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On the first integrals of n-th order autonomous

systems

Yanxia Hu ∗

School of Mathematics and Physics, North China Electric Power University, Beijing, 102206 China

Abstract The first integrals of n-th order autonomous systems are considered. By getting integrating

factors using n− 1 first integrals of the systems, a necessary condition on the existence of global first integrals

of n-th order autonomous systems is presented. It is also proved that n − 1 functionally independent first

integrals of an n-th order autonomous system can be obtained if the system possesses n − 1 functionally

independent integrating factors. Based on one-parameter Lie groups admitted by n-th order autonomous

systems, several methods to obtain first integrals of the systems are presented. Simultaneously, several related

examples are given to illustrate the feasibility and the effectiveness of the proposed method.

Key words First integral, Integrating factor, Lie group, n-th order autonomous system
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1 Introduction

We mainly concentrate on n-th order autonomous systems of the following form,

dx

dt
= P (x), (1)

where x = (x1, x2, ..., xn) ∈ D ⊂ Rn(or Cn), P (x) = (P1(x), ..., Pn(x)), Pi(x) : D → R(or C). Pi(x) ∈
C∞(D) and t ∈ R(or C). Associated to system (1), there is the vector field X =

∑n
i=1 Pi(x)

∂

∂xi
. The

divergence is divX =
∑n

i=1

∂Pi

∂xi
. For n-th order non-autonomous systems

dx

dt
= P (t, x), (2)

it is often easy to be converted into the (n + 1)-th order autonomous systems by letting t = x0. In

this paper, we are interested in first integrals in the sense that the open set D ⊆ Rn where the first

integral is well defined. A function Φ(x) ∈ C ′(D),Φ(x) : D → R is called a first integral of system

(1) if it satisfies the following differential equation at every point in D,

XΦ(x) = 0.

First integrals are powerful tool in the study of ordinary differential equations and partial differ-

ential equations (see for instance Ref. [1]-[10] and the references therein). As we know, searching

for first integrals of a differential equations system plays a very important role for integrating the

system. The importance of the existence of a non-constant first integral Φ(x) of the vector field X

∗Author for correspondence. Email: yxiahu@163.com
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lies in the fact that the trajectories of the vector field X leave invariant the level sets of the function

Φ(x), and hence this is a strong constraint on the dynamical behavior of the vector field. So, one

often wants to recognize if an autonomous system has first integrals, and how to get first integrals

of the system. Many different methods have been used for studying the existence and searching for

first integrals of ordinary differential systems. For example, the Lie groups ([1, 11]), the Darboux

theory of integrability ([12]), the Painlevé analysis ([13]), the use of Lax pairs ([14]), etc. In [15],

The necessary conditions for the existence of functionally independent generalized local rational first

integrals of ordinary differential systems via resonances are studied. The main results in the paper

extend some of the previous related ones. In [16], The relations between the existence of local analytic

first integrals and resonance are studied, and a necessary condition for general nonlinear systems to

have rational first integrals is given. By using the so-called Kowalevsky exponents, the author also

presents a criterion for the nonexistence of rational first integrals for semiquasihomogeneous systems

in [16].

As we know, there are two important tools, which can be used to search for first integrals of

an autonomous system: One is inverse integrating factors and the other is Lie groups admitted by

the autonomous system. The fact that the existence of Lie group gives rise to study first integrals

is well known since Lie’s work [1, 11]. Let’s recall some basic concepts. We say that a function

μ(x) ∈ C∞(D) is an inverse integrating factor of the vector field X if Xμ(x) = μ(x)divX. Actually,

if μ(x) is an inverse integrating factor of the vector field X,
1

μ(x)
(μ(x) �= 0) is an integrating factor,

that is, div(
1

μ(x)
X) = 0. A one-parameter Lie group G with the following generator

V = V1
∂

∂x1
+ ...+ Vn

∂

∂xn

is admitted by system (1) if every transformations of G leave system (1) invariant, that is, [X,V ] =

A(x)X for some function A(x) ∈ C∞(D), where [·, ·] stands for the Lie bracket. Some recent results

about first integrals can be consulted in [17]-[26] and references therein. In [17], a sufficient condition

for the existence of explicit first integrals for vector fields which admit an integrating factor is proved,

and the result of the literature extends existing results on the integrability of vector fields.

In this paper, we further consider the first integrals of n-th order systems. Firstly, a necessary

condition on the existence of global first integrals of n-th order autonomous systems is presented and

proved. A method to get integrating factors using n− 1 first integrals of the systems is obtained. We

also prove that an n-th order autonomous system has n − 1 functionally independent first integrals

under knowing n − 1 functionally independent integrating factors of the system. Based on the Lie

groups admitted by n-th order autonomous systems, several methods to obtain the first integrals of

the systems are presented. Simultaneously, the corresponding results of n-th non-autonomous systems

are given. Finally, several related examples are given to illustrate the feasibility and the effectiveness

of the proposed methods.

2 The existence of global first integrals of n-th order au-

tonomous systems

Definition 2.1 System (1) is called a conservative system or X is called a volume-preserving vector

field if divX = 0.

Obviously, a conservative system has a divergence-free vector field X, and has a constant integrat-

ing factor. A conservative system has many excellent properties. Hamiltonian vector fields are a class

of typical conservative vector fields.

2



Definition 2.2 If system (1) and other autonomous system have the same trajectories (except for

individual points) in a subset of D, then we call that two system are equivalent in the subset.

