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In this paper, the problem of limit cycle bifurcation is investigated by perturbing 
a class of integrable systems with a homoclinic loop. Under the assumption that 
the homoclinic loop passes through a degenerate singular point at the origin, the 
asymptotic expansion of the Melnikov function along the level curves of the first 
integral inside the homoclinic loop is studied near the loop. Meanwhile, the formulas 
for the first coefficients in the expansion are given, which can be used to study the 
number of limit cycles near the homoclinic loop. Finally, an example is provided to 
demonstrate the obtained results.
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1. Introduction

As we know, many nonlinear wave phenomena can be modeled by partial differential equations (PDEs). 
These PDEs have their traveling wave systems given by ordinary differential equations (ODEs). The corre-
sponding solutions of these ODEs are traveling wave trajectories associated with PDEs. For more details, 
see [1,7] and the references therein. Consider a nonlinear wave equation

∂2u

∂ρ∂t
= αemu + βenu, (1.1)

where α, β are real numbers and m, n are integers. It is called a generalized Tzitzéica–Dodd–Bullough–
Mikhailov equation, see [13] and the references cited therein. Make a variable transformation

u(ρ, t) = ln x(ξ), ξ = ρ− ct,

where c > 0 is the wave speed. Then, (1.1) becomes
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cẋ2 − cxẍ = αxm+2 + βxn+2,

which is equivalent to

ẋ = y, ẏ = cy2 − αxm+2 − βxn+2

cx
(1.2)

as x �= 0. Therefore, the solutions of (1.2) are the traveling wave solutions of (1.1). Clearly, the system (1.2)
has the form

ẋ = y, ẏ = g(x) + r(x)y2

f(x) , (1.3)

where r, f and g are C∞ functions satisfying

r(0) �= 0, f(x) = xf̄(x), f̄(0) �= 0, g(x) = xnḡ(x), n ≥ 1, ḡ(0) �= 0, n ∈ N.

In fact, many nonlinear wave equations, such as Kdv equation [3], KP equation and its generalized 
equation proposed in [16], K(m, n) equation [12] and so on, also have the traveling wave equations of the 
form (1.3). The system (1.3) has the same phase orbits as the system

ẋ = f(x)y, ẏ = g(x) + r(x)y2, (1.4)

in the region {(x, y) | f(x) �= 0} with the same (as f(x) > 0) or different (as f(x) < 0) orientation. For 
example, (1.2) has the same phase portraits as the system

ẋ = cxy, ẏ = cy2 − αxm+2 − βxn+2 (1.5)

with the same or different orientation on x > 0 or x < 0 respectively. All possible phase portraits of (1.5)
were showed in Section 2.2.2 of [7] for n ≥ m ≥ 1.

By analyzing phase portraits of system (1.4), one can investigate the type of the traveling wave solutions 
and even obtain their exact parametric representations, see [7,11,14] and the references therein. On the 
other hand, one can obtain limit cycles by perturbing system (1.4). This problem is related to Hilbert’s 16 
problem originated by [6] and there are many papers concerning it, see [4,8–10,15,17–20] and the references
quoted therein. Recently, the authors [2] have studied the phase portrait of (1.4) with n = 1 near the origin 
and considered the problem of limit cycle bifurcation for its perturbed system, obtaining some new and 
interesting results.

This paper is devoted to studying all possible phase portraits of (1.4) in the vicinity of the origin and 
researching the problem of limit cycle bifurcation by perturbing (1.4) for n ≥ 2. Obviously, the origin 
is a degenerate singular point of (1.4). Thus, a fundamental problem in this case is to study the orbital 
behavior of (1.4) near the point. Further, one assumes that system (1.4) has a family of ovals bounded by a 
homoclinic loop with a singular point at the origin (see Theorem 2.1) and then study the expansion of the 
first order Melnikov function near the homoclinic loop (see Theorem 2.2), obtaining some general theory. 
As an example, we apply our main results to consider a cubic polynomial system, finding 3 limit cycles near 
a loop (see an example in Section 4).

The rest of the paper is organized as follows. In Section 2, some preliminary lemmas and the main 
results are presented. In Section 3, the expansion of the first order Melnikov function is investigated near 
a homoclinic loop to prove the main results. In Section 4, an example is provided as an application of the 
main results.
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2. Preliminaries and the main results

We perturb system (1.4) inside a class of C∞ planar differential systems. That is to say, we study a 
system of the form

ẋ = f(x)y + εp(x, y, δ), ẏ = g(x) + r(x)y2 + εq(x, y, δ), (2.1)

where ε is a small parameter, δ ∈ D ⊂ R with D bounded, and f , g, r, p, q are C∞ functions satisfying

r(0) �= 0, f(x) = xf̄(x), f̄(0) = 1, g(x) = xnḡ(x), n ≥ 2, ḡ(0) = 1 or −1 (2.2)

and n is a positive integer. Here N stands for the positive integer constant. In (2.2), we have made f̄(0) = 1
and ḡ(0) = ±1. In fact, when f̄(0)ḡ(0) �= 0, one can make a variable transformation of the form

(x1, y1) =

⎧⎪⎨
⎪⎩

((
f̄(0)ḡ(0)

) 1
nx, f̄(0)y

)
for f̄(0)ḡ(0) > 0,((

−f̄(0)ḡ(0)
) 1

nx, f̄(0)y
)

for f̄(0)ḡ(0) < 0

such that the resulting system satisfies (2.2). For ε = 0, system (2.1) becomes (1.4), which is a reversible 
system since (2.1)|ε=0 keeps invariant under the change (x, y, t) → (x, −y, −t). A general definition for a 
reversible system can be found in [2].

Under the condition (2.2), system (1.4) has a degenerate singular point at (0, 0) and an invariant straight 
line x = 0. Thus, if system (1.4) has a homoclinic loop, it must lie on the region {(x, y) | x ≥ 0}
or {(x, y) | x ≤ 0}. For definiteness, we assume that system (1.4) has a homoclinic loop on the region 
{(x, y) | x ≥ 0}.

