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The subnormality of a Hilbert space operator may be characterized either by the 
Bram–Halmos conditions (positivity of certain operator matrices) or the Agler–
Embry conditions (positivity of certain operator differences). We define and consider 
mixed conditions involving matrices of operator differences, thus yielding conditions 
whose extremes are the Bram–Halmos and Agler–Embry conditions. We study these 
conditions for weighted shifts, showing that they reduce to matrices of differences 
of the moments of the shifts, and examine these conditions under the perturbation 
of a single weight of a subnormal shift.

© 2017 Elsevier Inc. All rights reserved.

Let H be a separable, infinite dimensional, complex Hilbert space and L(H) the algebra of bounded 
linear operators on H. Recall that T an element of L(H) is normal if T ∗T = TT ∗, subnormal if T is the 
restriction of some normal operator N to an invariant subspace, and hyponormal if T ∗T ≥ TT ∗ (that 
is, [T ∗, T ] := T ∗T − TT ∗ is a positive operator). The study of “weak subnormalities” has been ongoing. 
The dominant study, of k-hyponormal operators, was introduced by Curto to provide a “bridge” between 
hyponormality and subnormality; these classes are intermediates that illustrate the distinction between 
these two notions. Recall that T is k-hyponormal (k = 1, 2, . . .) if

⎛
⎜⎜⎜⎜⎜⎝

I T ∗ T ∗2 . . . T ∗k

T T ∗T T ∗2T . . . T ∗kT
T 2 T ∗T 2 T ∗2T 2 . . . T ∗kT 2

...
...

...
T k T ∗T k T ∗2T k . . . T ∗kT k

⎞
⎟⎟⎟⎟⎟⎠ ≥ 0. (0.1)

When k = 1, we call the operator simply hyponormal, and the condition reduces to the familiar T ∗T ≥
TT ∗. The consideration of these classes is motivated in part by the Bram–Halmos characterization of 
subnormality ([5,17]): T is subnormal if and only if it is k-hyponormal for all k. We will occasionally refer 
to the matrix appearing in (0.1) as a Bram matrix.
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There is an alternative characterization of subnormality (under the mild restriction that the operator is a 
contraction: ‖T‖ ≤ 1) which motivates another collection of classes. We say T is n-contractive, n = 1, 2, . . .
if

n∑
j=0

(−1)j
(
n

j

)
T ∗jT j ≥ 0.

Observe that “1-contractive” is simply “contractive.” The Agler–Embry ([2]) characterization of subnormal-
ity (stated using the notion of hypercontractivity, which for this theorem is equivalent) is that a contraction 
T is subnormal if and only if it is n-contractive for all n.

The study of k-hyponormality has been productive since its initiation in [6]. Perhaps the strongest result 
is the proof that an operator T such that p(T ) is hyponormal for every complex polynomial p need not 
be subnormal [12]. This study and the study of related classes such as “weakly k-hyponormal” (especially 
quadratically or cubically hyponormal) have been fruitful. (There is a different concept of p-hyponormality – 
the notational overlap is quite unfortunate – and allied notions such as p-paranormality and absolute 
p-paranormality, which seem quite unrelated.)

The study of n-contractivity is more recent (more precisely, was re-initiated in [14] about a decade ago 
after a dormant period following Agler’s paper in 1985) and less developed than that of k-hyponormality. 
This study is related to the study of “n-hyperexpansivity” (a property in some sense apparently dual to 
n-contractivity; see, for example, [4] and subsequent papers), and to the study of “n-isometries” (see [3] and 
subsequent papers).

The goal of the current paper is to explore some conditions involving Bram-type matrices of Agler-type 
differences, for which positivity conditions yield mixtures of these conditions. These conditions include, as 
special cases in which the size of the matrix or the length of the difference is trivial, the standard ones.

Such exploration is reasonable because the relationships between k-hyponormality and n-contractivity 
are not well understood. The following diagram is useful.

One cannot expect too much: it is known that if one takes a certain recursively generated weighted 
shift (yielding a weight sequence of the form 

√
x, (

√
a, 
√
b, 
√
c)∧, where x is regarded as a parameter) – 

this notation for the two-atomic shift arising from Stampfli’s completion ([24]) will be reviewed later – the 
resulting shift has 1-HN ⇐ 2-HN ⇔ subnormal (a “collapse” of the left hand side); one can show that all 
the n-C classes are distinct in n as shown by various values of x. On the other hand, there is one general 
relationship known:

Theorem 0.1. [16] Suppose T is contractive. If T is k-hyponormal then T is 2k-contractive.
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In fact, the weaker condition Embry k-hyponormality is sufficient and what is actually used in the proof 
(see [13] and the discussion in [16]). This family of conditions is based upon positivity of the Embry matrices,

⎛
⎜⎜⎜⎜⎜⎝

I T ∗T T ∗2T 2 . . . T ∗kT k

T ∗T T ∗2T 2 T ∗3T 3 . . . T ∗k+1T k+1

T ∗2T 2 T ∗3T 3 T ∗4T 4 . . . T ∗kT 2

...
...

...
T ∗kT k T ∗k+1T k+1 . . . . . . T ∗2kT 2k

⎞
⎟⎟⎟⎟⎟⎠ . (0.2)

See [21] for results concerning the relationships between these positivity conditions; we will consider condi-
tions analogous to the Bram and Embry conditions in the final section.

There is a family of examples for which something can be said in the reverse direction of some 
n-contractivity condition implying some k-hyponormality. Consider perturbations in the first weight of 
the j-th Agler shift (recalled more completely below), yielding weight sequence

αj(x) :
√

x

j
,

√
2

j + 1 ,
√

3
j + 2 , . . . ,

and write Aj(x) for the shift.

Theorem 0.2 ([1]). The operator Aj(x), for some j ≥ 2, is

(i) n-contractive iff x ≤ n+j−1
n , and

(ii) n-hyponormal iff x ≤ n(n+j)+j−1
n(n+j) .

It follows that Aj(x) is n-hyponormal iff it is n(n + j)-contractive.

As Raúl Curto has pointed out, it is nonetheless an enduring puzzle how the Agler conditions (which 
have all the operators T ∗ “on the left”) can yield even 1-hyponormality, which carries information about a 
T ∗ “on the right.”

We first set some notation for weighted shifts, the standard testing ground for these various conditions. 
Consider �2 with its standard basis {ej}∞j=0. Given a weight sequence

α :
√
α0,

√
α1,

√
α2, . . . ,

we define the weighted shift Wα on �2 by

Wαej = √
αjej+1.

The moments of the shift are defined by

γ0 = 1 and γj =
j−1∏
i=0

αi, j ≥ 1. (0.3)

Some particular shifts we consider are the Agler shifts Ap, p = 2, 3, . . . having weight sequence αp :√
1
p , 
√

2
p+1 , . . . , and which were used by Agler as model operators for n-contractive operators ([2]). Observe 

that A2 is the Bergman shift.
A common device has been to take a weighted shift known to be subnormal and to “perturb” it in some 

way. For example, one can introduce a parameter into the m-th weight and consider what classes of interest 
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result for various values of the parameter. Particularly simple are perturbations in the zeroth weight of some 
shift W , yielding a weight sequence α(x) : √xα0, 

√
α1, . . .; we write Wα(x) for the shift. Alternatively, one 

may form a “back step extension,” which is to take the weight sequence for a subnormal shift and prefix 
one or more weights (parameters) to create a new sequence and new shift. One may then investigate what 
values of the parameters yield some property of interest.

It is well-known that the test for k-hyponormality simplifies considerably for weighted shifts. A weighted 
shift is k-hyponormal iff certain Hankel moment matrices are positive for n = 1, 2, . . . (see [6]):

⎛
⎜⎜⎜⎜⎝

γn γn+1 γn+2 . . . γn+k

γn+1 γn+2 . . . γn+k+1
γn+2 . . . . . . γn+k+2

...
...

