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Dynamics of a Benthic-Drift Model for Two

Competitive Species

Yu Jin ∗ Feng-Bin Wang†

Abstract

Population dynamics of multiple interactive species in rivers and streams

is important in river/stream ecology. In this paper, we consider a model for

two competitive species living in a river environment where the populations

grow and compete in the benthic zone and disperse in the drifting water

zone. We establish threshold conditions for persistence and extinction of two

species and obtain the existence of a positive steady state under persistence

conditions. We also numerically investigate the influences of factors, such

as advection rates, diffusion rates, river length, competition rates, transfer

rates, and spatial heterogeneity on persistence of the two competitive species.

Keywords. Benthic-drift model, competition, principal eigenvalue, persis-

tence, stability

AMS subject classifications. 35K10, 47A75, 92B05

1 Introduction

Numerous species and organisms live in river and stream environments. Popula-

tion dynamics in rivers or streams have attracted increasing attentions of biologists,

ecologists and mathematicians in recent years. There are two important issues in

stream ecology. One is the “drift paradox” [16], which asks how stream dwelling

organisms can persist in a river/stream environment when continuously subjected

to a unidirectional water flow. The solution of this problem provides not only

better understanding of ecodynamics inside a river, but also strategies for how to
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keep a native species persistent or how to control the growth of an invasive species.

The other issue is called the “Instream Flow Needs” [9, 14], which asks how to

design reasonable flows to maintain desired levels of ecosystem in a river/stream

environment. With increasing demands for human beings’ daily life, industry, agri-

culture, etc, for limited freshwater resources, it is crucial to understand how much

water can human beings utilize without destroying the heath and diversity of river

ecosystems. Mathematical models, such as ordinary or partial differential equa-

tions and integro-differential or integro-difference equations have been established

to study the effect of population demography, individual movement and flow dy-

namics on spatial spread and persistence of populations in streams and rivers and

to provide water management strategy for maintaining ecosystem in rivers (see e.g.,

[6, 7, 8, 10, 11, 14, 17, 19, 2]).

For a single species, in recent works [9] and [14], population dynamics has been

described by reaction-diffusion-advection equations that couple population demog-

raphy and hydraulic dynamics in the cases where a single species only lives in

flowing water and where the species lives in both flowing water and river benthos,

respectively. Three measures have been established to determine a population’s fun-

damental niche, source and sink regions, and global persistence in a river, through

the next generation operator, which maps the population from one generation to

its next generation offsprings.

In natural rivers or streams, multiple species live in the same environment. They

interact with each other and are also interfered with the physical and hydrological

environment. The study of a single species cannot provide its accurate dynamics

in a river, so it is important and necessary to consider the interactions of a species

with other species and the habitat. Competition is a simple but typical interaction

between species. The study of competitive models has been an interesting topic

in river ecodynamics studies. Li et al (see e.g., [23]) studied spreading speeds and

traveling waves or cooperative systems; their results can be applied to competitive

models for river species. Vasilyeva and Lutscher [21] studied dynamics of competi-

tive models in a spatially homogeneous river and approximated the dispersal terms

by linear terms depending on the principal eigenvalue of the dispersal operator.

Recently, Zhou and Zhao [25] studied a competitive model for two river/stream

species. Their model consists of two reaction-diffusion-advection equations and

they analyzed the dynamics of the model including the existence and stability of

steady states.

In this work, we will extend the earlier works [9, 14, 25] and consider a com-

petitive model for two river species that live not only in the flowing water but also

on the benthos. Such species can be invertebrates, which live on the benthos of

the river but jump into water and settle down to the bottom from time to time [1].

They actually spend most of their time on the benthos and only drift in water for a
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very short period every time. The species can also be those who stay in a transient

storage zone on the benthos or near the river side, which suffers different physical

or hydrological conditions from the flowing water and hence provides different eco-

logical habitat than the water column [4, 15]. Therefore, it is very important to

incorporate the benthic stage into a mathematical model for competitive species.

Moreover, the model can also describe the dynamics of a species that has a storage

zone in a river or it almost does not move in the zone close to the river bank.

Hence, this work is a mathematical and biological extension of previous works.

In our model, we consider a one-dimensional river and assume that individuals

reproduce and compete on the benthos but only disperse in the flowing water.

This yields a system consisting of two reaction-diffusion-advection equations that

describe dynamics in the free water, coupled to two ordinary differential equations

that describe dynamics on the benthos. We consider very general competitors in

our model so that all the parameters including the advection rates (see [20, 25]

and references therein) may be different for two species. We are interested in

the persistence criteria for such two species. Overall, there might be three cases

for the dynamics of the species: none of them can survive, one species wins the

competition, and two species coexist. Since there are two species, it is hard to

define the next generation operator to map one population to its offspring and the

resulted net reproductive rate. Because of the two ordinary differential equations,

the solution maps of the system are not compact, and hence, traditional theories of

eigenvalue problems in infinite-dimensional dynamical systems based on the Krein-

Rutman theorem [5] (see e.g., [14]), are therefore not applicable to our model. Wang

and Zhao [22] has developed a theory of eigenvalue problems for compartmental

epidemic models of reaction-diffusion equations, where some of diffusion coefficients

could be zeros. Hsu et al [6] has established estimates for the principal eigenvalue

of second order differential operators with variable coefficients. We adapt these

theories to our model and show that the eigenvalue problems corresponding to the

linearized systems at the trivial steady state and semi-trivial steady states admit

principal eigenvalues. Then we use the theories of monotone dynamical systems to

show that these principal eigenvalues serve as thresholds for extinction and uniform

persistence of one or two populations under investigation.

The paper is organized as follows. In the next section, we introduce a benthic-

drift model for two competitive species in a river or stream. In section 3, we

establish threshold conditions for existence and stability of the trivial steady state,

semi-trivial steady states, and a coexistence steady state, by mainly using the

theories of monotone dynamical systems and eigenvalue problems. In section 4, we

numerically investigate how biotic and abiotic factors such as diffusion coefficients,

competition rates, transfer rates, advection rates, and river length affect population

persistence or extinction, by studying the dependence of the principal eigenvalues
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of corresponding eigenvalue problems on these factors. We also analyze the effect

of spatial heterogeneity on population density distributions in the positive steady

state. A short discussion section completes the paper.

