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We construct rich vector spaces of continuous functions with prescribed curved or 
linear pathwise quadratic variations. We also construct a class of functions whose 
quadratic variation may depend in a local and nonlinear way on the function 
value. These functions can then be used as integrators in Föllmer’s pathwise Itō 
calculus. Our construction of the latter class of functions relies on an extension of 
the Doss–Sussman method to a class of nonlinear Itō differential equations for the 
Föllmer integral. As an application, we provide a deterministic variant of the support 
theorem for diffusions. We also establish that many of the constructed functions are 
nowhere differentiable.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In the seminal paper [14], H. Föllmer provided a strictly pathwise approach to Itō’s formula. The formula 
is “pathwise” in the sense that integrators are fixed, nonstochastic functions x : [0, 1] → R that do not 
need to arise as typical sample paths of a semimartingale. It thus became clear that Itō’s formula is essen-
tially a second-order extension of the fundamental theorem of calculus for Stieltjes integrals. A systematic 
introduction to pathwise Itō calculus, including an English translation of [14], is provided in [30].

In recent years, there has been an increased interest in pathwise Itō calculus. On the one hand, this 
increase is due to a growing sensitivity to model risk in mathematical finance and economics and the 
ensuing aspiration to construct dynamic trading strategies without reliance on a probabilistic model. As a 
matter of fact, a number of recent case studies have shown that some nontrivial results of this type can be 
obtained by means of pathwise Itō calculus; see, e.g., [1,2,6,15,23,26,28,34]. On the other hand, the recent 
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functional extension of Föllmer’s pathwise Itō formula by Dupire [9] and Cont and Fournié [4,5] facilitated 
new and exciting mathematical developments such as the theory of viscosity solution of partial differential 
equations on infinite-dimensional path space [10,11].

A function x ∈ C[0, 1] can be used as an integrator in Föllmer’s pathwise Itō calculus if it admits a 
continuous pathwise quadratic variation t �→ 〈x〉t along a given refining sequence of partitions of [0, 1]. It is, 
however, not entirely straightforward to construct functions with a given, nontrivial quadratic variation. Of 
course, one can use the sample paths of a continuous semimartingale, but these will satisfy the requirement 
only in an almost sure sense, and it will not be possible to determine whether a particular sample path will 
be as desired or belong to the nullset of trajectories for which the quadratic variation does not exist. Based 
on results by Gantert [17,18], a set X ⊂ C[0, 1] was constructed in [27] for which each element x ∈ X

has the linear quadratic variation 〈x〉t = t. This set, however, has the disadvantage that the quadratic 
variation of the sum of x, y ∈ X need not exist. The existence of 〈x + y〉 is equivalent to the existence of 
the covariation 〈x, y〉 and is crucial for multidimensional pathwise Itō calculus.

In this note, our goal is to construct rich classes of functions with prescribed pathwise quadratic variation 
so that these functions can serve as test integrators for pathwise Itō calculus. More precisely, we will construct 
the following three classes of functions.

(A) A vector space of functions x with the (curved) quadratic variation 〈x〉t =
∫ t

0 f2(s) ds for all t, where 
f is a certain Riemann integrable function associated with x.

(B) A vector space of functions y with the (linear) quadratic variation 〈y〉t = t 
∫ 1
0 f2(s) ds for all t, where 

f is again a certain Riemann integrable function associated with y.
(C) A class of functions z with the “local” quadratic variation 〈z〉t =

∫ t

0 σ2(s, z(s)) ds for some sufficiently 
regular “volatility” function σ.

The class in (C) was first postulated and used by Bick and Willinger [2]; see also [23,29]. Our corresponding 
result now establishes a path-by-path construction of such functions without the need to rely on selection 
from the sample paths of a diffusion process.

Note that, unlike in the case of stochastic processes, it is not possible to construct the functions in (A) 
and (C) from functions with linear quadratic variation via time change, because a time-changed function 
will generally only admit a quadratic variation with respect to a time-changed sequence of partitions. By 
contrast, our construction of the vector spaces in (A) and (B) relies on Proposition 2.1, which combines 
an observation by Gantert [17,18] with the Stolz–Cesaro theorem so as to characterize the existence of 
quadratic variation along the sequence of dyadic partitions by means of the convergence of certain Riemann 
sums. This argument yields the set in (A) relatively directly, while the set in (B) requires the additional use 
of an ergodic shift and Weyl’s equidistribution theorem. We also prove that many functions in (A) and (B) 
are nowhere differentiable. The set in (C) will be constructed by solving a pathwise Itō differential equation 
for the Föllmer integral by means of the Doss–Sussman method, where the Itō differential equation is driven 
by a function from the set in (B). We will then show that the set in (C) is sufficiently rich in the sense 
that it is dense in C[0, 1] and that its members can connect any two points within any given time interval. 
This latter result can be regarded as a deterministic variant of a support theorem for diffusion processes as 
in [31].

This paper is structured as follows. Preliminary definitions and results, including the above-mentioned 
Proposition 2.1, are collected in Section 2.1. The sets in (A) and (B) are constructed in Section 2.2. The 
existence and uniqueness theorem for pathwise Itō differential equations, from which the functions in (C) 
can be obtained, and the corresponding “support theorem” are stated in Section 2.3. All proofs are deferred 
to Section 3.
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2. Main results

2.1. Preliminaries

A partition of the interval [0, 1] will be a finite set T = {t0, t1, . . . , tn} such that 0 = t0 < t1 < · · · < tn = 1. 
Now let (Tn)n∈N be an increasing sequence of partitions T1 ⊂ T2 ⊂ · · · of the interval [0, 1] such that the 
mesh of Tn tends to zero; such a sequence (Tn)n∈N will be called a refining sequence of partitions. A typical 
example will be the sequence of dyadic partitions,

Tn := {k2−n |n ∈ N, k = 0, . . . , 2n}, n = 0, 1, . . . (2.1)

It will be convenient to denote by s′ the successor of s in Tn, i.e.,

s′ =
{

min{t ∈ Tn | t > s} if s < 1,
1 if s = 1.

For x ∈ C[0, 1] one then defines the sequence

〈x〉nt :=
∑

s∈Tn, s≤t

(x(s′) − x(s))2.

We will say that x admits the quadratic variation 〈x〉t along (Tn) and at t ∈ [0, 1] if the limit

〈x〉t := lim
n↑∞

〈x〉nt (2.2)

exists. Since the sequence 〈x〉nt need not be monotone in n, it is not clear a priori whether the limit 
in (2.2) exists for any fixed t ∈ [0, 1]. Moreover, even if the limit exists, it may depend strongly on the 
particular choice of the underlying sequence of partitions; see, e.g., [16, p. 47] and [27, Proposition 2.7]. For 
x, y ∈ C[0, 1], let

〈x, y〉nt :=
∑

s∈Tn, s≤t

(x(s′) − x(s))(y(s′) − y(s))

and observe that

〈x, y〉nt = 1
2

(
〈x + y〉nt − 〈x〉nt − 〈y〉nt

)
. (2.3)

If x and y admit the quadratic variations 〈x〉t and 〈y〉t, then it follows from (2.3) that the covariation of x
and y,

〈x, y〉t := lim
n↑∞

〈x, y〉nt ,

exists at t if and only if 〈x + y〉t exists. This, however, need not be the case even if both 〈x〉t and 〈y〉t
exist; see [27, Proposition 2.7] for an example. It follows in particular that the class of all functions x that 
admit the quadratic variation 〈x〉t along (Tn)n∈N is not a vector space. The main goal of this paper will be 
to construct sufficiently large classes of functions with prescribed quadratic variation and such that 〈x, y〉t
exists for all t and all x, y in this class so that this class is indeed a vector space.