From [2], (1.4) is an integrable system with an integrating factor of the form

μ(x) = 1
f(x) exp

(
−2

∫
r(x)
f(x)dx

)
. (2.3)

Hence, on the region x > 0, system (2.1) is equivalent to the following system

ẋ = μ(x)f(x)y + εμ(x)p(x, y, δ),

ẏ = μ(x)g(x) + μ(x)r(x)y2 + εμ(x)q(x, y, δ). (2.4)

Clearly, one can see that (2.4)|ε=0 is a Hamiltonian system with the Hamiltonian function given by

H(x, y) = 1
2μ(x)f(x)y2 + s(x), (2.5)

where s(x) is a function satisfying

s′(x) = −μ(x)g(x). (2.6)

Let us first discuss the distribution of the level curves of H(x, y) = h near the origin on the right-plane. 
To do it, we need to obtain an expression of s(x) in (2.5). For the purpose, we have two lemmas below.

Lemma 2.1. Let (2.2) hold. Then, for x ≥ 0, there exists a C∞ function μ̄(x) with μ̄(0) = 1 such that

μ(x) = x−αμ̄(x), (2.7)

where α = 2r(0) + 1 �= 1.
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Proof. Note that, for x ≥ 0, −2 r(x)
f(x) = −2r(0)

x − 2
x

( r(x)
f̄(x) − r(0)

)
. Then, by (2.3), one has

μ(x) = 1
xf̄(x)

exp
[
−2

∫
r(0)
x

dx− 2
∫ 1

x

( r(x)
f̄(x)

− r(0)
)
dx

]
= x−2r(0)−1μ̄(x),

where

μ̄(x) = 1
f̄(x)

exp
(
−2μ̃(x)

)
, μ̃(x) =

∫ 1
x

( r(x)
f̄(x)

− r(0)
)
dx.

It is easy to prove that μ̃(x) is well defined at x = 0. This implies that μ̃(x) is a C∞ function for x ≥ 0
with μ̃(0) = 0. Furthermore, from (2.2), we have f̄(0) = 1. Thus, μ̄(x) is a C∞ function on x ≥ 0 satisfying 
μ̄(0) = 1. This ends the proof. �

For the function s(x) in (2.5), we have

Lemma 2.2. For x ≥ 0, one of the expressions of s(x) in (2.5) can be written as

s(x) =
{

xn−α+1s̄(x), α �= n + 1,
s̃(x) ln x, α = n + 1,

(2.8)

where s̄(x) and s̃(x) are C∞ in x with

s̄(0) = ḡ(0)
α− n− 1 � s0, s̃(0) = −ḡ(0).

Proof. By (2.2) and (2.7), we have

μ(x)g(x) = xn−αμ̄(x)ḡ(x) = ḡ(0)xn−α + xn−α
(
μ̄(x)ḡ(x) − ḡ(0)

)
.

Then, in view of (2.6), one achieves

s(x) = −
∫

μ(x)g(x)dx = −
∫

ḡ(0)xn−αdx− ρ(x), (2.9)

where ρ(x) =
∫
xn−α

(
μ̄(x)ḡ(x) − ḡ(0)

)
dx.

When α �= n + 1, we have from (2.9)

s(x) = xn−α+1
( ḡ(0)
α− n− 1 − ρ(x)

xn−α+1

)
.

Obviously, ρ(x)
xn−α+1 is well defined on x = 0, which means that it is a C∞ function on x ≥ 0 with 

ρ(x)
xn−α+1

∣∣
x=0 = 0.

Similarly, one can prove the case α = n + 1. The proof of the lemma is completed. �
Then, by Lemmas 2.1 and 2.2, one can get the following theorem, which gives all possible phase portraits 

of (1.4) near the origin for x ≥ 0.

Theorem 2.1. Let (2.2) be satisfied. Then, all possible phase portraits of (2.1)|ε=0 or (1.4) are shown in 
Figs. 2.1 and 2.2 for x ≥ 0 sufficiently small.
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Fig. 2.1. Possible phase portraits of system (2.1)|ε=0 for 0 ≤ x � 1 with ḡ(0) = 1.

Fig. 2.2. Possible phase portraits of system (2.1)|ε=0 for 0 ≤ x � 1 with ḡ(0) = −1.

Proof. For α �= n + 1, inserting (2.8) into (2.5), together with (2.2) and (2.7), gives

H(x, y) = 1
2x

−α+1μ̄(x)f̄(x)y2 + xn−α+1s̄(x),

where μ̄(x)f̄(x), s̄(x) are C∞ with μ̄(0)f̄(0) = 1, s̄(0) = ḡ(0)
α−n−1 . Hence, for x ≥ 0 small, the equation 

H(x, y) = h becomes

y2 = 2xα−1

μ̄(x)f̄(x)
(
h− xn−α+1s̄(x)

)
= Y1(x)Y2(x, h), (2.10)

where

Y1(x) = 2xα−1

μ̄(x)f̄(x)
= 2xα−1(1 + O(x)) > 0, 0 < x � 1,

Y2(x, h) = h− xn−α+1s̄(x) = h− ḡ(0)
α− n− 1x

n−α+1(1 + O(x)
)
. (2.11)

If for x ∈ (a, b)

Y1(x)Y2(x, h) > 0, (2.12)

then by (2.10), we know that the equation H(x, y) = h has exactly two solutions ȳ1(x, h) and ȳ2(x, h), 
where ȳ1(x, h) = −ȳ2(x, h) =

(
Y1(x)Y2(x, h)

) 1
2 . This implies that for x ∈ (a, b), there exist two symmetry 

curves with respect to the x-axis. Furthermore, if one can find the value of the function Y1(x)Y2(x, h) at the 
endpoints a and b, then one easily knows each level curve of H(x, y) = h tends as x approaches to a or b. 
In this direction, the level curves of H(x, y) = h can be plotted on the plane easily.
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From the above discussion, in order to finish the proof, it suffices to do two things below:

(1) Find the interval (a, b) of variable x such that (2.12) holds;
(2) Compute the value of the function y2 (i.e. Y1(x)Y2(x, h)) at the endpoints a and b.