Lemma 2.1 If system (1) has a non-constant integrating factor μ(x) in D, then system (1) is

equivalent to a conservative system.

Proof. Multiplying system (1) by μ(x), and let dτ =
dt

μ(x)
, we have

dx

dτ
= μ(x)P (x). (3)

Obviously, system (1) has the same trajectories with system (3) except for individual points in D, that

is, they are equivalent in D owing to Definition 2.2. Because μ(x) is an integrating factor of system

(1), div(μ(x)X) = 0. μ(x)X is a volume-preserving vector field. So, system (3) is a conservative

system.

In physics or mechanics, conservative systems (or being equivalent to conservative systems) are a

class of important systems in nature, and their vector fields maintain a constant volume of phase space.

As we know, in the neighborhood of ordinary points of system (1), the system has n− 1 functionally

independent first integrals. In the neighborhood of equilibrium points of system (1), there is the

complexity on the existence of first integrals of the system. Up to the present, we can see many

literatures to study the existence of the first integral of autonomous systems in the neighborhood of

the equilibrium points, see [15, 16] and the references therein. In this section, we consider the necessary

on the existence of global first integrals of system (1) by getting integrating factors of system (1).

Theorem 2.1 If system (1) has n − 1 functionally independent global first integrals Φi(x)(i =

1, 2, ..., n−1) inD, then system (1) has an integrating factor μ(x) =
Ln

Pn
, where Ln = |D(Φ1, ...,Φn−1)

D(x1, ..., xn−1)
|

is the Jacobi determinant.

Proof. Because Φi(x)(i = 1, 2, ..., n − 1) are n − 1 functionally independent global first integrals

of system (1), that is, XΦi(x) = 0, i = 1, 2, ..., n− 1, we have the following formulas in D,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂Φ1

∂x1
P1 + ...+

∂Φ1

∂xn
Pn = 0,

......
∂Φn−1

∂x1
P1 + ...+

∂Φn−1

∂xn
Pn = 0.

(4)

The above equations can be considered as a linear system in the unknown P1, P2, ..., Pn−1. Be-

cause Φi(i = 1, 2, ..., n − 1) are functionally independent of each other in D, the Jacobi determinant

|D(Φ1, ...,Φn−1)

D(x1, ..., xn−1)
| �= 0. Denote the determinant by Ln :

Ln = |D(Φ1, ...,Φn−1)

D(x1, ..., xn−1)
|.

According to (4), P1, P2, ..., Pn−1 can be expressed by Pn as follows,

Pi =
Pn

Ln
(−1)n−iLi, i = 1, 2, ..., n− 1,

where Li = | D(Φ1, ...,Φn−1)

D(x1, x2, ..., xi−1, xi+1, ..., xn)
|, i = 1, 2, ..., n− 1. Let μ(x) =

Ln

Pn
, one has

Li

Pi
= (−1)n−iμ(x), i = 1, 2, ..., n− 1.

Therefore,

Li = (−1)n−iμ(x)Pi, i = 1, 2, ..., n− 1. (5)
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Morover, we have

∂L1

∂x1
= | D(Φ1, ...,Φn−1)

D(x2,1, x3, ..., xn)
|+ | D(Φ1, ...,Φn−1)

D(x2, x3,1, ..., xn)
|+ ...+ | D(Φ1, ...,Φn−1)

D(x2, ..., xn−1, xn,1)
|,

∂L2

∂x2
= | D(Φ1, ...,Φn−1)

D(x1,2, x3, ..., xn)
|+ | D(Φ1, ...,Φn−1)

D(x1, x3,2, ..., xn)
|+ ...+ | D(Φ1, ...,Φn−1)

D(x1, x3, ..., xn−1, xn,2)
|,

......,

∂Ln

∂xn
= | D(Φ1, ...,Φn−1)

D(x1,n, x2, ..., xn−1)
|+ | D(Φ1, ...,Φn−1)

D(x1, x2,n, ..., xn−1)
|+ ...+ | D(Φ1, ...,Φn−1)

D(x1, ..., xn−1,n)
|,

where

| D(Φ1, ...,Φn−1)

D(x1, x2, ..., xli, ..., xi−1, xi+1, ..., xn)
| =

∣∣∣∣∣∣∣∣∣∣

∂Φ1

∂x1
...

∂2Φ1

∂xl∂xi
...

∂Φ1

∂xi−1

∂Φ1

∂xi+1
...

∂Φ1

∂xn

... ... ... ... ... ... ... ...
∂Φn−1

∂x1
...

∂2Φn−1

∂xl∂xi
...

∂Φn−1

∂xi−1

∂Φn−1

∂xi+1
...

∂Φn−1

∂xn

∣∣∣∣∣∣∣∣∣∣
.

Based on direct calculation, one can obtain

∂L1

∂x1
+ (−1)

∂L2

∂x2
+ (−1)2

∂L3

∂x3
+ ...+ (−1)n−1 ∂Ln

∂xn
= 0.

That is,
n∑

i=1

(−1)i−1 ∂Li

∂xi
= 0.

Substituting Li of (5) into the above formulae, one has

n∑
i=1

(−1)i−1 ∂((−1)n−iμ(x)Pi)

∂xi
=

n∑
i=1

∂((−1)n−1μ(x)Pi)

∂xi
= 0,

that is,
n∑

i=1

∂(μ(x)Pi)

∂xi
= 0.

So, μ(x) =
Ln

Pn
is an integrating factor of system (1).

