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associated to the exceptional Laguerre polynomials. This condition is very much 
related to the fact that the associated second order differential operator has no 
singularities in (0, +∞).
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1. Introduction

Exceptional orthogonal polynomials pn, n ∈ X � N, are complete orthogonal polynomial systems with 
respect to a positive measure which in addition are eigenfunctions of a second order differential operator. 
They extend the classical families of Hermite, Laguerre and Jacobi. The most apparent difference between 
classical orthogonal polynomials and their exceptional counterparts is that the exceptional families have 
gaps in their degrees, in the sense that not all degrees are present in the sequence of polynomials (as it 
happens with the classical families), although they form a complete orthonormal set of the underlying L2

space defined by the orthogonalizing positive measure. This means in particular that they are not covered 
by the hypotheses of Bochner’s classification theorem (see [1]) for classical orthogonal polynomials. The 
last few years have seen a great deal of activity in the area of exceptional orthogonal polynomials; see, for 
instance, [2,3,6,7] (where the adjective exceptional for this topic was introduced), [8,5,9,10,12–16] and the 
references therein.

One of the most interesting questions regarding exceptional polynomials is that of finding necessary and 
sufficient conditions so that the corresponding second order differential operator has no singularities in its 
domain (that is, it is regular). This question is very much related to the integrability of the weight with 
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respect to which the exceptional polynomials are orthogonal. The purpose of this paper is to provide a 
complete answer to this question for exceptional Laguerre polynomials.

Exceptional Laguerre polynomials can be constructed using Wronskian type determinants whose entries 
are Laguerre polynomials. For a complex number α ∈ Ĉ = C \ {−1, −2, . . .} we consider the Laguerre 
polynomials

Lα
n(x) =

n∑
j=0

(−x)j

j!

(
n + α

n− j

)
(1.1)

(this and the next formulas can be found in [4, vol. II, pp. 188–192]; see also [11, pp. 241–244]). They are 
always eigenfunctions of the second order differential operator

Dα = x

(
d

dx

)2

+ (α + 1 − x) d

dx
, Dα

(
Lα
n

)
= −nLα

n, n ≥ 0.

When α is real and α > −1 they are also orthogonal with respect to the positive weight xαe−x, x ∈ (0, +∞). 
Otherwise, they are orthogonal with respect to a (signed) weight supported in a complex path.

For the construction of exceptional Laguerre polynomials, we follow [3] (see also [9,10,13]).
Denote by F = (F1, F2) a pair of finite sets of positive integers, write ki for the number of elements 

of Fi, i = 1, 2, and let k = k1 + k2. The components of F can be the empty set. We define the nonnegative 
integer uF and the infinite set of nonnegative integers σF , respectively, by

uF =
∑
f∈F1

f +
∑
f∈F2

f −
(
k1 + 1

2

)
−

(
k2

2

)
,

σF = {uF , uF + 1, uF + 2, . . .} \ {uF + f, f ∈ F1}.

Notice that σF is formed by the nonnegative integers of the form n + uF with n /∈ F1. The infinite set σF
will be the set of indices for the exceptional Laguerre polynomials associated to F .

For each pair F = (F1, F2) of finite sets of positive integers and a complex number α ∈ Ĉ, we define the 
polynomials

Lα;F
n (x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Lα
n−uF (x) (Lα

n−uF )′(x) · · · (Lα
n−uF )(k)(x)[

Lα
f (x) (Lα

f )′(x) · · · (Lα
f )(k)(x)

]
f ∈ F1[
Lα
f (−x) Lα+1

f (−x) · · · Lα+k
f (−x)

]
f ∈ F2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (1.2)

for n ∈ σF . Along this paper, we use the following notation: given a finite set of positive integers F =
{f1, . . . , fm}, the expression [

zf,1 zf,2 · · · zf,m

f ∈ F

]
inside a matrix or a determinant will mean the submatrix defined by⎛⎜⎝ zf1,1 zf1,2 · · · zf1,m

...
...

. . .
...

zfm,1 zfm,2 · · · zfm,m

⎞⎟⎠ .