Note that the interval (a, b) for Y1(x)Y2(x, h) > 0 is the same as the interval for Y2(x, h) > 0. Hence, we 
only need to discuss the interval of x for Y2(x, h) > 0.

For the case (α− n − 1)hḡ(0) ≤ 0, from (2.11), one can find that

Y2(x, h) > 0, 0 < x � 1,

for ḡ(0) = 1, h ≥ 0, α < n + 1 and α �= 1 or for ḡ(0) = −1, h ≥ 0 and α > n + 1.
For the case (α− n − 1)hḡ(0) > 0, Y2(x, h) = 0 is equivalent to 

[ (α−n−1)h
ḡ(0)

] 1
n−α+1 = x(1 + O(x)). Hence, 

by the implicit function theorem, a unique function a(h) =
[ (α−n−1)h

ḡ(0)
] 1

n−α+1 +O(|h| 2
n−α+1 ) exists such that 

Y2(a(h), h) = 0. Then, it follows that for (α− n − 1)hḡ(0) > 0

Y2(x, h) > 0 ⇔ ḡ(0)(x− a(h)) > 0, i.e. Y2(x, h) > 0 ⇔
{

x > a(h), ḡ(0) = 1,
0 < x < a(h), ḡ(0) = −1.

Then, summarizing the above discussion, it is easy to obtain the interval of x such that (2.12) holds. 
More precisely,

For ḡ(0) = 1

Y1(x)Y2(x, h) > 0 ⇔

⎧⎪⎨
⎪⎩

a(h) < x � 1, for h > 0, α > n + 1,
a(h) < x � 1, for h < 0, α < n + 1, α �= 1,
0 < x � 1, for h ≥ 0, α < n + 1, α �= 1;

(2.13)

For ḡ(0) = −1,

Y1(x)Y2(x, h) > 0 ⇔

⎧⎪⎨
⎪⎩

0 < x � 1, for h ≥ 0, α > n + 1,
0 < x < a(h), for h < 0, α > n + 1,
0 < x < a(h), for h > 0, α < n + 1, α �= 1.

(2.14)

Now, we compute the values of the function Y1(x)Y2(x, h) at the end point of the corresponding interval 
for each case in (2.13) and (2.14). That is,

For ḡ(0) = 1,

Y1(a(h))Y2(a(h), h) = 0, for h > 0, α > n + 1,

Y1(a(h))Y2(a(h), h) = 0, for h < 0, α < n + 1, α �= 1,

Y1(0)Y2(0, h) = 0, for h ≥ 0, 1 < α < n + 1,

Y1(0)Y2(0, h) = 0, for h = 0, α < 1,

Y1(0)Y2(0, h) = +∞, for h > 0, α < 1; (2.15)
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Fig. 2.3. The homoclinic loop L under (H1) and (H2).

For ḡ(0) = −1,

Y1(0)Y2(0, h) = 0, for h ≥ 0, α > n + 1,

Y1(a(h))Y2(a(h), h) = Y1(0)Y2(0, h) = 0, for h < 0, α > n + 1,

Y1(a(h))Y2(a(h), h) = Y1(0)Y2(0, h) = 0, for h > 0, 1 < α < n + 1,

Y1(0)Y2(0, h) = +∞, Y1(a(h))Y2(a(h), h) = 0, for h > 0, α < 1. (2.16)

Therefore, by (2.13)–(2.16) and the above discussions, one can easily obtain the phase portrait of (2.1)|ε=0
for the case α �= n + 1. By using the same arguments, the case α = n + 1 can be discussed easily. The proof 
is then ended. �

In view of Theorem 2.1 and (2.5), we further make the following two assumptions.

(H1) ḡ(0) = 1 and α < n + 1, α �= 1;
(H2) There exists a constant β > 0 such that the equation H(x, y) = h, h ∈ (−β, 0) defines a closed curve 

Lh on the region x > 0.

Obviously, if (H1) and (H2) hold, then as h tends to 0−, the limit of Lh is a homoclinic loop denoted 
by L, namely, lim

h→0−
Lh = L. In fact, for 1 < α < n + 1, there are infinitely many homoclinic loops passing 

through the origin, while for α < 1, there exists a unique homoclinic loop, see Fig. 2.3.
Thus, associated with system (2.4), we have the first order Melnikov function

M(h, δ) =
∮
Lh

μqdx− μpdy, h ∈ (−β, 0). (2.17)

Then, for 0 < −h � 1, we have the following

Theorem 2.2. Assume that (2.2), (H1) and (H2) are satisfied. Then, there exist constants Bi, i ≥ 0 and a 
C∞ function φ(h, δ) such that for 0 < −h � 1

M(h, δ) =
∑

i≥0,βi /∈N

Bi|h|βi +
∑

i≥0,βi∈N

Bi|h|βi ln |h| + φ(h, δ), (2.18)

where βi = i
n−α+1 + n−2α

2(n−α+1) and N denotes the positive integers.

The proof of Theorem 2.2 will be given in the next section.
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3. The expansion of M(h, δ)

The main task of this section is to understand the asymptotic expansions of M(h, δ) in (2.17) near the 
homoclinic loop L. By Green formula or integration by parts, we have from (2.17)

M(h, δ) =
∮
Lh

q̄(x, y, δ)dx, (3.1)

where

q̄(x, y, δ) = μ(x)q(x, y, δ) − μ(x)q(x, 0, δ) +
y∫

0

(μp)x(x, τ, δ)dτ (3.2)

satisfying

q̄y(x, y, δ) =
[
μ(x)p(x, y, δ)

]
x

+
[
μ(x)q(x, y, δ)

]
y

and q̄(x, 0, δ) = 0. (3.3)

Take a small constant x0 > 0 such that for 0 < −h � 1, the oval Lh is split into two parts Lh1 = Lh|x≤x0 , 
Lh2 = Lh|x≥x0 by the line segment x = x0. Then, by (3.1)

M(h, δ) = I1(h, δ) + I2(h, δ), (3.4)

in which

Ii(h, δ) =
∫

Lhi

q̄(x, y, δ)dx, i = 1, 2. (3.5)