2 The model

We consider two competitive species in a river. They live both in the water column

and in the benthic zone, while they only reproduce in the benthic zone and disperse

in water. They compete in the benthic zone for space and nutrients so that the

reproduction of either species depends on the densities of both species in the benthic

zone. The dynamics of these two species are then governed by the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Nd,1

∂t
= Ab(x)

Ad(x)
μ1(x)Nb,1 − σ1(x)Nd,1 −md,1(x)Nd,1 − Q

Ad(x)

∂Nd,1

∂x

+ 1
Ad(x)

∂
∂x

[
D1(x)Ad(x)

∂Nd,1

∂x

]
,

∂Nb,1

∂t
= f1(x,Nb,1, Nb,2)Nb,1 − μ1(x)Nb,1 +

Ad(x)
Ab(x)

σ1(x)Nd,1,
∂Nd,2

∂t
= Ab(x)

Ad(x)
μ2(x)Nb,2 − σ2(x)Nd,2 −md,2(x)Nd,2 − δQ

Ad(x)

∂Nd,2

∂x

+ 1
Ad(x)

∂
∂x

[
D2(x)Ad(x)

∂Nd,2

∂x

]
,

∂Nb,2

∂t
= f2(x,Nb,1, Nb,2)Nb,2 − μ2(x)Nb,2 +

Ad(x)
Ab(x)

σ2(x)Nd,2,

(2.1)

in (x, t) ∈ (0, L)× (0,∞) with boundary and initial value conditions⎧⎪⎨
⎪⎩
α1N(0, t)− β1

∂N
∂x

(0, t) = 0, t > 0, N = Nd,1, Nd,2,

α2N(L, t) + β2
∂N
∂x

(L, t) = 0, t > 0, N = Nd,1, Nd,2,

N(x, 0) = N0(x) ≥ 0, 0 < x < L, N = (Nd,1, Nd,2, Nb,1, Nb,2).

(2.2)

Here Nd,i is the density of the drift population of species i (i = 1, 2), Nb,i is the

density of the benthic population of species i, Di is the diffusion rate of species i,

md,i is the death rate of drift population, σi is the transfer rate of the drift popula-

tion to benthos, μi is the transfer rate of the benthic population to drifting water,

fi is the growth rate of species i (in the benthic zone), αi and βi are nonnegative

constants, Ab and Ad are the cross-sectional areas of the benthic zone and the drift

zone, respectively, Q is the water discharge, δ is a nonnegative constant that repre-

sents the ratio between the advection rates of two species. N0 represents the initial

distribution of the population. For simplicity, we denote spatial operators as

L1[u] := − Q
Ad(x)

∂u
∂x

+ 1
Ad(x)

∂
∂x

[
D1(x)Ad(x)

∂u
∂x

]
,

L2[u] := − δQ
Ad(x)

∂u
∂x

+ 1
Ad(x)

∂
∂x

[
D2(x)Ad(x)

∂u
∂x

]
.

Throughout this paper, we make the following assumptions for the functions

and parameters in model (2.1):
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H(i) μi(x), σi(x), and md,i(x) are nonnegative continuous functions.

H(ii) Di, Ab, Ad ∈ C2([0, L], (0,∞)), and there exist positive constants c1 and c2
such that c1 < Ad(x), Ab(x) < c2 for any x ∈ [0, L].

H(iii) fi : [0, L] × (0,∞) × (0,∞) → R is continuous; fi is monotonically decreas-

ing and Liptschiz continuous with respect to Nb,1 and Nb,2; fi(x, 0, 0) < ∞;

fi(x, 0, 0)− μi(x) < 0 for all x ∈ (0, L); there exist K1 > 0 and K2 > 0 such

that for all x ∈ [0, L], f1(x,Nb,1, 0) < 0 for Nb,1 > K1, and f2(x, 0, Nb,2) < 0

for Nb,2 > K2.

Typical examples of f1 and f2 for two competitive species can be chosen as

follows: ⎧⎨
⎩
f1(x,Nb,1, Nb,2) = r1(x)

(
1− Nb,1

K11(x)
− Nb,2

K12(x)

)
,

f2(x,Nb,1, Nb,2) = r2(x)
(
1− Nb,1

K21(x)
− Nb,2

K22(x)

)
,

(2.3)

where ri is the intrinsic growth rate, Kii is the carrying capacity, and 1/Kij repre-

sents the competition rate.

3 Dynamics of model (2.1)

In this section, we investigate the dynamics of (2.1) and establish existence and

stability conditions for all types of steady states of (2.1).

Let X̃ = C([0, L], R4) and X̃+ = C([0, L], R4
+) with norm ||u|| = max

1≤i≤4
max
x∈[0,L]

|ui(x)|
for u = (u1, u2, u3, u4) ∈ X̃ in the case of Robin boundary conditions for (2.1) or

X̃ = C1
0([0, L], R

4) and X̃+ = C1
0([0, L], R

4
+) with norm ||u|| = max

1≤i≤4
( max
x∈[0,L]

|ui(x)|+
max
x∈[0,L]

|u′
i(x)|) for u = (u1, u2, u3, u4) ∈ X̃ in the case of Dirichlet boundary con-

ditions for (2.1). Then X̃+ is the positive cone in the Banach space X̃ with the

above norm.