...
γn+k γn+k+1 . . . γn+2k

⎞
⎟⎟⎟⎟⎠ ≥ 0. (0.4)

The test for some n-contractivity is likewise simplified for shifts. We seek positivity of

n∑
j=0

(−1)j
(
n

j

)
W ∗jW j .

This is readily seen to be diagonal, so it is enough to consider basis vectors, and the test at em yields

1 −
(
n

1

)
αm +

(
n

2

)
αmαm+1 − . . . .

A computation shows that we need

n∑
j=0

(−1)j
(
n

j

)
γm+j ≥ 0, m = 0, 1, 2, . . . . (0.5)

The notions of k-hyponormality and n-contractivity have a fundamental difference: if an operator is 
k-hyponormal, it is clearly j-hyponormal for all j ≤ k, as is easy by considering positivity of submatrices. 
But the Dirichlet shift D (with weights 

√
2/1, 

√
3/2, 

√
4/3, . . .) is 2-contractive (indeed, is the prototypical 

“2-isometry” for which I − 2D∗D+D∗2D2 = 0) but is clearly not a contraction. The notion originally used 
in [2] is as follows: an operator is n-hypercontractive if it is k-contractive for k = 1, 2, . . . , n. We will mostly 
be working in the context of contraction operators, and we record the following results, which have been 
known for some time but have not appeared in print.

Proposition 0.3. Let Wα be a weighted shift with only finitely many weights in the weight sequence α :√
α0, 

√
α1, . . . larger than 1, and let n ≥ 2 be arbitrary. If Wα is n-contractive, then it is (n − 1)-contractive 

(and hence contractive).

Proof. Given some operator T in L(H), integer n ≥ 1, and h ∈ H, let ρT,n(h) be the sum

ρT,n(h) :=
n∑

p=0
(−1)p

(
n

p

)
‖T ph‖2.

Clearly positivity of ρT,n(h) is the test at the vector h for positivity of the n-th Agler difference.
Since we have a weighted shift, it is sufficient to check such positivity at the standard basis vectors. 

Suppose in order to obtain a contradiction that Wα is n-contractive but not (n − 1)-contractive and let j
be the least integer such that
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ρWα,n−1(ej) < 0.

Citing the easy recursive relationship

ρWα,n(ej) = ρWα,n−1(ej) − αjρWα,n−1(ej+1),

and using our assumption that Wα is n-contractive, we have

0 ≤ ρWα,n(ej) = ρWα,n−1(ej) − αjρWα,n−1(ej+1), (0.6)

and therefore from our assumption that ρWα,n−1(ej+1) < 0. Continuing, we have that the sequence (
ρWα,n−1(ek)

)
k≥j

has only negative terms.
Further, as soon as k is so large that αk ≤ 1, we have from (0.6) that the sequence is weakly decreasing 

as well as negative.
From [2][Lemma 2.11] we have that if Wn

α → 0 in the strong operator topology, then n-contractivity 
implies (n − 1)-contractivity, so by the assumption that Wα is not (n − 1)-contractive we must have 
limj→∞ αj = 1. But it is easy to see that in this case (with n fixed) limj→∞ ρWα,n(ej) = 0, and this 
contradicts that the sequence is both negative and decreasing. �

Note that since the Dirichlet shift is a 2-isometry and therefore 2 contractive, but is not contractive, the 
result may not be trivially improved.

Given an operator T in L(H) and h ∈ H such that Tnh 
= 0 (n = 1, 2, . . .) we may define the weighted 

shift operator WT,h to be the shift with weight sequence 
(

‖Tn+1h‖
‖Tnh‖

)∞

n=0
(see, for example, [19]). From that 

paper we have the relationship

ρWT,h,m(ej) = ρT,m(T jh)
‖T jh‖2 , m ≥ 1; j ≥ 0. (0.7)

Observe as well that clearly ‖WT,h‖ ≤ ‖T‖.
The following is [22][Cor. 3], but we present an elementary proof for the convenience of the reader and 

to anticipate the result in Theorem 1.14 to come.

Theorem 0.4. Let T be a contraction and n-contractive for some n ≥ 2. Then T is (n − 1)-contractive. 
Therefore, for contractions n-contractivity coincides with n-hypercontractivity.

Proof. Suppose T is as assumed, and consider the case of some h for which T kh 
= 0 (k = 1, 2, . . .). Then we 
may form WT,h and using (0.7) we have WT,h n-contractive and since it is contractive it is (n −1)-contractive 
by the proposition. Then using (0.7) in the other direction and with j = 0 we obtain ρT,n−1(h) ≥ 0.

Consider now the case of some h 
= 0 such that for some k it happens that T kh = 0, and let K be the 
least such k. Define T̂ by

T̂ = T |∨K−1
j=0 T jh.

Surely T̂ is nilpotent, and therefore T̂m approaches zero in the strong operator topology. Also, T̂ is 
n-contractive since ρT̂ ,m(v) = ρT,m(v) for all v ∈

∨K−1
j=0 T jh and for all m, in particular for m = n. 

By Agler’s result [2][Lemma 2.11] T̂ is (n − 1)-contractive, and so

ρT,n−1(h) = ρT̂ ,n−1(h) ≥ 0.

This and the previous case together yield the result. �
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Remark that the theorem can be weakened to consider operators which one might call “finitely contrac-
tive” (but which turn out to be contractive) in that for any h, ‖T k+1h‖ > ‖T kh‖ happens only finitely often 
in k = k(h).

1. A mixed condition for weighted shifts

The condition “between” the Bram–Halmos and the Agler–Embry conditions (in some sense) involves 
matrices of differences; it is necessary to assemble some notation. Let Wα be a weighted shift with weight 
sequence α and recall the moments (γj)∞j=0 of the shift are defined in terms of the weights as in (0.3). In 
what follows we define quantities using superscript α to indicate the underlying weight sequence, but omit 
the α whenever possible to ease the notation.

So let Γα(k×k, m, j) = Γ(k×k, m, j) be the matrix of size k×k, with entries differences of moments of a 
shift of length m, with γj the first term in the (0, 0)-th entry of the matrix. Thus, for example, Γ(3 × 3, 2, 1)
is the matrix (

γ1 − 2γ2 + γ3 γ2 − 2γ3 + γ4 γ3 − 2γ4 + γ5
γ2 − 2γ3 + γ4 γ3 − 2γ4 + γ5 γ4 − 2γ5 + γ6
γ3 − 2γ4 + γ5 γ4 − 2γ5 + γ6 γ5 − 2γ6 + γ7

)
.

Observe that the matrices Γ(k+1 ×k+1, 0, j), j = 0, 1, 2, . . ., are the matrices relevant to k-hyponormality 
of the shift; the (one-by-one) matrices Γ(1 × 1, n, j), j = 0, 1, 2, . . ., are the expressions relevant to 
n-contractivity of the shift. We are concerned with positive (semi-) definiteness of such matrices, so let 
Pα(k×k, n, j) = P (k×k, n, j) denote the condition that Γ(k×k, n, j) ≥ 0 and Pα(k×k, n, ∗) = P (k×k, n, ∗)
denote Γ(k × k, n, j) ≥ 0, j = 0, 1, . . ., with similar use of ∗ in other entries. Thus subnormality of the shift 
is equivalent to either P (∗ × ∗, 0, ∗) or P (1 × 1, ∗, ∗) by Bram–Halmos and Agler–Embry respectively.

A few results are elementary. First, by looking at the (0, 0)-th entry of the relevant matrices, we obtain 
the following.

Proposition 1.1. For any weighted shift Wα and any k, n, and j, P (k × k, n, j) implies P (1 × 1, n, j). It 
follows that for any k and n, P (k×k, n, ∗) implies P (1 ×1, n, ∗) which is n-contractivity, and therefore that 
for any k, P (k × k, ∗, ∗) implies Wα is subnormal.