As observed by Gantert [17,18], the quadratic variation of a function x ∈ C[0, 1] along the sequence of 
dyadic partitions (2.1) is closely related to its development in terms of the Faber–Schauder functions, which 
are defined as
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e∅(t) := t, e0,0(t) := max{0,min{t, 1 − t}}, en,k(t) := 2−n/2e0,0(2nt− k)

for t ∈ R, n = 1, 2, . . . , and k ∈ Z. The graph of en,k looks like a wedge with height 2−n+2
2 , width 2−n, and 

center at t = (k + 1
2 )2−n. In particular, the functions en,k have disjoint support for distinct k and fixed n. 

It is well known that every x ∈ C[0, 1] can be uniquely represented by means of the following uniformly 
convergent series,

x = x(0) + (x(1) − x(0))e∅ +
∞∑

m=0

2m−1∑
k=0

θm,kem,k, (2.4)

where the coefficients θm,k are given as

θm,k = 2m/2
(

2x
(2k + 1

2m+1

)
− x

( k

2m
)
− x

(k + 1
2m

))
;

see, e.g., [22, p. 3]. Since in this note we are only dealing with functions on [0, 1], we will only need the 
Faber–Schauder functions en,k for k = 0, . . . , 2n − 1 and their domain of definition can be restricted to 
[0, 1]. For t = 1, the equivalence of conditions (a) and (b) in the following proposition was stated in [18, 
Lemma 1.1 (ii)].

Proposition 2.1. Let x ∈ C[0, 1] have Faber–Schauder development (2.4) and let (Tn) be the sequence of 
dyadic partitions. Then, for t ∈

⋃
n Tn, the following conditions are equivalent.

(a) The quadratic variation 〈x〉t exists.
(b) The following limit exists,

�1(t) := lim
n↑∞

1
2n

n−1∑
m=0

�(2m−1)t	∑
k=0

θ2
m,k.

(c) The following limit exists,

�2(t) := lim
n↑∞

1
2n

�(2n−1)t	∑
k=0

θ2
n,k.

In this case, we furthermore have 〈x〉t = �1(t) = �2(t).

Remark 2.2. Let y ∈ C[0, 1] have the Faber–Schauder development

y = y(0) + (y(1) − y(0))e∅ +
∞∑

m=0

2m−1∑
k=0

ϑm,kem,k. (2.5)

Then it follows from Proposition 2.1 and polarization (2.3) that the covariation 〈x, y〉t exists along the 
sequence of dyadic partitions and for t ∈

⋃
n Tn if and only if the limit

�(t) = lim
n↑∞

1
2n

�(2n−1)t	∑
k=0

θn,kϑn,k

exists and that, in this case, 〈x, y〉t = �(t).
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We emphasize that the formulas for 〈x〉t and 〈x, y〉t obtained in Proposition 2.1 and Remark 2.2 are 
only valid if quadratic variation is considered along the sequence (Tn) of dyadic partitions (2.1), because 
it is naturally related to the Faber–Schauder development of continuous functions. In principle, it should 
be possible to obtain similar results also for other wavelet expansions, which would correspond to other 
sequences of partitions, such as general p-adic partitions. Such an analysis is, however, beyond the scope of 
this paper.

Remark 2.3. Let x, y ∈ C[0, 1] have Faber–Schauder developments (2.4) and (2.5) with coefficients 
θn,k, ϑn,k ∈ {−1, +1} for all n and k. Then

1
2n

�(2n−1)t	∑
k=0

θn,kϑn,k = �(2n − 1)t	 + 1
2n − 2

2n

�(2n−1)t	∑
k=0

1{θn,k 
=ϑn,k} = �(2n − 1)t	 + 1
2n − 2νn(t),

where

νn(t) := 1
2n card

{
0 ≤ k ≤ �(2n − 1)t	

∣∣ θn,k �= ϑn,k

}
is the frequency of non-coincidence. Since �(2n − 1)t	2−n → t, it follows that 〈x, y〉t exists if and only if the 
frequency νn(t) converges to a limit ν(t) ∈ [0, 1].

2.2. Constructing vector spaces of functions with prescribed curved and linear quadratic variation

We start by constructing a vector space of functions with curved quadratic variation along the se-
quence (2.1) of dyadic partitions. To this end, we let F denote the class of all sequences f = (fn)n=0,1,... of 
bounded functions fn : [0, 1] → R that converge uniformly to a Riemann integrable function f∞ := limn fn. 
For f ∈ F , we define

θn,k(f) := fn(k2−n)

and

xf :=
∞∑

n=0

2n−1∑
k=0

θn,k(f)en,k.

The preceding sum converges absolutely since the coefficients θn,k(f) are uniformly bounded. As a matter 
of fact, the boundedness of the coefficients implies that xf is even Hölder continuous with exponent 1/2; 
see [3, Theorem 1]. It follows in particular that the class {xf | f ∈ F} does not contain the typical sample 
paths of a continuous semimartingale with nonvanishing quadratic variation.

Proposition 2.4. Let (Tn) be the sequence (2.1) of dyadic partitions. Then the following assertions hold.

(a) If f ∈ F , then xf admits the continuous quadratic variation 〈xf 〉t =
∫ t

0 f2
∞(s) ds for all t ∈ [0, 1].

(b) If f , g ∈ F , then xf and xg admit the continuous covariation 〈xf , xg〉t =
∫ t

0 f∞(s)g∞(s) ds for all 
t ∈ [0, 1].

In particular, the class {xf | f ∈ F} is a vector space of functions admitting a continuous quadratic varia-
tion.
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Fig. 1. Plots of the functions xf when fn(t) := cos 2πt (left) and fn(t) := (sin 7t)2 (right) for all n. The dotted lines correspond 
to 〈xf 〉7.

See Fig. 1 for an illustration of functions in xf . We continue with a non-differentiability result. Recall 
that, by Lebesgue’s criterion [25, Theorem 11.33], a function f : [0, 1] → R is Riemann integrable if and 
only if it is bounded and continuous almost everywhere.

Proposition 2.5. For any f ∈ F , the function xf is not differentiable at any continuity point, t, of f∞ for 
which f∞(t) �= 0. In particular, xf is not differentiable almost everywhere on {f∞ �= 0}.