By [13, Proposition 3 and Remark 2.4], we can show that system (2.1) admits

a unique solution for all t > 0 for each N0 ∈ X̃+. Furthermore, X̃+ is positively

invariant for (2.1). Define the solution map of (2.1) as

Φt(N
0)(x) := (Nd,1(x, t), Nb,1(x, t), Nd,2(x, t), Nb,2(x, t)), ∀x ∈ [0, L], t ≥ 0,

(3.1)

where (Nd,1(x, t), Nb,1(x, t), Nd,2(x, t), Nb,2(x, t)) is the solution of (2.1) with initial

condition (Nd,1(·, 0), Nb,1(·, 0), Nd,2(·, 0), Nb,2(·, 0)) = N0 ∈ X̃+.
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We define the following quantities, which will be used to construct a positively

invariant set for (2.1):⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Kb,1 = inf{ρ > 0 : f1(x, ρ, 0)− μmin
1 +

Amax
d σmax

1

Amin
b

Amax
b μmax

1

Amin
d (σmin

1 +mmin
d,1 )

≤ 0 in [0, L]},
Kb,2 = inf{ρ > 0 : f2(x, 0, ρ)− μmin

2 +
Amax

d σmax
2

Amin
b

Amax
b μmax

2

Amin
d (σmin

2 +mmin
d,2 )

≤ 0 in [0, L]},
Kd,1 =

Amax
b μmax

1

Amin
d (σmin

1 +mmin
d,1 )

Kb,1,

Kd,2 =
Amax

b μmax
2

Amin
d (σmin

2 +mmin
d,2 )

Kb,2,

(3.2)

where gmax = maxx∈[0,L] g(x) and gmin = minx∈[0,L] g(x) for any g ∈ C([0, L], R+).

3.1 Existence and stability of trivial and semi-trivial steady

states

It is easy to see that E∗
0 = (0, 0, 0, 0) is a trivial steady state of (2.1). The lineariza-

tion of (2.1) at E∗
0 is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Nd,1

∂t
= Ab(x)

Ad(x)
μ1(x)Nb,1 − σ1(x)Nd,1 −md,1(x)Nd,1 + L1[Nd,1],

∂Nb,1

∂t
= f1(x, 0, 0)Nb,1 − μ1(x)Nb,1 +

Ad(x)
Ab(x)

σ1(x)Nd,1,
∂Nd,2

∂t
= Ab(x)

Ad(x)
μ2(x)Nb,2 − σ2(x)Nd,2 −md,2(x)Nd,2 + L2[Nd,2],

∂Nb,2

∂t
= f2(x, 0, 0)Nb,2 − μ2(x)Nb,2 +

Ad(x)
Ab(x)

σ2(x)Nd,2,

α1N(0, t)− β1
∂N
∂x

(0, t) = 0, t > 0, N = Nd,1, Nd,2,

α2N(L, t) + β2
∂N
∂x

(L, t) = 0, t > 0, N = Nd,1, Nd,2,

N(x, 0) = N0(x) ≥ 0, 0 < x < L, N = (Nd,1, Nd,2, Nb,1, Nb,2),

(3.3)

which can be written as two decoupled systems⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂Nd,1

∂t
= Ab(x)

Ad(x)
μ1(x)Nb,1 − σ1(x)Nd,1 −md,1(x)Nd,1 + L1[Nd,1],

∂Nb,1

∂t
= f1(x, 0, 0)Nb,1 − μ1(x)Nb,1 +

Ad(x)
Ab(x)

σ1(x)Nd,1,

α1Nd,1(0, t)− β1
∂Nd,1

∂x
(0, t) = 0, α2Nd,1(L, t) + β2

∂Nd,1

∂x
(L, t) = 0, t > 0,

N(x, 0) = N0(x) ≥ 0, 0 < x < L, N = (Nd,1, Nb,1),

(3.4)

and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂Nd,2

∂t
= Ab(x)

Ad(x)
μ2(x)Nb,2 − σ2(x)Nd,2 −md,2(x)Nd,2 + L2[Nd,2],

∂Nb,2

∂t
= f2(x, 0, 0)Nb,2 − μ2(x)Nb,2 +

Ad(x)
Ab(x)

σ2(x)Nd,2,

α1Nd,2(0, t)− β1
∂Nd,2

∂x
(0, t) = 0, α2Nd,2(L, t) + β2

∂Nd,2

∂x
(L, t) = 0, t > 0,

N(x, 0) = N0(x) ≥ 0, 0 < x < L, N = (Nd,2, Nb,2).

(3.5)
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It follows from [9, Discussion] that if fi(x, 0, 0)−μi(x) ≥ 0 then (0, 0) is always

unstable for (3.4) or (3.5), and hence E∗
0 is unstable for (3.3). If fi(x, 0, 0)−μi(x) <

0, we substitute Nd,i(x, t) = eλtφ1,i(x) and Nb,i(x, t) = eλtφ2,i(x) into (3.4) and (3.5)

and consider the following eigenvalue problem associated with (3.4) and (3.5):⎧⎪⎪⎨
⎪⎪⎩
λφ1,i =

Ab(x)
Ad(x)

μi(x)φ2,i − σi(x)φ1,i −md,i(x)φ1,i + Li[φ1,i],

λφ2,i = fi(x, 0, 0)φ2,i − μi(x)φ2,i +
Ad(x)
Ab(x)

σi(x)φ1,i,

α1φ1,i(0)− β1
∂φ1,i

∂x
(0) = 0, α2φ1,i(L) + β2

∂φ1,i

∂x
(L) = 0,

(3.6)

for i = 1, 2. By [9, Theorem 3], we can obtain the following result.

Theorem 3.1. Assume f̃i(x) := fi(x, 0, 0)−μi(x) < 0 and f̃i is locally Lipschitz at

some maximum point x∗ ∈ [0, L]. Then (3.6) admits a unique principal eigenvalue

λ∗
i ∈ (λc,i,∞), where λc,i = max

x∈[0,L]
{f̃i(x)}.

Define

λ∗
i = the unique principal eigenvalue of (3.6), i = 1, 2. (3.7)

It then follows from Lemma 4 and Theorem 5 in [9] that (0, 0) is stable for (3.4)

if λ∗
1 < 0 and unstable if λ∗

1 > 0, and that (0, 0) is stable for (3.5) if λ∗
2 < 0 and

unstable if λ∗
2 > 0. We then obtain the following theorem regarding the stability

of E∗
0 .

Theorem 3.2. If λ∗
1 < 0 and λ∗

2 < 0, then E∗
0 is globally asymptotically stable for

(2.1) in X̃+.