The determinant (1.2) should be understood in this form.
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As far as the authors know, this is the most general construction of exceptional Laguerre polynomials. 
But, is this class the most general class of exceptional Laguerre polynomials? More precisely, consider 
polynomials pn, n ∈ X ⊂ N, deg pn = n and where N \ X has finitely many elements. Assume that the 
polynomials pn are eigenvalues of a second order differential operator D such that D −Dα is a first order 
differential operator with rational coefficients where Dα is the Laguerre second order differential operator. 
Are then the polynomials pn, n ∈ X, of the form (1.2) for some pair F = (F1, F2) of finite sets of positive 
integers? We guess so, but we do not have yet any proof for that conjecture.

Notice that if both components of F are the empty set, we get σF = N and the exceptional Laguerre 
polynomials Lα;F

n , n ∈ σF , reduce to the Laguerre polynomials.
Write Ωα

F (x) for the polynomial defined by

Ωα
F (x) =

∣∣∣∣∣∣∣∣∣∣∣

[
Lα
f (x) (Lα

f )′(x) · · · (Lα
f )(k−1)(x)

]
f ∈ F1[
Lα
f (−x) Lα+1

f (−x) · · · Lα+k−1
f (−x)

]
f ∈ F2

∣∣∣∣∣∣∣∣∣∣∣
.

In [3], one of us has proved (see Theorem 5.2) that the polynomials (Lα;F
n )n∈σF are eigenfunctions of the 

following second order differential operator:

DF = x∂2 + h1(x)∂ + h0(x), (1.3)

where ∂ = d/dx and

h1(x) = α + k + 1 − x− 2x (Ωα
F )′(x)

Ωα
F (x) ,

h0(x) = −k1 − uF + (x− α− k) (Ωα
F )′(x)

Ωα
F (x) + x

(Ωα
F )′′(x)

Ωα
F (x) .

More precisely DF (Lα;F
n ) = −nLα;F

n (x). Actually, only real numbers α were considered in [3], but since 
DF (Lα;F

n ) and nLα;F
n (x) are analytic functions in Ĉ, the result holds also in Ĉ.

Exceptional Laguerre polynomials are formally orthogonal with respect to the weight

ωα;F = xα+ke−x

Ωα
F (x)2 , x > 0. (1.4)

Hence, for these exceptional Laguerre polynomials the regularity of the associated second order differential 
operator in (0, +∞), and the existence of a positive measure with respect to which they are orthogonal are 
related to the fact that Ωα

F (x) �= 0, x ≥ 0. This problem gave rise in [3] to the concept of admissibility for 
a real number c and the pair F .

Definition 1.1. Let F = (F1, F2) be a pair of finite sets of positive integers. For a real number c �=
0, −1, −2, . . . , write ĉ = max{−[c], 0}, where [c] denotes the integer part of c (i.e. [c] = max{s ∈ Z : s ≤ c}). 
We say that c and F are admissible if for all n ∈ N∏

f∈F1
(n− f)

∏
f∈F2

(n + c + f)
(n + c)ĉ

≥ 0. (1.5)

As usual (a)j will denote the Pochhammer symbol defined by

(a)0 = 1, (a)j = a(a + 1) . . . (a + j − 1), for j ≥ 1, a ∈ C.
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When α + 1 and F are admissible, it was proved in [3] that α + k > −1 and the determinant Ωα
F does not 

vanish in [0, +∞) (and hence, the weight (1.4) is integrable in (0, +∞)). It was also conjectured that the 
converse is also true.

The purpose of this paper is to prove this conjecture:

Theorem 1.2. Let α be a real number with α �= −1, −2, . . . . If α+k > −1 and Ωα
F (x) �= 0, x ≥ 0, then α+1

and F are admissible.

This theorem will be an easy consequence of the following complex orthogonality for the exceptional 
Laguerre polynomials (both will be proved in Section 3). For r > 0, we denote by Λr the positively oriented 
complex path formed by the half lines x ± ri, x ∈ [0, +∞), and the left hand side of the circle with center 
at 0 and radius r (joining the two half lines). We also consider the branch of the logarithmic function log z
defined in C \ [0, +∞) with log i = iπ/2. Given a complex number a we then define za = ea log z, which is 
an analytic function of z in C \ [0, +∞).