Now we will construct a rich vector space of functions possessing a linear quadratic variation. It was 
shown in [27] that all functions x whose Faber–Schauder coefficients take only the values ±1 have the 
linear quadratic variation 〈x〉t = t for all t, but the corresponding class, X , is not a vector space. For our 
construction, we let

tmod 1 := t− �t	

denote the fractional part of t ≥ 0. For f ∈ F and α > 0, we define

ϑn,k(α,f) := fn
(
αkmod 1

)
and

yfα :=
∞∑

n=0

2n−1∑
k=0

ϑn,k(α,f)en,k.

Again, the preceding sum converges absolutely, as all coefficients ϑn,k(α, f) are bounded. Moreover, yfα is 
Hölder continuous with exponent 1/2.

Proposition 2.6. Let (Tn) be the sequence of dyadic partitions and α > 0 be irrational and fixed. Then the 
following assertions hold.

(a) If f ∈ F , then yfα admits the linear quadratic variation 〈yfα〉t = t 
∫ 1
0 f2

∞(s) ds for t ∈ [0, 1].
(b) If f , g ∈ F , then yfα and ygα admit the linear covariation 〈yfα , ygα〉t = t 

∫ 1
0 f∞(s)g∞(s) ds for t ∈ [0, 1].

In particular, the class {yfα | f ∈ F} is a vector space of functions admitting a linear quadratic variation.

An illustration of functions yf
α for various choices of α and f is given in Fig. 2. When comparing Figs. 1

and 2, one can see that the functions yf
α exhibit a lower degree of regularity and look more “random” 
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Fig. 2. Plots of the functions yf
α when α = e (grey), α = 10e (black), fn(t) := sin 2πt (left), and fn(t) := 10t−n

1+n cos 6πnt
1+n (right).

than the functions xf . This effect is due to the ergodic behavior of the shift x �→ (x + α) mod 1, which 
underlies the coefficients ϑn,k(α, f). The following non-differentiability result can be proved in the same way 
as Proposition 2.5.

Proposition 2.7. Suppose the α > 0 is irrational and f ∈ F is such that |f∞| is bounded away from zero. 
Then yfα is nowhere differentiable.

2.3. Constructing functions with local quadratic variation via pathwise Itō differential equations

In this section, (Tn) may be any refining sequence of partitions; we do not insist that it is given by the 
dyadic partitions in (2.1). Bick’s and Willinger’s approach [2] to the strictly pathwise hedging of options 
relies on the following class of trajectories,

{
z ∈ C[0, 1]

∣∣∣ z admits the quadratic variation 〈z〉t =
t∫

0

β(s, z(s)) ds for all t
}
. (2.6)

Here, β is a certain strictly positive function, playing the role of a squared local volatility. We will therefore 
refer to (2.6) as a set of functions with local quadratic variation. See also [23,28,29] for results involving sets 
of the form (2.6).

In the preceding sections and in [27], trajectories x were constructed that have, e.g., the linear quadratic 
variation 〈x〉t = t. A first guess how to construct a function in the set (2.6) from a given x with linear 
quadratic variation could be to apply a time change as, e.g., in [12]. This does indeed yield a function with 
the desired quadratic variation—but a quadratic variation that is taken with respect to a time-changed 
sequence of partitions. It is not at all clear if the time-changed function x will also admit a quadratic 
variation along the original refining sequence (Tn), and even if it does, it is not clear if it is as desired. 
Thus, a time change is not an appropriate means of constructing functions in (2.6). Instead, our approach 
will be to set up and solve a corresponding Itō differential equation, whose solution will then belong to the 
set in (2.6).

The discussion of pathwise Itō differential equations is also interesting in its own right. It is based on 
Föllmer’s theory [14] of pathwise Itō integration for integrators that admit a continuous quadratic variation. 
By Föllmer’s pathwise Itō formula, the integral 

∫ t

0 η(s) dx(s) exists as a limit of non-anticipative Riemann 
sums for all η from the class of admissible integrands, defined below. This pathwise integral is sometimes 
called the Föllmer integral. By CBV [0, 1] we will denote the class of continuous functions on [0, 1] that are 
of bounded variation. The following definition is taken from [26, Definition 11]; see [26, Section 3] for further 
details.
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Definition 2.8. Let x ∈ C[0, 1] be a function with continuous quadratic variation along (Tn). A function 
t �→ η(t) is called an admissible integrand for x if there exist n ∈ N, a continuous function A : [0, 1] → R

n

whose components belong to CBV [0, 1], an open set U ⊂ R
n × R with (A(t), x(t)) ∈ U for all t, and a 

continuously differentiable function f : U → R for which, for all a ∈ {b ∈ R
n | ∃ξ ∈ R s.th. (b, ξ) ∈ U}, the 

function ξ �→ f(a, ξ) is twice continuously differentiable on its domain, such that η(t) = ∂
∂ξf(A(t), x(t)).

Remark 2.9. Suppose that x and A are as in Definition 2.8 and that g ∈ C1(Rn × R). Then η(t) :=
g(A(t), x(t)) is an admissible integrand for x. This follows by taking f(a, ξ) :=

∫ ξ

0 g(a, y) dy in Definition 2.8. 
In particular, η(t) = exp{μt + σx(t)}, η(t) = xn(t), η(t) = exp{xn(t)}, η(t) = log(1 + x2n(t)), or smooth 
functions thereof are admissible integrands for μ, σ ∈ R and n ∈ N.

We can now define the concept of a solution to a pathwise Itō differential equation.

Definition 2.10. Suppose that x ∈ C[0, 1] is a function with continuous quadratic variation along (Tn), 
A belongs to CBV [0, 1], σ : [0, 1] × R → R and b : [0, 1] × R → R are continuous functions, and z0 ∈ R. 
A function z ∈ C[0, 1] is called a solution of the Itō differential equation

dz(t) = σ(t, z(t)) dx(t) + b(t, z(t)) dA(t) (2.7)

with initial condition z(0) = z0 if t �→ σ(t, z(t)) is an admissible integrand for x and z satisfies the integral 
form of (2.7),

z(t) = z0 +
t∫

0

σ(s, z(s)) dx(s) +
t∫

0

b(s, z(s)) dA(s), 0 ≤ t ≤ 1.

The following result explains why solutions of (2.7) provide the desired functions in the class (2.6)
of functions with local quadratic variation. It is an immediate consequence of [26, Proposition 12] and 
Lemma 3.2 below.

Proposition 2.11. Suppose that z is a solution of (2.7). Then z has the local quadratic variation

〈z〉t =
t∫

0

σ2(s, z(s)) d〈x〉s

along (Tn).