Based on Theorem 2.1,
Li

Pi
(−1)n−i, i = 1, 2, ..., n−1 are all equal to μ(x) =

Ln

Pn
, and

Li

Pi
(−1)n−i, i =

1, 2, ..., n− 1 are also integrating factors of system (1).

Theorem 2.2 If system (1) has n − 1 functionally independent global first integrals Φi(x)(i =

1, 2, ..., n− 1) in D, then system (1) is a conservative system or is equivalent to a conservative system.

Proof. Because μ(x) =
Ln

Pn
is an integrating factor of system (1), system (1) is equivalent to a

conservative system by using Lemma 2.1. When μ(x) is constant, system (1) is actually a conservative

system.

Obviously, from the necessary condition on the existence of global first integrals of n-th order

autonomous systems above, we have the following result.

Corollary 2.1 If system (1) is not a conservative system or is not equivalent to a conservative

system, then it has not n− 1 functionally independent global first integrals in D.

For a conservative system (or a system being equivalent to a conservative system), under what

conditions does it has n − 1 functionally independent global first integrals? To begin this topic, we

consider a system of two equations (n = 2). To look for a first integral for a given system (1) of n = 2
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is an equivalent problem as to look for an integrating factor. As we know, If there exists a function

μ(x1, x2) ∈ D satisfying

μ(x1, x2)(P2dx1 − P1dx2) = dΩ(x1, x2),

then we call μ(x1, x2) an integrating factor, and Ω(x1, x2) a first integral of system (1). The first

integral Ω(x1, x2) associated to the integrating factor can be computed through the integral

Ω(x1, x2) =

∫
μ(x1, x2)(P2dx1 − P1dx2).

Because a conservative system has a constant integrating factor, the system can be integrated directly.

For n-th order autonomous systems, We have the following result.

Theorem 2.3 If system (1) has n − 1 functionally independent integrating factors in D, then it

has n− 1 functionally independent first integrals in an open subset of D.

Proof. Let μ1(x1, ..., xn), ..., μn−1(x1, ..., xn) be n−1 functionally independent integrating factors

of system (1). Then we have

∂(μi(x1, ..., xn)P1)

x1
+

∂(μi(x1, ..., xn)P2)

x2
+ ...+

∂(μi(x1, ..., xn)Pn)

xn
= 0, i = 1, 2, ..., n− 1.

Furthermore, some easy calculations show that
μi

μn−1
, i = 1, 2, ..., n− 2 is not a constant and

X(
μi

μn−1
) ≡ 0,

i.e.
μi

μn−1
, i = 1, 2, ..., n − 2 are nontrivial first integrals of system (1). Because μ1, ..., μn−1 are

functionally independent,
μ1

μn−1
, ...,

μn−2

μn−1

are functionally independent. Without loss of generality, we introduce the invertible transformation,

yi =
μi

μn−1
, i = 1, ..., n− 2,

yn−1 = xn−1,

yn = xn.

(6)

Denote this transformation by y = G(x). Then under it, system (1) is transformed to the following

system, ⎧⎪⎨
⎪⎩

ẏi = 0, i = 1, ..., n− 2,

ẏn−1 = Pn−1(G
−1(y)),

ẏn = Pn(G
−1(y)).

(7)

Apparently, system (7) has the first integrals Ωi(y) = yi, i = 1, ..., n − 2. In addition, we can know

that system (7) has the integrating factor,

ν(y) = μn−1(G
−1(y))|DyG

−1(y)|,
where |DyG

−1(y)| denotes the Jacobian determinant of G−1(y) with respect to y.

In fact, because μn−1(x) is an integrating factor of system (1), we have

∂(μn−1P1)

x1
+

∂(μn−1P2)

x2
+ ...+

∂(μn−1Pn)

xn
= 0. (8)

One can get the partial derivatives of μn−1P1 with respect to y1, y2, ..., yn,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂(μn−1P1)

y1
=

∂(μn−1P1)

x1
· ∂x1

∂y1
+

∂(μn−1P1)

x2
· ∂x2

∂y1
+ ...+

∂(μn−1P1)

xn
· ∂xn

∂y1
,

∂(μn−1P1)

y2
=

∂(μn−1P1)

x1
· ∂x1

∂y2
+

∂(μn−1P1)

x2
· ∂x2

∂y2
+ ...+

∂(μn−1P1)

xn
· ∂xn

∂y2
,

......
∂(μn−1P1)

yn
=

∂(μn−1P1)

x1
· ∂x1

∂yn
+

∂(μn−1P1)

x2
· ∂x2

∂yn
+ ...+

∂(μn−1P1)

xn
· ∂xn

∂yn
.
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The above equations system can be considered as a linear system in

∂(μn−1P1)

x1
,
∂(μn−1P1)

x2
, ...,

∂(μn−1P1)

xn
.

We can obtain the expression of
∂(μn−1P1)

x1
,

∂(μn−1P1)

x1
=

1

|A| |
D(μn−1P1, x2, ..., xn)

D(y1, y2, ..., yn)
|,

where A =
D(x1, x2, ..., xn)

D(y1, y2, ..., yn)
. Obviously, by using (6), we have

|A| = |D(x1, x2, ..., xn−2)

D(y1, y2, ..., yn−2)
|. (9)

Similarly, one can calculate the partial derivatives of μn−1P2 with respect to y1, y2, ..., yn. Then, from a

linear system in
∂(μn−1P2)

x1
,
∂(μn−1P2)

x2
, ...,

∂(μn−1P2)

xn
, one can obtain the expression of

∂(μn−1P2)

x2
,

∂(μn−1P2)

x2
=

1

|A| |
D(x1, μn−1P2, x3, ..., xn)

D(y1, y2, ..., yn)
|.