Observe that it is not true that (for example) P (∗, 2, ∗) implies subnormality; again the Dirichlet shift, 
with weights 

√
2/1, 

√
3/2, 

√
4/3, . . . is a 2-isometry but not even hyponormal. As noted before, if Wα is a 

contraction, n-contractivity is promoted to n-hypercontractivity and such results do hold.
We turn to some preliminary results, but first need some notation. Consider some contractive subnormal 

weighted shift with weight sequence α : α0, α1, . . .. Recall that Wα has a Berger probability measure μ
supported on [0, 1] such that the moments (γi)∞i=0 of Wα satisfy

γi =
1∫

0

ti dμ(t), i = 0, 1, . . . .

For each m = 0, 1, . . . , consider the measure μ̂m defined by μ̂m(t) = Cm(1 − t)mμ(t) where Cm is the 

normalizing constant Cm =
(∫ 1

0 (1 − t)mdμ(t)
)−1

. Denote the moments resulting from this measure by 

γ
(m)
n and the matrices arising from it by Γ(m)(k × k, �, j). It is trivial to verify that some m-length Agler 

difference for the original shift is a multiple of the appropriate γ(m)
n :

m∑
(−1)j

(
m

j

)
γn+j = C−1

m γ(m)
n , n = 0, 1, . . . .
j=0
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It follows readily that

Γ(k × k,m, j) = C−k
m Γ(m)(k × k, 0, j), k = 1, 2, . . . ; j = 0, 1, . . . . (1.1)

As one might hope, the following holds:

Theorem 1.2. If Wα is a contractive subnormal weighted shift, then it satisfies the property P (∗ × ∗, ∗, ∗).

Proof. Suppose that Wα is contractive and subnormal and fix k ≥ 1, m ≥ 0, and j ≥ 0. We have from (1.1)
that

Γ(k × k,m, j) = C−k
m Γ(m)(k × k, 0, j).

The matrix on the right hand side of this last is non-negative, since it is one of the matrices to test for 
(k− 1)-hyponormality of the (subnormal) weighted shift associated with the Berger measure μ̂m. Therefore 
the matrices to test for Pα(k × k, m, j) – that is, positivity of the matrices Γα(k × k, m, j) of differences of 
moments as in (0.3) associated with the weighted shift Wα – are non-negative, and the result follows. �

Consider some perturbation in the 0-th weight of a contractive weighted shift with weight sequence 
α : α0, α1, . . . to yield a weight sequence α(x) defined by

α(x) : x · α0, α1, . . . . (1.2)

Indicate by superscript x matrices, entries, and positivity conditions relevant to the perturbation. (Strictly 
speaking this should be indicated by superscripts of the form α(x), but again to ease the notation we 
will simply use x unless the underling weight sequence is in doubt.) In anticipation of the usual use of 
the Nested Determinant Test (that is, Sylvester’s criterion – see, e.g., [8], pg. 213) to determine matrix 
positivity, observe that for all n ≥ 2 and m ≥ 1,

det Γx(n× n,m, 0) = (1 − x)xn−1 det Γ(n− 1 × n− 1,m, 2) + xn det Γ(n× n,m, 0).

(This is easy by adding and subtracting x in the upper-left-most entry and doing an expansion.) Therefore 
(with x > 0 assumed)

det Γx(n× n,m, 0) ≥ 0

if and only if

det Γ(n− 1 × n− 1,m, 2) + x(det Γ(n× n,m, 0) − det Γ(n− 1 × n− 1,m, 2)) ≥ 0. (1.3)

We may obtain a result for any 0-th weight perturbations of any (non-recursively generated) subnormal 
weighted shift, where if α : α0, α1, . . . we take our perturbation to be of the form in (1.2). (Note that some 
papers simply insert x, instead of sα0, for the zeroth weight.) First we require a number of determinant 
lemmas. We are greatly indebted to Christian Krattenthaler ([20]) for showing us the approach leading to the 
proof of Lemma 1.4. For simplification, we adopt some temporary notation: let Hn,m = (gi+j+m)0≤i,j≤n−1
and DHn,m = (gi+j+m+1 − gi+j+m)0≤i,j≤n−1 (so, with g’s instead of γ’s, these are just Γ(n × n, 0, m) and 

−Γ(n × n, 1, m), respectively). Let H(k)
n,m = (gi+j+m+χ(j≥k))0≤i,j≤n−1 (where χ(P) is 1 if P is true and 0 if 

not); this turns out to be the matrix obtained by deleting the last row and k-th column from Hn+1,m (recall 
rows and columns are indexed starting at zero).

We begin with a preliminary lemma (for fuller details see the discussion following line (3.2) of [1]).
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Lemma 1.3. For any collection {aij} and any positive integer n we have

det(ai,j − ai,j+1)0≤i,j≤n−1 =
n∑

k=0

(−1)k det(ai,j+χ(j≥k))0≤i,j≤n−1.

Proof (sketch). The result follows from a determinant expansion using column multilinearity. For an exam-
ple, consider the determinant of the 2 by 2 matrix

M :=
(
a00 − a01 a01 − a02
a10 − a11 a11 − a12

)
.

Surely

detM = det
(
a00 a01
a10 a11

)
+ det

(
a00 −a02
a10 −a12

)
+

+ det
(
−a01 a01
−a11 a11

)
+ det

(
−a01 −a02
−a11 −a12

)
.

The third of these determinants is zero. The first, second, and fourth correspond, respectively, to the values 
in the sum in the right hand side of the statement arising from k = 2, k = 1, and k = 0. Observe that n − k

is the count of the number of second columns used from M (and hence negative signs acquired for the term 
in the right hand sum). �

We have as well need for a (multi-row) Laplace expansion to compute a determinant. Recall that such 
an expansion (see, e.g., [23]) is a (signed) sum of terms arising from submatrices: to do a Laplace expansion 
using the first n +1 rows, given a (square) matrix M = (mij)1≤i,j≤q we consider each subset S of size n +1
of {1, 2, . . . , q}, say S = {i1, i2, . . . , in+1} where these are written in increasing order. We form the matrix 
MS = (mikj)1≤k,j≤n+1. Letting S ′ be the complementary set {1, 2, . . . , q} �S, say S ′ = {p1, p2, . . . , pq−n−1}
again written in increasing order, we form the matrix MS′ = (mpkj)1≤k≤q−n−1,n+2≤j≤q (thus using entries 
from the last q − n − 1 rows of M). We adjust using the sign Sign(S) of the permutation

(
1 2 3 . . . n + 1 n + 2 n + 3 . . . q
i1 i2 i3 . . . in+1 p1 p2 . . . pq−n−1

)
. (1.4)

We then have that

detM =
∑

S⊆{1,2,...,q}
Sign(S) detMS · detMS′ . (1.5)

Lemma 1.4. With Hn,m, DHn,m, and H(k)
n,m as defined above, and with any collection {gi}, and for any n, 

we have

detDHn,2 · detHn+1,0 − detHn,2 · detDHn+1,0 = detDHn,1 · detHn+1,1. (1.6)

Proof (sketch). With the use of the previous lemma one obtains

detDHn,m =
n∑

k=0

(−1)n+k detH(k)
n,m. (1.7)

To see this, consider the auxiliary matrix
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DKn,m := (gi+j+m − gi+j+m+1)0≤i,j≤n−1

(that is, DHn,m with each column multiplied by −1). We may apply Lemma 1.3 to deduce that

detDKn,m =
n∑

k=0

(−1)k detH(k)
n,m.

Since detDKn,m = (−1)n detDHn,m we obtain (1.7).
Substituting (1.7) in the left hand side of (1.6), we obtain

detDHn,2 · detHn+1,0 − detHn,2 · detDHn+1,0 =

= detHn+1,0

n∑
k=0

(−1)n+k detH(k)
n,2 − detHn,2

n+1∑
k=0

(−1)n+k+1 detH(k)
n+1,0

= detHn+1,0

n−1∑
k=0

(−1)n+k detH(k)
n,2 − detHn,2

n∑
k=0

(−1)n+k+1 detH(k)
n+1,0. (1.8)

Consider now the auxiliary matrix G defined by

G :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

gn−1 . . . g1 g0 g1 g2 . . . gn+1
gn . . . g2 g1 g2 g3 . . . gn+2
...