We now extend arguments from Doss [8] and Sussmann [32] to show existence and uniqueness of solutions 
to the Itō differential equation (2.7) when σ and b satisfy certain regularity conditions. As a matter of fact, the 
same method was used by Klingenhöfer and Zähle [20] to construct strictly pathwise solutions of (2.7) when 
x is Hölder continuous with exponent α > 1/2 and hence satisfies 〈x〉t = 0. Our subsequent Theorem 2.12
can thus also be regarded as an extension of [20] to the case of nonvanishing quadratic variation. In addition 
to the arguments used in [8,32,20], we will also need the associativity theorem for the Föllmer integral as 
established in [26, Theorem 13] and several auxiliary results on nonlinear Stieltjes integral equations, which 
we have collected in Section 3.3. As in [8], the basic idea is to consider the flow φ(τ, ξ, t) associated with 
σ(τ, ·) for fixed τ ∈ [0, 1], assuming that this flow exists for all ξ, t ∈ R, and τ ∈ [0, 1]. That is, φ(τ, ξ, t) = u(t)
if u solves the ordinary differential equation u̇(t) = σ(τ, u(t)) with initial condition u(0) = ξ. In particular,

φ(τ, ξ, 0) = ξ and φt(τ, ξ, t) = σ(τ, φ(τ, ξ, t)). (2.8)
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Here and in the sequel, φt(τ, ξ, t) := ∂φ(τ, ξ, t)/∂t, and the partial derivatives φτ , φξ, φtt etc. are defined 
analogously. We now assume without loss of generality that x(0) = 0 and define z as

z(t) := φ(t, B(t), x(t)),

where B ∈ CBV [0, 1] will be determined later. Applying Föllmer’s pathwise Itō’s formula, e.g., in the form 
of [26, Theorem 9], and using (2.8) yields

z(t) = φ(t, B(t), x(t))

= φ(0, B(0), x(0)) +
t∫

0

φt(s,B(s), x(s)) dx(s) +
t∫

0

φτ (s,B(s), x(s)) ds

+
t∫

0

φξ(s,B(s), x(s)) dB(s) + 1
2

t∫
0

φtt(s,B(s), x(s)) d〈x〉s

= B(0) +
t∫

0

σ(s, z(s)) dx(s) +
t∫

0

φτ (s,B(s), x(s)) ds

+
t∫

0

φξ(s,B(s), x(s)) dB(s) + 1
2

t∫
0

φtt(s,B(s), x(s)) d〈x〉s,

provided that the function φ is sufficiently smooth. So z will solve (2.7) if B satisfies the initial condition 
B(0) = z0 and the sum of three rightmost integrals agrees with 

∫ t

0 b(s, z(s)) dA(s). Both conditions will be 
satisfied if B solves the following Stieltjes integral equation:

B(t) = z0 +
t∫

0

b(s, φ(s,B(s), x(s)))
φξ(s,B(s), x(s)) dA(s) −

t∫
0

φτ (s,B(s), x(s))
φξ(s,B(s), x(s)) ds

− 1
2

t∫
0

φtt(s,B(s), x(s))
φξ(s,B(s), x(s)) d〈x〉s.

(2.9)

For the sake of precise statements, let us now introduce the following standard terminology. Let f be a 
real-valued function on [0, 1] ×R. We will say that f satisfies a local Lipschitz condition if for all p > 0 there 
is Lp ≥ 0 such that

|f(t, ξ) − f(t, ζ)| ≤ Lp|ξ − ζ| for ξ, ζ ∈ [−p, p] and t ∈ [0, 1]. (2.10)

Moreover, we will say that f satisfies a linear growth condition if

|f(t, ξ)| ≤ c(1 + |ξ|) for some constant c ≥ 0 and all t ∈ [0, 1], ξ ∈ R. (2.11)

Theorem 2.12. Suppose that x ∈ C[0, 1] satisfies x(0) = 0 and admits the continuous quadratic variation 
〈x〉 along (Tn), A ∈ CBV [0, 1], and b ∈ C([0, 1] × R) satisfies both a local Lipschitz condition (2.10) and a 
linear growth condition (2.11). Suppose moreover that there exists some open interval I ⊃ [0, 1] such that 
σ(t, ξ) is defined for (t, ξ) ∈ I × R, belongs to C2(I × R), and has bounded first derivatives in t and ξ. 
Then the flow φ(τ, t, ξ) defined in (2.8) is well-defined for all τ ∈ I and ξ, t ∈ R, φ and φt are twice 
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continuously differentiable, the Stieltjes integral equation (2.9) admits a unique solution B for every z0 ∈ R, 
and z(t) := φ(t, B(t), x(t)) is the unique solution of the Itō differential equation

dz(t) = σ(t, z(t)) dx(t) + b(t, z(t)) dA(t) (2.12)

with initial condition z(0) = z0.

It follows from the preceding theorem and Proposition 2.11 that the solution of (2.12) belongs to the set

Σ :=
{
z ∈ C[0, 1]

∣∣∣ z admits the quadratic variation 〈z〉t =
t∫

0

σ2(s, z(s)) d〈x〉s
}
.

The following result implies in particular that in the case of linear quadratic variation, 〈x〉t = t, the set Σ
is dense in C[0, 1] and that its members can connect any two points within any given time interval. In this 
sense, the result can be regarded as a deterministic analogue of a support theorem for diffusion processes 
as in [31]. The assumption 〈x〉t = t is not essential and can easily be relaxed. We impose it here because it 
is the relevant case for the applications mentioned at the beginning of this section and because it allows us 
to base the proof of Corollary 2.13 on standard results from the theory of ordinary differential equations. It 
is also not difficult to prove variants of Corollary 2.13 for functions x with general quadratic variation and 
other drift terms in (2.13) and (2.14).

Corollary 2.13. Suppose that σ satisfies the conditions of Theorem 2.12. Let moreover x ∈ C[0, 1] be a fixed 
function that satisfies x(0) = 0 and admits the linear quadratic variation 〈x〉t = t along (Tn). Then the 
following two assertions hold.

(a) Let z0, z1 ∈ R and t0 ∈ (0, 1] be given. Then there exists b ∈ R such that the solution z of the Itō 
differential equation

dz(t) = σ(t, z(t)) dx(t) + b dt, z(0) = z0, (2.13)

satisfies z(t0) = z1.
(b) The set of solutions to the Itō differential equations

dz(t) = σ(t, z(t)) dx(t) + b(t) dt (2.14)

where b(·) ranges over C[0, 1] and x is fixed is dense in C[0, 1].

In particular, the set (2.6) is dense in C[0, 1] and its members can connect any two points within any given 
nondegenerate time interval.

Let us now give three concrete examples for Theorem 2.12. We start with two elementary cases of linear 
Itō differential equations. The general linear Itō differential equation can be solved in a similar manner. Our 
third example is a nonlinear Itō differential equation.

Example 2.14. We take A(t) = t and x ∈ C[0, 1] satisfying x(0) = 0 and 〈x〉t = t along (Tn).

(a) (Langevin equation). We consider the Itō differential equation

dz(t) = σ dx(t) + bz(t) dt, z(0) = z0, (2.15)
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where σ and b are real constants. The corresponding flow φ(τ, ξ, t) is independent of τ and has the form 
φ(ξ, t) = ξ+σt. The equation (2.9) is a linear ordinary differential equation (ODE) with unique solution

B(t) = z0e
bt + σb

t∫
0

eb(t−s)x(s) ds.

Therefore, the unique solution of (2.15) has the form

z(t) = z0e
bt + σb

t∫
0

eb(t−s)x(s) ds + σx(t).

