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1. Introduction and main notation

We recall that if Ω is a bounded domain in R2, the classical Trudinger–Moser inequality (cf. [11,16]) 
asserts that eαu2 ∈ L1(Ω) for all u ∈ H1

0 (Ω) and α > 0. Moreover, there exists a constant C = C(Ω) > 0
such that

sup
‖u‖H1

0(Ω)≤1

∫
Ω

eαu
2
dx ≤ C, if α ≤ 4π, (1.1)

where ‖u‖H1
0 (Ω) = (

∫
Ω
|∇u|2dx)1/2. Furthermore, (1.1) is sharp in the sense that if α > 4π the supre-

mum (1.1) is +∞. Related inequalities for unbounded domains have been proposed by Cao [7] and Ruf [12]
(and by Adachi–Tanaka [1], do Ó [8] and Li–Ruf [10] in general dimension). However in [1,7,8] they assumed 
a growth eαu

2 with α < 4π, i.e. with subcritical growth. See also Adams [2]. In [12], the author proved that 
there exists a constant d > 0 such that for any domain Ω ⊂ R

2,

sup
‖u‖S≤1

∫
Ω

(
e4πu2 − 1

)
dx ≤ d, (1.2)
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where ‖u‖S = (
∫
Ω

(|∇u|2 + |u|2)dx)1/2. Moreover, the inequality (1.2) is sharp in the sense that for any 
growth eαu

2 with α > 4π the supremum (1.2) is +∞. Furthermore, he proved that the supremum (1.2) is 
attained whenever it is finite. On the other hand, Adimurthi–Sandeep [3] extended the Trudinger–Moser 
inequality (1.1) for singular weights. More precisely, they proved that if Ω is a bounded domain in R2

containing the origin, u ∈ H1
0 (Ω) and β ∈ [0, 2), then

sup
‖u‖H1

0(Ω)≤1

∫
Ω

eαu
2 − 1
|x|β dx < +∞ ⇔ 0 < α ≤ 4π(1 − β/2). (1.3)

Later, do Ó–de Souza in [9] investigated the Trudinger–Moser type inequality also with a singular weight 
for any domain Ω ⊂ R

2 containing the origin as well as some applications. More precisely, they proved 
that if α > 0, β ∈ [0, 2) is such that α/4π + β/2 < 1 and ‖u‖L2(Ω) ≤ M , then there exists a constant 
C = C(α, M) > 0 (independent of Ω) such that

sup
‖∇u‖L2(Ω)≤1

∫
Ω

eαu
2 − 1
|x|β dx ≤ C(α,M) (1.4)

and the above inequality does not hold if α/4π + β/2 > 1. We also refer the reader to [4] for a Trudinger–
Moser type inequality with a singular weight in high dimensions.

Throughout the note, we consider weight functions V (|x|) and Q(|x|) satisfying the following assumptions:

(V ) V ∈ C(0, ∞), V (r) > 0 and there exist a, a0 > −2 such that

lim sup
r→0

V (r)
ra0

< ∞ and lim inf
r→+∞

V (r)
ra

> 0.

(Q) Q ∈ C(0, ∞), Q(r) > 0 and there exist b < (a − 2)/2 and −2 < b0 ≤ 0 such that

0 < lim inf
r→0

Q(r)
rb0

≤ lim sup
r→0

Q(r)
rb0

< ∞ and lim sup
r→+∞

Q(r)
rb

< ∞.

Remark 1.1.

1) Singular weight functions of the form

V (x) = |x|α and Q(x) = |x|β

with 2(β + 1) < α < 0 are simple examples of functions that satisfy (V ) and (Q), respectively. Indeed, 
just take a = a0 = α and b = b0 = β.

2) Notice that the condition on V at the origin in (V ) implies that there exist r0 > 0 and C0 > 0 such that

V
(
|x|

)
≤ C0|x|a0 , for all 0 < |x| ≤ r0. (1.5)

Notation. In order to establish our main results, we need to recall some notation.

• In all the integrals we omit the symbol dx and we use C, C0, C1, C2, . . . to denote (possibly different) 
positive constants.

• Br ⊂ R
2 denotes the open ball centered at the origin with radius r > 0 and BR \Br denotes the annulus 

with interior radius r and exterior radius R. For any set A ⊂ R
2, Ac denotes the complement of A.
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• C∞
0 (R2) denotes the set of smooth functions with compact support.

• C∞
0,rad(R2) = {u ∈ C∞

0 (R2): u is radial}.
• D1,2

rad(R2) denotes C∞
0,rad(R2) under the norm ‖∇u‖L2(R2).