Since I2 ∈ C∞ for 0 < −h � 1, we only need to investigate the expansion of I1(h, δ) at the origin. In the 
light of μ̄, p, q ∈ C∞, then μ̄, p, q can be rewritten as for |x| + |y| > 0 small

μ(x) = x−αμ̄(x) = x−α
∑
j≥0

μjx
j , μ0 = 1,

p(x, y, δ) =
∑

i+j≥0
aijx

iyj , q(x, y, δ) =
∑

i+j≥0
bijx

iyj , (3.6)

where μ, μ̄ and p, q are defined in (2.7) and (2.1) respectively. Then, one has

Lemma 3.1. Let (H1), (H2) and (3.6) hold. Then, I1(h, δ) in (3.5) has the form

I1(h, δ) =
∑
k≥1

∫
Lh1

qk(x)ykdx,

where

qk+1(x) = x−α−1
∑
l≥0

ālkx
l, k ≥ 0,

ā0k = −αμ0a0k

k + 1 ,

ālk = 1
k + 1

[ ∑
i+j=l

(j − α)μjaik +
∑

i+j=l−1

μj

(
(i + 1)ai+1,k + (k + 1)bi,k+1

)]
, l ≥ 1.
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Proof. From (3.2) and (3.3), one obtains

q̄(x, y, δ) =
∑
k≥1

qk(x)yk, (3.7)

in which

qk+1(x) = 1
(k + 1)!

∂k

∂yk

([
μ(x)p(x, y, δ)

]
x

+
[
μ(x)q(x, y, δ)

]
y

)∣∣∣
y=0

= 1
(k + 1)!

[
μ′(x) ∂k

∂yk
p(x, y, δ) + μ(x) ∂k

∂yk
(
px + qy

)
(x, y, δ)

]∣∣∣
y=0

. (3.8)

Notice that

μ′(x) = x−α−1
∑
j≥0

(j − α)μjx
j ,

∂kp

∂yk
=

∑
j≥k

j!
(j − k)!

∑
i≥0

aijx
iyj−k,

∂k

∂yk
(
px + qy

)
= ∂k

∂yk

( ∑
i+j≥0

[
(i + 1)ai+1,j + (j + 1)bi,j+1

]
xiyj

)

=
∑
j≥k

j!
(j − k)!

∑
i≥0

[
(i + 1)ai+1,j + (j + 1)bi,j+1

]
xiyj−k.

Then,

μ′(x)∂
kp

∂yk

∣∣∣
y=0

= x−α−1
∑
j≥0

(j − α)μjx
jk!

∑
i≥0

aikx
i = k!x−α−1

∑
τ≥0

ãτkx
τ ,

μ(x) ∂k

∂yk
(
px + qy

)∣∣∣
y=0

= x−α
∑
j≥0

μjx
jk!

∑
i≥0

[
(i + 1)ai+1,k + (k + 1)bi,k+1

]
xi

= k!x−α
∑
τ≥0

b̃τkx
τ , (3.9)

where

ãτk =
∑

i+j=τ

(j − α)μjaik, b̃τk =
∑

i+j=τ

μj

[
(i + 1)ai+1,k + (k + 1)bi,k+1

]
, τ, k ≥ 0. (3.10)

Thus, by (3.9), we represent (3.8) as

qk+1(x) = 1
k + 1

(
x−α−1

∑
τ≥0

ãτkx
τ + x−α

∑
τ≥0

b̃τkx
τ
)

= x−α−1
( 1
k + 1

∑
τ≥0

ãτkx
τ + 1

k + 1
∑
τ≥0

b̃τkx
τ+1

)

= x−α−1
∑
l≥0

ālkx
l, (3.11)

in which

ā0k = ã0k

k + 1 , ālk = ãlk + b̃l−1,k

k + 1 , l ≥ 1. (3.12)

Then, the conclusion follows from (3.5), (3.7), (3.10)–(3.12). This completes the proof. �
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Further, from the proof of Theorem 2.1, it is not hard to obtain the lemma below.

Lemma 3.2. Suppose (H1) and (H2) hold. Then the curve Lh1 intersects the positive x-axis at a point 
A = (a(h), 0), where

a(h) =
[
(α− n− 1)h

] 1
n−α+1 + O

(
|h|

2
n−α+1

)
, 0 < −h � 1.

Furthermore, for a(h) ≤ x ≤ x0 with 0 < −h � 1, the equation H(x, y) = 0 has exactly two solutions 
y1(x, ω) and y2(x, ω), where

y1(x, ω) = −y2(x, ω) = x
α−1

2
(1
2 μ̄(x)f̄(x)

)− 1
2ω

with ω =
√

h− xn−α+1s̄(x).

Then, by Lemmas 3.1 and 3.2, one obtains

Lemma 3.3. Assume that (H1), (H2) and (3.6) are satisfied. Then, we have

I1(h, δ) =
∑

l+k≥0

rlkIlk(h, u0), (3.13)

where

Ilk(h, u0) =
u0∫

| h
s0

|
1

n−α+1

uk(α−1)−α+3
2 +l(h− s0u

n−α+1)k+ 1
2 du (3.14)

and

r0k = 2k+ 3
2 ā0,2k, rlk = 2k+ 3

2 āl,2k + O(|ā0,2k, ā1,2k, · · · , āl−1,2k|), l ≥ 1. (3.15)

Proof. From Lemmas 3.1 and 3.2, one can find that

I1(h, δ) =
∑
k≥1

[ x0∫
a(h)

qk(x)
(
y1(x, ω)

)k +
a(h)∫
x0

qk(x)
(
−y1(x, ω)

)k]

=
∑
k≥1

x0∫
a(h)

[
1 + (−1)k+1]qk(x)x

k(α−1)
2

(1
2 μ̄(x)f̄(x)

)− k
2 ωkdx

=
∑
k≥0

x0∫
a(h)

q̄k(x)
(
h− xn−α+1s̄(x)

)k+ 1
2 dx, (3.16)

where

q̄k(x) = 2k+ 3
2 q2k+1(x)x(k+ 1

2 )(α−1)(μ̄(x)f̄(x)
)−k− 1

2 . (3.17)