Proof. When λ∗
1 < 0 and λ∗

2 < 0, E∗
0 is the unique steady state of (2.1). By the

dynamics of (3.4) and (3.5), we can obtain that E∗
0 is globally asymptotically stable

for (3.3) when λ∗
1 < 0 and λ∗

2 < 0. Note that by H(iii) we have f1(x,Nb,1, Nb,2) ≤
f1(x, 0, 0) and f2(x,Nb,1, Nb,2) ≤ f2(x, 0, 0) for Nb,1 ≥ 0 and Nb,2 ≥ 0. Hence, the

comparison principle implies that the solution of (2.1) is controlled from above by

the solution of (3.3). Thus, if λ∗
1 < 0 and λ∗

2 < 0, then E∗
0 is globally asymptotically

stable for (2.1) for any initial condition in X̃+.

Lemma 3.1. (i) If λ∗
1 > 0, then the system⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Nd,1

∂t
= Ab(x)

Ad(x)
μ1(x)Nb,1 − σ1(x)Nd,1 −md,1(x)Nd,1 + L1[Nd,1],

∂Nb,1

∂t
= f1(x,Nb,1, 0)Nb,1 − μ1(x)Nb,1 +

Ad(x)
Ab(x)

σ1(x)Nd,1,

α1Nd,1(0, t)− β1
∂Nd,1

∂x
(0, t) = 0, α2Nd,1(L, t) + β2

∂Nd,1

∂x
(L, t) = 0,

Nd,1(x, 0) = N0
d,1(x) ≥ 0, Nb,1(x, 0) = N0

b,1(x) ≥ 0, 0 < x < L,

(3.8)

admits a unique positive steady state (N∗
d,1(x), N

∗
b,1(x)), which is globally asymp-

totically stable for all initial functions in C([0, L], R2
+) \ {(0, 0)}.
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(ii) If λ∗
2 > 0, then the system⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Nd,2

∂t
= Ab(x)

Ad(x)
μ2(x)Nb,2 − σ2(x)Nd,2 −md,2(x)Nd,2 + L2[Nd,2],

∂Nb,2

∂t
= f2(x, 0, Nb,2)Nb,2 − μ2(x)Nb,2 +

Ad(x)
Ab(x)

σ2(x)Nd,2,

α1Nd,2(0, t)− β1
∂Nd,2

∂x
(0, t) = 0, α2Nd,2(L, t) + β2

∂Nd,2

∂x
(L, t) = 0,

Nd,2(x, 0) = N0
d,2(x) ≥ 0, Nb,2(x, 0) = N0

b,2(x) ≥ 0, 0 < x < L,

(3.9)

admits a unique positive steady state (N∗
d,2(x), N

∗
b,2(x)), which is globally asymp-

totically stable for all initial functions in C([0, L], R2
+) \ {(0, 0)}.

Proof. We prove (i) and omit the proof of (ii).

By [13, Proposition 3 and Remark 2.4], we can show the local existence of

solutions for system (3.8) with initial functions in C([0, L], R2
+), and we can also

show that C([0, L], R2
+) is positively invariant for (3.8). Let

Ψt : C([0, L], R2
+) → C([0, L], R2

+)

be the solution map associated with system (3.8), that is, for x ∈ [0, L] and t ≥ 0,

Ψt(N
0
d,1, N

0
b,1)(x) := (Nd,1(x, t), Nb,1(x, t)), where (Nd,1(x, t), Nb,1(x, t)) is the solu-

tion of (3.8) with (Nd,1(x, 0), Nb,1(x, 0)) = (N0
d,1(x), N

0
b,1(x)) ∈ C([0, L], R2

+).

We first prove that for any t > 0, Ψt satisfies the following claims.

Claim 1. Ψt is strongly positive.

Let N0 = (N0
d,1, N

0
b,1) ≥ 0 with N0 	≡ 0. We prove that Nd,1(x, t) > 0 and

Nb,1(x, t) > 0 for all t > 0, x ∈ [0, L].

Suppose Nd,1(x1, t1) = 0 for some x1 ∈ [0, L], t1 > 0. Then −∂Nd,1

∂t
−σ1(x)Nd,1−

md,1(x)Nd,1+L1[Nd,1] = −Ab(x)
Ad(x)

μ1(x)Nb,1 ≤ 0. If x1 ∈ (0, L), then strong maximum

principle implies that Nd,1(x, t) ≡ 0 on x ∈ [0, L], t ≥ 0. Substituting Nd,1(x, t) ≡ 0

into the first equation of (3.8), we have Nb,1(x, t) ≡ 0 on x ∈ [0, L], t ≥ 0. Then

it follows that N0 = (N0
d,1, N

0
b,1) = (Nd,1(·, 0), Nb,1(·, 0) = (0, 0), a contradiction. If

x1 = 0, we have Nd,1(0, t1) = 0, and hence, ∂Nd,1/∂x(0, t1) > 0. So α1Nd,1(0, t1)−
β1∂Nd,1/∂x(0, t1) < 0. Contradiction. If x1 = L, it follows from the boundary

condition that ∂Nd,1/∂x(L, t1) < 0, contradiction again. Thus Nd,1(x, t) > 0 for all

x ∈ [0, L], t > 0.

Suppose Nb,1(x2, t2) = 0 for some x2 ∈ [0, L], t2 > 0. Then ∂Nb,1/∂t =

Ad/Abσ1Nd,1 > 0 at (x2, t2). So Nb,1(x2, t2 − tδ) < Nb,1(x2, t2) = 0 for some suffi-

ciently small tδ > 0. This contradicts the fact Nb,1(x, t) ≥ 0 for t ∈ [0, t2]. Thus

Nb,1(x, t) > 0 for all x ∈ [0, L], t > 0.

Therefore, N0 ≥ 0 with N0 	≡ (0, 0) implies (Nd,1(x, t), Nb,1(x, t)) � 0 for all

x ∈ [0, L], t > 0. Hence, for any t > 0, Ψt is strongly positive.