• If 1 ≤ p < ∞ we define

Lp
(
R

2;Q
) .=

{
u :R2 → R: u is measurable,

∫
R2

Q
(
|x|

)
|u|p < ∞

}
.

Similarly we define L2(R2; V ). Then we set

H1
rad

(
R

2;V
) .= D1,2

rad
(
R

2) ∩ L2(
R

2;V
)
,

which is a Hilbert space (see [2,15]) with the norm

‖u‖ .=
(∫

R2

|∇u|2 + V
(
|x|

)
|u|2

)1/2

.

• H1
rad(R2; V ) will be denoted by E and its norm by ‖ · ‖.

• Let A ⊂ R
2 and define H1

rad(A; V ) = {u|A : u ∈ H1
rad(R2; V )}.

2. Preliminaries and main result

With the aid of inequalities (1.1), (1.3) and inspired by similar arguments developed in [6,7,12], we obtain 
what the title of this note states.

Theorem 2.1. Assume that (V )–(Q) hold. Then there holds

Sα = sup
u∈E;‖u‖≤1

∫
R2

Q
(
|x|

)(
eαu

2 − 1
)
< +∞ (2.6)

if and only if 0 < α ≤ α′ .= 2π(b0 + 2). Moreover, the supremum (2.6) is attained provided 0 < α < α′.

Remark 2.2. Theorem 2.1 complements (1.1)–(1.4) and the Trudinger–Moser type inequality obtained in [6].

Remark 2.3. In [5,6], the authors also used estimate (2.6) to study the existence and multiplicity of 
solutions for some classes of nonlinear Schrödinger elliptic equations (and systems of equations) with un-
bounded, singular or decaying radial potentials and involving nonlinearities with exponential critical growth 
of Trudinger–Moser type. In the argument, they combined the inequality (2.6) and variational methods.

Before giving the proof of the main result, we need establish some embeddings from E into the weighted 
Lebesgue space Lp(R2; Q).

Lemma 2.4. (See [13,14].) Assume that (V ) holds. Then, there exists C > 0 such that for all u ∈ E,
∣∣u(x)

∣∣ ≤ C‖u‖|x|− a+2
4 , |x| � 1.

Lemma 2.5. (See [14].) Assume that (V )–(Q) hold and let 1 ≤ p < ∞. For any 0 < r < R < ∞, with R ≥ 1,

i) the embeddings H1
rad(BR \Br; V ) ↪→ Lp(BR \Br; Q) are compact;

ii) the embedding H1
rad(BR; V ) ↪→ H1(BR) is continuous.
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In particular, as a consequence of ii) we have that H1
rad(BR; V ) is compactly embedded in Lq(BR) for 

all 1 ≤ q < ∞. If we assume that (V )–(Q) hold, by using Lemmas 2.4 and 2.5, a Hardy inequality with 
remainder terms (see [17]) and the same ideas from [14] we have:

Lemma 2.6. Assume that (V )–(Q) hold. Then the embeddings E ↪→ Lp(R2; Q) are compact for all 2 ≤ p < ∞.

In order to use similar arguments developed in [12] we need the following version of the Radial Lemma 
for functions in L2(R2; V ).

Lemma 2.7. Assume that (V ) holds. If u ∈ L2(R2; V ) is a radial non-increasing function (i.e. 0 ≤ u(x) ≤ u(y)
if |x| ≥ |y|), then one has

∣∣u(x)
∣∣ ≤ C‖u‖L2(R2;V )|x|−

a+2
2 , |x| � 1.

Proof. It follows from (V ) that there exists R0 > 0 such that V (|x|) ≥ C0|x|a, for |x| ≥ R0. Then for ρ > 0
such that ρ/2 > R0, we have (setting ρ = |x|)

‖u‖2
L2(R2;V ) ≥ 2π

ρ∫
ρ/2

V (s)u2(s)sds ≥ 2πC0u
2(ρ)

ρ∫
ρ/2

sa+1ds = Cρa+2u2(ρ).

Thus we conclude that

∣∣u(x)
∣∣ ≤ C‖u‖L2(R2;V )|x|−

a+2
2 , ∀|x| > R0.