Let u = x
(
s−1
0 s̄(x)

) 1
n−α+1 � ϕ(x), where s0 is given in Lemma 2.2. Then, for x > 0 small

ϕ(x) = x + O(x2), ϕ−1(u) = u + O(u2). (3.18)
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Thus, make a transformation u = ϕ(x) so that (3.16) becomes

I1(h, δ) =
∑
k≥0

u0∫
| h
s0

|
1

n−α+1

q̃k(u)(h− s0u
n−α+1)k+ 1

2 du, (3.19)

where u0 = ϕ(x0) and

q̃k(u) = q̄k(x)
ϕ′(x)

∣∣∣
x=ϕ−1(u)

. (3.20)

By using (2.2), (3.17), (3.18) and Lemma 3.1, we have from (3.20)

q̃k(u) =
2k+ 3

2xk(α−1)−α+3
2

∑
l≥0 āl,2kx

l
(
μ̄(x)f̄(x)

)−k− 1
2

1 + O(x)

∣∣∣∣
x=u+O(u2)

= 2k+ 3
2xk(α−1)−α+3

2
∑
l≥0

āl,2kx
l(1 + O(x))

∣∣
x=u+O(u2)

= 2k+ 3
2uk(α−1)−α+3

2
∑
l≥0

āl,2ku
l(1 + O(u)).

Combining (3.19) and the above gives (3.13)–(3.15). This ends the proof. �
The following lemma gives some information on the expressions of Ilk(h, u0) in (3.13) or (3.14).

Lemma 3.4. The functions Ilk(h, u0) in (3.14) have the expressions

Ilk(h, u0) =
{

Blk|h|βnk+l + φlk(h, u0), for βnk+l /∈ N,

Blk|h|βnk+l ln |h| + φlk(h, u0), for βnk+l ∈ N,
(3.21)

where each φlk is a C∞ function and

βnk+l = nk + l

n− α + 1 + n− 2α
2(n− α + 1) ,

Blk =

⎧⎪⎨
⎪⎩

1
(n−α+1)|s0|βnk+l−k− 1

2

∑
i≥0

cki

i−βnk+l
, for βnk+l /∈ N,

−ck,βnk+l

(n−α+1)|s0|βnk+l−k− 1
2
, for βnk+l ∈ N

(3.22)

with

ck0 = 1, cki = (−1)i
∏i−1

j=0(k + 1
2 − j)

i! , i ≥ 1. (3.23)

Proof. Introduce a variable transformation v =
| h
s0

|
1

n−α+1

u to (3.14) to get that

Ilk(h, u0) = −

| h
s0

|
1

n−α+1 u−1
0∫ | hs0 |

k(α−1)−α+3
2 +l

n−α+1

vk(α−1)−α+3
2 +l

(
h− h

vn−α+1

)k+ 1
2 | hs0 |

1
n−α+1

v2 dv
1
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= − |h|
k(α−1)−α+3

2 +l+1
n−α+1

|s0|
k(α−1)−α+3

2 +l+1
n−α+1

|h|k+ 1
2

| h
s0

|
1

n−α+1 u−1
0∫

1

(1 − vn−α+1)k+ 1
2

vk(α−1)−α+3
2 +l+(k+ 1

2 )(n−α+1)+2
dv

= − |h|βnk+l

|s0|βnk+l−k− 1
2

| h
s0

|
1

n−α+1 u−1
0∫

1

(1 − vn−α+1)k+ 1
2

v1−α+ 1
2n+kn+l

dv. (3.24)

Further, one has

(1 − vn−α+1)k+ 1
2 =

∑
i≥0

ckiv
(n−α+1)i,

which is uniformly convergent for v ∈ [0, 1], where cki, i ≥ 0 are defined in (3.23). Note that 
0 <

∣∣ h
s0

∣∣ 1
n−α+1u−1

0 < 1. Thus, from (3.24),

Ilk(h, u0) = − |h|βnk+l

|s0|βnk+l−k− 1
2

∑
i≥0

cki

| h
s0

|
1

n−α+1 u−1
0∫

1

v(n−α+1)i−1+α− 1
2n−kn−ldv

= − |h|βnk+l

|s0|βnk+l−k− 1
2

∑
i≥0

cki

| h
s0

|
1

n−α+1 u−1
0∫

1

v(n−α+1)(i−βnk+l)−1dv. (3.25)

If βnk+l /∈ N, then from (3.25), one finds

Ilk(h, u0) = − |h|βnk+l

|s0|βnk+l−k− 1
2

∑
i≥0

cki
(n− α + 1)(i− βnk+l)

v(n−α+1)(i−βnk+l)
∣∣∣| h

s0
|

1
n−α+1 u−1

0

1

=
∑
i≥0

cki
(n− α + 1)(i− βnk+l)

|h|βnk+l

|s0|βnk+l−k− 1
2
−

∑
i≥0

ckiu
−(n−α+1)(i−βnk+l)
0

(n− α + 1)(i− βnk+l)
|h|i

|s0|i−k− 1
2
. (3.26)

If βnk+l ∈ N, there exist i0 ∈ N such that βnk+l = i0. In this case, from (3.25), we have

Ilk(h, u0)

= − |h|i0
|s0|i0−k− 1

2

[ ∑
i≥0,i 	=i0

cki
(n− α + 1)(i− i0)

v(n−α+1)(i−i0) + ck,i0 ln |v|
]∣∣∣∣

| h
s0

|
1

n−α+1 u−1
0

1

= −
∑

i≥0,i 	=i0

ckiu
−(n−α+1)(i−i0)
0

(n− α + 1)(i− i0)
|h|i

|s0|i−k− 1
2

+
∑

i≥0,i 	=i0

cki
(n− α + 1)(i− i0)

|h|i0
|s0|i0−k− 1

2

+
ck,i0

[
ln u0 + (n− α + 1)−1 ln |s0|

]
|s0|i0−k− 1

2
|h|i0 − ck,i0

(n− α + 1)|s0|i0−k− 1
2
|h|i0 ln |h|. (3.27)