(b) (Time-inhomogeneous Black–Scholes dynamics). Consider the following linear Itō differential equation

dz(t) = σ(t)z(t) dx(t) + b(t)z(t) dt, z(0) = z0, (2.16)

where b ∈ C[0, 1] and σ ∈ C2(I) for some open interval I ⊃ [0, 1]. The corresponding flow has the 
form φ(τ, ξ, t) = ξeσ(τ)t. The equation (2.9) becomes equivalent to the ODE B′(t) = (b(t) − σ′(t)x(t) −
1
2σ

2(t))B(t) with initial condition B(0) = z0, whence

B(t) = z0 exp
( t∫

0

(
b(s) − σ′(s)x(s) − 1

2σ
2(s)

)
ds

)
.

Therefore, the unique solution of (2.16) is

z(t) = φ(t, B(t), x(t)) = B(t)eσ(t)x(t)

= z0 exp
(
σ(t)x(t) +

t∫
0

(
b(s) − σ′(s)x(s) − 1

2σ
2(s)

)
ds

)
.

When using the fact that

σ(t)x(t) =
t∫

0

σ(s) dx(s) +
t∫

0

σ′(s)x(s) ds,

which follows from the assumption x(0) = 0 and Föllmer’s pathwise Itō formula applied to the function 
f(t, x(t)) = σ(t)x(t), we arrive at the more common representation

z(t) = z0 exp
( t∫

0

σ(s) dx(s) +
t∫

0

(
b(s) − 1

2σ
2(s)

)
ds

)
.

(c) (A square-root equation). The function σ(ξ) :=
√

1 + ξ2 clearly satisfies the conditions of Theorem 2.12. 
The corresponding flow is given by φ(t, ξ) = sinh

(
t +sinh−1(ξ)

)
. For given drift term b, the equation (2.9)

implies the following ordinary differential equation,

B′(t) =
√

1 + B(t)2( −1 )(b(t, φ(B(t), x(t)) − 1
2φ(B(t), x(t))

)
. (2.17)
cosh x(t) + sinh (B(t))
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Its right-hand side vanishes for b(t, ξ) = 1
2ξ, and so z(t) := sinh(x(t) + sinh−1 z0) solves

dz(t) =
√

1 + z(t)2 dx(t) + 1
2z(t)dt, z(0) = z0.

Solutions for other choices of b can be obtained by solving (2.17) numerically.

3. Proofs

3.1. Two auxiliary results and the proof of Proposition 2.1

For the proof of Proposition 2.1, we will need two auxiliary lemmas. The first is a simple converse to the 
Stolz–Cesaro theorem [24, Theorem 1.22].

Lemma 3.1. Let (an) and (bn) be real sequences such that bn > 0, bn+1/bn → β �= 1, and an/bn → �. Then 
also

an+1 − an
bn+1 − bn

−→ �.

Proof. We may write

an+1 − an
bn+1 − bn

= 1
bn+1
bn

− 1

(an+1

bn+1
· bn+1

bn
− an

bn

)
.

Sending n to infinity and using our assumptions thus gives the result. �
The following lemma can easily be deduced from Propositions 2.2.2, 2.2.9, and 2.3.2 in [30].

Lemma 3.2. Let f ∈ C[0, 1] be such that 〈f〉1 = 0. Then, for x ∈ C[0, 1] and t ∈ [0, 1], the quadratic variation 
〈x〉t exists if and only if 〈x + f〉t exists. In this case, we have 〈x〉t = 〈x + f〉t and 〈x, f〉t = 0.

Note that we have 〈f〉1 = 0 whenever f is continuous and of bounded variation.

Proof of Proposition 2.1. We show first that (a) and (b) are equivalent. To this end, we may assume without 
loss of generality that x(0) = x(1). Indeed, the function f(s) := −x(0) −sx(1) is clearly of bounded variation 
and hence satisfies 〈f〉1 = 0, so that Lemma 3.2 justifies our assumption.

Next, we let xt(s) := x(t ∧ s),

θ̃n,k :=
{
θn,k if k ≤ �(2n − 1)t	,
0 otherwise,

and

x̃ :=
∞∑

m=0

2m−1∑
k=0

θ̃m,kem,k.

Since t ∈
⋃

n Tn, the two functions xt and x̃ differ only by a piecewise linear function, f , which hence 
satisfies 〈f〉1 = 0. Lemma 3.2 therefore yields that 〈x〉t = 〈xt〉1 = 〈x̃〉1. Furthermore, it was stated in [18, 
Lemma 1.1 (ii)] that
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〈x̃〉n1 = 1
2n

n−1∑
m=0

2m−1∑
k=0

θ̃2
m,k = 1

2n
n−1∑
m=0

�(2m−1)t	∑
k=0

θ2
m,k.

This proves the equivalence of (a) and (b).
Now we prove the equivalence of (b) and (c). To this end, we let

an :=
n−1∑
m=0

�(2m−1)t	∑
k=0

θ2
m,k and bn := 2n.

The existence of the limit in (b) means that an/bn converges to �1(t), whereas the existence of the limit in 
(c) is equivalent to the convergence of (an+1 − an)/(bn+1 − bn) to �2(t). The latter convergence implies the 
convergence of an/bn to �2(t) by means of the Stolz–Cesaro theorem in the form of [24, Theorem 1.22]. On 
the other hand, the convergence of an/bn to �1(t) entails also the convergence of (an+1 − an)/(bn+1 − bn)
to �1(t) by way of Lemma 3.1. This concludes the proof. �
3.2. Proofs of results from Section 2.2

Proof of Proposition 2.4. Note first that the class of Riemann integrable functions is clearly an algebra, 
as can, e.g., be seen from Lebesgue’s criterion for Riemann integrability [25, Theorem 11.33]. Thus, f2

∞ is 
Riemann integrable.

Next, due to the continuity of the function t �→
∫ t

0 f2
∞(s) ds and the monotonicity of t �→ 〈xf 〉nt , it 

is enough to prove the assertion for t ∈
⋃

n Tn. Now let ε > 0 be given, and take n0 ∈ N such that 
|fn(s) − f∞(s)| < ε for all s ∈ [0, 1] and n ≥ n0. Then, for all n ≥ n0,

1
2n

�(2n−1)t	∑
k=0

θn,k(f)2 = 1
2n

�(2n−1)t	∑
k=0

fn(k2−n)2 (3.1)

has a distance of at most ε to a Riemann sum for 
∫ t

0 f2
∞(s) ds. It follows that the sums in (3.1) converge to ∫ t

0 f2
∞(s) ds, and so part (a) of the assertion follows from Proposition 2.1. Part (b) follows by polarization 

as in Remark 2.2. �
Proof of Proposition 2.5. Our proof uses ideas from [7], where the non-differentiability of the classical Takagi 
function was shown. Let t ∈ [0, 1) be a continuity point of f∞ such that f∞(t) �= 0 (the case t = 1 can be 
reduced to the case t = 0 by symmetry). Then there exists ε, δ > 0 such that |f∞(s)| ≥ 2ε if |s − t| ≤ δ. It 
follows that there exists n0 ∈ N such that |fn(s)| ≥ ε if |s − t| ≤ δ and n ≥ n0. For n ∈ N, we denote by sn
the largest s ∈ Tn such that s ≤ t. Its successor, s′n, will then satisfy s′n > t, and we clearly have sn, s′n → t

as n ↑ ∞. In particular, |fn(sn)| ≥ ε and |fn(s′n)| ≥ ε if n ≥ n1 := n0 ∨ �− log2 δ�. We write x := xf and 
denote

xn :=
n−1∑
m=0

2m−1∑
k=0

θm,k(f)em,k.