Lemma 1.3. Given α ∈ Ĉ and a pair F = (F1, F2) of finite sets of positive integers, there exists r > 0 such 
that∫
Λr

Lα;F
n+uF (z)Lα;F

m+uF (z)z
α+ke−z

Ωα
F (z)2 dz =

(
e2παi − 1

)Γ (n + α + 1)
∏

f∈F1
(n− f)

∏
f∈F2

(n + α + f + 1)
n! δn,m,

for every n, m /∈ F1.

We finish this paper with Appendix A where the admissibility condition (1.5) is rewritten so that it 
allows an easy generation of examples of admissible real numbers c and pairs F of finite sets of positive 
integers.

2. Preliminaries

From now on, F = (F1, F2) will denote a pair of finite sets of positive integers. We will write F1 =
{f1�

1 , . . . , f1�
k1
}, F2 = {f2�

1 , . . . , f2�
k2
}, with f j�

i < f
j�
i+1.

Hence kj is the number of elements of Fj, j = 1, 2. We write k = k1 + k2. The components of F can be 
the empty set.

For a pair F = (F1, F2) of positive integers we denote by Fj,{i}, i = 1, . . . , kj , j = 1, 2, the pair of finite 
sets of positive integers defined by

F1,{i} =
(
F1 \

{
f

1�
i

}
, F2

)
,

F2,{i} =
(
F1, F2 \

{
f

2�
i

})
. (2.1)

Darboux transformations are an important tool for constructing exceptional orthogonal polynomials.

Definition 2.1. Given a system (T, (φn)n) formed by a second order differential operator T and a sequence 
(φn)n of eigenfunctions for T , T (φn) = πnφn, by a Darboux transform of the system (T, (φn)n) we mean 
the following. For a real number λ, we factorize T − λId as the product of two first order differential 
operators T = BA +λId (Id denotes the identity operator). We then produce a new system consisting of the 
operator T̂ , obtained by reversing the order of the factors, T̂ = AB+λId, and the sequence of eigenfunctions 
φ̂n = A(φn): T̂ (φ̂n) = πnφ̂n. We say that the system (T̂ , (φ̂n)n) has been obtained by applying a Darboux 
transformation with parameter λ to the system (T, (φn)n).
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In [3], the second order differential operator DF (1.3) for the exceptional Laguerre polynomials was 
factorized as a product of two first order differential operators (see Lemma 5.4). As explained there, such a 
factorization can be done by choosing one of the components of F = (F1, F2) and removing one element in 
the chosen component (an iteration shows then that the system (DF , (Lα;F

n )n∈σF ) can be constructed by 
applying a sequence of k Darboux transforms to the Laguerre system). This factorization will be the key to 
prove Lemma 1.3 in the introduction of this paper.

Lemma 2.2. (See Lemma 5.4 of [3].) Let F = (F1, F2) be a pair of finite sets of positive integers.

a) If F1 �= ∅, we define the first order differential operators AF
1 , BF

1 as

AF
1 = − Ωα

F (x)
Ωα

F1,{k1}
(x)∂ + (Ωα

F )′(x)
Ωα

F1,{k1}(x)
, (2.2)

BF
1 =

−xΩα
F1,{k1}

(x)
Ωα

F (x) ∂ +
x(Ωα

F1,{k1}
)′(x) + (x− α− k)Ωα

F1,{k1}
(x)

Ωα
F (x) , (2.3)

where k1 is the number of elements of F1 and F1,{k1} is defined by (2.1). Then for n /∈ F1

AF
1
(
L
α;F1,{k1}
n+uF1,{k1}

)
(x) = Lα;F

n+uF (x),

BF
1
(
Lα;F
n+uF

)
(x) = −

(
n− f

1�
k1

)
L
α;F1,{k1}
n+uF1,{k1}

(x).