Then, by (3.26) and (3.27), we obtain (3.21)–(3.23). The proof is completed.
Now, by the above discussion, we are able to prove Theorem 2.2.
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Proof of Theorem 22. By applying (3.4), (3.13) and (3.21), one derives

M(h, δ) =
∑

l+k≥0

rlkIlk(h, u0) + I2(h, u0)

=
∑

l+k≥0,βnk+l /∈N

rlk
(
Blk|h|βnk+l + φlk(h, u0)

)

+
∑

l+k≥0,βnk+l∈N

rlk
(
Blk|h|βnk+l ln |h| + φlk(h, u0)

)
+ I2(h, u0)

=
∑

l+k≥0,βnk+l /∈N

rlkBlk|h|
nk+l

n−α+1+ n−2α
2(n−α+1)

+
∑

l+k≥0,βnk+l∈N

rlkBlk|h|
nk+l

n−α+1+ n−2α
2(n−α+1) ln |h| + φ(h, δ)

= |h|
n−2α

2(n−α+1)

( ∑
i≥0,βi /∈N

Bi|h|
i

n−α+1 +
∑

i≥0,βi∈N

Bi|h|
i

n−α+1 ln |h|
)

+ φ(h, δ),

where

Bi =
∑

nk+l=i

rlkBlk, βi = i

n− α + 1 + n− 2α
2(n− α + 1) ,

φ(h, δ) =
∑

l+k≥0

rlkφlk(h, u0) + I2(h, u0) ∈ C∞.

This ends the proof. �
Let φ(h, u0) = C0 + C1h + O(h2). Then, using Theorem 2.2, we can further derive the specific form for 

the function M(h, δ) in (2.18). In other words, we easily have

Corollary 3.1. Suppose that (2.2) and (H1), (H2) hold. Then,

(i) For α = n
2 + κ, κ = 0, 1, · · · , [n+1

2 ],

M(h, δ) =
κ−1∑
i=0

Bi|h|
i−κ

n
2 +1−κ + Bκ ln |h| + C0 +

[n+1
2 ]∑

i=κ+1
Bi|h|

i−κ
n
2 +1−κ

+
([n

2
]
+ 1 −

[n + 1
2

])
B[n2 ]+1|h| ln |h| + C1h +

n−κ+1∑
i=[n2 ]+2

Bi|h|
i−κ

n
2 +1−κ

+ Bn−κ+2|h|2 ln |h| + O(|h|2).

(ii) For α = n
2 − κ, κ = 1, 2, · · ·,

M(h, δ) = C0 +
[n+1

2 ]∑
i=0

Bi|h|
i+κ

n
2 +1+κ +

([n
2
]
+ 1 −

[n + 1
2

])
B[n2 ]+1|h| ln |h|

+ C1h +
n+κ+1∑
i=[n2 ]+2

Bi|h|
i+κ

n
2 +1+κ + Bn+κ+2|h|2 ln |h| + O(|h|2).
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(iii) For α ∈
(
n
2 + κ, n2 + 1 + κ

)
, κ = 0, 1, · · · , [n+1

2 ] − 1 or α ∈
(
n
2 + κ, n + 1

)
, κ = [n+1

2 ]

M(h, δ) =
κ∑

i=0
Bi|h|

i
n−α+1+ n−2α

2(n−α+1) + C0 +
[n+1

2 ]∑
i=κ+1

Bi|h|
i

n−α+1+ n−2α
2(n−α+1)

+
([n

2
]
+ 1 −

[n + 1
2

])
B[n2 ]+1|h| ln |h| + C1h +

n−κ+1∑
i=[n2 ]+2

Bi|h|
i

n−α+1+ n−2α
2(n−α+1)

+ O(|h|2).

(iv) For α ∈
(
n
2 − κ, n2 + 1 − κ

)
, κ = 1, 2, · · ·,

M(h, δ) = C0 +
[n+1

2 ]∑
i=0

Bi|h|
i

n−α+1+ n−2α
2(n−α+1) +

([n
2
]
+ 1 −

[n + 1
2

])
B[n2 ]+1|h| ln |h|

+ C1h +
n+κ+1∑
i=[n2 ]+2

Bi|h|
i

n−α+1+ n−2α
2(n−α+1) + O(|h|2).

Here, α �= 1 and Bi, i ≥ 0 are given in (3.28).

Proof. From (2.18), it is easy to see that βi = i0 ∈ N if and only if

2i− 2i0(n + 1) + n = 2α(1 − i0). (3.28)

Apparently, from (3.28) if i0 = 1, then n is even. Otherwise, i = n
2 + 1 /∈ N, this is a contradiction. This is 

to say, only when n is even, the expansion of M(h, δ) has the term |h| ln |h|.
From (3.28), if i0 = 0, then

α = i + n

2 , i = 0, 1, 2 · · · ,

and if i0 = 2, then

α = −i + 3n + 4
2 , i = 0, 1, 2, · · · .

Introduce two sets

G1 =
{
i + n

2 < n + 1
∣∣ i = 0, 1, 2, · · ·

}
=

{n

2 ,
n

2 + 1, · · · ,
[n + 1

2
]
+ n

2

}
,

G2 =
{
− i + 3n + 4

2 < n + 1
∣∣ i = 0, 1, 2, · · ·

}
=

{[n + 1
2

]
+ n

2 ,
[n + 1

2
]
+ n

2 − 1, · · · , n2 ,
n

2 − 1, · · ·
}
.

Then

G1 ∩ G2 =
{n

2 ,
n

2 + 1, · · · ,
[n + 1

2
]
+ n

2

}
.

Thus, when α ∈ G1 ∩G2, the expansion of M(h, δ) has both of the terms ln |h|, |h|2 ln |h|, when α ∈ G2 \ G1, 
the expansion of M(h, δ) has the term |h|2 ln |h|, and when α /∈ G2, the expansion of M(h, δ) has no both 
of terms ln |h|, |h|2 ln |h|.

By the above discussion, it is not hard to obtain the conclusions. The proof is then ended. �
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From the proof of Lemmas 3.4 and 3.5 in [2], it is easy to verify the following lemma, which gives the 
formulas for C0 and C1 under special conditions.