Similarly, one can also obtain the expressions of
∂(μn−1P3)

x3
, ...,

∂(μn−1Pn)

xn
as follows,

∂(μn−1Pi)

xi
=

1

|A| |
D(x1, x2, ..., xi−1, μn−1Pi, xi+1, ..., xn)

D(y1, y2, ..., yn)
|, i = 3, 4, ..., n.

Substituting
∂(μn−1Pi)

xi
, i = 1, 2, ..., n into (8) and expanding each determinant

|D(x1, x2, ..., xi−1, μn−1Pi, xi+1, ..., xn)

D(y1, y2, ..., yn)
|

in the i-th column, by using (9), we have

|D(μn−1P1, x2, ..., xn)

D(y1, y2, ..., yn)
|+ ...+ |D(x1, x2, ..., xn−3, μn−1Pn−2, xn−1, xn)

D(y1, y2, ..., yn)
|

+(−1)2n−2 ∂(μn−1Pn−1)

∂yn−1
|A|+ (−1)2n−3 ∂(μn−1Pn−1)

∂yn−2
| D(x1, x2, ..., xn−2)

D(y1, y2, ..., yn−3, yn−1)
|+ ...

+(−1)n
∂(μn−1Pn−1)

∂y1
|D(x1, x2, ..., xn−2)

D(y2, ..., yn−1)
|

+(−1)2n−2 ∂(μn−1Pn)

∂yn
|A|+ (−1)2n−3 ∂(μn−1Pn)

∂yn−2
| D(x1, x2, ..., xn−2)

D(y1, y2, ..., yn−3, yn)
|+ ...

+(−1)n
∂(μn−1Pn)

∂y1
|D(x1, x2, ..., xn−2)

D(y2, ..., yn−2, yn)
| = 0.

(10)

Therefore, (10) can be rewritten as

∂(μn−1Pn−1|A|)
∂yn−1

+
∂(μn−1Pn|A|)

∂yn

+[|D(μn−1P1, x2, ..., xn)

D(y1, y2, ..., yn)
|+ ...+ |D(x1, x2, ..., xn−3, μn−1Pn−2, xn−1, xn)

D(y1, y2, ..., yn)
|

+(−1)2n−2 ∂(μn−1Pn−1)

∂yn−1
|A|+ (−1)2n−3 ∂(μn−1Pn−1)

∂yn−2
| D(x1, x2, ..., xn−2)

D(y1, y2, ..., yn−3, yn−1)
|+ ...

+(−1)n
∂(μn−1Pn−1)

∂y1
|D(x1, x2, ..., xn−2)

D(y2, ..., yn−1)
|

+(−1)2n−2 ∂(μn−1Pn)

∂yn
|A|+ (−1)2n−3 ∂(μn−1Pn)

∂yn−2
| D(x1, x2, ..., xn−2)

D(y1, y2, ..., yn−3, yn)
|+ ...

+(−1)n
∂(μn−1Pn)

∂y1
|D(x1, x2, ..., xn−2)

D(y2, ..., yn−2, yn)
|

−μn−1Pn−1
∂|A|
∂yn−1

− μn−1Pn
∂|A|
∂yn

] = 0.

(11)
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For every equations of (6), one can get partial derivatives with respect to y1 by the chain rule,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 =

∂(
μ1

μn−1
)

∂x1
· ∂x1

∂y1
+

∂(
μ1

μn−1
)

∂x2
· ∂x2

∂y1
+ ...+

∂(
μ1

μn−1
)

∂xn−2
· ∂xn−2

∂y1
,

0 =

∂(
μ2

μn−1
)

∂x1
· ∂x1

∂y1
+

∂(
μ2

μn−1
)

∂x2
· ∂x2

∂y1
+ ...+

∂(
μ2

μn−1
)

∂xn−2
· ∂xn−2

∂y1
,

......

0 =

∂(
μn−2

μn−1
)

∂x1
· ∂x1

∂y1
+

∂(
μn−2

μn−1
)

∂x2
· ∂x2

∂y1
+ ...+

∂(
μn−2

μn−1
)

∂xn−2
· ∂xn−2

∂y1
.

The above equations can be considered as a linear system in
∂xi

∂y1
, (i = 1, 2, ..., n− 2). So, we get

∂xi

∂y1
=

1

|
D( μ1

μn−1
, ..., μn−2

μn−1
)

D(x1, ..., xn−2)
|
·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂( μ1

μn−1
)

∂x1
...

∂( μ1

μn−1
)

∂xi−1
1

∂( μ1

μn−1
)

∂xi+1
...

∂( μ1

μn−1
)

∂xn−2
∂( μ2

μn−1
)

∂x1
...

∂( μ2

μn−1
)

∂xi−1
0

∂( μ2

μn−1
)

∂xi+1
...

∂( μ2

μn−1
)

∂xn−2

...
∂(μn−2

μn−1
)

∂x1
...

∂(μn−2

μn−1
)

∂xi−1
0

∂(μn−2

μn−1
)

∂xi+1
...

∂(μn−2

μn−1
)

∂xn−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, i = 1, 2, ..., n−2.

