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1. Introduction

Let M be an n-dimensional compact complex manifold with a hermitian metric F . We usually call a 
hermitian metric F a Gauduchon metric if ∂∂̄Fn−1 = 0. Gauduchon (cf. [1]) proved that there always 
exists a smooth function f such that ∂∂̄efFn−1 = 0. That means Gauduchon metrics always exist on 
compact complex manifolds. In [9], D. Popovici first defined the strongly Gauduchon metric in the study 
of limits of projective manifolds under deformations. A strongly Gauduchon metric on a compact complex 
n-dimensional manifold is a hermitian metric F such that ∂Fn−1 is ∂̄-exact. A compact complex manifold is 
called a strongly Gauduchon manifold, if there exists a strongly Gauduchon metric on it. Note that ∂̄2 = 0
on a complex manifold, of course strongly Gauduchon metrics are Gauduchon metrics. However, a strongly 
Gauduchon metric does not always exist on a compact complex manifold. In [9], D. Popovici proved that 
a compact complex manifold M carries a strongly Gauduchon metric if and only if there is no non-zero 
(1, 1)-current T such that T ≥ 0 and T is d-exact on M . In this paper, we want to introduce the concept 
of strongly Gauduchon metric on compact almost complex manifold (M, J). But in general, ∂̄2

J �= 0 on an 
almost complex manifold, which implies that ∂JFn−1 = ∂̄Jβ need not imply ∂J ∂̄JFn−1 = 0. Hence, we 
want to introduce a special kind of almost complex manifolds which are called q-integrable. We call J a 
q-integrable almost complex structure if
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∂̄2
J |Ω2n−k(M)= 0, q ≥ k ≥ 2,

where 2n ≥ q ≥ 2. An almost complex manifold (M, J) is called a q-integrable almost complex manifold if 
J is a q-integrable almost complex structure. Then the definition of strongly Gauduchon metric in classical 
complex analysis also makes sense on 2-integrable almost complex manifolds. In particular, we investigate 
the existence of strongly Gauduchon metrics on compact 2-integrable almost complex manifolds.

Main Theorem. Let (M, J) be a compact 2-integrable almost complex manifold of dimension 2n such that 
dimH

(n,n−1),(n−1,n)
∂J+∂̄J

(M, R) < ∞. Then (M, J) carries a strongly Gauduchon metric F if and only if there 

are no nontrivial positive (∂J + ∂̄J)-exact (1, 1)-currents.

Acknowledgements. The author would like to thank Doctor Lingxu Meng for patiently discussing with me. 
The author also would like to thank the referees for their valuable comments and suggestions.

2. Definitions and preliminaries

Let M be a closed oriented smooth 2n-manifold. An almost complex structure on M is a differentiable 
endomorphism on the tangent bundle

J : TM → TM with J2 = −id.

A manifold M with a fixed almost complex structure J is called an almost complex manifold denoted by 
(M, J). Suppose that M is an almost complex manifold with almost complex structure J , then for any 
x ∈ M , Tx(M) ⊗R C which is the complexification of Tx(M), has the following decomposition (cf. [3]):

Tx(M) ⊗R C = T 1,0
x + T 0,1

x ,

where T 1,0
x and T 0,1

x are the eigenspaces of J corresponding to the eigenvalues 
√
−1 and −

√
−1 respectively. 

A complex tangent vector is of type (1, 0) (resp. (0, 1)) if it belongs to T 1,0
x (resp. T 0,1

x ). Let T (M) ⊗R C

be the complexification of the tangent bundle. Similarly, let T ∗M ⊗R C denote the complexification of the 
cotangent bundle T ∗M . J can act on T ∗M ⊗R C as follows:

∀α ∈ T ∗M ⊗R C, Jα(·) = −α(J ·).

Hence T ∗M ⊗R C has the following decomposition according to the eigenvalues ±
√
−1:

T ∗M ⊗R C = Λ1,0
J ⊕ Λ0,1

J .