Lemma 3.5. (i) If one of the following two cases holds: (a) α ∈ [n2 + κ, n2 + 1 + κ), κ = 0, 1, · · · , [n+1
2 ] − 1 or 

α ∈ [n2 + κ, n + 1), κ = [n+1
2 ] and B0 = B1 = · · · = Bκ; (b) α ∈ [n2 − κ, n2 + 1 − κ), κ = 1, 2, · · ·, then

C0 = lim
h→0−

∮
Lh

μqdx− μpdy.

(ii) For α ∈ (−∞, n + 1) \ {1}, if B0 = B1 = · · · = B[n2 ]+1 = 0, then

C1 = lim
h→0−

∮
Lh

[
(μp)x + (μq)y

]
dt.

Now, by using the expansion of M(h, δ) in (2.2), we can study the problem of limit cycle bifurcation near 
L for system (2.1). To do this, on account of Corollary 3.1, we write

M(h, δ) = A0|h|ρ0 + A1|h|ρ1 + · · · + Ak0−2|h|ρk0−2 + Ak0−1 ln |h| + Ak0 |h|ρk0

+ Ak0+1|h|ρk0+1 + · · · + Ak1−2|h|ρk1−2 + Ak1−1|h| ln |h| + Ak1 |h|ρk1

+ Ak1+1|h|ρk1+1 + · · · + Ak2−2|h|ρk2−2 + Ak2−1|h|2 ln |h| + O(|h|2), (3.29)

where k0, k1, k2 ∈ N and ρkj
= j, j = 0, 1, 2.

Let

Ā0 = A0, Āj = Aj |Ai=0, i=0,1,···,j−1, j = 1, 2, · · · , k2 − 1. (3.30)

Then, one has

Aj = Āj + O(|A0, A1, · · · , Aj−1|).

Applying (3.29) and (3.30), one can get the following theorem similar to Theorem 3.2.3 in [5].

Theorem 3.1. Let the conditions of Theorem 2.2 hold. If there exist 0 ≤ l ≤ k2 − 1 and δ0 ∈ R
m such that

Āj(δ0) = 0, j = 0, · · · , l − 1, Āl(δ0) �= 0, rank∂(Ā0, · · · , Āl−1)
∂(δ1, · · · , δm) (δ0) = l,

then system (2.1) can have l limit cycles in the neighborhood of L for some (ε, δ) near (0, δ0).

From the proof of Lemma 3.4, we have the formula

Bi =
∑

nk+l=i

rlkBlk, (3.31)

where rlk and Blk are given in (3.15) and (3.22) respectively. However, from the formula (3.22), one only 
finds values Blk with βi ∈ N. For values of Blk with βi /∈ N, we have
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Lemma 3.6. (i) For l ≤ [n+1
2 ],

Bl0 = −
(
n− α + 1

) ∫ 1
0 v

n
2 −l(1 − vn−α+1)− 1

2 dv(
2l + n− 2α

)
|s0|

−α−1+l
2(n−α+1)

.

(ii) For [n2 ] + 2 ≤ l < 3
2n + 2 − α,

Bl0 = −(n− α + 1)(
2l + n− 2α

)
|s0|

−α+2l−1
2(n−α+1)

( 1∫
0

v
3n
2 −l−α+1

√
1 − vn−α+1

(
1 +

√
1 − vn−α+1

)dv + 2
n− 2l + 2

)
.

(iii) For l < min{n
2 + 2 − α, n2 + 1},

Bl1 = −1
|s0|

α+2l−3
2(n−α+1)

( 1∫
0

√
1 − vn−α+1 − 1

vl+
n
2

dv + 2
2 − n− 2l

)
− s0Bn+l,0.

Proof. From (3.21) and (3.22), one derives

∂Il0(h, u0)
∂h

= − 2l + n− 2α
2(n− α + 1)Bl0|h|

2(l−1)−n
2(n−α+1) + ∂φl0(h, u0)

∂h
. (3.32)

In view of (3.14), we obtain

∂Il0(h, u0)
∂h

= 1
2

u0∫
| h
s0

|
1

n−α+1

u−α+3
2 +l

(
h− s0u

n−α+1)− 1
2 du

(
Let v = | h

s0
| 1
n−α+1u−1

)

= −1
2
|h|

−α+3
2 +l+1

n−α+1 − 1
2

|s0|
−α+3

2 +l+1
n−α+1

| h
s0

|
1

n−α+1 u−1
0∫

1

v
n
2 −l(1 − vn−α+1)− 1

2 dv. (3.33)

For l ≤ [n+1
2 ], from (3.33), it follows that

∂Il0(h, u0)
∂h

= −1
2
|h|

−n+2(l−1)
2(n−α+1)

|s0|
−α−1+l
n−α+1

( 0∫
1

+

| h
s0

|
1

n−α+1 u−1
0∫

0

)
v

n
2 −l(1 − vn−α+1)− 1

2 dv

= −1
2
|h|

−n+2(l−1)
2(n−α+1)

|s0|
−α−1+l
n−α+1

[ 0∫
1

v
n
2 −l(1 − vn−α+1)− 1

2 dv + O
(
|h|

n+2(1−l)
2(n−α+1)

)]

= 1
2

∫ 1
0 v

n
2 −l(1 − vn−α+1)− 1

2 dv

|s0|
−α−1+l

2(n−α+1)
|h|

−n+2(l−1)
2(n−α+1) + O(1).