Moreover,

DF1,{k1} = BF
1 AF

1 −
(
f

1�
k1

+ uF1,{k1}

)
Id,

DF = AF
1 BF

1 −
(
f

1�
k1

+ uF
)
Id.

b) If F2 �= ∅, we define the first order differential operators AF
2 , BF

2 as

AF
2 = − Ωα

F (x)
Ωα

F2,{k2}
(x)∂ + (Ωα

F )′(x) + Ωα
F (x)

Ωα
F2,{k2}

(x) , (2.4)

BF
2 =

−xΩα
F2,{k2}

(x)
Ωα

F (x) ∂ +
x(Ωα

F2,{k2}
)′(x) − (α + k)Ωα

F2,{k2}
(x)

Ωα
F (x) , (2.5)

where k2 is the number of elements of F2 and F2,{k2} is defined by (2.1). Then for n /∈ F1

AF
2
(
L
α;F2,{k2}
n+uF2,{k2}

)
(x) = Lα;F

n+uF (x),

BF
2
(
Lα;F
n+uF

)
(x) = −

(
α + n + f

2�
k2

+ 1
)
L
α;F2,{k2}
n+uF2,{k2}

(x).

Moreover,

DF2,{k2} = BF
2 AF

2 +
(
α + f

2�
k2

− uF2,{k2} + 1
)
Id,

DF = AF
2 B

F
2 +

(
α + f

2�
k2

− uF + 1
)
Id.

In [3], only the case of F2 is considered (i.e., the operators (2.4) and (2.5)), but the result for F1 can be 
obtained in a completely similar way.
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For the case (a) in the above lemma, it is easy to see that σF = {n +uF : n /∈ F1} and σF1,{k1}\{uF+k1} =
{n +uF1,{k1} : n /∈ F1}. Hence, when one applies the operator AF

1 to the polynomials Lα;F1,{k1}
j , j ∈ σF1,{k1} , 

one gets the polynomials Lα;F
j , j ∈ σF , and the zero polynomial, because AF

1 (Lα;F1,{k1}
uF+k1

) = 0 (this is 
because L

α;F1,{k1}
uF+k1

= εΩF , where ε is just a sign: ε = ±1). On the other hand, when one applies BF
1 to the 

polynomials Lα;F
j , j ∈ σF , one gets the polynomials Lα;F1,{k1}

j , j ∈ σF1,{k1} , except for j = uF + k1, which 

would correspond to n = uF + k1 − uF1,{k1} = f
1�
k1

. Anyway, the formula for BF
1 (Lα;F

n+uF ) also works for 
n = f

1�
k1

because both sides of the equality vanish (since Lα;F
f
1�
k1

+uF
= 0).

For the case (b) in the lemma, it is easy to see that σF = {n +uF : n /∈ F1} and σF2,{k2} = {n +uF1,{k1} :
n /∈ F1}. Hence, the operators AF

2 and BF
2 interchange the polynomials Lα;F2,{k2}

j , j ∈ σF2,{k2} , and Lα;F
j , 

j ∈ σF , respectively (up to nonzero multiplicative constants).

3. Proofs of Theorem 1.2 and Lemma 1.3

Both results are a consequence of the following three lemmas. Let P and Q be two polynomials. We 
associate to them the following four first order differential operators:

A1 = −P

Q

d

dx
+ P ′

Q
, B1 = −xQ

P

d

dx
+ xQ′ + (x− α)Q

P
, (3.1)

A2 = −P

Q

d

dx
+ P ′ + P

Q
, B2 = −xQ

P

d

dx
+ xQ′ − αQ

P
. (3.2)

Lemma 3.1. Assume that α ∈ Ĉ and the polynomials P and Q do not vanish in Λr. If p and q are polynomials, 
then ∫

Λr

p(z)Ai

(
q(z)

)zαe−z

P (z)2 dz = −
∫
Λr

Bi

(
p(z)

)
q(z)z

α−1e−z

Q(z)2 dz, i = 1, 2.