We can form exterior bundle Λp,q
J = ΛpΛ1,0

J ⊗ ΛqΛ0,1
J . Let Ωp,q

J (M) denote the space of C∞ sections of 
the bundle Λp,q

J . Then we have a direct sum decomposition Ωk(M) =
⊕

p+q=k Ωp,q
J (M). We denote the 

projections Ωk(M) → Ωp,q
J (M) by Πp,q. Note the fact that the total differential form space Ω(M) =⊕n

p,q=0 Ωp,q
J (M) is locally generated by Ω0,0

J (M), Ω1,0
J (M) and Ω0,1

J (M) and from the following inclusions:

dΩ0,0
J (M) ⊂ Ω1,0

J (M) ⊕ Ω0,1
J (M), Ω1,0

J (M) ⊂ Ω2,0
J (M) ⊕ Ω1,1

J (M) ⊕ Ω0,2
J (M),

dΩ0,1
J (M) ⊂ Ω2,0

J (M) ⊕ Ω1,1
J (M) ⊕ Ω0,2

J (M).

The exterior differential operator acts on Ωp,q
J (M) as follows ([3]):

dΩp,q
J (M) ⊂ Ωp−1,q+2

J (M) + Ωp+1,q
J (M) + Ωp,q+1

J (M) + Ωp+2,q−1
J (M). (2.1)
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Hence, d has the following decomposition:

d = AJ ⊕ ∂J ⊕ ∂̄J ⊕ ĀJ , (2.2)

where AJ � Πp−1,q+2 ◦ d, ∂J � Πp+1,q ◦ d, ∂̄J � Πp,q+1 ◦ d and ĀJ � Πp+2,q−1 ◦ d. Let α be a (p, q)-form. 
We have following formulas (cf. [8]):

∂Jα(ξ1, · · ·, ξp+1, η̄1, · · ·, η̄q)

=
p+1∑
k=1

(−1)k+1ξkα(ξ1, · · ·, ξ̂k, · · ·, η̄q)

+
∑

1≤k<l≤p+1

(−1)k+1α([ξk, ξl], ξ1, · · ·, ξ̂k, · · ·, ξ̂l, · · ·, η̄q)

+
∑

1≤k≤p+1,1≤l≤q

(−1)k+l+p+1α([ξk, η̄l], ξ1, · · ·, ξ̂k, · · ·, ˆ̄ηl, · · ·, η̄q),

∂̄Jα(ξ1, · · ·, ξp, η̄1, · · ·, η̄q+1)

=
q+1∑
k=1

(−1)k+p+1η̄kα(ξ1, · · ·, ˆ̄ηk, · · ·, η̄q+1)

+
∑

1≤k<l≤q+1

(−1)k+1α([η̄k, η̄l], ξ1, · · ·, ˆ̄ηk, · · ·, ˆ̄ηl, · · ·, η̄q+1)

+
∑

1≤k≤p,1≤l≤q+1

(−1)k+l+pα([ξk, η̄l], ξ1, · · ·, ξ̂k, · · ·, ˆ̄ηl, · · ·, η̄q+1),

AJα(ξ1, · · ·, ξp−1, η̄1, · · ·, η̄q+2)

=
∑

1≤k<l≤q+2

(−1)k+lα([η̄k, η̄l], ξ1, · · ·, ˆ̄ηk, · · ·, ˆ̄ηl, · · ·, η̄q+2)

and

ĀJα(ξ1, · · ·, ξp+2, η̄1, · · ·, η̄q−1)

=
∑

1≤k<l≤p+2

(−1)k+lα([ξk, ξl], ξ1, · · ·, ξ̂k, · · ·, ξ̂l, · · ·, η̄q−1),

where ξ1, · · ·, ξp+2, η1, · · ·, ηq+2 are vector fields of type (1, 0). It is easy to see that AJ and ĀJ are R-linear 
operators of order 0. Moreover, the operator S = AJ , ∂J , ∂̄J , ĀJ satisfies the Leibnitz rule

S(α ∧ β) = Sα ∧ β + (−1)deg αα ∧ Sβ. (2.3)

After a simple calculation, we can get the following properties:

d = ∂J + ∂̄J : Ω0(M) −→ Ω1(M); (2.4)
AJ ◦ ∂J + ∂̄2

J + ĀJ ◦ ∂̄J + ∂2
J = 0 : Ω0(M) −→ (Ω2,0

J (M) + Ω0,2
J (M)); (2.5)

∂J ◦ ∂̄J + ∂̄J ◦ ∂J = 0 : Ω0(M) −→ Ω1,1
J (M); (2.6)

∂J ◦ ∂̄J + ∂̄J ◦ ∂J = 0 : Ωn−1,n−1
J (M) −→ Ω2n(M). (2.7)

Here, we just explain the formula (2.7). For any α ∈ Ωn−1,n−1
J (M),

dα = (AJ + ∂J + ∂̄J + ĀJ)α = (∂J + ∂̄J)α
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and

0 = d2α = d(∂J + ∂̄J)α = (∂J + ∂̄J)(∂Jα + ∂̄Jα) = ∂̄J∂Jα + ∂J ∂̄Jα.