...
...

...
...

...
g2n−1 . . . gn+1 gn gn+1 gn+2 . . . g2n+1
gn+1 . . . g3 g2 g2 g3 . . . gn+2
gn+2 . . . g4 g3 g3 g4 . . . gn+3

...
...

...
...

...
...

g2n . . . gn+2 gn+1 gn+1 gn+2 . . . g2n+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We will evaluate the determinant of G by a sequence of row and column operations.
Step 1: By subtracting row 1 from row n + 1 (remembering the row index begins at 0), row 2 from row 
n + 2, . . . , row n from row 2n, one sees that detG is the same as the determinant of the following matrix:

G′ :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

gn−1 . . . g1 g0 g1 g2 . . . gn+1
gn . . . g2 g1 g2 g3 . . . gn+2
...

...
...

...
...

...
g2n−1 . . . gn+1 gn gn+1 gn+2 . . . g2n+1

gn+1 − gn . . . g3 − g2 g2 − g1 0 0 . . . 0
gn+2 − gn+1 . . . g4 − g3 g3 − g2 0 0 . . . 0

...
...

...
...

...
...

g2n − g2n−1 . . . gn+2 − gn+1 gn+1 − gn 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Step 2: We next interchange columns to move the last n +1 columns to the front, interchanging the column 
headed gn−1 with the second of the columns headed g1, the column (not displayed) headed gn−2 with the 
column headed g2, and so on so as to finish with the (only) column headed g0 interchanged with the (last) 
column headed gn+1. (Obviously there is a potential sign change in the determinant which we shall consider 
shortly.) Observe that the resulting matrix is now block upper triangular with two blocks.
Step 3: We next perform further column interchanges to reverse the order of the (now) final n columns 
(which, after Step 2, are headed by gn−1, . . . , g0 in that order). (Again there is a possible sign change in the 
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determinant which we will take up soon.) Note that the resulting matrix retains its block upper triangular 
form.
Step 4: We multiply each of the final n columns by −1 so that the differences in the bottom rows are in the 
order gj − gj+1.

It is then a matter of counting column interchanges and multiplications by −1 to deduce that

(−1)s(n) detG′ = detDHn,1 · detHn+1,1,

where s(n) is a parity factor defined by

s(n) =
{

1 if n = 2� + 1 with � even or n = 2� with � odd,
2 if n = 2� + 1 with � odd or n = 2� with � even.

It therefore suffices to show that (−1)s(n) detG is the same as the expression in the last line of (1.8), that 
is,

(−1)s(n) detG = detHn+1,0

n−1∑
k=0

(−1)n+k detH(k)
n,2 − detHn,2

n∑
k=0

(−1)n+k+1 detH(k)
n+1,0. (1.9)

To this end we will perform a Laplace expansion for detG with respect to the first n + 1 rows of G. In 
building terms in the expansion which are not automatically zero because of duplicated columns, it helps 
to note that G contains columns whose first n + 1 entries duplicate which are headed (have first entry as) 
g1, . . . , gn−1 and unduplicated such columns headed by g0, gn, and gn+1. It turns out to be convenient to 
label these as “left” and “right” depending on whether they occur to the left or right of the column headed 
by g0 in our presentation of G, and we will call these column headers things like g�1 and gr1. In forming one of 
the terms in the Laplace expansion as in (1.5), we will call a column (or its header) “used” if it is one whose 
first n + 1 rows appear in the submatrix GS and “unused” if its final n rows appear in the submatrix GS′ . 
It is obvious that to have a term in the Laplace expansion which is not automatically zero we must not 
have both g�i and gri used. (Note that it is possible to have, for some i, neither g�i nor gri used and generate 
a term in the expansion not automatically zero.)

A little consideration shows as well that if some gri (1 ≤ i ≤ n −1) is used, then in fact gri+1, g
r
i+2, . . . , g

r
n−1

must also be used to avoid a trivial zero (and thus, of course, g�i , g�i+1, . . . , g
�
n−1 must be unused). For example, 

if gr1 is used, then g�1 must be unused else detGS = 0. But then if gr2 is unused, then there are duplicate 
columns in GS′ and so its determinant will be zero. Thus to achieve a non-zero determinant, if gr1 is used 
then we must use gr2, and (repeating the argument), gr3, . . . grn−1. Similarly, if g�i is unused, gri+1 and hence 
gri+1, g

r
i+2, . . . , g

r
n−1 must be used.

Various terms not trivially zero may be produced: leave g0 unused, which turns out to force 
gr1, g

r
2, . . . , g

r
n−1, gn, and gn+1 used and the others unused; use g0 but leave both g�1 and gr1 unused, which 

again determines completely the rest of the choices; use g0, one of the g1’s, and leave both g2’s unused, 
which turns out to require that it is g�1 which was used and again determines the rest of the choices; similar 
things leaving both gi’s unused for some 1 ≤ i ≤ n − 1; use g0 and one of each of the gi’s for 1 ≤ i ≤ n − 1
and either gn or gn+1. We leave to the reader to show that each of these choices yields a term in the final 
line of (1.8) except possibly for sign and that each such term corresponds to one of the choices (again except 
possibly for sign). In recording the various possibilities a tree diagram provides a useful record.

We present a sample of the computations needed to show that the signs align. Suppose we consider, 
for some 1 ≤ p ≤ n − 1, the term in which g0, g�1, g

�
2, . . . , g

�
p and grp+1, . . . , g

r
n−1, gn are used and (hence) 

gr1, g
r
2, . . . , g

r
p, g

�
p+1, . . . , g

�
n−1, gn+1 are unused. Consider first GS , which is clearly some column rearrange-

ment of Hn+1,0. As they occurred in GS the columns came in the order
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g�p, g
�
p−1, . . . , g

�
1, g0, g

r
p+1, . . . , g

r
n−1, gn,

so to put them in the order in which they occur in Hn+1,0 requires p transpositions to move g0 to first 
position, then p − 1 transpositions to place g�1, and so on, yielding 1 + 2 + . . . p = p(p + 1)/2 transpositions 
(and then all is in order). Thus we have

detGS = (−1)
p(p+1)

2 detHn+1,0. (1.10)

Consider now GS′ . One may show that the choice of p yields (n + 1)-st row elements g2, g3, . . . ,

g2+p−1, g2+p+1, . . . , gn+2 (without regard to order) as the column headers for GS′; this is to say (remem-
bering that we index columns starting at zero) that we have produced some column rearrangement of H(p)

n,2. 
It turns out (conveniently) that the permutation to put gr1, gr2, . . . , grp, g�p+1, . . . , g

�
n−1, gn+1 (which are the 

column headers in G of the columns whose headers in GS′ are g2, g3, . . . , g2+p−1, g2+p+1, . . . , gn+2) in proper 
order is the same as that required to put the column headers for GS′ in order, so we work with the former. 
The unused column headers came in the order

g�n−1, g
�
n−2, . . . , g

�
p+1, g

r
1, g

r
2, . . . , g

r
p, gn+1,

and to put these in proper order requires n − p − 2 interchanges to move g�p+1 to the front, n − p − 3 to put 
g�p+2 in second position, and so on for a total of 1 +2 + . . . (n −p −2) = (n −p −2)(n −p −1)/2 interchanges 
to order the g�i appropriately, and then n − p − 1 interchanges to move gr1 to the front, another n − p − 1 to 
move gr2 to second position, and so on, for a total of p(n − p − 1) interchanges to complete the ordering. It 
results that

detGS′ = (−1)
(n−p−2)(n−p−1)

2 +p(n−p−1) detH(p)
n,2. (1.11)

The contribution of the term in question to detG as in (1.5) also includes the sign of the permutation 
corresponding to the choice of S as in (1.4). In the case under consideration, and indexing the columns for 
convenience starting at 1 instead of 0, this is

(
1 2 . . . p + 1 p + 2 . . . n n + 1

n− p n− p + 1 . . . n n + p + 1 . . . 2n− 1 2n

n + 2 . . . 2n− p 2n− p + 1 . . . 2n 2n + 1
1 . . . n− p− 1 n + 1 . . . n + p 2n + 1

)
.