Similarly, we can get the expressions of
∂xi

∂yj
, j = 2, ..., n − 2. Substituting

∂xi

∂yj
, i, j = 1, 2, ..., n − 2,

into the determinants of (11), by very tedious computation one can get the following formula,

|D(μn−1P1, x2, ..., xn)

D(y1, y2, ..., yn)
|+ ...+ |D(x1, x2, ..., xn−3, μn−1Pn−2, xn−1, xn)

D(y1, y2, ..., yn)
|

+(−1)2n−2 ∂(μn−1Pn−1)

∂yn−1
|A|+ (−1)2n−3 ∂(μn−1Pn−1)

∂yn−2
| D(x1, x2, ..., xn−2)

D(y1, y2, ..., yn−3, yn−1)
|+ ...

+(−1)n
∂(μn−1Pn−1)

∂y1
|D(x1, x2, ..., xn−2)

D(y2, ..., yn−1)
|

+(−1)2n−2 ∂(μn−1Pn)

∂yn
|A|+ (−1)2n−3 ∂(μn−1Pn)

∂yn−2
| D(x1, x2, ..., xn−2)

D(y1, y2, ..., yn−3, yn)
|+ ...

+(−1)n
∂(μn−1Pn)

∂y1
|D(x1, x2, ..., xn−2)

D(y2, ..., yn−2, yn)
|

−μn−1Pn−1
∂|A|
∂yn−1

− μn−1Pn
∂|A|
∂yn

= 0.

From (11), one can get directly

∂(μn−1Pn−1|A|)
∂yn−1

+
∂(μn−1Pn|A|)

∂yn
= 0,

where |A| is actually |DyG
−1(y)|. That means that μn−1(G

−1(y))|DyG
−1(y)| is an integrating factor

of system (7).

This shows that the two dimensional differential system{
ẏn−1 = Pn−1(G

−1(y))

ẏn = Pn(G
−1(y))

(12)

has the integrating factor

ν(yn−1, yn) = μn−1(G
−1(y))DyG

−1(Ω1(y), ...,Ωn−2(y), yn−1, yn),

where Ω1(y), ...,Ωn−2(y) are constants. Hence, system (12) has the first integral

Ωn−1(yn−1, yn) =

∫
νPn(G

−1(y))dyn−1 − νPn−1(G
−1(y))dyn.
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Obviously, Ωn−1 is functionally independent of Ω1, ...,Ωn−2 because the latter are independent of yn−1

and yn. Applying (6) to Ω1, ...,Ωn−1, we can get n− 1 functionally independent first integrals

Ω1(x) = Ω1(G(x)), ...,Ωn−1(x) = Ωn−1(G(x))

of system (1). The proof is completed.

3 A necessary condition on the existence of global first inte-

grals of n-th order non-autonomous systems

We consider n-th order non-autonomous systems (2), where x = (x1, x2, ..., xn) ∈ D ⊂ Rn(or Cn), P (t, x) =

(P1(t, x1, x2, ..., xn), ..., Pn(t, x1, x2, ..., xn)), Pi(t, x1, x2, ..., xn) : R×D → R(or C). Pi(t, x1, x2, ..., xn) ∈
C∞(R×D) and t ∈ R(or C). Let t = x0, system (2) can be rewritten as an (n+1)-th order autonomous

system,
dx

dt
= P (x0, x1, x2, ..., xn). (13)

Associated to system (13) there is the vector field X =
∑n

i=0 Pi(x)
∂

∂xi
, where P0(x0, x1, ..., xn) = 1.

The divergence is divX =
∑n

i=1

∂Pi

∂xi
. It is easy to have the following results.

Theorem 3.1 If system (2) has n functionally independent global first integrals Φi(x)(i =

0, 1, ..., n−1) inR×D, then system (2) has an integrating factor μ(x) =
Ln

Pn
, where Ln = |D(Φ0, ...,Φn−1)

D(x0, ..., xn−1)
|

is the Jacobi determinant.

Similarly, one can have that
Li

Pi
(−1)n−i, i = 0, 1, ..., n− 1 are all also integrating factors of system

(2), where Li = | D(Φ0, ...,Φn−1)

D(x0, x1, ..., xi−1, xi+1, ..., xn)
|, i = 0, 1, ..., n− 1. Specially,

L0 = |D(Φ0, ...,Φn−1)

D(x1, ..., xn)
(−1)n|

is an integrating factor of system (2).

Theorem 3.2 If system (2) has n functionally independent global first integrals Φi(x)(i =

0, 1, ..., n − 1) in R × D, then system (2) has a volume-preserving vector field (is a conservative

system) or is equivalent to a system having volume-preserving vector field (a conservative system).

Corollary 3.1 If system (2) has not a volume-preserving vector field (is a conservative system)

or is not equivalent to a system having volume-preserving vector field (a conservative system), then

it has not n functionally independent global first integrals in R×D.

Theorem 3.3 If system (2) has n functionally independent integrating factors in D, then it has

n functionally independent first integrals in subset of D.

The following simple example are given to illustrate the feasibility and the effectiveness of the

above proposed methods.

Example 3.1 Consider the following third order ordinary differential equation,

y′′′ =
(3y′ − 1)y′′2

y′2
.
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Let us rewrite the equation as an autonomous system ,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ = 1

ẏ = z

ż = w

ẇ =
(3z − 1)w2

z2
.

(14)

Its corresponding vector field is X =
∂

∂x
+z

∂

∂y
+w

∂

∂z
+

(3z − 1)w2

z2
∂

∂w
. The system has the following

first integrals in W = {(x, y, z, w)|z > 0, w > 0},

Ω1(x, y, z, w) = x− y − z2

w
,

Ω2(x, y, z, w) = −y +
z3

w

and

Ω3(x, y, z, w) = 2 lnw − 6 ln z − 2

z
.