Recall that on an almost complex manifold (M, J), there exists Nijenhuis tensor NJ as follows:

4NJ = [JX, JY ] − [X,Y ] − J [X, JY ] − J [JX, Y ], (2.8)

where X, Y ∈ TM . J is said to be integrable if NJ = 0 (cf. [6]), then J is a complex structure and (M, J)
is a complex manifold. Moreover, we have the following equivalence on a compact almost complex manifold 
(for details, see [3,7]):

J is integrable ⇐⇒ ∂̄2
J = 0.

Generally speaking, the integrability is too strong for some almost complex structures. There are many 
known almost complex manifolds which are not complex manifolds. Hence, we want to introduce a special 
kind of almost complex manifolds which are called q-integrable.

Definition 2.1. Let (M, J) be an almost complex manifold of dimension 2n. We call J a q-integrable almost 
complex structure if

∂̄2
J |Ω2n−k(M)= 0, q ≥ k ≥ 2,

where 2n ≥ q ≥ 2. An almost complex manifold (M, J) is called a q-integrable almost complex manifold if 
J is a q-integrable almost complex structure.

It is easy to see that a 2n-integrable almost complex structure is just a complex structure.
Suppose (M, J) is a closed almost complex 2n-manifold. One can construct a J-invariant Riemannian 

metric g on M . g could be constructed as g(·, ·) = 1
2{h(·, ·) +h(J ·, J ·)} for some Riemannian metric h. This 

then in turn gives a J-compatible non-degenerate 2-form F by F (X, Y ) = g(JX, Y ), called the fundamental 
2-form. Such a quadruple (M, g, J, F ) is called a closed almost Hermitian manifold. For convenience, we call 
F the almost Hermitian metric.

Definition 2.2. (cf. [9]) A strongly Gauduchon metric on a 2-integrable almost complex 2n-dimensional 
manifold (M, J) is an almost Hermitian metric F such that ∂JFn−1 is ∂̄J -exact. A compact 2-integrable 
almost complex manifold is called a strongly Gauduchon manifold, if there exists a strongly Gauduchon 
metric on it.

3. Proof of main result

A form α ∈ Ωk(M) is said to be real if it satisfies α = ᾱ. Denote the space of real k-forms on (M, J)
by Ωk(M)R. It is easy to see that all positive forms are real. The following proposition gives some relations 
between strongly Gauduchon metrics and some special real forms.

Proposition 3.1. (cf. [5,9]) Let (M, J) be a compact 2-integrable almost complex manifold of dimension 2n. 
Then the following properties are equivalent.

(1) (M, J) is a strongly Gauduchon manifold.
(2) There exists a strictly positive (n − 1, n − 1)-form Ω, such that ∂JΩ is ∂̄J -exact.
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(3) There exists a real (∂J + ∂̄J )-closed (2n −2)-form Ω whose (n −1, n −1)-component Ωn−1,n−1 is strictly 
positive.

Proof. “(1) ⇒ (2)” Suppose that F is a strongly Gauduchon metric on (M, J). We choose Ω to be Fn−1. 
By the definition of strongly Gauduchon metric, it is easy to see that Ω = Fn−1 is a strictly positive 
(n − 1, n − 1)-form and ∂JΩ is ∂̄J -exact.

“(2) ⇒ (1)” Suppose that Ω is a strictly positive (n −1, n −1)-form and ∂JΩ is ∂̄J -exact. Then there exists 
a unique strictly positive (1, 1)-form F such that Fn−1 = Ω (see [5, page 280], the proof is independent of 
the integrability of J). It is easy to verify that F is a strongly Gauduchon metric.