The transpositions required to move “1” in the second row to first position in the second row are obviously 
n + 1 in number, and the same is true to move 2, . . . , n − p − 1 to the front, yielding (n + 1)(n − p − 1)
transpositions. It then takes n − p − 1 transpositions to move each of n + 1, n + 2, . . . , n + p to its position, 
yielding p(n − p − 1) more transpositions. Thus we have that

Sign(S) = (−1)(n+1)(n−p−1)+p(n−p−1). (1.12)

So we have finally, putting together (1.10), (1.11), and (1.12) with a modest computation, that the contri-
bution of this term in the Laplace expansion toward detG is

(−1)−p2+ 3
2n(n−1) detHn+1,0 detH(p)

n,2.

This, multiplied by the factor (−1)s(n), is what must be compared to the appropriate term in the sum 
from (1.8), which is (−1)n+p detHn+1,0 detH(p)

n,2 – that is, we must verify a portion of (1.9) – and showing 
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these are equal is a straightforward computation using cases on p even or odd and the cases for n which 
play into s(n). �

The lemma yields information in terms of the various matrices Γ.

Proposition 1.5. For any n ≥ 1, m ≥ 0, and j ≥ 0, we have

det Γ(n + 1 × n + 1,m, j) det Γ(n× n,m + 1, j + 2) −

− det Γ(n× n,m, j + 2) det Γ(n + 1 × n + 1,m + 1, j) =

= det Γ(n× n,m + 1, j + 1) det Γ(n + 1 × n + 1,m, j + 1).

Proof. This follows immediately from the lemma upon setting gi to 
∑m

k=0(−1)k
(
m
k

)
γi+j+k (the m-th dif-

ference beginning at i + j) for 0 ≤ i and upon noticing that the difference of successive m-th differences is 
the (m + 1)-st difference. �

We need as well a result concerning determinants of moment matrices for subnormal shifts which are not 
recursively generated. Recall that a weighted shift is recursively generated if there is a recursion among the 
moments (see, for example, [8]); it is also known that a shift is recursively generated if and only if it has a 
finitely atomic Berger measure.

Lemma 1.6. Let Wα be a subnormal weighted shift which is not recursively generated and let Γ(n × n, 0, j)
(n ≥ 2, j ≥ 0) be the usual moment matrices. Then for any such n,

det

⎛
⎜⎜⎝

0 γ1 γ2 . . . γn
γ1 γ2 γ3 . . . γn+1
...

...
γn γn+1 γn+2 . . . γ2n

⎞
⎟⎟⎠ = det Γ(n + 1 × n + 1, 0, 0) − det Γ(n× n, 0, 2) < 0.

As well, if in addition Wα is contractive, then for any such n and any m ≥ 0,

det Γ(n + 1 × n + 1,m, 0) − det Γ(n× n,m, 2) < 0. (1.13)

Proof. The claimed equality is trivial, so suppose the first inequality fails for some such shift and some n. 
Observe first that each Γ(n × n, 0, j) is both positive and non-singular, where positivity is because Wα is 
subnormal and non-singularity follows from [9][Prop. 5.13]. Multiplying by 1

α2n
0

, we have

0 ≤ det

⎛
⎜⎜⎜⎜⎝

0 γ1
α2

0

γ2
α2

0
. . . γn

α2
0γ1

α2
0

γ2
α2

0

γ3
α2

0
. . . γn+1

α2
0

...
...

γn

α2
0

γn+1
α2

0

γn+2
α2

0
. . . γ2n

α2
0

⎞
⎟⎟⎟⎟⎠ = det

⎛
⎜⎜⎝

0 γ′
1 γ′

2 . . . γ′
n

γ′
1 γ′

2 γ′
3 . . . γ′

n+1
...

...
γ′
n γ′

n + 1 γ′
n+2 . . . γ′

2n

⎞
⎟⎟⎠ , (1.14)

where the γ′
k denote the moments for the shift with weight sequence α1, α2, . . . . (Observe that this shift is 

both subnormal and non-recursively generated.) Then surely for any x > 0,

det

⎛
⎜⎜⎝

1
x2 γ′

1 γ′
2 . . . γ′

n
γ′
1 γ′

2 γ′
3 . . . γ′

n+1
...

...
′ ′ ′ ′

⎞
⎟⎟⎠ > 0, (1.15)
γn γn + 1 γn+2 . . . γ2n
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since the left-hand side is the expression in (1.14) plus 1
x2 times the determinant of Γ′(n −1 ×n −1, 0, 2); the 

latter matrix has strictly positive determinant, noting that this latter is positive and non-singular. But then 
citing Lemma 3.3 and Proposition 2.2 (v) of [9], we have that the shift with weight sequence x, α1, α2, . . .
(a one-length back step extension of α1, α2, . . .) is n-hyponormal for any x > 0, which contradicts Proposi-
tion 3.4 of that same paper.

To show the second claim, fix m, and suppose we consider some (contractive, non-recursively generated) 
shift with Berger measure μ. Let Cm =

∫ 1
0 (1 − t)m dμ(t), and consider the shift whose moments are given 

by the measure 1
Cm

(1 − t)m dμ(t). Observe that this is subnormal, contractive, and that the two shifts are 
finitely atomic, or not, together. Denote the matrices relevant to this second shift by Γm(n × n, k, j). But 
then it is easy to see (using Cm < 1) that

det Γ(n + 1 × n + 1,m, 0) − det Γ(n× n,m, 2) =

= Cn+1
m det Γm(n + 1 × n + 1, 0, 0) − Cn

m det Γm(n× n, 0, 2)

≤ Cn
m det Γm(n + 1 × n + 1, 0, 0) − Cn

m det Γm(n× n, 0, 2)

< 0,

by what was just proved. �
Note that the result need not hold if the shift is recursively generated, since its moment matrices of large 

enough size will have deficient rank and thus be singular (see [9]).
We have finally arrived at the following.

Theorem 1.7. Let Wα be a subnormal weighted shift not recursively generated, and Wα(x) a 0-th weight 
perturbation of Wα with x > 0, where α(x) is as in (1.2). Then for all n ≥ 2 and all m ≥ 1, the set of 
x > 0 for which Wα(x) has P x(n × n, m, ∗) is a finite half-open interval of the form (0, xn,m] with xn,m

strictly positive. The xn,m are decreasing in n and strictly decreasing in m, and this yields that Wα(x) has 
P x(n × n, m, ∗) implies Wα(x) has P x(n × n, k, ∗), 0 ≤ k ≤ m.

Proof (sketch). Denote as usual the matrices for the perturbed shift by Γx(n × n, �, j). Note that we need 
only check matrices of the form Γx(n ×n, k, 0) because the Γx(n ×n, k, i) for i ≥ 1 are simply scalings, by xn, 
of the related matrix Γ(n ×n, k, i) for Wα, and these are positive since Wα is subnormal. Note also that for 
the final conclusion it obviously suffices to show for Wα(x) that P (n × n, m, ∗) implies P (n × n, m − 1, ∗).

Consider first the question of when, for some n and m, we have

det Γx(n× n,m, 0) ≥ 0

(which is surely necessary for matrix positivity). Citing (1.3) this happens if and only if

det Γ(n− 1 × n− 1,m, 2) + x(det Γ(n× n,m, 0) − det Γ(n− 1 × n− 1,m, 2)) ≥ 0.