One can obtain

L4 = |D(Ω1,Ω2,Ω3)

D(x, y, z)
| = 6

z
− 2

z2
.

Based on Theorem 3.1, one can get an integrating factor of system (14),

μ(x, y, z, w) =
L4

P4
=

2

w2
.

By directly calculating, we can obtain
L2

P2
=

L4

P4
and

L1

P1
= (−1)4−1L4

P4
,
L3

P3
= (−1)4−3L4

P4
. So, system

(14) is equivalent to a volume-preserving vector field (is equivalent to a conservative system) in W.

4 Methods to obtain first integrals of n-th order autonomous

systems

In this section, we will discuss several flexible methods to obtain first integrals of n-th order au-

tonomous system using one-parameter Lie groups admitted by the system. As we know, for a La-

grange system, Noether theorem ensures that one can get a first integral by knowing a one-parameter

Lie group admitted by the system [27]. For an n-th order autonomous system, in order to obtain first

integrals, multiple-parameter Lie groups admitted by the system are required in traditional theory of

Lie groups [1, 11]. Generally, it is more complicated to calculate a multiple-parameter Lie group ad-

mitted by a given system. In [7], for avoiding the multiple-parameter Lie group, the spacial structure

spanned by generators of a system of one-parameter Lie groups admitted by an n-th order autonomous

system is studied, and the possibility and the flexibility of finding first integrals of the system by using

several one-parameter Lie groups admitted by the system are revealed. Several methods to obtain first

integrals of n-th order autonomous system by using one-parameter Lie groups are given and discussed

in [7]. In order to make the paper be integrity, here first let us introduce simply the ideas of the

methods and related contents.

Let

Vi =
n∑

j=1

ξij(x1, x2, ..., xn)
∂

∂xj
(i = 1, 2, ..., n− 1) (15)

be the generators of n− 1 independent one-parameter Lie groups admitted by system (1).
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Lemma 4.1[22] If there exist functions Ai(x) ∈ C∞ satisfying [X,Vi] = Ai(x)X(i = 1, 2, ..., n−1),

then system (1) admits the Lie groups Gi (i = 1, 2, ..., n− 1) generated by Vi(i = 1, 2, ..., n− 1).

Lemma 4.2[22] If V is a generator of a one-parameter Lie group admitted by system (1) and Ω(x)

is a first integral of system (1), then V Ω(x) = f(x), where f(x) is either a first integral of system (1),

or a constant.

In [22], the following results are also proved.

Theorem 4.1 If Vi, i = 1, 2, ..., n − 1 are the generators of n − 1 independent one-parameter Lie

groups admitted by system (1), then under the operation of the Lie brackets,

[Vi, Vj ] = Σn−1
k=1C

k
i,j(x)Vk + C0

i,j(x)X,

where the coefficients Ck
i,j(x)(i, j, k = 1, 2, ..., n − 1) are either the first integrals of system (1) or

constants, while C0
i,j(x) may be arbitrary functions.

Theorem 4.2 If Vi, (i = 1, 2, ..., n − 1) are the generators of n − 1 independent one-parameter

Lie groups admitted by system (1), then the one-parameter Lie group with a given generator V is

admitted by system (1) if and only if the generator V can be expressed by

V = a(x)X +Σn−1
i=1 ai(x)Vi,

where ai(x), i = 1, 2, ..., n− 1 are either first integrals or constants, and a(x) is an arbitrary function.

Theorem 4.1 shows that Ck
i,j(x), i, j, k = 1, 2, ..., n − 1 may be first integrals of system (1) if

Ck
i,j(x), i, j, k = 1, 2, ..., n − 1 are functions. If Ck

i,j(x), i, j, k = 1, 2, ..., n − 1 are all constants, a first

integral of system (1) can still be found according to the method presented in [7, 23].

We can construct the following system of equations using the generators Vi(i = 1, 2, ..., n − 1) of

Lie groups admitted by system (1),⎡
⎢⎢⎢⎢⎣

P1 P2 ... Pn

ξ11 ξ12 ... ξ1n
...

...
...

...

ξn−1
1 ξn−1

2 ... ξn−1
n

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

f1

f2
...

fn

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0

a1
...

an−1

⎤
⎥⎥⎥⎥⎦ , (16)

where ai(i = 1, 2, ..., n − 1) are constants or first integrals of (1). By the independence of Vi(i =

1, 2, ..., n− 1), we know that (16) has only a unique set of solutions f1, f2, ..., fn.

Theorem 4.3[7]If there exists a set of constants or first integrals a1, a2, ..., an−1 of (1) such that

the solutions f1, f2, ..., fn of equation (16) satisfies

∂fi
∂xj

=
∂fj
∂xi

, i, j = 1, 2, ..., n

then the following first integral of (1) can be obtained,

Ω =

∫
f1dx1 + f2dx2 + ...fndxn.

In fact, we often only know m(< n − 1) independent one-parameter Lie groups admitted by (1).