Hence, the lemma is proved. �
In order to prove the sharpness of (2.6), recall the Moser’s function sequence (see [11]):

M̃n(x, r) = 1
(2π)1/2

⎧⎪⎨
⎪⎩

(logn)1/2, |x| ≤ r/n,
log r

|x|
(log n)1/2 , r/n < |x| ≤ r,

0, |x| > r,

with 0 < r ≤ r0 fixed and r0 given in (1.5). We have the following estimate for ‖M̃n‖:

Lemma 2.8. Under the hypothesis (V ),

‖M̃n‖2 ≤ 1 + m(r)
logn

(
1 + on(1)

)
,

where m(r) = 2C0r
a0+2/(a0 + 2)3.

Proof. It is easy to compute

∫
2

|∇M̃n|2 = 1
2π

∫ 1
|x|2 logn = 1.
R r/n≤|x|≤r
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On the other hand, (1.5) and integration by parts give

∫
R2

V
(
|x|

)
|M̃n|2 ≤ C0

2π

∫
|x|≤r/n

|x|a0 log n + C0

2π

∫
r/n≤|x|≤r

|x|a0
(log r

|x| )
2

logn

= −2C0r
a0+2

(a0 + 2)2

(
1
n

)a0+2

+ 2C0r
a0+2

(a0 + 2)3
1

log n − 2C0r
a0+2

(a0 + 2)3
1

log n

(
1
n

)a0+2

= 2C0r
a0+2/(a0 + 2)3

logn
(
1 + on(1)

)
= m(r)

log n
(
1 + on(1)

)
,

and thus

‖M̃n‖2 =
∫
R2

|∇M̃n|2 +
∫
R2

V
(
|x|

)
|M̃n|2 ≤ 1 + m(r)

log n
(
1 + on(1)

)
.

Hence, the lemma is proved. �
Proof of Theorem 2.1. By hypothesis (Q), there exist 0 < r0 < R0 such that

Q
(
|x|

)
≤ C0|x|b, for |x| ≥ R0,

Q
(
|x|

)
≤ C0|x|b0 , for 0 < |x| ≤ r0. (2.7)

Let R > 0 be large enough. We write

∫
R2

Q
(
eαu

2 − 1
)

=
∫
BR

Q
(
eαu

2 − 1
)

+
∫
Bc

R

Q
(
eαu

2 − 1
)
. (2.8)

We are going to estimate each integral in (2.8). For the integral on BR, we have two cases to consider:
Case 1. b0 = 0. From the second inequality in (2.7) and the continuity of Q(r), there exists C > 0 such 

that
∫
BR

Q
(
eαu

2 − 1
)
≤ C

∫
BR

eαu
2
. (2.9)

As in [11,12], we use Schwarz symmetrization theory by defining the radially symmetric function u∗ as 
follows: for all s > 0

∣∣{x ∈ BR: u∗(x) > s
}∣∣ =

∣∣{x ∈ BR: u(x) > s
}∣∣.

It follows from the properties of this construction that:

• u∗ is a non-increasing function in |x|;
• u∗ ∈ H1

0 (BR) and 
∫
BR

|∇u∗|2 ≤
∫
BR

|∇u|2;
•

∫
eα|u

∗|2 =
∫

eα|u|
2 .
BR BR
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Thus, we may assume that u in the second integral from (2.9) is non-increasing. Let

v(r) =
{
u(r) − u(R), if 0 ≤ r ≤ R;
0, if r ≥ R.

By Lemma 2.7,

u2(r) = v2(r) + 2v(r)u(R) + u2(R)

≤ v2(r) + Cv2(r)R−(a+2)/2‖u‖2
L2(R2;V ) + 1 + CR−(a+2)/2‖u‖2

L2(R2;V )

= v2(r)
[
1 + CR−(a+2)/2‖u‖2

L2(R2;V )
]
+ d(R).

Hence

u(r) ≤ v(r)
[
1 + CR−(a+2)/2‖u‖2

L2(R2;V )
]1/2 + d1/2(R) .= w(r) + d1/2(R).

By assumption
∫
BR

|∇v|2 =
∫
BR

|∇u|2 ≤ 1 − ‖u‖2
L2(R2;V )

and so ∫
BR

|∇w|2 =
∫
BR

∣∣∇v
[
1 + CR−(a+2)/2‖u‖2

L2(R2;V )
]1/2∣∣2

=
[
1 + CR−(a+2)/2‖u‖2

L2(R2;V )
] ∫
BR

|∇v|2

≤
[
1 + CR−(a+2)/2‖u‖2

L2(R2;V )
][

1 − ‖u‖2
L2(R2;V )

]
= 1 + CR−(a+2)/2‖u‖2

L2(R2;V ) − ‖u‖2
L2(R2;V ) − CR−(a+2)/2‖u‖4

L2(R2;V )

≤ 1.