In this case, comparing (3.32) and the above formula, we obtain the conclusion (i).
For [n2 ] + 2 ≤ l < 3

2n + 2 − α, by (3.33), we have

∂Il0(h, u0)
∂h

= −1
2
|h|

−n+2(l−1)
2(n−α+1)

|s0|
−α−1+l
n−α+1

[ | h
s0

|
1

n−α+1 u−1
0∫
v

n
2 −l

(
1 −

√
1 − vn−α+1

)
√

1 − vn−α+1
dv
1
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+

| h
s0

|
1

n−α+1 u−1
0∫

1

v
n
2 −ldv

]

= −1
2
|h|

−n+2(l−1)
2(n−α+1)

|s0|
−α−1+l
n−α+1

[( 0∫
1

+

| h
s0

|
1

n−α+1 u−1
0∫

0

)v n
2 −l

(
1 −

√
1 − vn−α+1

)
√

1 − vn−α+1
dv

+ 2
n− 2l + 2 |

h

s0
|

n−2l+2
2(n−α+1)u

l−1−n
2

0 − 2
n− 2l + 2

]

= −1
2
|h|

−n+2(l−1)
2(n−α+1)

|s0|
−α−1+l
n−α+1

( 0∫
1

v
3n
2 −l−α+1

√
1 − vn−α+1

(
1 +

√
1 − vn−α+1

)dv − 2
n− 2l + 2

)
+ O(1),

which, together with (3.32), implies the conclusion (ii). Now, we prove the conclusion (iii). From (3.14),

Il1(h, u0) =
u0∫

| h
s0

|
1

n−α+1

u(α−1)−α+3
2 +l(h− s0u

n−α+1)(h− s0u
n−α+1) 1

2 du

= h

u0∫
| h
s0

|
1

n−α+1

u
α
2 +l− 5

2 (h− s0u
n−α+1) 1

2 du− s0

u0∫
| h
s0

|
1

n−α+1

un+l−α+3
2 (h− s0u

n−α+1) 1
2 du

= hĪl1(h, u0) − s0In+l,0. (3.34)

Perform a transformation v = | hs0 |
1

n−α+1u−1 to the integral Īl1(h, u0) in the above to obtain that

Īl1(h, u0) = −
∣∣ h
s0

∣∣ α
2 +l− 3

2
n−α+1 |h| 12

| h
s0

|
1

n−α+1 u−1
0∫

1

v−l−n
2 (1 − vn−α+1) 1

2 dv

= − |h|
n+2l−2

2(n−α+1)

|s0|
α+2l−3

2(n−α+1)

[ | h
s0

|
1

n−α+1 u−1
0∫

1

√
1 − vn−α+1 − 1

vl+
n
2

dv +

| h
s0

|
1

n−α+1 u−1
0∫

1

v−l−n
2 dv

]
. (3.35)

Note that

| h
s0

|
1

n−α+1 u−1
0∫

1

√
1 − vn−α+1 − 1

vl+
n
2

dv =
( 0∫

1

+

| h
s0

|
1

n−α+1 u−1
0∫

0

)√1 − vn−α+1 − 1
vl+

n
2

dv

= −
1∫

0

√
1 − vn−α+1 − 1

vl+
n
2

dv + O(|h|
n−2α+4−2l
2(n−α+1) ),

| h
s0

|
1

n−α+1 u−1
0∫

1

v−l−n
2 dv = 2

2 − n− 2l
∣∣ h
s0

∣∣ −2l−n+2
2(n−α+1)u

l+n
2 −1

0 − 2
2 − n− 2l .

In view of (3.34), (3.35) and the above, we easily obtain the conclusion from (3.21). This ends the proof. �
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4. Applications

In this section, we will use the method established in Section 3 to study limit cycle bifurcation of a cubic 
system. More precisely, we consider the following cubic system

ẋ = xy, ẏ = x2 − x3 + 1
2y

2 + ε
3∑

i=0
aix

iy. (4.1)

We easily see that (4.1)|ε=0 has an integrating factor x−2 with α = −1 and its first integral has the from

H(x, y) = y2

2x − x + 1
2x

2.

Furthermore, (4.1)|ε=0 has an elementary center at (1, 0) and a degenerate singular point at (0, 0). The 
equations

H(x, y) = h, h ∈
(
− 1

2 , 0
)

define a family of ovals, which surround the center (1, 0) and terminate at a homoclinic loop given by 
{(x, y)|H(x, y) = 0, x ≥ 0} � L. For x ≥ 0, the phase portrait of (4.1)|ε=0 is the same as Fig. 2.3(1). By [7], 
one can easily obtain that for h ∈ (−1

2 , +∞), the oval H(x, y) = h determines a smooth periodic wave and 
the oval H(x, y) = 0, namely L determines a solitary wave solution.

Further, by Corollary 3.1, in the neighborhood of L, the Melnikov function on (4.1) is

M(h, δ) = B0|h|−1 + B1 ln |h| + C0 + B2|h| ln |h| + C1h + O(|h|2 ln |h|),

where, together with (3.31) and Lemma 3.5

B0 = r00B00, B1 = r10B10, B2 = r20B20 + r01B01,

C0|B0=B1=0 = lim
h→0−

∮
H(x,y)=h

3∑
i=0

aix
i−2ydx,

C1|B0=B1=B2=0 = lim
h→0−

∮
H(x,y)=h

3∑
i=0

aix
i−2dt.

Based on the discussion in Section 3 and by the simple computation, we obtain from the above formula

B0 ≡ 0, B1 = −2
√

2a0, B2 =
√

2a1 + O(|a0|),

C0|B0=B1=0 = 2 lim
h→0−

1+
√

1+2h∫
1−

√
1+2h

(
a1x

−1 + a2 + a3x
)√

2x(h + x− 1
2x

2)dx

=
2∫

0

(
a1x

−1 + a2 + a3x
)√

2x(x− 1
2x

2)dx

= 8
√

2(
a1 + 4

a2 + 32
a3

)
,
3 5 35
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C1|B0=B1=B2=0 = 2 lim
h→0−

1+
√

1+2h∫
1−

√
1+2h

a2x + a3x
2√

2x(h + x− 1
2x

2)
dx

= 2
2∫

0

a2x + a3x
2√

2x(x− 1
2x

2)
dx = 4

√
2(a2 + 4

3a3).

Solving the equations B1 = B2 = C0 = 0, we obtain a0 = a1 = 0, a3 = −7
8a2. In this case, we further 

have

C1 = −2
3
√

2a2, det ∂(B1, B2, C0)
∂(a0, a1, a2)

�= 0,

which means that system (4.1) can have three limit cycles near L from Theorem 3.1 for some (a0, a1, a3)
near (0, 0, −7

8a2) if a2 �= 0.
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