Considering the expression just written, we have using (1.13) that this is linear in x and that x has (strictly) 
negative coefficient, and observe that the constant term is (strictly) positive since Wα is subnormal and not 
recursively generated. Thus the determinant is non-negative if and only if x falls below the determinant 
“cutoff” dn,m:

x ≤ dn,m := −det Γ(n− 1 × n− 1,m, 2)
det Γ(n× n,m, 0) − det Γ(n− 1 × n− 1,m, 2) .
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We may now compare the cutoffs for m and m − 1; with a little algebra, one may show that

dn,m−1 > dn,m (1.16)

if and only if

− det Γ(n− 1 × n− 1,m− 1, 2) det Γ(n× n,m, 0) +

+ det Γ(n− 1 × n− 1,m, 2) det Γ(n× n,m− 1, 0) > 0, (1.17)

but the term on the left hand side of (1.17) is

det Γ(n− 1 × n− 1,m, 1) det Γ(n× n,m− 1, 1) (1.18)

citing Proposition 1.5, and this last is (strictly) positive since Wα is subnormal and not recursively generated.
We show next that xn,m = min{dk,m : 2 ≤ k ≤ n}. Since if Γx(n × n, m, 0) is positive it surely has 

non-negative determinant, as do each of its principle submatrices, including each Γx(k×k, m, 0), 2 ≤ k ≤ n. 
Thus xn,m is no larger than the proposed minimum. But if 0 < x < min{dk,m : 2 ≤ k ≤ n}, by what was 
shown above about the linearity with negative x coefficient of the expressions yielding these quantities, we 
have that each of the detΓx(k×k, m, 0) is strictly positive, 2 ≤ k ≤ n, so by the nested determinant test we 
have Γx(n × n, m, 0) positive. The interval is closed on the right because matrix positivity is a continuous 
condition.

It is clear that the xn,m are decreasing in n since positivity of a larger matrix implies positivity of its 
principle submatrices. To show that the xn,m are decreasing in m, suppose x < xn,m+1. It follows that 
x < dk,m+1, 2 ≤ k ≤ n, and arguing as before and using the strict decrease of the dn,j in j (as in (1.16)) we 
have x < dk,m, 2 ≤ k ≤ n. Again using the nested determinant test we have Γx(n × n, m, 0) positive. It is 
then easy to finish the remainder, including the strict decrease in m, again using 1.16. �

Remark that these nested and decreasing intervals are familiar from the cases of k-hyponormality and 
n-contractivity.

We may obtain additional information for a 0-th weight perturbation of the Agler shifts Ap, p = 2, 3, . . . , 
to Ap(x) with weight sequence

√
x

p
,

√
2

p + 1 , . . . . (1.19)

(Observe this is of the form in (1.2) with the specific weights of the Agler shifts.) It is convenient to rewrite 
the condition (1.3) in the form

det Γx(n× n,m, 0) ≥ 0 iff x ≤ 1
1 − det Γ(k×k,m,0)

det Γ(k−1×k−1,m,2)

. (1.20)

Proposition 1.8. For a 0-th weight perturbation of Ap, p = 2, 3, . . . to Ap(x) with weight sequence as in 
(1.19) and for any k ≥ 2 and m ≥ 0, the set of x > 0 for which Ap(x) satisfies P (k× k, m, ∗) is of the form 
(0, xc], with

xc = xc(p, k,m) = 1
1 − (p−1)

(k+m+p−2)(k)

.

These cutoffs are decreasing in k and m to 1, yielding nested intervals decreasing to (0, 1] for k or m
decreasing separately, and it follows that for all p, k ≥ 2, and m,
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P (k × k,m, ∗) ⇒ P (i× i, n, ∗), 1 ≤ i ≤ k, 0 ≤ n ≤ m.

Proof. Fix p in the indicated range, and hold it implicit notationally in what follows. Considering the 
condition in (1.20), and using (1.1), this is

x ≤ 1
1 − det Ck

m Γ(m)(k×k,0,0)
det Ck−1

m Γ(m)(k−1×k−1,0,2)

= 1
1 − Cm det Γ(m)(k×k,0,0)

det Γ(m)(k−1×k−1,0,2)

.

Since the Berger measure for Ap is (p − 1)(1 − t)p−2dt we have

Cm =
1∫

0

(1 − t)mdμ(t) =
1∫

0

(1 − t)m(p− 1)(1 − t)p−2dt = p− 1
m + p− 1 .

It remains to obtain the ratios det Γ(m)(k×k,0,0)
det Γ(m)(k−1×k−1,0,2) , and these are simply determinants of the moment 

matrices for the measure μ̂m(t) = Cm(1 − t)mμ(t), and recalling the implicit dependence upon p, this is for 
the measure (1 − t)m+p−2(m + p − 1)dt, which is simply the measure for Ap+m. These determinant ratios 
were obtained in [1][Lemma 2.5] (note that what is there is for initial size (n + 1) × (n + 1)), and what 
results is

det Γ(m)(k × k, 0, 0)
det Γ(m)(k − 1 × k − 1, 0, 2)

= m + p− 1
(k + m + p− 2)k .

Putting this all together yields det Γx(k × k, m, 0) ≥ 0 if and only if x ≤ 1
1− (p−1)

(k+m+p−2)(k)
. The rest follows 

easily. �
Observe that an increase in k is, in an order sense, more powerful to decrease the cutoff than an increase 

in m. This is reflective of the general fact that the matricial positivity condition is more powerful than the 
single positivity condition (recall k-hyponormality implies 2k-contractivity). We remark also that since we 
have explicit formulas for the determinants one can achieve the result for the Ap(x) directly and without 
the use of Theorem 1.7.

One may phrase things about these 0-th weight perturbations of the Ap somewhat differently by using 
the cutoffs above to note when one property forces or coincides with another. For example, we have from a 
computation the following, which includes [1][Theorem 2.6] as a special case.

Proposition 1.9. Consider the usual 0-th weight perturbations of Ap for some p ≥ 2, and any k ≥ 1 and 
m ≥ 0. Then Ap has P (k×k, m, ∗) if and only if it is (pk+k2 +m +km)-contractive – i.e., has P (1 ×1, pk+
k2 + m + km, ∗).

Note again the relative “power” of k and m.
As one might expect, equivalence with some k-hyponormality is more complicated. Again computations 

yield

Proposition 1.10. Consider the usual 0-th weight perturbations of Ap to Ax
p for some p ≥ 2, and any k, k′ ≥ 1

and m ≥ 0. Then Ax
p is k′-hyponormal if it has P (k × k, m, ∗) with

k′ ≤ 1 (
−p +

√
4k2 + (p− 2)2 + 4k(p− 2 + m)

)
;
2
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alternatively, if it is k′-hyponormal and with the inequality above reversed it has P (k×k, m, ∗). These prop-
erties coincide supposing the appropriate quantities are equal (and integers). Alternatively, given some Ap, 
for positivity of matrices of size k × k using differences of length m to yield positivity of (k′ + 1) × (k′ + 1)
moment matrices (no differences) for Ax

p – that is, k′-hyponormality – requires

m ≥ (k′ + 1 − k)(k′ + 1 + p− 2 + k)
k

(and m integer).

Proof. These are simply a matter of comparing the “cutoffs” in x arising from Proposition 1.8, recalling 
that j-hyponormality involves matrices of size j + 1 by j + 1. �

While some special cases are easy, we know of no “tidy” way to describe the general situation in which 
integral values are obtained.

We turn next to the case in which the shift to be perturbed is finitely atomic (again we will consider 
perturbations in the 0-th weight, yielding a weight sequence xα0, α1, . . . as in (1.2)). For a thorough dis-
cussion of such shifts see [8] and [9], and we merely indicate what is needed. We will consider (contractive) 
subnormal shifts whose Berger measure contains r atoms (of course in the interval [0, 1]); r is the “rank” of 
the weight sequence. We will denote the weight sequence of such a shift by (α0, α1, . . . , α2r−2)∧ (as turns 
out to be appropriate – see [10][Lemma1.2] and surrounding material). It is known that for such a shift one 
has Γ(r+1 × r+1, 0, j) singular for any j but that the matrices Γ(k×k, 0, j) are non-singular for 1 ≤ k ≤ r

(of course all the Γ’s are at least non-negative for the original subnormal shift).
It is well known that if (α0, α1, . . . , α2r−2)∧ is such a weight sequence then (with α2r−1 the next weight) 

one has (α0, α1, . . . , α2r−2)∧ = α0, (α1, α2, . . . , α2r−1)∧. It is therefore essentially equivalent to consider 
a back step extension of length one or a perturbation of the 0-th weight of such a shift. It then follows 
that for a 0-th weight perturbation of such a shift r-hyponormality is equivalent to subnormality (see 
[10][Theorem 1.3]).