Since u2(r) ≤ w2(r) + d(R) we get
∫
BR

Q
(
eαu

2 − 1
)
≤ C

∫
BR

eαu
2 ≤ Ceαd

∫
BR

eαw
2
.

Taking into account that w ∈ H1
0 (BR) and ‖w‖H1

0 (BR) = ‖∇w‖L2(BR) ≤ 1, we conclude that

sup
u∈E;‖u‖≤1

∫
BR

Q
(
eαu

2 − 1
)
< +∞,

by the classical Trudinger–Moser inequality (1.1).
Case 2. −2 < b0 < 0. The estimates in BR in this case and outside the ball (the second integral in (2.8)) 

follow by similar computations done in [6, Theorem 1.1]. Therefore, (2.6) holds.
Next we will show that (2.6) does not hold if α > α′. Set Mn(x, r) = 1

‖M̃n‖
M̃n(x, r), then Mn belongs 

to E with its support in Br(0) and ‖Mn‖ = 1. From Lemma 2.8, when |x| ≤ r/n, we have
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M2
n(x) ≥ 1

2π
log n

1 + m(r)
log n (1 + on(1))

= (2π)−1 log n− (2π)−1m(r) + on(1).

By assumption (Q), Q(|x|) ≥ C0|x|b0 for 0 < |x| ≤ r0. Thus, for 0 < r ≤ r0 we have

∫
R2

Q
(
eαM

2
n − 1

)
≥

∫
Br/n

Q
(
eαM

2
n − 1

)

≥ C0

∫
Br/n

|x|b0
(
eα[(2π)−1 log n−(2π)−1m(r)+on(1)] − 1

)

= Cnα(2π)−1−(b0+2)eon(1) + on(1).

Consequently since −2 < b0 ≤ 0, then α > α′ ⇔ α(2π)−1 − (2 + b0) > 0 and so we get

lim
n→∞

∫
R2

Q
(
eαM

2
n − 1

)
= +∞,

concluding the first part of theorem. For the last part of theorem, we consider 0 < α < α′. Let (un) ⊂ E

be a maximizing sequence, with ‖un‖ ≤ 1. Then, up to subsequences, we can assume that un ⇀ u0 weakly 
in E and, by Lemma 2.6, un → u0 strongly in Lp(R2; Q) for 2 ≤ p < ∞. Using the elementary inequality 
|ex − ey| ≤ |x − y|(ex + ey), ∀x, y ∈ R, we estimate

∣∣∣∣
∫
R2

Q
(
eαu

2
n − eαu

2
0
)∣∣∣∣ ≤ α

∫
R2

Qeαu
2
n

∣∣u2
n − u2

0
∣∣ + α

∫
R2

Qeαu
2
0
∣∣u2

n − u2
0
∣∣. (2.10)

Writing
∫
R2

Qeαu
2
n

∣∣u2
n − u2

0
∣∣ =

∫
R2

Q
(
eαu

2
n − 1

)∣∣u2
n − u2

0
∣∣ +

∫
R2

Q
∣∣u2

n − u2
0
∣∣

and taking r1 > 1 sufficiently close to 1 such that r1α ≤ α′ (it is possible because we are assuming α < α′) 
and r2 ≥ 2 such that 1/r1 + 1/r2 = 1, Hölder’s inequality implies that

∫
R2

Qeαu
2
n

∣∣u2
n − u2

0
∣∣ ≤ (∫

R2

Q
(
er1αu

2
n − 1

))1/r1(∫
R2

Q
∣∣u2

n − u2
0
∣∣r2)1/r2

+
(∫

R2

Q|un − u0|2
)1/2(∫

R2

Q|un + u0|2
)1/2

and likewise for the integral in (2.10) containing eαu
2
0 . Thus, it follows from the first part of theorem and 

Lemma 2.6 that

Sα + on(1) =
∫
R2

Q
(
eαu

2
n − 1

)
=

∫
R2

Q
(
eαu

2
0 − 1

)
+ on(1).

Finally, since ‖u0‖ ≤ 1, we see that u0 is the required extremal function. This completes the proof of the 
result. �
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Remark 2.9. The maximizer u0 can be chosen unitary, i.e., ‖u0‖ = 1. Indeed, since for instance if ‖u0‖ < 1, 
then setting v0 = u0/‖u0‖, we would have

∫
R2

Q
(
eαv

2
0 − 1

)
>

∫
R2

Q
(
eαu

2
0 − 1

)
= Sα,

which is a contradiction.
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