Claim 2. Ψt is strongly monotone.
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Let (N j
d,1(x, t,N

j0), N j
b,1(x, t,N

j0)) be the solution of (3.8) with initial condition

Nj0 = (N j0
d,1, N

j0
b,1), j = 1, 2, where N10 ≥ N20 and N10 	≡ N20. Let N̄d,1 = N1

d,1 −
N2

d,1, N̄b,1 = N1
b,1 −N2

b,1. Note that Ψt is monotone. Then N̄b,1 ≥ 0 and

∂N̄d,1

∂t
= Ab(x)

Ad(x)
μ1(x)N̄b,1(x, t)− (σ1(x) +md,1(x))N̄d,1(x, t) + L1[N̄d,1](x, t),

∂N̄b,1

∂t
= −μ1(x)N̄b,1 +

Ad(x)
Ab(x)

σ1(x)N̄d,1 + f1(x,N
1
b,1, 0)N

1
b,1 − f1(x,N

2
b,1, 0)N

2
b,1

≥ −L(x)N̄b,1 − μ1(x)N̄b,1 +
Ad(x)
Ab(x)

σ1(x)N̄d,1,

where L(x) ≥ 0 is the Liptschiz constant of the function f1(x,N, 0)N with respect

to N .

Consider the following system

∂Ñd,1

∂t
= Ab(x)

Ad(x)
μ1(x)Ñb,1(x, t)− (σ1(x) +md,1(x))Ñd,1(x, t) + L1[Ñd,1](x, t),

∂Ñb,1

∂t
= −L(x)Ñb,1 − μ1(x)Ñb,1 +

Ad(x)
Ab(x)

σ1(x)Ñd,1,

α1Ñd,1(0, t)− β1
∂Ñd,1

∂x
(0, t) = 0, α2Ñd,1(L, t) + β2

∂Ñd,1

∂x
(L, t) = 0,

with the initial condition (Ñ0
d,1, Ñ

0
b,1) = (N10

d,1−N20
d,1, N

10
b,1−N20

b,1) ≥, 	≡ (0, 0). By the

similar arguments to those in Claim 1, we can show that (Ñd,1(x, t), Ñb,1(x, t)) � 0,

for all x ∈ [0, L], t > 0. Then by comparison principle, (N̄d,1(x, t), N̄b,1(x, t)) ≥
(Ñd,1(x, t), Ñb,1(x, t)) � 0, for all x ∈ [0, L], t > 0. This implies that the solution

map Ψt is strongly monotone.

Claim 3. Ψt is strictly subhomogenous.

Assume that (Nd,1(x, t,N
0), Nb,1(x, t,N

0)) is a solution of (3.8) with initial con-

dition N0 = (N0
d,1, N

0
b,1). For any λ ∈ (0, 1), (λNd,1(x, t,N

0), λNb,1(x, t,N
0)) satis-

fies

∂(λNd,1)

∂t
= Ab(x)

Ad(x)
μ1(x)λNb,1 − σ1(x)λNd,1 −md,1(x)λNd,1 + L1[λNd,1],

∂(λNb,1)

∂t
= f1(x,Nb,1, 0)λNb,1 − μ1(x)λNb,1 +

Ad(x)
Ab(x)

σ1(x)λNd,1

≤ f1(x, λNb,1, 0)λNb,1 − μ1(x)λNb,1 +
Ad(x)
Ab(x)

σ1(x)λNd,1.

This implies that (λNd,1(x, t,N
0), λNb,1(x, t,N

0)) is a lower solution of the system

(3.8). Hence Ψt(λN
0) ≥ λΨt(N

0) for any N0 � 0 and λ ∈ (0, 1).

Let N̂d,1(x, t) = Nd,1(x, t, λN
0) − λNd,1(x, t,N

0), N̂b,1(x, t) = Nb,1(x, t, λN
0) −

λNb,1(x, t,N
0). Then N̂d,1 ≥ 0, N̂b,1 ≥ 0, and (N̂d,1, N̂b,1) satisfies

∂N̂d,1

∂t
= Ab(x)

Ad(x)
μ1(x)N̂b,1 − (σ1(x) +md,1(x))N̂d,1 + L1[N̂d,1],

∂N̂b,1

∂t
= −μ1(x)N̂b,1 +

Ad(x)
Ab(x)

σ1(x)N̂d,1

+f1(x,Nb,1(x, t, λN
0), 0)Nb,1(x, t, λN

0)− f1(x,Nb,1(x, t,N
0), 0)λNb,1(x, t,N

0),

α1N̂d,1(0, t)− β1
∂N̂d,1

∂x
(0, t) = 0, α2N̂d,1(L, t) + β2

∂N̂d,1

∂x
(L, t) = 0,

N̂d,1(·, 0) = 0, N̂d,1(·, 0) = 0.
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Let Td(t) be the semigroup generated by
∂N̂d,1

∂t
= −(σ1(x)+md,1(x))N̂d,1 +L1[N̂d,1]

and (Tb(t)φ)(x) = e−μ1(x)t. Then the solution of the above system can be written

as ⎧⎪⎪⎨
⎪⎪⎩
N̂d,1(x, t) =

∫ t

0
Td(t− s)Ab(x)

Ad(x)
μ1(x)N̂b,1(x, s)ds,

N̂b,1(x, t) =
∫ t

0
Tb(t− s)[f1(x,Nb,1(x, s, λN

0), 0)Nb,1(x, s, λN
0)

−f1(x,Nb,1(x, s,N
0), 0)λNb,1(x, s,N

0) + Ad(x)
Ab(x)

σ1(x)N̂d,1(x, s)]ds,

(3.10)

It follows from Claim 2 that Nb,1(x, t, λN
0) � Nb,1(x, t,N

0). H(iii) then im-

plies that

f1(x,Nb,1(x, t, λN
0), 0) ≥, 	≡ f1(x,Nb,1(x, t,N

0), 0).

Therefore, we have

f1(x,Nb,1(x, t, λN
0), 0)Nb,1(x, t, λN

0)−f1(x,Nb,1(x, t,N
0), 0)λNb,1(x, t,N

0) ≥, 	≡ 0,

for all x ∈ [0, L] and t ≥ 0. This together with the second equation of (3.10) imply

that N̂b,1(x, t) ≥, 	≡ 0, and hence, N̂d,1(x, t) > 0, for all x ∈ [0, L], t > 0, due to the

first equation of (3.10). Therefore, Ψt(λN
0) > λΨt(N

0) for any (N0
d,1, N

0
b,1) � 0,

t > 0 and λ ∈ (0, 1), that is, Ψt is strictly subhomogeneous.

Claim 4. Ψt is κ-contracting.