“(1) ⇒ (3)” Suppose that F is a strongly Gauduchon metric on (M, J). Thus, there exists a (n, n −2)-form 
β such that ∂JFn−1 = ∂̄Jβ. Let Ω = Fn−1 − β − β̄. Obviously, the (n − 1, n − 1)-component of Ω is Fn−1

which is strictly positive. In addition, we have (∂J + ∂̄J)Ω = ∂JF
n−1 − ∂J β̄ + ∂̄JF

n−1 − ∂̄Jβ = 0.
“(3) ⇒ (1)” Let Ω = Ωn−1,n−1 + Ωn,n−2 + Ωn−2,n be a real (∂J + ∂̄J)-closed (2n − 2)-form and Ωn−1,n−1

is strictly positive. Since (∂J + ∂̄J)Ω = ∂JΩn−1,n−1 +∂JΩn−2,n+ ∂̄JΩn−1,n−1 + ∂̄JΩn,n−2 = 0, we can obtain

∂JΩn−1,n−1 = −∂̄JΩn,n−2, ∂JΩn−2,n = −∂̄JΩn−1,n−1.

On the other hand, there exists a strictly positive (1, 1)-form F such that Fn−1 = Ωn−1,n−1 (see [5, 
page 280]). Hence, ∂JFn−1 = ∂̄J(−Ωn,n−2). Therefore, F is a strongly Gauduchon metric. �

By using Proposition 3.1, we can obtain the following interesting proposition.

Proposition 3.2. (cf. [4,5]) Let (M, JM ) and (N, JN ) be compact 2-integrable almost complex manifolds of 
dimension 2m and 2n, respectively.

(1) If f : (M, JM ) → (N, JN ) is a (JM , JN )-holomorphic submersion and (M, JM ) is a strongly Gauduchon 
manifold, then (N, JN ) is a strongly Gauduchon manifold.

(2) (M ×N, J = JM × JN ) is a strongly Gauduchon manifold if and only of (M, JM ) and (N, JN ) are both 
strongly Gauduchon manifolds.

Proof. (1) By Proposition 3.1, there exists a strictly positive (m − 1, m − 1)-form ΩM , such that ∂JM
ΩM =

∂̄JM
β, where β is a (2m −2)-form on M . Define ΩN = f∗ΩM . ΩN is simply the (2n −2)-form obtained by inte-

gration over the fibers of f (the proof of Proposition 1.9 in [5]). It is well known that a (JM , JN )-holomorphic 
map f : (M, JM ) → (N, JN ) between two almost complex manifolds is a smooth map whose differential f∗
satisfies f∗JM = JNf∗ at every point. Thus, we have

∂JN
ΩN = ∂JN

f∗ΩM = f∗∂JM
ΩM = f∗∂̄JM

β = ∂̄JN
f∗β.

By the proof of Proposition 1.9 in [5] (the proof is independent of the integrability of JN ), we know ΩN is 
a strictly positive (n − 1, n − 1)-form. So (N, JN ) is a strongly Gauduchon manifold.

(2) Let (M, JM ) and (N, JN ) be both strongly Gauduchon manifolds. Suppose FM and FN are strongly 
Gauduchon metrics on (M, JM) and (N, JN ) respectively, such that ∂JM

Fm−1
M = ∂̄JM

β and ∂JN
Fn−1
N =

∂̄JN
γ. Here β and γ are (2m − 2) and (2n − 2)-form on M and N respectively. Denote by π1 and π2

the projections π1 : (M × N, J) → (M, JM ) and π2 : (M × N, J) → (N, JN ) respectively. It is easy to 
verify that both π1 and π2 are (J, JM )-holomorphic and (J, JN )-holomorphic maps. We define a form on 
M × N by F � π∗

1FM + π∗
2FN . Then Fm+n−1 = C1π

∗
1F

m−1
M ∧ π∗

2F
n
N + C2π

∗
1F

m
M ∧ π∗

2F
n−1
N , where C1, C2

are constants. Hence, ∂JFm+n−1 = C1π
∗
1(∂JM

Fm−1
M ) ∧ π∗

2F
n
N +C2π

∗
1F

m
M ∧ π∗

2(∂JN
Fn−1
N ). For simplicity, we 

will omit pullbacks π∗
1 and π∗

2 in the following proof. By direct calculation, we can obtain
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∂JF
m+n−1 = C1∂JM

Fm−1
M ∧ Fn

N + C2F
m
M ∧ ∂JN

Fn−1
N

= C1∂̄JM
β ∧ Fn

N + C2F
m
M ∧ ∂̄JN

γ

= ∂̄J(C1β ∧ Fn
N ) + ∂̄J(C2F

m
M ∧ γ)

= ∂̄J(C1β ∧ Fn
N + C2F

m
M ∧ γ).