Proof. Integrating by parts gives∫
Λr

−p(z)zαe−z

P (z)Q(z) q
′(z) dz =

[
−p(z)zαe−z

P (z)Q(z) q(z)
]z→+∞+ir

z→+∞−ir

+
∫
Λr

(
p(z)zαe−z

P (z)Q(z)

)′
q(z) dz,

which reduces to ∫
Λr

(
p(z)zαe−z

P (z)Q(z)

)′
q(z) dz,

due to the factor e−z. Differentiating this quotient like a product rather than like a quotient yields∫
Λr

−p(z)zαe−z

P (z)Q(z) q
′(z) dz =

∫
Λr

p′(z)zαe−z

P (z)Q(z) q(z) dz +
∫
Λr

p(z)αzα−1e−z

P (z)Q(z) q(z) dz

−
∫
Λr

p(z)zαe−z(P (z) + P ′(z))
P (z)2Q(z) q(z) dz

−
∫

p(z)zαe−zQ′(z)
P (z)Q(z)2 q(z) dz,
Λr
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that is, ∫
Λr

p(z)
(
−P (z)q′(z)

Q(z) + P (z) + P ′(z)
Q(z) q(z)

)
zαe−z

P (z)2 dz

=
∫
Λr

(
zQ(z)p′(z)

P (z) + αp(z)Q(z)
P (z) − p(z)zQ′(z)

P (z)

)
q(z)z

α−1e−z

Q(z)2 dz.

This proves the lemma for i = 2. The case i = 1 follows easily from the equalities A1 = A2 − P
Q and 

B1 = B2 + xQ
P . �

Lemma 3.2. Assume that α is a real number with α > −1. Assume also that the polynomial P does not 
vanish neither in Λr nor in its interior. If p is a polynomial, then

∫
Λr

p(z)z
αe−z

P (z)2 dz =
(
e2παi − 1

) ∞∫
0

p(x)x
αe−x

P (x)2 dx.

Proof. Let us cut the path Λr this way: fix some R > 0 and consider the path Λr,R = Λr ∩ {
z ≤ R}, 
positively oriented like Λr. Let us now take 0 < ε < r and consider the horizontal segments

[iε, R + iε],

[R− iε,−iε],

and the vertical segments

[R− ir, R− iε],

[R + iε, R + ir],

where each segment [z, w] is taken from z to w. Finally, consider the semicircle γε = {|z| = ε, 
z ≤ 0}, 
negatively oriented. Then, the path

Γr,R,ε = Λr,R ∪ [R− ir, R− iε] ∪ [R− iε,−iε] ∪ γε ∪ [iε, R + iε] ∪ [R + iε, R + ir]

is closed and the function p(z) z
αe−z

P 2(z) is holomorphic in an open, simply connected set containing the path 
and its interior. By Cauchy’s theorem, ∫

Γr,R,ε

p(z)z
αe−z

P (z)2 dz = 0.

Now let us take ε → 0+ and analyze each path separately. On the semicircle γε we have

length(γε) sup
z∈γε

∣∣∣∣p(z)zαe−z

P (z)2

∣∣∣∣ ≤ Cε1+α,

for some constant C not depending on ε, so that

lim
ε→0+

∫
p(z)z

αe−z

P (z)2 dz = 0.

γε
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The limit on the two vertical segments reduces to the integral on the vertical segment [R− ir, R + ir]. The 
limits on the intervals [iε, R + iε] and [R− iε, −iε] are

lim
ε→0+

∫
[iε,R+iε]

p(z)z
αe−z

P (z)2 dz =
R∫

0

p(x)x
αe−x

P (x)2 dx

and

lim
ε→0+

∫
[R−iε,−iε]

p(z)z
αe−z

P (z)2 dz = −e2παi
R∫

0

p(x)x
αe−x

P (x)2 dx,

due to the branch of the logarithm we have chosen. In both cases, the dominate convergence theorem applies. 
This proves that

∫
Λr,R

p(z)z
αe−z

P (z)2 dz =
(
e2παi − 1

) R∫
0

p(x)x
αe−x

P (x)2 dx−
∫

[R−ir,R+ir]

p(z)z
αe−z

P (z)2 dz.