Let k be the Kuratowski measure of noncompactness defined by κ(B) = inf{r :
B has a finite cover of diameter < r} for any bounded set B (see e.g., [24]). By

using the assumptions H(i)-H(iii), similarly as in Lemma 4.1 in [7], we can prove

Ψt is κ-contracting in the sense that lim
t→∞

κ(Ψt(B)) = 0 for any bounded set B ⊂
C([0, L], R2

+).

Now we prove the existence of a unique positive steady state of (3.8).

Let

Y + = {(u1, u2) ∈ C([0, L], R2
+) : (u1, u2) ≤ (Kd,1, Kb,1)}, (3.11)

and

Y0 = Y + \ {(0, 0)} (3.12)

where (Kd,1, Kb,1) is defined in (3.2). Since (Kd,1, Kb,1) is an upper solution of (3.8),

we obtain that for any t > 0, the solution map Ψt of (3.8) is point dissipative (i.e.,

solutions of (3.8) are ultimately bounded) and uniformly bounded on Y +.

Let t̄ > 0. Since Ψt̄ is κ-contracting on Y +, Ψt̄ is point dissipative on Y +,

and positive orbits of bounded subsets of Y + for Ψt̄ are bounded, it follows from

Theorem 2.6 in [12] that Ψt̄ has a global attractor that attracts each bounded set

in Y +. Note that Theorem 5 in [9] implies that Ψt̄ is weakly uniformly persistent

with respect to (Y0, ∂Y0) when λ∗
1 > 0. It follows from Theorem 1.3.3 in [24] that Ψt̄

is uniformly persistent with respect to (Y0, ∂Y0) in the sense that there exists ε > 0
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such that lim inf
t→∞

||Ψt̄(P )|| ≥ ε, for all P ∈ Y0. Then Ψt̄ : Y0 → Y0 admits a global

attractor A0. Note that Ψt̄ is strongly monotone and strictly subhomogeneous.

Since A0 is in Y0 and A0 = Ψt̄(A0), we have A0 ⊆ Int(C([0, L]), R2
+). Then by

Theorem 2.3.2 in [24] with K = A0 that Ψt̄ has a fixed point e � 0 in Y0 such that

A0 = {e}. Since (3.8) is an autonomous system, we can consider it as a t̄-periodic

system. For any t ≥ 0, we have Ψt(e) = Ψt(Ψt̄(e)) = Ψt̄(Ψt(e)), which implies that

Ψt(e) is a fixed point of Ψt̄. Hence, Ψt(e) = e for all t ≥ 0 since the fixed point of

Ψt̄ is unique. Thus, e is a globally attractive steady state of the system (3.8) in Y0.

The comparison principle guarantees the local stability of e. Hence, e is globally

asymptotically stable in Y0.

For any initial value N0 = (N0
d,1, N

0
b,1) ∈ C([0, L], R2

+) \ {(0, 0)}, we can find

a constant ζ ≥ 1, such that N0 ∈ Ŷ + = {(u1, u2) ∈ C([0, L], R2
+) : (u1, u2) ≤

ζ(Kd,1, Kb,1)}. By the comparison principle, we have Ψt : Ŷ
+ → Ŷ +, and hence

Ψt is point dissipative and uniformly bounded on Ŷ + for all t > 0. Therefore,

applying the above proof for Ψt on Ŷ +, we can obtain that there exists a unique

globally attractive steady state ê of the system (3.8) in Ŷ + \ {(0, 0)}. Note that

Y0 ⊂ Ŷ + \ {(0, 0)}. By the uniqueness of the globally attractive steady state in

Ŷ + \ {(0, 0)}, we have e = ê, which implies lim
t→∞

||Ψt(N
0)− e|| = 0. Therefore, we

have proved that e attracts any solution of (3.8) in C([0, L], R2
+) \ {(0, 0)}. Hence,

e is globally asymptotically stable in C([0, L], R2
+) \ {(0, 0)}.

We then complete the proof of Lemma 3.1 (i) by writing e = (N∗
d,1(x), N

∗
b,1(x)).

It follows from Lemma 3.1 that system (2.1) admits a semi-trivial steady state

E∗
1(x) = (N∗

d,1(x), N
∗
b,1(x), 0, 0) when λ∗

1 > 0 and that it admits a semi-trivial steady

state E∗
2(x) = (0, 0, N∗

d,2(x), N
∗
b,2(x)) when λ∗

2 > 0.

The linearization of (2.1)-(2.2) at E∗
1 is

∂Nd,1

∂t
= Ab(x)

Ad(x)
μ1(x)Nb,1 − σ1(x)Nd,1 −md,1(x)Nd,1 + L1[Nd,1],

∂Nb,1

∂t
=

(
f1(x,N

∗
b,1, 0) +

∂f1(x,N∗
b,1,0)

∂Nb,1
N∗

b,1

)
Nb,1 − μ1(x)Nb,1

+Ad(x)
Ab(x)

σ1(x)Nd,1 +
∂f1(x,N∗

b,1,0)

∂Nb,2
N∗

b,1Nb,2,
∂Nd,2

∂t
= Ab(x)

Ad(x)
μ2(x)Nb,2 − σ2(x)Nd,2 −md,2(x)Nd,2 + L2[Nd,2],

∂Nb,2

∂t
= f2(x,N

∗
b,1, 0)Nb,2 − μ2(x)Nb,2 +

Ad(x)
Ab(x)

σ2(x)Nd,2,

with initial and boundary value conditions as in (2.2).