Let us assume by way of contradiction that x is differentiable at t. Then we must have that

dn := x(s′n) − x(sn)
s′n − sn

= 2n(x(s′n) − x(sn))

converges to a finite limit. Since ep,k(sn) = ep,k(s′n) = 0 for p ≥ n, we have

x(s′n) − x(sn) = xn(s′n) − xn(sn) = xn−1(s′n) − xn−1(sn) + fn(sn)Δn,
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where Δn = 2−(n+1)/2 is the maximal amplitude of a Faber–Schauder function en−1,k. Now we note that

xn−1(s′n) − xn−1(sn) = 1
2
(
xn−1(s′n−1) − xn−1(sn−1)

)
,

because s′n − sn = 1
2 (s′n−1 − sn−1), the interval [sn, s′n] is contained in [sn−1, s′n−1], and each Schauder 

function em,k with m ≤ n − 2 is linear on the latter interval. We thus arrive at the recursive relation

dn = 2n
(
x(s′n) − x(sn)

)
= 2n−1(xn−1(s′n−1) − xn−1(sn−1)

)
+ 2nfn(sn)Δn

= dn−1 + fn(sn)2(n−1)/2.

Hence, |dn − dn−1| ≥ ε2(n−1)/2, which contradicts the convergence of the sequence (dn). �
Proof of Proposition 2.6. (a) As in the proof of Proposition 2.4, it is enough to prove our formula for 〈yfα〉t
for the case in which t ∈

⋃
n Tn. By Proposition 2.1, we need to investigate the limiting behavior of

1
2n

�(2m−1)t	∑
k=0

ϑ2
n,k(α,f) = �(2m − 1)t	 + 1

2n · 1
�(2m − 1)t	 + 1

�(2m−1)t	∑
k=0

f2
n

(
αkmod 1

)
.

We clearly have (�(2m−1)t	 +1)2−n → t. Moreover, since f2
∞ is Riemann integrable, Weyl’s equidistribution 

theorem [21, p. 3] states that

1
n

n−1∑
k=0

f2
∞
(
αkmod 1

)
−→

1∫
0

f2
∞(s) ds.

The result thus follows from Proposition 2.1 and by using the uniform convergence fn → f∞. Part (b) 
follows as in Proposition 2.4. �
3.3. An auxiliary result on Stieltjes integral equations

In this section, we state and prove an auxiliary result on Stieltjes integral equations, which is needed for 
the proof of Theorem 2.12. Without doubt, this result is well known, but we have not found a reference 
for exactly the version that we need, and so we include it here for the convenience of the reader. It is 
also not difficult to formulate and prove extensions of this result to the case in which both drivers and 
solutions are multidimensional and possess discontinuities. For the sake of simplicity, however, we confine 
ourselves to continuous, though d-dimensional, drivers and one-dimensional solutions, as needed for the 
proof of Theorem 2.12.

Proposition 3.3. Suppose that A1, . . . , Ad ∈ CBV [0, 1], f ∈ C[0, 1], and g1, . . . , gd ∈ C([0, 1] ×R) satisfy the 
linear growth condition (2.11). Then there exists at least one solution B ∈ C[0, 1] of the following Stieltjes 
integral equation,

B(t) = f(t) +
d∑

i=1

t∫
0

gi(s,B(s)) dAi(s), 0 ≤ t ≤ 1. (3.2)

Moreover, the solution (3.2) is unique if g1, . . . , gd satisfy in addition a local Lipschitz condition as in (2.10).
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Proof. Consider the following Tonelli sequence (B(n))n∈N,

B(n)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f(t) if t ∈ [0, 1

n ],

f(t) +
d∑

i=1

t−1/n∫
0

gi(s,B(n)(s)) dAi(s) if t ∈ ( 1
n , 1].

(3.3)

Clearly, the solution B(n) to (3.3) can be constructed inductively on each interval ( k
n , 

k+1
n ]. As in the proof 

of the classical Peano theorem, the idea is to show that the sequence (B(n))n∈N has an accumulation point 
with respect to uniform convergence in C[0, 1]. To this end, we show first that B(n)(t) is bounded uniformly 
in t and n. Let m be an upper bound for |f(t)|, t ∈ [0, 1], and let Vi(t) denote the total variation of Ai on 
[0, t] and V (t) :=

∑d
i=1 Vi(t). Let moreover c ≥ 0 be such that |gi(t, y)| ≤ c(1 + |y|) for all i, t, and y. Then, 

by a standard estimate for Riemann–Stieltjes integrals (e.g., Theorem 5b on p. 8 of [35]),

|B(n)(t)| ≤ m +
t−1/n∫
0

c(1 + |B(n)(s)|) dV (s) ≤ m + cV (1) + c

t∫
0

|B(n)(s)| dV (s).

Groh’s generalized Gronwall inequality [19] (see also Theorem 5.1 in Appendix 5 of [13]) yields

|B(n)(t)| ≤
(
m + cV (1)

)
ecV (t) ≤

(
m + cV (1))

)
ecV (1) =: M

for all t ∈ [0, 1]. Hence (B(n)(t))n∈N is indeed uniformly bounded in n and t. In the next step we show that 
it is also uniformly equicontinuous. To this end, let

K := max
{
|gi(t, y)|

∣∣∣ i = 1, . . . , d, t ∈ [0, 1], |y| ≤ M
}
.

Then one sees as above that, for 0 ≤ t ≤ u ≤ 1,

|B(n)(u) −B(n)(t)| ≤ |f(u) − f(t)| + K
(
V
(
max{0, u− 1/n}

)
− V

(
max{0, t− 1/n}

))
.

Since V is continuous [35, Theorem I.3b], and hence uniformly continuous, it follows that (B(n))n∈N is 
indeed uniformly equicontinuous. The Arzela–Ascoli theorem therefore implies the existence of a subsequence 
(B(nk))k∈N that converges uniformly toward some continuous limiting function B. The continuity of the 
Riemann–Stieltjes integral with respect to uniform convergence of integrands thus yields that B solves (3.2).

Now suppose that g1, . . . , gd satisfy local Lipschitz conditions in the form of (2.10) and let Lp be the max-
imum of the corresponding Lipschitz constants for given p > 0. Next, let B and B̃ be two solutions of (3.2). 
Then there exists p > 0 such that both B and B̃ take values in [−p, p]. Using again the above-mentioned 
standard estimate for Riemann–Stieltjes integrals yields

|B(t) − B̃(t)| =
∣∣∣∣ d∑
i=1

t∫
0

(
gi(s,B(s)) − gi(s, B̃(s))

)
dAi(s)

∣∣∣∣
≤

d∑
i=1

t∫
0

∣∣gi(s,B(s)) − g(s, B̃(s))
∣∣ dVi(s)

≤ Lp

t∫
0

|B(s) − B̃(s)| dV (s).