Taking limit as R → +∞ proves the lemma, since

lim
R→∞

R sup
z∈[R−ir,R+ir]

∣∣∣∣p(z)zαe−z

P (z)2

∣∣∣∣ = 0. �

Lemma 3.3. If α ∈ Ĉ, then∫
Λr

Lα
n(z)Lα

m(z)zαe−z dz =
(
e2παi − 1

)Γ (n + α + 1)
n! δn,m (3.3)

for every nonnegative integers m, n.

Proof. Let us fix two nonnegative integers m, n. It is rather elementary to deduce from (1.1) that the left 
hand side in (3.3) is an entire function of α, while the right hand side is analytic in α ∈ Ĉ (though it can 
be extended to an entire function, as well). Thus, proving (3.3) for α ∈ (−1, +∞) will be enough. Now, for 
α ∈ (−1, +∞) this follows from Lemma 3.2 and the well-known classical orthogonality relation

∞∫
0

Lα
n(x)Lα

m(x)xαe−x dx = Γ (n + α + 1)
n! δn,m. �

We are now ready to prove Lemma 1.3 and Theorem 1.2.

Proof of Lemma 1.3. Consider the family of finite sets of positive integers Ψ = {H = (H1, H2) : H1 ⊂ F1,

H2 ⊂ F2}. Since the number of elements of Ψ is finite, we can choose a positive number r > 0, such that 
the polynomial Ωα

H does not vanish in the complex path Λr if H ∈ Ψ .
Assume first that F1 �= ∅, and write P = Ωα

F and Q = Ωα
F1,{k1}

.
It is then easy to check that the operators A1 and B1 defined by (3.1), with α+ k instead of α, coincide 

with the operators AF
1 and BF

1 defined by (2.2) and (2.3). By writing pn = Lα;F
n+uF and qn = L

α;F1,{k1}
n+uF1,{k1}

, 
Lemma 2.2 gives

AF
1 (qn) = pn, BF

1 (pn) = −
(
n− f

1�)
qn.
k1
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Hence, using Lemma 3.1, we get∫
Λr

Lα;F
n+uF (z)Lα;F

m+uF (z)z
α+ke−z

Ωα
F (z)2 dz =

∫
Λr

pn(z)pm(z)z
α+ke−z

P (z)2 dz

=
∫
Λr

pn(z)AF
1 (qm)(z)z

α+ke−z

P (z)2 dz

= −
∫
Λr

BF
1 (pn)(z)qm(z)z

α+k−1e−z

Q(z)2 dz

=
(
n− f

1�
k1

) ∫
Λr

qn(z)qm(z)z
α+k−1e−z

Q(z)2 dz

=
(
n− f

1�
k1

) ∫
Λr

L
α;F1,{k1}
n+uF1,{k1}

(z)Lα;F1,{k1}
m+uF1,{k1}

(z) zα+k−1e−z

Ωα
F1,{k1}

(z)2 dz.

Repeating the process, we have∫
Λr

Lα;F
n+uF (z)Lα;F

m+uF (z)z
α+ke−z

Ωα
F (z)2 dz =

∏
f∈F1

(n− f)
∫
Λr

Lα;F̃
n+uF̃

(z)Lα;F̃
m+uF̃

(z)z
α+k−k1e−z

Ωα
F̃ (z)2 dz,

where F̃ = (∅, F2).
We now proceed in the same way with F2. We hence write P = Ωα

F̃ and Q = Ωα
F̃2,{k2}

. The operators 

A2 and B2 defined by (3.2), with α + k − k1 instead of α, coincide with the operators AF̃
2 and BF̃

2 defined 

by (2.4) and (2.5). By writing pn = Lα;F̃
n+uF̃

and qn = L
α;F̃2,{k2}
n+uF̃2,{k2}

, Lemma 2.2 gives

AF̃
2 (qn) = pn, BF̃

2 (pn) = −
(
α + 1 + n + f

2�
k2

)
qn.