In this case, by constructing the similar equation for obtaining f1, f2, ..., fn, one can still obtain a first

integral of system (1) under selecting appropriate a1, a2, ..., an−1 according to the idea in Theorem

4.3. The selected a1, a2, ..., an−1 in the above method are important for obtaining a first integral. A

set of suitable a1, a2, ..., an−1 can help us to get a first integral. In [23], the sufficient and necessary

condition satisfied by a set of a1, a2, ..., an−1 is given for searching for a first integral of the system by

the above method. Based on Theorem 4.3, the authors continue to discuss the method of obtaining

first integrals of an n-th autonomous system when the system accepts a series of one-parameter Lie
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groups with the certain solvability in [24]. When an n-th autonomous system accepts a series of

one-parameter Lie groups with the certain solvability, a first integral of the system can be obtained

under the set of a1, a2, ..., an−1 equating concrete constants[24].

Next, a more flexible method to obtain first integrals using one-parameter Lie group admitted

by n-th order autonomous systems is presented, which need not be considered to select a set of

a1, a2, ..., an−1.

Let

μ(x1, x2, ..., xn) =

∣∣∣∣∣∣∣∣∣∣

P1 P2 ... Pn

ξ11 ξ12 ... ξ1n
...

...
...

...

ξn−1
1 ξn−1

2 ... ξn−1
n

∣∣∣∣∣∣∣∣∣∣
.

Since Vi (i = 1, 2, ..., n− 1) are independent, μ(x1, x2, ..., xn) �= 0 holds.

Lemma 4.3[25] 1

μ(x1, x2, ..., xn)
is an integrating factor of system (1).

Theorem 4.4 If Vi(i = 1, 2, ..., n − 1) are generators of n − 1 independent one-parameter Lie

groups admitted by system (1), then

μ(x1, x2, ..., xn)Vi(
1

μ(x1, x2, ..., xn)
) + div(Vi)−Ai(x1, x2, ..., xn) (i = 1, 2, ..., n− 1)

are all first integrals of system (1), where Ai(x1, x2, ..., xn) satisfies [X,Vi] = Ai(x1, x2, ..., xn)X, and

[·, ·] stands for the Lie bracket.

Proof. Let Ω = μ(x1, x2, ..., xn)Vi(
1

μ(x1, x2, ..., xn)
) + div(Vi)−Ai(x1, x2, ..., xn). One has

X(Ω) = X(− 1

μ
Vi(μ)) +X(div(Vi))−X(Ai)

=
1

μ2
X(μ)Vi(μ)− 1

μ
X(Vi(μ)) +X(div(Vi))−X(Ai)

=
1

μ2
(μdivX)Vi(μ)− 1

μ
(divX)Vi(μ)− 1

μ
μVi(divX)− 1

μ
Ai(μdivX) +X(div(Vi))−X(Ai)

= −Vi(divX)−AidivX +X(div(Vi))−XAi.

(17)

The above last equality can be obtained by using the definition of inverse integrating factor and

Lemma 4.1. By direct calculation, we have

div(ViX) = Vi(divX) +
∂X1

∂x1
(
∂Vi1

∂x1
+ ...+

∂Vi1

∂xn
) + ...+

∂X1

∂xn
(
∂Vin

∂x1
+ ...+

∂Vin

∂xn
) (18)

and

div(XVi) = X(divVi) +
∂Vi1

∂x1
(
∂X1

∂x1
+ ...+

∂X1

∂xn
) + ...+

∂Vin

∂x1
(
∂Xn

∂x1
+ ...+

∂Xn

∂xn
). (19)

Obviously,
∂X1

∂x1
(
∂Vi1

∂x1
+ ...+

∂Vi1

∂xn
) + ...+

∂X1

∂xn
(
∂Vin

∂x1
+ ...+

∂Vin

∂xn
)

=
∂Vi1

∂x1
(
∂X1

∂x1
+ ...+

∂X1

∂xn
) + ...+

∂Vin

∂x1
(
∂Xn

∂x1
+ ...+

∂Xn

∂xn
).

Substituting (18) and (19) to the last equality of (17), we have

X(Ω) = div(XVi)− div(ViX)−AidivX −X(Ai). (20)

Because Vi (i = 1, 2, ..., n− 1) are all the generators of Lie groups admitted by system (1), one has

XVi − ViX = AiX
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and

div(XVi − ViX) = div(AiX) = AidivX +X(Ai).

Substituting the above formulae to (20), we have X(Ω) = 0. The proof is completed.

Remark 4.1 Theorem 4.4 presents a method to obtain first integrals of system (1) using Lie

groups admitted by the system. If system (1) is a conservative system, that is, divX = 0, then system

(1) has the constant integrating factor μ(x) ≡ 1. One may get directly a first integral under knowing

only a one-parameter Lie group admitted by system (1). If system (1) is not a conservative system,

that is, divX �= 0, one may get n− 1 first integrals under knowing n− 1 independent one-parameter

Lie groups admitted by system (1).

Remark 4.2 By Theorem 4.4, we know

Ω = μVi(
1

μ
) + div(Vi)−Ai(i = 1, 2, ..., n− 1)

are all first integrals of system (1). The first integrals can also be written as

Ω =

Vi(
1

μ
) +

1

μ
div(Vi)− 1

μ
Ai

1

μ

.

So, one can have

Vi(
1

μ
) +

1

μ
div(Vi)− 1

μ
Ai (i = 1, 2, ..., n− 1)

being also all integrating factors of system (1).

From Theorem 4.4, we can get the following result.

Corollary 4.1 If Vi(i = 1, 2, ..., n − 1) are generators of n − 1 independent one-parameter Lie

groups admitted by system (1), then Ωk = Vi(Vi(...(Ω)))) (i = 1, 2, ..., n− 1) are also first integrals of

system (1), where Vi is applied k ≥ 1 times on Ω.