(3.13)
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The linearization of (2.1)-(2.2) at E∗
2 is

∂Nd,1

∂t
= Ab(x)

Ad(x)
μ1(x)Nb,1 − σ1(x)Nd,1 −md,1(x)Nd,1 + L1[Nd,1],

∂Nb,1

∂t
=

(
f1(x, 0, N

∗
b,2)

)
Nb,1 − μ1(x)Nb,1 +

Ad(x)
Ab(x)

σ1(x)Nd,1,
∂Nd,2

∂t
= Ab(x)

Ad(x)
μ2(x)Nb,2 − σ2(x)Nd,2 −md,2(x)Nd,2 + L2[Nd,2],

∂Nb,2

∂t
=

(
f2(x, 0, N

∗
b,2) +

∂f2(x,0,N∗
b,2)

∂Nb,2
N∗

b,2 − μ2(x)
)
Nb,2 +

Ad(x)
Ab(x)

σ2(x)Nd,2

+
∂f2(x,0,N∗

b,2)

∂Nb,1
N∗

b,2Nb,1,

with initial and boundary value conditions as in (2.2).
(3.14)

Lemma 3.2. (i). If f2(x,N
∗
b,1, 0) − μ2(x) < 0 and λ∗

1 > 0, then the eigenvalue

problem⎧⎪⎪⎨
⎪⎪⎩
λφ1,2 =

Ab(x)
Ad(x)

μ2(x)φ2,2 − σ2(x)φ1,2 −md,2(x)φ1,2 + L2[φ1,2],

λφ2,2 = f2(x,N
∗
b,1, 0)φ2,2 − μ2(x)φ2,2 +

Ad(x)
Ab(x)

σ2(x)φ1,2,

α1φ1,2(0)− β1
∂φ1,2

∂x
(0) = 0, α2φ1,2(L) + β2

∂φ1,2

∂x
(L) = 0,

(3.15)

associated with⎧⎪⎪⎨
⎪⎪⎩

∂Nd,2

∂t
= Ab(x)

Ad(x)
μ2(x)Nb,2 − σ2(x)Nd,2 −md,2(x)Nd,2 + L2[Nd,2],

∂Nb,2

∂t
= f2(x,N

∗
b,1, 0)Nb,2 − μ2(x)Nb,2 +

Ad(x)
Ab(x)

σ2(x)Nd,2,

α1Nd,2(0)− β1
∂Nd,2

∂x
(0) = 0, α2Nd,2(L) + β2

∂Nd,2

∂x
(L) = 0,

(3.16)

admits a unique principal eigenvalue λ∗
E1

with a corresponding positive eigenfunc-

tion (φ∗
1,2, φ

∗
2,2).

(ii). If f1(x, 0, N
∗
b,2)− μ1(x) < 0 and λ∗

2 > 0, then the eigenvalue problem⎧⎪⎪⎨
⎪⎪⎩
λφ1,1 =

Ab(x)
Ad(x)

μ1(x)φ2,1 − σ1(x)φ1,1 −md,1(x)φ1,1 + L1[φ1,1],

λφ2,1 = f1(x, 0, N
∗
b,2)φ2,1 − μ1(x)φ2,1 +

Ad(x)
Ab(x)

σ1(x)φ1,1,

α1φ1,1(0)− β1
∂φ1,1

∂x
(0) = 0, α2φ1,1(L) + β2

∂φ1,1

∂x
(L) = 0,

(3.17)

associated with⎧⎪⎪⎨
⎪⎪⎩

∂Nd,1

∂t
= Ab(x)

Ad(x)
μ1(x)Nb,1 − σ1(x)Nd,1 −md,1(x)Nd,1 + L1[Nd,1],

∂Nb,1

∂t
= f1(x, 0, N

∗
b,2)Nb,1 − μ1(x)Nb,1 +

Ad(x)
Ab(x)

σ1(x)Nd,1,

α1Nd,1(0)− β1
∂Nd,1

∂x
(0) = 0, α2Nd,1(L) + β2

∂Nd,1

∂x
(L) = 0,

(3.18)

admits a unique principal eigenvalue λ∗
E2

with a corresponding positive eigenfunc-

tion (φ∗
1,1, φ

∗
2,1).
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Proof. The proof is similar to the proof of Theorem 3.1.

Denote
λ∗
E1

: the principal eiganvalue of (3.15) ,

λ∗
E2

: the principal eiganvalue of (3.17).

We can prove the following results about the stability of the trivial and semi-

trivial steady states of (2.1).

Theorem 3.3. For model (2.1),

(i) if λ∗
1 < 0 and λ∗

2 > 0, then E∗
0 is unstable and E∗

2 is globally asymptotically

stable;

(ii) if λ∗
1 > 0 and λ∗

2 < 0, then E∗
0 is unstable and E∗

1 is globally asymptotically

stable;

(iii) if λ∗
1 > 0, λ∗

2 > 0, λ∗
E1

< 0 and λ∗
E2

> 0, then E∗
0 is unstable, E∗

1 is stable, E∗
2

is unstable;

(iv) if λ∗
1 > 0, λ∗

2 > 0, λ∗
E1

> 0 and λ∗
E2

< 0, then E∗
0 is unstable, E∗

1 is unstable,

E∗
2 is stable;

(v) if λ∗
1 > 0, λ∗

2 > 0, λ∗
E1

< 0 and λ∗
E2

< 0, then E∗
0 is unstable, E∗

1 is stable, E∗
2

is stable.

Proof. It follows from Theorem 5 in [9] that E∗
0 is unstable for (2.1) if λ∗

1 > 0 or

λ∗
2 > 0, so we only need to prove stability for E∗

1 and E∗
2 . We provide the proof for

(i) and (iii). The other results can be similarly proved.

(i). Note that f1(x,Nb,1, Nb,2) ≤ f1(x,Nb,1, 0) for all Nb,1, Nb,2 ≥ 0. Theorem 5

in [9] implies that when λ∗
1 < 0, (0, 0) is stable for (3.8). It then follows from the

comparison principle that every solution of (2.1) satisfies Nd,1 → 0 and Nb,1 → 0 as

t → ∞. Hence, (3.9) is the limiting system of (2.1), which admits a unique, pos-

itive, globally asymptotically stable steady state (N∗
d,2(x), N

∗
b,2(x)), when λ∗

2 > 0.

Recall that Φt is the solution semiflow of (2.1). Let ω be the ω-limit set of Φt(N
0)

for N0 = (N0
d,1, N

0
b,1, N

0
d,2, N

0
b,2) ∈ X̃+. Then ω = {(0, 0)} × ω̃, ω̃ ∈ C([0, L], R2

+).