Hence, (M ×N, J = JM × JN ) is a strongly Gauduchon manifold.
The converse is an obvious result following (1). �
Let (M, J) be a compact 2-integrable almost complex manifold of dimension 2n. Suppose α ∈ Ω2n−2(M)R, 

then (∂J + ∂̄J)α ∈ [Ωn,n−1
J (M) ⊕ Ωn−1,n

J (M)]R. Moreover, by (2.7), we have (∂J + ∂̄J)2α = ∂2
Jα + ∂̄2

Jα +
∂J ∂̄Jα + ∂̄J∂Jα = 0. This gives a differential complex

Ω2n−2(M)R
∂J+∂̄J−−−−→ [Ωn,n−1

J (M) ⊕ Ωn−1,n
J (M)]R

∂J+∂̄J−−−−→ Ω2n(M)R. (3.9)

Considering the cohomology associated with this complex leads us to introduce

H
(n,n−1),(n−1,n)
∂J+∂̄J

(M,R) = ker(∂J + ∂̄J) ∩ [Ωn,n−1
J (M) ⊕ Ωn−1,n

J (M)]R
im(∂J + ∂̄J) ∩ [Ωn,n−1

J (M) ⊕ Ωn−1,n
J (M)]R

. (3.10)

If J is integrable, H(n,n−1),(n−1,n)
∂J+∂̄J

(M, R) is finite dimensional since it is just the de Rham cohomology 

H2n−1
dR (M, R). There’s a natural question: is the dimension of H(n,n−1),(n−1,n)

∂J+∂̄J
(M, R) finite on a compact 

2-integrable almost complex manifold or under what condition the dimension of H(n,n−1),(n−1,n)
∂J+∂̄J

(M, R) is fi-
nite? In order to prove the following results, we need the technical condition dimH

(n,n−1),(n−1,n)
∂J+∂̄J

(M, R) < ∞.

Lemma 3.3. Suppose that (M, J) is a compact 2-integrable almost complex manifold of dimension 2n. If 
dimH

(n,n−1),(n−1,n)
∂J+∂̄J

(M, R) < ∞, then the operator

(∂J + ∂̄J) : Ω2n−2(M)R → [Ωn,n−1
J (M) ⊕ Ωn−1,n

J (M)]R

has closed range.

Proof. Define Z(n,n−1),(n−1,n)
J (M)R � {α ∈ [Ωn,n−1

J (M) ⊕ Ωn−1,n
J (M)]R : (∂J + ∂̄J)α = 0}. With the 

condition dimH
(n,n−1),(n−1,n)
∂J+∂̄J

(M, R) < ∞ we can easily get that the image of

(∂J + ∂̄J) : Ω2n−2(M)R → Z
(n,n−1),(n−1,n)
J (M)R

has finite codimension. Therefore, by the classical theory of functional analysis the image of (∂J + ∂̄J) is 
closed in Z(n,n−1),(n−1,n)

J (M)R which, in turn, is closed in [Ωn,n−1
J (M) ⊕ Ωn−1,n

J (M)]R, hence, the image is 
closed in the last space. �

Let (M, J) be a compact 2-integrable almost complex manifold of dimension 2n. Let Ek(M) denote the 
dual space of the Fréchet space Ωk(M). An element T ∈ Ek(M) is called a current of dimension k (or a 
(2n −k)-current). Similarly, let Ep,q(M) denote the dual space of Ωp,q

J (M). An element T ∈ Ep,q(M) is called 
a current of bidimension (p, q) (or a (n − p, n − q)-current). The closed range theorem (cf. [10, Sect. 7 of 
Chap. IV]) says that the adjoint of a map with closed range has closed range. Hence, we have the following 
corollary.
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Corollary 3.4. (∂J + ∂̄J) : [En,n−1(M) ⊕ En−1,n(M)]R → E2n−2(M)R has closed range too.

In the following, we will give a characterisation of strongly Gauduchon manifolds in terms of non-existence 
of certain currents. Our approach is along the lines used in [2,9]. Let (M, J) be a compact 2-integrable 
almost complex manifold of dimension 2n. Suppose that there exists a real (∂J + ∂̄J)-closed (2n − 2)-form 
Ω whose (n − 1, n − 1)-component Ωn−1,n−1 is strictly positive on (M, J). Then for any real (1, 1)-current 
T = (∂J + ∂̄J )S, we have

(Ω, T ) = (Ω, (∂J + ∂̄J)S) = ((∂J + ∂̄J)Ω, S) = 0.