It is easy to check that the first result of Lemma 1.6 holds with suitable modification (by comparing 
expansion about the first row – with the missing “1” – to the expansion about the first row of detΓ(n +1 ×
n + 1, 0, 0)):

Lemma 1.11. If Wα is a subnormal weighted shift recursively generated of rank r, then for n ≤ r we have

det

⎛
⎜⎜⎝

0 γ1 γ2 . . . γn
γ1 γ2 γ3 . . . γn+1
...

...
γn γn + 1 γn+2 . . . γ2n

⎞
⎟⎟⎠ = det Γ(n + 1 × n + 1, 0, 0) − det Γ(n× n, 0, 2) < 0.

We then have the following, whose hypothesis contains two unexpected assumptions we shall address 
shortly.

Theorem 1.12. Let Wα be a contractive subnormal weighted shift recursively generated of rank r with no 
atom at 0 and no atom at 1, and Wα(x) the 0-th weight perturbation of Wα with weight sequence α(x) as in 
(1.2) with x > 0. Then for all 2 ≤ n ≤ r and all m ≥ 1, the set of x > 0 for which Wα(x) has P (n ×n, m, ∗)
is a finite half-open interval of the form (0, xn,m] with xn,m strictly positive. The set of x for which Wα(x)
has P (r + 1 × r + 1, m, ∗) is the half-open interval (0, 1] for any m. The xn,m are decreasing in n and 
decreasing in m, and this yields that Wα(x) has P (n × n, m, ∗) implies Wα(x) has P (n × n, k, ∗), 2 ≤ n ≤ r

and 0 ≤ k ≤ m.
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Proof (sketch). The proofs for the assertions for n ≤ r are exactly as in the proof of Theorem 1.7 (no issues 
of matrix singularities arise). For n = r + 1, recall that r-hyponormality, which is P (r + 1 × r + 1, 0, ∗), 
coincides with subnormality (as noted above, this is to be found in [10][Lemma 1.2]), and recall also that 
a 0-th weight perturbation of a subnormal shift remains subnormal if the 0-th weight remains the same or 
decreases; these together result in the claim that the set of x for which Wα(x) has P (r + 1 × r + 1, 0, ∗) is 
the half-open interval (0, 1].

To consider the set of x for which Wα(x) has P (r + 1 × r + 1, m, ∗), note that in light of Lemma 1.11 we 
may consider determinant cutoffs as before; however, when we imitate the computations in (1.16), (1.17), 
and (1.18) these cutoffs are the same for all m since det Γ(r + 1 × r + 1, m − 1, 1) = 0. The remaining 
assertions follow easily. �

The result must be modified if there is an atom at 0 or an atom at 1, although neither modification is 
difficult. Suppose first that there is an atom at 1. If the Berger measure μ for Wα has rank r (is r-atomic) 
with one of the atoms at 1, the measure for the shifts arising from (1 − t)p dμ(t) (for p ≥ 1, which give rise 
to iterated differences of moments for Wα) is (r−1)-atomic and not r-atomic. Thus the expression in (1.18)
for m = 1, say, becomes zero not at n = r + 1 (from det Γ(n × n, m − 1, 1) with n = r + 1) but at n = r

(from det Γ(n − 1 × n − 1, m, 1)).
If there is an atom at 0, the assertion that the set of x for which Wα(x) has P (r + 1 × r + 1, m, ∗) is 

“the half-open interval (0, 1] for any m” must be altered to “a half-open interval (0, c] with c ≥ 1.” It is 
well-known (see, for example, Lemma 5.2 of [6]) that to decrease the zeroth weight of a subnormal weighted 
shift leaves it subnormal, and that the result of such an operation is to produce a new shift whose Berger 
measure has a mass at zero. If our initial shift is the result of such an operation, of course the zeroth weight 
may grow and the shift remain subnormal. A direct computation with finitely atomic measures yields the 
appropriate constant c; we leave to the interested reader the modifications of the result for these two special 
cases.

Samples of what results when there is an atom at 1, moved to the case of back step extensions, include the 
following, whose proofs we omit. Recall first the Stampfli subnormal completion of three increasing weights 
(see [24]). In that paper, the author showed that given three strictly increasing initial weights, the weight 
sequence may be completed to the weight sequence of a subnormal shift which is, in fact, two-atomic in 
general (in special cases, one-atomic), or, equivalently, recursively generated in that there is a finite recursion 
of length two for the sequence of moments (in special cases, of length one). The weight sequence for such 
a completion, given the initial weights 

√
a, 

√
b, and 

√
c, is denoted (

√
a, 
√
b, 
√
c)∧ with 0 < a < b < c. We 

choose 0 < a < b < 1 and set c to the value

c = a(b2 − b + 1) − b

(a− 1)b , (1.21)

which is known to yield norm exactly 1 (equivalently, an atom at 1) by an elementary computation.

Proposition 1.13. For back-step extensions of (
√
a, 
√
b, 
√
c)∧, with a, b, and c, as just above, we have

•
√
x, (

√
a, 
√
b, 
√
c)∧ is subnormal if and only if it is 2-hyponormal (which is P (3 × 3, 0, ∗)) if and only if 

it has P (2 × 2, 1, ∗);
• √

y, 
√
x, (

√
a, 
√
b, 
√
c)∧ is subnormal if and only if it is 3-hyponormal (which is P (4 × 4, 0, ∗)) if and 

only if it has P (3 × 3, 1, ∗).

Efforts to increase the “Agler–Embry” parameter m (the length of the differences) to compensate for 
further decrease in the “Bram–Halmos” parameter k (the size of the matrix) do not yield subnormality. 
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Observe that in this situation we have an equivalence between P (k×k, m, ∗) and P (k′×k′, m′, ∗) for k 
= k′

and m 
= m′.
It turns out that if Wα is a contraction with weights approaching 1 one has a general result relating 

various properties P (· × ·, ·, ·). The proof is much the same as for Proposition 0.3.

Theorem 1.14. Let Wα be a contractive weighted shift with weights αj → 1. Then for any k ≥ 2 and m ≥ 0, 
P (k × k, m + 1, ∗) implies P (k × k, m, ∗).

Proof. Suppose that Γ(k × k, m + 1, ∗) ≥ 0 but there is some (least) j such that Γ(k × k, m, j) ≯ 0. Let v
be some non-zero vector such that

vTΓ(k × k,m, j) v < 0.

It is easy to check that Γ(k× k, m + 1, �) = Γ(k × k, m, �) − Γ(k × k, m, � + 1) for any �, and therefore that

0 ≤ vTΓ(k × k,m + 1, j) v = vTΓ(k × k,m, j) v − vTΓ(k × k,m, j + 1) v.

Hence

vTΓ(k × k,m, j + 1) v ≤ vTΓ(k × k,m, j) v

and the sequence

(
vTΓ(k × k,m, �) v

)
�≥j

is negative and weakly decreasing.
However, since k and m are fixed and the weights αj approach 1, the entries of Γ(k × k, m, �) approach 

0 as � → ∞ (approaching multiples less than one of (1 − 1)m), and so

vTΓ(k × k,m, �)v → 0 as � → ∞,

which is impossible for a negative weakly decreasing sequence. �
Observe that if Wα is “close enough” to a contraction in having weights approaching 1 the result holds 

as well and yields that in fact Wα must be a contraction.
The similar result for n-contractivity (‖Wα‖ ≤ 1 and P (1 × 1, m +1, ∗) together imply P (1 × 1, m, ∗), or, 

put differently, that for a contractive shift n-contractivity implies n-hypercontractivity) holds even if the 
weights do not converge to 1, but the result relies on work of Agler [2] using the fact that if αj � 1 then 
Wn

α → 0 SOT, for which we have not found a substitute.
A general implication (although not equivalence) is available for weighted shifts. It recaptures as a special 

case the result in Theorem 0.1 that k-hyponormality implies 2k-contractivity, recalling that k-hyponormality 
is P (k + 1 × k + 1, 0, ∗). We merely indicate the proof.