Proof. Because [X,Vi] = XVi − ViX = AiX, i = 1, 2, ..., n− 1,

X(Vi(Ω)) = Vi(X(Ω)) +AiX(Ω)

= 0.

The proof is completed.

Example 4.1 Consider the following autonomous system,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ1 = y1

ẋ2 = y2

ẏ1 = −4x1(x
2
1 + x2

2)

ẏ2 = −4x2(x
2
1 + x2

2).

(21)

Its corresponding vector field is X = y1
∂

∂x1
+ y2

∂

∂x2
− 4x1(x

2
1 + x2

2)
∂

∂y1
− 4x2(x

2
1 + x2

2)
∂

∂y2
, and

divX = 0. It is easy to check that this system admits one Lie group with the following generator,

V = (x1y2 − y1x2)[
1

2
(x1

∂

∂x1
+ x2

∂

∂x2
) + y1

∂

∂y1
+ y2

∂

∂y2
],

and

[X,V ] = −1

2
(x1y2 − y1x2)X.

Based on Theorem 4.4, one can get a first integral of system (21),

Ω = div(V )−A(x)

=
7

2
(x1y2 − y1x2) +

1

2
(x1y2 − y1x2)

= 4(x1y2 − x2y1).
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Apparently, one has V (Ω) = 6(x1y2 − x2y1)
2. It is a first integral of system (21). It is only not a new

first integral because of the integral Ω = 4(x1y2 − x2y1).

The following simple system is integrable. Here it is only for illustrating the feasibility and the

effectiveness of the proposed methods in Theorem 4.4.

Example 4.2 Consider the following high order ordinary differential equation,

y(iv) = a
1
3 y′′′

4
3 ,

where a > 0. Let us rewrite the equation as an autonomous system ,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ = 1

ẏ = z

ż = v

v̇ = w

ẇ = a
1
3w

4
3 .

(22)

Its corresponding vector field is X =
∂

∂x
+ z

∂

∂y
+ v

∂

∂z
+ w

∂

∂v
+ a

1
3w

4
3

∂

∂w
. It is easy to check that

this system admits five Lie groups with the following generators,

V1 =
∂

∂x
,

V2 =
∂

∂y
,

V3 = x
∂

∂y
+

∂

∂z
,

V4 = x2 ∂

∂y
+ 2x

∂

∂z
+ 2

∂

∂v
,

V5 = x
∂

∂x
− z

∂

∂z
− 2v

∂

∂v
− 3w

∂

∂w
,

and

[X,Vi] = 0, i = 1, 2, ..., 4; [X,V5] = X.

The following inverse integrating factor can be obtained,

μ(x, y, z, v, w) =

∣∣∣∣∣∣∣∣∣∣∣

1 z v w a
1
3w

4
3

1 0 0 0 0

0 x 1 0 0

0 x2 2x 2 0

x 0 −z −2v −3w

∣∣∣∣∣∣∣∣∣∣∣
= a

1
3w

4
3 (2xz − 2x2v) + 3w(x2w + 2z − 2xv).

Based on Theorem 4.4, by direct computing, one can get first integrals of system (22),

Ω1 = − 1

μ
V1(μ) + div(V1)−A1(x)

= − 2a
1
3w

4
3 (z − 2xv) + 6w(xw − v)

a
1
3w

4
3 (2xz − 2x2v) + 3w(x2w + 2z − 2xv)

.

Ω3 = − 1

μ
V3(μ) + div(V3)−A3(x)

= − 2(a
1
3w

4
3x+ 3w)

a
1
3w

4
3 (2xz − 2x2v) + 3w(x2w + 2z − 2xv)

.

The above first integrals are independent of each other. One can also get new first integrals Vi(Ωj), i =

1, 2, ..., 5; j = 1, 3, 5, For example,

Ω11 =: V1(Ω1)

=
4(aw)

2
3 (2x2v2 − 2xvz + z2) + 12(aw)

1
3x(zw − 2xvw + 2v2) + 18(x2w2 + 2v2 − 2wz − 2xvw)

[2a
1
3w

1
3 (z − xv)x+ 3(x2w + 2z − 2xv)]2

.
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5 Conclusions

In this paper, we have studied the first integrals of n-th order autonomous systems. By considering

the integrating factors generated by the global first integrals of n-th order autonomous systems,

the necessary condition on the existence of n − 1 functionally independent global first integrals is

obtained, that is, if system (1) has n − 1 functionally independent global first integrals Φi(x)(i =

1, 2, ..., n−1) in D, then system (1) is a conservative system or is equivalent to a conservative system.

In physics or mechanics, conservative systems (or being equivalent to conservative systems) are a

class of important systems in nature, and their vector fields maintain a constant volume of phase

space. Celestial mechanics is an important source of conservative systems. We also prove that an

n-th order autonomous system has n− 1 functionally independent first integrals under knowing n− 1

functionally independent integrating factors of the system. From the above investigation, we see

that n-th autonomous systems having n − 1 functionally independent global first integrals in D are

conservative systems or are equivalent to conservative systems. The n − 1 independent global first

integrals of the system can also help us get integrating factors of the system. We have also presented

several flexible methods to obtain first integrals of the system under knowing one-parameter Lie groups

admitted by the system. In particular, when system (1) is a conservative system or is equivalent to a

conservative system, one can get directly a first integral under knowing only one one-parameter Lie

group admitted by system (1). At last, several related examples are given to illustrate the feasibility

and the effectiveness of the proposed method.
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