On the other hand, for each nontrivial positive (1, 1)-current T , we obtain

(Ω, T ) = (Ωn−1,n−1, T ) > 0.

This means that if (M, J) admits a strongly Gauduchon metric, then there are no nontrivial positive 
(∂J + ∂̄J)-exact (1, 1)-currents. Moreover, we have the following theorem.

Theorem 3.5. Let (M, J) be a compact 2-integrable almost complex manifold of dimension 2n such that 
dimH

(n,n−1),(n−1,n)
∂J+∂̄J

(M, R) < ∞. Then (M, J) carries a strongly Gauduchon metric F if and only if there 

are no nontrivial positive (∂J + ∂̄J)-exact (1, 1)-currents.

Proof. Let Ω be any real smooth (2n − 2)-form on compact almost complex (M, J). We claim that the 
condition (∂J + ∂̄J)Ω = 0 is equivalent to the property

∫

M

Ω ∧ (∂J + ∂̄J)T = 0 (3.11)

for every real 1-current T on (M, J). Indeed, by (2.3), we have ∂J(Ω ∧ T ) = ∂JΩ ∧ T + Ω ∧ ∂JT and 
∂̄J(Ω ∧ T ) = ∂̄JΩ ∧ T + Ω ∧ ∂̄JT . Then

∫

M

Ω ∧ (∂J + ∂̄J)T =
∫

M

(∂J + ∂̄J)(Ω ∧ T ) −
∫

M

(∂J + ∂̄J)Ω ∧ T

=
∫

M

(∂J + ∂̄J)(Ωn−1,n−1 ∧ T 1,0 + Ωn−1,n−1 ∧ T 0,1

+Ωn−2,n ∧ T 1,0 + Ωn,n−2 ∧ T 0,1) −
∫

M

(∂J + ∂̄J)Ω ∧ T

=
∫

M

(∂J + ∂̄J + AJ + ĀJ)(Ωn−1,n−1 ∧ T 1,0

+Ωn−1,n−1 ∧ T 0,1 + Ωn−2,n ∧ T 1,0 + Ωn,n−2 ∧ T 0,1)

−
∫

M

(∂J + ∂̄J)Ω ∧ T

=
∫

M

d(Ω ∧ T ) −
∫

M

(∂J + ∂̄J)Ω ∧ T

= −
∫

(∂J + ∂̄J)Ω ∧ T, (3.12)

M
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where we write Ω = Ωn−1,n−1 + Ωn,n−2 + Ωn−2,n and T = T 1,0 + T 0,1. On the other hand, the duality 
between strictly positive smooth (n − 1, n − 1)-forms and non-zero positive (1, 1)-currents on (M, J) shows 
that the condition Ωn−1,n−1 > 0 is equivalent to the property

∫

M

Ω ∧ T =
∫

M

Ωn−1,n−1 ∧ T > 0 (3.13)

for every non-zero positive (1, 1)-current T on (M, J). Denote the space of real 2-currents on (M, J) by 
E2(M)R = E2n−2(M)R which is a locally convex space. Define A = {real (∂J + ∂̄J)-exact 2-currents}. By 
Corollary 3.4, we can get that A is a closed vector subspace of E2(M)R. If we fix a smooth, strictly positive 
(n − 1, n − 1)-form F on (M, J), positive non-zero (1, 1)-currents T on (M, J) can be normalised such that ∫
M

T ∧F = 1 and it suffices to guarantee property (3.13) for normalised currents. Clearly, these normalised 
positive (1, 1)-currents form a compact convex subset B of E2(M)R. Then the Hahn–Banach separation 
Theorem for locally convex space (cf. [2]) implies that there exists a linear functional vanishing identically 
on a given closed subset and assuming only positive values on a given compact subset if the two subsets are 
convex and do not intersect. Thus, in our case, there exists a real (∂J + ∂̄J)-closed (2n − 2)-form Ω whose 
(n − 1, n − 1)-component Ωn−1,n−1 is strictly positive (that is, there exists a real (2n − 2)-form satisfying 
conditions (3.11) and (3.13)) if and only if A ∩ B = ∅. This amounts to there being no nontrivial positive 
(∂J + ∂̄J)-exact (1, 1)-currents on (M, J). �

By the above description, we know that A is a closed vector subspace on a compact 2-integrable al-
most complex manifold if dimH

(n,n−1),(n−1,n)
∂J+∂̄J

(M, R) < ∞. Is A also closed if we drop the assumption 

dimH
(n,n−1),(n−1,n)
∂J+∂̄J

(M, R) < ∞? In follows we will consider the case without dimH
(n,n−1),(n−1,n)
∂J+∂̄J

(M, R) <
∞. Suppose that there exists a real (∂J + ∂̄J)-closed (2n − 2)-form Ω whose (n − 1, n − 1)-component 
Ωn−1,n−1 is strictly positive and T ∈ A ∩ B �= ∅. Moreover, suppose T = limk→+∞(∂J + ∂̄J)Tk for 
{Tk} ⊆ [En,n−1(M) ⊕ En−1,n(M)]R, then we will get

0 < (Ωn−1,n−1, T )

= (Ω, T )

= (Ω, lim
k→+∞

(∂J + ∂̄J)Tk)

= lim
k→+∞

(Ω, (∂J + ∂̄J)Tk)

= lim
k→+∞

((∂J + ∂̄J)Ω, Tk)

= 0.

It is a contradiction.

Corollary 3.6. Let (M, J) be a compact 2-integrable almost complex manifold of dimension 2n. Then (M, J)
carries a strongly Gauduchon metric F if and only if A ∩ B = ∅.

References

[1] P. Gauduchon, Le théoremè de l’excentricité nulle, C. R. Acad. Sci. Paris Sér. A–B 285 (1977) A387–A390.
[2] R. Harvey, H.B. Lawson, An intrinsic characterization of Kähler manifolds, Invent. Math. 74 (1983) 169–198.
[3] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, vol. II, Wiley, New York, 1996.
[4] L.X. Meng, W. Xia, Strongly Gauduchon spaces, arXiv:1610.07155, 2016.
[5] M.L. Michelsohn, On the existence of special metrics in complex geometry, Acta Math. 149 (1982) 261–295.

http://refhub.elsevier.com/S0022-247X(17)31074-0/bib476175s1
http://refhub.elsevier.com/S0022-247X(17)31074-0/bib484Cs1
http://refhub.elsevier.com/S0022-247X(17)31074-0/bib4B4Es1
http://refhub.elsevier.com/S0022-247X(17)31074-0/bib4D58s1
http://refhub.elsevier.com/S0022-247X(17)31074-0/bib4D6963s1


JID:YJMAA AID:21865 /FLA Doctopic: Complex Analysis [m3L; v1.226; Prn:8/12/2017; 10:57] P.9 (1-9)
Q. Tan / J. Math. Anal. Appl. ••• (••••) •••–••• 9
[6] A. Newlander, L. Nirenberg, Complex analytic coordinates in almost complex manifolds, Ann. of Math. (2) 65 (1957) 
391–404.

[7] A. Nijenhuis, W.B. Woolf, Some integration problems in almost-complex and complex manifolds, Ann. of Math. (2) 77 
(1963) 424–489.

[8] N. Pali, Fonctions plurisousharmoniques et courants positifs de type (1, 1) sur une variété complex, Manuscripta Math. 
118 (2005) 311–337.

[9] D. Popovici, Limits of projective manifolds under holomorphic deformations, arXiv:0910.2032v2, 2016.
[10] H.H. Schaefer, Topological Vector Spaces, Springer, Berlin–Heidelberg–New York, 1971.

http://refhub.elsevier.com/S0022-247X(17)31074-0/bib4E4Es1
http://refhub.elsevier.com/S0022-247X(17)31074-0/bib4E4Es1
http://refhub.elsevier.com/S0022-247X(17)31074-0/bib4E57s1
http://refhub.elsevier.com/S0022-247X(17)31074-0/bib4E57s1
http://refhub.elsevier.com/S0022-247X(17)31074-0/bib50616C69s1
http://refhub.elsevier.com/S0022-247X(17)31074-0/bib50616C69s1
http://refhub.elsevier.com/S0022-247X(17)31074-0/bib506F70s1
http://refhub.elsevier.com/S0022-247X(17)31074-0/bib536368s1

	On strongly Gauduchon metrics of almost complex manifolds
	1 Introduction
	2 Deﬁnitions and preliminaries
	3 Proof of main result
	References