Theorem 1.15. Let W be a weighted shift and k ≥ 1 and m ≥ 0 be arbitrary. Then P (k × k, m, ∗) implies 
P (1 × 1, 2(k − 1) + m, ∗) (which latter is 2(k − 1) + m-contractivity).
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Proof (sketch). An example of the computation is the following, for k = 3 and m = 1:

0 ≤ (1,−2, 1)
(
γ0 − γ1 γ1 − γ2 γ2 − γ3
γ1 − γ2 γ2 − γ3 γ3 − γ4
γ2 − γ3 γ3 − γ4 γ4 − γ5

)⎛
⎜⎝ 1

−2
1

⎞
⎟⎠

= γ0 − 5γ1 + 10γ2 − 10γ3 + 5γ4 − γ5.

Recalling that for weighted shifts the test for n-contractivity is as in (0.5), we see that this is the test 
beginning at γ0 for 5-contractivity (that is, (2 · 2 + 1)-contractivity). �
2. Conditions for general operators

What can be said for general operators? Let Dm :=
∑m

i=0(−1)i
(
m
i

)
T ∗iT i = I−

(
m
1
)
T ∗T +

(
m
2
)
T ∗2T 2− . . .

denote the m-th difference for an operator T . We first define an analog of the Bram matrix in (0.1): for 
k ≥ 1 and m ≥ 0,

B(k × k,m) :=

⎛
⎜⎜⎜⎜⎜⎝

Dm T ∗Dm T ∗2Dm . . . T ∗kDm

DmT T ∗DmT T ∗2DmT . . . T ∗kDmT
DmT 2 T ∗DmT 2 T ∗2DmT 2 . . . T ∗kDmT 2

...
...

...
DmT k T ∗DmT k T ∗2DmT k . . . T ∗kDmT k

⎞
⎟⎟⎟⎟⎟⎠ . (2.1)

We may also define the analog of the Embry matrix in (0.2); given k ≥ 1, and m ≥ 0, define E =
E(k × k, m) by

E(k × k,m) :=

⎛
⎜⎜⎜⎜⎜⎝

Dm T ∗DmT T ∗2DmT 2 . . . T ∗k−1DmT k−1

T ∗DmT T ∗2DmT 2 T ∗3DmT 3 . . . T ∗kDmT k

T ∗2DmT 2 . . . T ∗k+1DmT k+1

...
. . .

...
T ∗k−1DmT k−1 T ∗kDmT k T ∗k+1DmT k+1 . . . T ∗2k−2DmT 2k−2

⎞
⎟⎟⎟⎟⎟⎠ . (2.2)

Obviously B((k + 1) × (k + 1), 0) (respectively, E((k + 1) × (k + 1), 0)) is just the standard operator 
matrix whose positivity is the requirement for Bram (respectively Embry) k-hyponormality.

In [21] are established the following relationships between positivity of the (k + 1) by (k + 1) Bram 
matrix B((k + 1) × (k + 1), 0) as in (0.1) and the (k + 1) by (k + 1) Embry matrix E((k + 1) × (k + 1), 0)
as in (0.2): first, Bram positivity implies Embry positivity. Second, the reverse does not hold, but does if 
T is invertible. Third, for unilateral weighted shifts Bram and Embry positivity are equivalent, and fourth 
(originally proved in [7][Theorem 4]), that for unilateral weighted shifts positivity of either (k+1) by (k+1)
matrix is equivalent to positivity of the (k + 1) by (k + 1) scalar moment matrices (0.4) for n = 0, 1, 2, . . . . 
It turns out that each of the analogous results holds in our generalized case, and the proofs are the same, 
mutatis mutandis, so we omit them.

Theorem 2.1. Let T be an operator, with B(k × k, m) and E(k × k, m) its generalized Bram and Embry 
matrices. For each k ≥ 2 and m ≥ 0, B(k × k, m) positive implies E(k × k, m) positive. The reverse 
implication need not hold, but does if T is invertible.

Theorem 2.2. Let Wα be a weighted shift, with B(k×k, m) and E(k×k, m) its generalized Bram and Embry 
matrices. For each k ≥ 1 and m ≥ 0, B(k × k, m) is positive if and only if E(k × k, m) is positive. Either 
of these is in turn equivalent to positivity of Γ(k × k, m, j) for j = 0, 1, 2, . . ..
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These results encourage one to believe that the definitions in (2.1) and (2.2) are the “right” ones. Given 
some T , we denote by PE(k × k, m) that E(k × k, m) is non-negative, with similar notation for the Bram 
matrices. The following result is also encouraging, since it generalizes the result that Embry (and hence 
Bram) k-hyponormality implies 2k-contractivity ([16][Theorem 1.2]).

Theorem 2.3. Let T be any operator and k ≥ 1 and m ≥ 0 be arbitrary. Then PE(k × k, m) implies T is 
(2(k − 1) + m)-contractive.

Proof (sketch). The proof requires some induction using the recurrence relationships amongst the differences 
(it helps to use a certain operation “�” from [15]) but a sample computation is as follows: for any vector v, 
we have

(v,−v)
(

I − 2T∗T + T∗2T 2 T∗(I − 2T∗T + T∗2T 2)T
T∗(I − 2T∗T + T∗2T 2)T T∗2(I − 2T∗T + T∗2T 2)T 2

)(
v

−v

)

= 〈(I − 3T ∗T + 3T ∗2T 2 − T ∗3T 3)v, v〉,

and so the operator matrix positivity, and the right choice of vector, yields the positivity of the appropriate 
difference operator. In general, given a vector v at which one wishes to show (2(k − 1) + m)-contractivity, 
one uses E(k × k, m) to yield a quadratic form applied to the vector

(v,−
(
k

1

)
v,

(
k

2

)
v, . . . ,±

(
k

k

)
v)T ,

as in the proof of [16][Theorem 1.2], and with the aid of [15][Lemma 2.1] to cope with differences of differences 
(for this last, see, for example, equation (2.3) below). �
Remarks and Questions. In the weighted shift case, matrices of differences of moments appear in [18] in 
the context of expansivity, with, as one might expect, reversed inequality constraints. (Recall that complete 
hyperexpansivity is defined by negativity, as opposed to positivity, of all m-th order operator differences: 
I − T ∗T ≤ 0, I − 2T ∗T + T ∗2T 2 ≤ 0, and so on.)

There is an intriguing condition which arose in passing in A characterization of k-hyponormality via 
weak subnormality [11]. The authors show that if T is 2-hyponormal then T ∗[T ∗, T ]T ≤ ‖T‖2[T ∗, T ]. If we 
suppose for a moment that ‖T‖ = 1, this becomes

(T ∗T − TT ∗) − T ∗(T ∗T − TT ∗)T ≥ 0,

which “looks like” the 1-hyponormality condition inserted into the first difference I − T ∗T ≥ 0.
In [15] the “�” operation previously mentioned was defined: T ∗nTn � T ∗mTm := T ∗nT ∗mTmTn and 

I � T ∗nTn := T ∗nTn amounts to some sort of “insertion in the middle.” In terms of this operation one 
obtains, for example,

Dm+1 = (I − T ∗T ) �Dm, (2.3)

where Dj is the j-th difference of T .
The relationship from [11]

(T ∗T − TT ∗) − T ∗(T ∗T − TT ∗)T ≥ 0,

is the 1-hyponormality condition inserted into the first difference I − T ∗T ≥ 0. Is there a version for 
k-hyponormality, k ≥ 2?
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The author wishes to express his thanks to an anonymous referee, whose careful reading and resulting 
comments substantially improved the exposition of this paper.
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