The generalized Gronwall inequality that was cited above now yields B = B̃. �
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3.4. Proof of the results from Section 2.3

Our proof of Theorem 2.12 follows along the lines of [8], but several supplementary arguments are needed 
because of the time dependence of σ, the fact that x is not a typical Brownian sample path, and because 
A is not linear. We will also need the associativity property of the Föllmer integral that was established 
in [26, Theorem 13]. We first collect some properties of the flow φ in the following lemma. Throughout this 
section, we will use the notation introduced in Theorem 2.12. Recall in particular that I denotes an open 
interval containing [0, 1].

Lemma 3.4. Under the assumptions of Theorem 2.12, the following assertions hold for all τ ∈ I and 
ξ, s, t ∈ R.

(a) φ(τ, ξ, t) is well-defined for all τ ∈ I and ξ, t ∈ R.
(b) φ ∈ C2(I × R × R) and φt ∈ C2(I × R × R).
(c) φ(τ, φ(τ, ξ, s), t) = φ(τ, ξ, s + t).
(d) φt(τ, ξ, t) = σ(τ, φ(τ, ξ, t)).
(e) φtt(τ, ξ, t) = σξ(τ, φ(τ, ξ, t))σ(τ, φ(τ, ξ, t)).
(f) φξ(τ, ξ, t) = v(t) solves the linear ordinary differential equation

v̇(t) = σξ(τ, φ(τ, ξ, t))v(t)

with initial condition v(0) = 1 and so

φξ(τ, ξ, t) = e
∫ t
0 σξ(τ,φ(τ,ξ,s)) ds. (3.4)

(g) φτ (τ, ξ, t) = w(t) solves the linear ordinary differential equation

ẇ(t) = στ (τ, φ(τ, ξ, t)) + σξ(τ, φ(τ, ξ, t))w(t)

with initial condition w(0) = 0 and is hence given by

φτ (τ, ξ, t) =
t∫

0

e
∫ t
s
σξ(τ,φ(τ,ξ,r)) drστ (τ, φ(τ, ξ, s)) ds. (3.5)

(h) φt(τ, ξ, −t) = φξ(τ, ξ, −t)σ(τ, ξ).
(i) φξξ(τ, ξ, −t)σ(τ, ξ)2 − 2φξt(τ, ξ, −t)σ(τ, ξ) + φtt(τ, ξ, −t) = −φξ(τ, ξ, −t)φtt(τ, φ(τ, ξ, −t), t).

Proof. Since σξ is bounded by assumption, σ(τ, ξ) satisfies both a linear-growth and a Lipschitz condition 
in ξ. Therefore the ordinary differential equation ẏ(t) = σ(τ, y(t)) admits a unique global solution for all 
initial values y(0) and all τ ∈ [0, 1]. This implies assertions (a) and (d).

To show the remaining assertions, we introduce a two-dimensional extension of σ by letting σ(t, ξ) :=
(0, σ(t, ξ))
. Then the solution y(t) of the two-dimensional autonomous ordinary differential equation 
ẏ(t) = σ(y(t)) with initial condition y(0) = (τ, ξ)
 is given by (τ, y(t))
, where y(t) is as above. Thus, 
φ(τ, ξ, t) := (τ, φ(τ, ξ, t))
 is equal to the flow of the autonomous equation ẏ(t) = σ(y(t)). In view of (a), 
assertions (b), (c), (f), and (g) therefore follow from Theorems 2.10 and 6.1 in [33]. Assertion (e) follows by 
applying (d) twice.
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To prove (h), let y := φ(τ, ξ, −t) so that ξ = φ(τ, y, t) and φ(τ, φ(τ, y, t), −t) = y by (c). It follows that

0 = ∂

∂t
φ(τ, φ(τ, y, t),−t) = φξ(τ, φ(τ, y, t),−t)φt(τ, y, t) − φt(τ, φ(τ, y, t),−t) (3.6)

Inserting ξ = φ(τ, y, t) and using (d) yields (h).
To prove (i) we let once again y := φ(τ, ξ, −t) and take the derivative of (3.6) with respect to t. This 

yields

0 = φξξ(τ, φ(τ, y, t),−t)φt(τ, y, t)2 − φtξ(τ, φ(τ, y, t),−t)φt(τ, y, t)

+ φξ(τ, φ(τ, y, t),−t)φtt(τ, y, t) + φtt(τ, φ(τ, y, t),−t) − φtξ(τ, φ(τ, y, t),−t)φt(τ, y, t).

Using again ξ = φ(τ, y, t) and (d) gives

φξξ(τ, ξ,−t)σ(τ, ξ)2 − 2φξt(τ, ξ,−t)σ(τ, ξ) + φtt(τ, ξ,−t) = −φξ(τ, ξ,−t)φtt(τ, φ(τ, ξ, t),−t).

Assertion (i) will thus follow if we can show that

φtt(τ, φ(τ, ξ, t),−t) = φtt(τ, φ(τ, ξ,−t), t). (3.7)

By (e) and (c), the left-hand side of (3.7) is equal to

σξ(τ, φ(τ, φ(τ, ξ, t),−t))σ(τ, φ(τ, φ(τ, ξ, t),−t)) = σξ(τ, ξ)σ(τ, ξ),

and the same argument gives that also the right-hand side of (3.7) is equal to σξ(τ, ξ)σ(τ, ξ). This im-
plies (3.7) and in turn (i). �
Proof of Theorem 2.12. Since σξ is bounded by assumption, it follows from (3.4) that there are constants 
c, ε > 0 such that ε ≤ φξ(τ, ξ, t) ≤ c for all τ , ξ, and t. In particular, φ satisfies a linear growth condition in 
its second argument. It follows that

g1(t, y) := b(t, φ(t, y, x(t)))
φξ(t, y, x(t))

is continuous in t and satisfies a linear growth condition in y, uniformly in t ∈ [0, 1]. Since φ ∈ C2(I×R ×R)
and b satisfies a local Lipschitz condition, g1 also satisfies a local Lipschitz condition uniformly in t ∈ [0, 1]. 
Next, we consider

g2(t, y) := −φτ (t, y, x(t))
φξ(t, y, x(t)) .

It follows from (3.5) that the numerator is bounded in y ∈ R, uniformly in t ∈ [0, 1]. Moreover, g2(t, y)
satisfies a local Lipschitz condition as φ ∈ C2(I × R × R). We now consider

g3(t, y) := −1
2
φtt(t, y, x(t))
φξ(t, y, x(t)) .