Hence, using Lemma 3.1, we get∫
Λr

Lα;F̃
n+uF̃

(z)Lα;F̃
m+uF̃

(z)z
α+k−k1e−z

Ωα
F̃ (z)2 dz

=
(
α + 1 + n + f

2�
k2

) ∫
Λr

L
α;F̃2,{k2}
n+uF̃2,{k2}

(z)Lα;F̃2,{k2}
m+uF̃2,{k2}

(z)z
α+k−k1−1e−z

Ωα
F̃2,{k2}

(z)2 dz.

Since the exceptional Laguerre polynomials associated to the pair (∅, ∅) are the Laguerre polynomials, 
repeating the process we have∫

Λr

Lα;F̃
n+uF̃

(z)Lα;F̃
m+uF̃

(z)z
α+k−k1e−z

Ωα
F̃ (z)2 dz =

∏
f∈F2

(α + 1 + n + f)
∫
Λr

Lα
n(z)Lα

m(z)zαe−z dz.

Lemma 3.3 finally gives∫
Λr

Lα;F
n+uF (z)Lα;F

m+uF (z)z
α+ke−z

Ωα
F (z)2 dz

=
(
e2παi − 1

)Γ (n + α + 1)
∏

f∈F1
(n− f)

∏
f∈F2

(n + α + f + 1)
δn,m. �
n!
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Proof of Theorem 1.2. Take r as in the proof of Lemma 1.3. We then have, for n /∈ F1,∫
Λr

Lα;F
n+uF (z)2 z

α+ke−z

Ωα
F (z)2 dz =

(
e2παi − 1

)Γ (n + α + 1)
∏

f∈F1
(n− f)

∏
f∈F2

(n + α + f + 1)
n! .

On the other hand, since α + k > −1 and Ωα
F (x) �= 0 for x ≥ 0, we can also assume in the choice of r that 

Ωα
F does not vanish in the interior of Λr. Then, Lemma 3.2 gives

∫
Λr

Lα;F
n+uF (z)2 z

α+ke−z

Ωα
F (z)2 dz =

(
e2παi − 1

) ∞∫
0

Lα;F
n+uF (x)2x

α+ke−x

Ωα
F (x)2 dx.

Hence, for n /∈ F1 and α /∈ Z, we get

Γ (n + α + 1)
∏

f∈F1
(n− f)

∏
f∈F2

(n + α + f + 1)
n! =

∞∫
0

Lα;F
n+uF (x)2x

α+ke−x

Ωα
F (x)2 dx ≥ 0.

The admissibility condition (1.5) for α + 1 and F follows now easily.
If α ∈ Z, the theorem follows using an argument of continuity. �
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Appendix A. Describing admissible pairs (c, F)

We start this appendix by recalling that for exceptional Hermite polynomials, the admissibility of a finite 
set F of positive integers is defined by (see [2,5])∏

f∈F

(n− f) ≥ 0, n ∈ N. (A.1)

This concept of admissibility is easier than the one defined in (1.5) because of two reasons. On one hand, 
we have now a single finite set F instead of a pair F of finite sets. On the other hand, the Hermite 
admissibility only depends on the finite set F while Laguerre admissibility also depends on the parameter α
of the Laguerre polynomials. Hermite admissibility (A.1) can be characterized easily: the maximal segments 
of F have an even number of elements. More precisely, split up the set F , F =

⋃K
i=1 Yi, in such a way 

that Yi ∩ Yj = ∅, i �= j, the elements of each Yi are consecutive integers and 1 + max(Yi) < minYi+1, 
i = 1, . . . , K−1 (Yi, i = 1, . . . , K, are called the maximal segments of F ). Then F satisfies (A.1) if and only 
if each Yi, i = 1, . . . , K, has an even number of elements. This characterization allows an easy generation 
of Hermite admissible sets F .

The purpose of this appendix is to find a similar characterization for real numbers c and pairs F = (F1, F2)
of positive integers satisfying the Laguerre admissibility defined by (1.5).

