilscher, P. Zemánek, Generalized Lagrange identity for discrete symplectic systems and applications in Weyl–

Titchmarsh theory, in: Z. AlSharawi, J. Cushing, S. Elaydi (Eds.), Theory and Applications of Difference Equations and 
Discrete Dynamical Systems, Proceedings of the 19th International Conference on Difference Equations and Applications, 
Muscat, 2013, to appear.

[39] G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices, Math. Surveys Monogr., vol. 72, American 
Mathematical Society, Providence, 2000.

[40] P. Zemánek, A note on the equivalence between even-order Sturm–Liouville equations and symplectic systems on time 
scales, Appl. Math. Lett. 26 (1) (2013) 134–139.

http://refhub.elsevier.com/S0022-247X(14)00654-4/bib736C432E66472E6D5A3039s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib736C432E66472E6D5A3039s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib736C432E66472E6D5A3039s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib736C432E66472E6D5A3039s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib736C432E705A3130s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib736C432E705A3130s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib65614337333A4578s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib65614337333A4578s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib72433938s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib61442E68737664533734s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib6F442E72483031s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib6F442E72483031s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib73453035s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib73482E68737664532E6668533039s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib73482E68737664532E6668533039s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib73482E68737664532E68573030s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib73482E68737664532E68573030s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib69734B3833s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib69734B3833s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib76694B2E6673523736s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib76694B2E6673523736s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib616D4B38393A49s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib616D4B38393A49s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib6D4C2E6D6D4D3033s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib6D4C2E6D6D4D3033s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib736A4D2E6B6D533037s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib736A4D2E6B6D533037s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib675231343A414D4Cs1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib675231343A414D4Cs1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib67522E79533130s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib67522E79533130s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib67522E79533131s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib67522E79533131s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib79533036s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib79533036s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib79533132s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib79532E68533131s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib79532E68533131s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib626D5330353A4949s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib626D5330353A4949s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib626D5330353A49s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib626D5330353A49s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib7253482E705A3A6A6F696E74s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib7253482E705A3A6A6F696E74s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib7253482E705A3A572D54474C50s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib7253482E705A3A572D54474C50s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib67543030s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib67543030s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib705A3133s1
http://refhub.elsevier.com/S0022-247X(14)00654-4/bib705A3133s1

	On discrete symplectic systems: Associated maximal and minimal linear relations and nonhomogeneous problems
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Time-reversed discrete symplectic systems
	2.3 Sequence spaces
	2.4 Linear relations

	3 Deﬁniteness
	4 Nonhomogeneous problem
	5 Maximal and minimal linear relations
	5.1 Linear relations and deﬁniteness
	5.2 The orthogonal decomposition of sequence spaces
	5.3 The minimal relation and its deﬁciency indices

	Acknowledgments
	References