Since both φ and σ satisfy linear growth conditions in their second arguments and σξ is bounded, it follows 
from part (e) of Lemma 3.4 that g3(t, y) satisfies a linear growth condition in y, uniformly in t ∈ [0, 1]. As 
moreover φt ∈ C2(I×R ×R), it follows that g3(t, y) satisfies a local Lipschitz condition uniformly in t ∈ [0, 1]. 
When letting A1(t) := A(t), A2(t) := t, and A3(t) := 〈x〉t, we see that the Stieltjes integral equation (2.9)



134 Y. Mishura, A. Schied / J. Math. Anal. Appl. 442 (2016) 117–137
satisfies the assumptions of Proposition 3.3 so that (2.9) admits a unique solution B for each initial value 
y ∈ R. Using Itō’s formula as in the motivation of Theorem 2.12 thus yields that z(t) := φ(t, B(t), x(t)) is 
indeed a solution of (2.12). This establishes the existence of solutions.

To show uniqueness of solutions to (2.12), we let z̃ be an arbitrary solution with initial condition z̃(0) = z0
and define

B̃(t) := φ(t, z̃(t),−x(t)). (3.8)

It follows from part (c) of Lemma 3.4 that then φ(t, B̃(t), x(t)) = z̃(t). We will show that B̃ solves the 
Stieltjes integral equation (2.9) and hence must coincide with B due to the already established uniqueness 
of solutions to (2.9), and then z̃(t) = z(t). We clearly have B̃(0) = z0. To analyze the dynamics of B̃, we want 
to apply Itō’s formula. To this end, we note first that, by definition, σ(t, ̃z(t)) is an admissible integrand 
for x and that 〈z̃〉t =

∫ t

0 σ(s, ̃z(s))2 d〈x〉s as well as 〈z̃, x〉t =
∫ t

0 σ(s, ̃z(s)) d〈x〉s by Proposition 2.11 and 
polarization (2.3). Thus, Itō’s formula yields that

B̃(t) − B̃(0)

=
t∫

0

φτ (s, z̃(s),−x(s)) ds +
t∫

0

φξ(s, z̃(s),−x(s)) dz̃(s) −
t∫

0

φt(s, z̃(s),−x(s)) dx(s)

+ 1
2

t∫
0

φξξ(s, z̃(s),−x(s)) d〈z̃〉s + 1
2

t∫
0

φtt(s, z̃(s),−x(s)) d〈x〉s (3.9)

−
t∫

0

φξt(s, z̃(s),−x(s)) d〈z̃, x〉s.

Applying the fact that z̃ solves (2.12), the associativity theorems for Stieltjes and Itō integrals, [35, Theo-
rem I.5c] and [26, Theorem 13], and part (h) of Lemma 3.4 give that

t∫
0

φξ(s, z̃(s),−x(s)) dz̃(s)

=
t∫

0

φξ(s, z̃(s),−x(s))σ(s, z̃(s)) dx(s) +
t∫

0

φξ(s, z̃(s),−x(s))b(s, z̃(s)) dA(s)

=
t∫

0

φt(s, z̃(s),−x(s)) dx(s) +
t∫

0

φξ(s, z̃(s),−x(s))b(s, z̃(s)) dA(s).

In particular in (3.9) all Itō integrals with respect to dx(s) cancel out. Next, the sum of the integrals 
involving d〈z̃〉s, d〈x〉s, or d〈z̃, x〉s in (3.9) is equal to

1
2

t∫
0

(
φξξ(s, z̃(s),−x(s))σ(s, z̃(s))2 + φtt(s, z̃(s),−x(s)) − 2φξt(s, z̃(s),−x(s))σ(s, z̃(s))

)
d〈x〉s

= −1
2

t∫
0

φξ(s, z̃(s),−x(s))φtt(s, B̃(s), x(s)) d〈x〉s,

where we have used part (i) of Lemma 3.4 and (3.8).
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Next, differentiating the identity ξ = φ(τ, φ(τ, ξ, t), −t) with respect to ξ and τ yields

φξ(τ, φ(τ, ξ, t),−t) = 1
φξ(τ, ξ, t)

and

φτ (τ, φ(τ, ξ, t),−t) = −φξ(τ, φ(τ, ξ, t),−t)φτ (τ, ξ, t) = −φτ (τ, ξ, t)
φξ(τ, ξ, t)

.

Since φ(s, B̃(s), x(s)) = z̃(s) we hence get

φξ(s, z̃(s),−x(s)) = 1
φξ(s, B̃(s), x(s))

, φτ (s, z̃(s),−x(s)) = −φτ (s, B̃(s), x(s))
φξ(s, B̃(s), x(s))

.

Putting all this back into (3.9) yields that

B̃(t) − z0 = −
t∫

0

φτ (s, B̃(s), x(s))
φξ(s, B̃(s), x(s))

ds +
t∫

0

b(s, z̃(s))
φξ(s, B̃(s), x(s))

dA(s) − 1
2

t∫
0

φtt(s, B̃(s), x(s))
φξ(s, B̃(s), x(s))

d〈x〉s.

That is, B̃ solves (2.9). �
Proof of Corollary 2.13. (a): As observed in the proof of Theorem 2.12, the derivative φξ is bounded away 
from zero and from above. It is therefore sufficient to show that for every β ∈ R there exists b ∈ R such 
that the solution of the integral equation (2.9) with constant term b ∈ R is such that B(t0) = β.

Let us denote the solution of (2.9) with given b ∈ R by Bb. Since 〈x〉t = t and A(t) = t, the equation (2.9)
is in fact an ordinary differential equation of the form

B′
b(t) = bg(t, Bb(t)) + f(t, Bb(t)),

where f and g are continuous and satisfy local Lipschitz conditions in ξ. In addition, g > 0 is bounded and 
bounded away from zero, and f(t, ξ) has at most linear growth in ξ. A standard argument using Gronwall’s 
inequality therefore yields the continuity of the map b �→ Bb(t0). Moreover, there are constants c±g and c±f
such that c±g > 0 and

B′
b(t) ≤ bc+g + c+f Bb(t),

B′
b(t) ≥ bc−g + c−f Bb(t).

A standard comparison result for ordinary differential equations [33, Theorem 1.3] yields that Bb(t) is 
bounded from above and from below by the respective solutions of the ordinary differential equations

y′(t) = bc±g + c±f y(t), y(0) = z0.

Since the values of these solutions at t0 range through all of R as b varies between −∞ and +∞, it follows 
that infb∈R Bb(t0) = −∞ and supb∈R Bb(t0) = +∞. The already established continuity of b �→ Bb(t0)
therefore yields the result.

(b): Let U be an open subset of C[0, 1] and take z0 := f(0) for some f ∈ U . Since φξ is bounded away 
from zero and from above, it is not difficult to construct a continuously differentiable function B such that 
z(t) := φ(t, B(t), x(t)) ∈ U for all t. But when letting
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b(t) := φξ(t, B(t), x(t))B′(t) + φτ (t, B(t), x(t)) + 1
2φtt(t, B(t), x(t)),

it follows that B solves (2.9) for this choice of b. Hence, z solves (2.14), which completes the proof of part (b).
The final assertion of the corollary follows from the fact that the solutions of (2.13) and (2.14) belong to 

the set (2.6) according to Lemma 3.2. �
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