Hence, consider a pair of finite sets of positive integers F = (F1, F2) and a real number c ∈
R \ {0, −1, −2, . . .}. The pair (c, F) is admissible, see (1.5), if∏

f∈F1
(n− f)

∏
f∈F2

(n + c + f)
(n + c)ĉ

≥ 0 ∀n ∈ N, (A.2)

where ĉ = max{−[c], 0}.
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In case c ≥ 0, condition (A.2) reduces to the Hermite admissibility (see (A.1)) for the set F1,∏
f∈F1

(n− f) ≥ 0 ∀n ∈ N.

Let us assume now that c < 0. Then ĉ = −[c] and (A.2) becomes∏
f∈F1

(n− f)
∏
f∈F2

(n + c + f)
∏

0≤m<−[c]

(n + c + m) ≥ 0 ∀n ∈ N.

The terms in the second and third products are never zero if c /∈ {0, −1, −2, . . .}. Now let us observe that, 
in the second product, those terms with c +f > 0 can obviously be omitted. And those terms with c +f < 0
(or, equivalently, [c] +f < 0) are present also in the third product, so they can be omitted in both products. 
Therefore, the admissibility condition is equivalent to∏

f∈F1

(n− f)
∏

0≤m<−[c]
m/∈F2

(n + c + m) ≥ 0 ∀n ∈ N.

In other words, ∏
f∈G

(n− f) ≥ 0 ∀n ∈ N, (A.3)

where G = F1 ∪ {−c −m; m ∈ {0, 1, . . . , −[c] − 1} \ F2}. Now this condition can be expressed in terms of 
the set G as follows. Let

S = N ∪
{
−c−m; m ∈

{
0, 1, . . . ,−[c] − 1

}
\ F2

}
.

With the natural order, each element in S has a next element, and each one other than 0 has a previous one. 
A subset of S formed by consecutive elements can be called a segment. Any subset of S can be uniquely 
expressed as the union of maximal segments. Thus, condition (A.3) holds if and only if these maximal 
segments have an even number of elements.

This characterization allows an easy generation of examples of admissible numbers c and pairs F . For 
instance, take c = −17/4 and F = (F1, F2), with F1 = {1, 2, 8, 9} and F2 = {1, 2}. Then,

S =
{

0, 1
4 , 1,

5
4 , 2, 3, 4,

17
4 , 5, 6, 7, . . .

}
,

G =
{

1
4 , 1,

5
4 , 2,

17
4 , 8, 9

}
,

and the maximal segments in G are {1
4 , 1, 

5
4 , 2}, {

17
4 }, and {8, 9}. Since one of these segments has an 

odd number of elements, the pair (c, F) is not admissible. From this example, we can however find many 
admissible pairs (c, F). Indeed, with the same choices for c and F2, take F1 = {1, 2, 5, 8, 9}, the maximal 
segments in G become {1

4 , 1, 
5
4 , 2}, {

17
4 , 5}, and {8, 9}, so the pair (c, F) is admissible. Similarly, we can see 

that for F1 = {1, 2, 4, 8, 9}, the pair (c, F) is admissible as well.
It is rather apparent through our characterization that the admissibility condition for c < 0 depends not 

exactly on c, but on its integer part [c]. Thus, for a fixed set of indices F = (F1, F2), the range of values of c
for which the pair (c, F) is admissible is either the empty set or a union of disjoint open intervals, each one 
of length 1 and nonpositive integer endpoints, together with the whole interval (0, +∞) when F1 is Hermite 
admissible (see (A.1)).
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For F1 = {1, 2, 5, 8, 9} and F2 = {1, 2}, the pair (c, F) is admissible if and only if c ∈ (−5, −4). In the 
first example, F1 = {1, 2, 8, 9} and F2 = {1, 2}, the pair (c, F) is admissible only for c > 0.

As a third example, if F1 = {1, 2, 3, 4, 7, 10, 11} and F2 = {1, 3, 5, 6, 8}, it is easy to observe that the pair 
(c, F) is admissible if and only if c ∈ (−12, −11) ∪ (−7, −6) ∪ (−4, −3) ∪ (−3, −2).

In terms of the exceptional Laguerre polynomials, this means that the set of values of α for which the 
weight is regular is in general a union of disjoint intervals, which is a rather new phenomenon in the theory 
of orthogonal polynomials.
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