Restricting Φt on ω, we have Φt|ω(0, 0, Nd,2, Nb,2) = (0, 0, Ψ̃t(Nd,2, Nb,2)), where Ψ̃t

is the solution semiflow of (3.9). By [24, Lemma 1.2.1’], ω is an internal chain

transitive set for Φt. Thus by the relationship between ω and ω̃, we have ω̃ is an

internal chain transitive set for Ψ̃t. Since for (3.9) there are only two steady states

(0, 0) and (N∗
d,2(x), N

∗
b,2(x)) when λ∗

2 > 0 and (N∗
d,2(x), N

∗
b,2(x)) is globally asymp-

totically stable in C([0, L], R2
+) \ {(0, 0)}, by the continuous time version of [24,

Theoren 1.2.2], ω̃ should be (0, 0) or (N∗
d,2(x), N

∗
b,2(x)). If ω̃ = (0, 0), then ω = E∗

0 ,

which contradicts to the fact the E∗
0 is unstable. Therefore, ω̃ = (N∗

d,2(x), N
∗
b,2(x)),
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and hence, ω = (0, 0, N∗
d,2(x), N

∗
b,2(x)) = E∗

2 . That is, E
∗
2 is globally asymptotically

stable for (2.1).

(iii). If λ∗
E2

> 0, then (0, 0) is unstable for the first two equations of (3.14),

hence, (0, 0, 0, 0) is unstable for (3.14). The comparison principle implies that E∗
2

is unstable for (2.1). When λ∗
E1

< 0, Nd,2 → 0 and Nb,2 → 0 for the solution of

(3.13). Therefore, the limiting system of (3.13) is

∂Nd,1

∂t
= Ab(x)

Ad(x)
μ1(x)Nb,1 − σ1(x)Nd,1 −md,1(x)Nd,1 + L1[Nd,1],

∂Nb,1

∂t
=

(
f1(x,N

∗
b,1, 0) +

∂f1(x,N∗
b,1,0)

∂Nb,1
N∗

b,1

)
Nb,1 − μ1(x)Nb,1 +

Ad(x)
Ab(x)

σ1(x)Nd,1,

(3.19)

which is the linearization of (3.8) at (N∗
d,1(x), N

∗
b,1(x)). It follows from Lemma 3.1

that (0, 0) is globally asymptotically stable for (3.19) when λ∗
1 > 0. By similar

arguments as in the proof for (i), we can prove that (0, 0, 0, 0) is asymptotically

stable for (3.14), which then implies that E∗
1 is locally asymptotically stable for

(2.1).

3.2 Existence of a coexistence steady state

In this subsection, we will prove that system (2.1) admits a coexistence steady

state when all the trivial and semi-trivial steady states are unstable. Throughout

this subsection, we assume λ∗
1 > 0, λ∗

2 > 0, λ∗
E1

> 0 and λ∗
E2

> 0, which implies the

existence of both semi-trivial steady states E∗
1 and E∗

2 .

Let

X+ := {(u1, u2, u3, u4) ∈ X̃+ : 0 ≤ (u1, u2, u3, u4) ≤ (Kd,1, Kb,1, Kd,2, Kb,2)},
(3.20)

with Kb,i’s and Kd,i’s defined in (3.2). By using H(iii), (3.2), and monotonicity of

systems (3.8) and (3.9), we can show that X+ is positively invariant for (2.1), and

hence, the solution map of (2.1) Φt : X
+ → X+ is point dissipative and uniformly

bounded on X+.

Let

M

(
φ1

φ2

)
(x) =

(
M11(x) M12(x)

M21(x) M22(x)

)
, ∀x ∈ [0, L],

where

M11 = f1(·, φ1, φ2) +
∂f1(·,φ1,φ2)

∂Nb,1
φ1 − μ1, M12 =

∂f1(·,φ1,φ2)
∂Nb,2

φ1,

M21 =
∂f2(·,φ1,φ2)

∂Nb,1
φ2, M22 = f2(·, φ1, φ2) +

∂f2(·,φ1,φ2)
∂Nb,2

φ2 − μ2,

for all φ = (φ1, φ2) ∈ C([0, L], R2
+) with 0 ≤ φ(x) ≤ (Kb,1, Kb,2) for all x ∈ [0, L].

Assume

14



H(iv) There exists a constant χ > 0 such that vTM(φ(x))v ≤ −χvTv, for any

v ∈ R
2, φ ∈ C([0, L], R2

+) with 0 ≤ φ(x) ≤ (Kb,1, Kb,2) for all x ∈ [0, L].

Due to the loss of two diffusion terms in (2.1), the associated solution maps are

not compact. However, under the assumptions H(i)-H(iv), we can prove by sim-

ilar arguments as in Lemma 4.3 of [8] that Φt is κ-contracting in the sense that

lim
t→∞

κ(Φt(B)) = 0 for any bounded set B ⊂ X+. It then follows from Theorem 2.6

in [12] that Φt admits a global attractor that attracts each bounded set in X+.

Then we can prove the following main result in this subsection.

Theorem 3.4. If λ∗
1 > 0, λ∗

2 > 0, λ∗
E1

> 0 and λ∗
E2

> 0, then (2.1) admits a

positive steady state E∗∗(x) = (N∗∗
d,1(x), N

∗∗
b,1(x), N

∗∗
d,2(x), N

∗∗
b,2(x)).

Proof. Let X0 = {(φ1, φ2, φ3, φ4) ∈ X+ : φi 	≡ 0, ∀ 1 ≤ i ≤ 4}, ∂X0 = X+ \X0 =

{(φ1, φ2, φ3, φ4) ∈ X+ : φ1 ≡ 0 or φ2 ≡ 0 or φ3 ≡ 0 or φ4 ≡ 0}. Then

Φt(X0) ⊂ X0. We will use M∂ to denote the maximal positively invariant set of

the semiflow Φt in ∂X0, that is,

M∂ := {P ∈ ∂X0 : Φt(P ) ∈ ∂X0, ∀ t ≥ 0},

and let ω(P ) be the ω-limit set of the forward orbit γ+(P ) := {Φt(P ) : t ≥ 0}.
Claim.

⋃
P∈M∂

ω(P ) ⊂ {E∗
0} ∪ {E∗

1} ∪ {E∗
2}.

For any given P ∈ M∂ , we have Φt(P ) ∈ M∂ , ∀ t ≥ 0. Then for each t ≥ 0,

we have Nd,1(·, t, P ) ≡ 0 or Nb,1(·, t, P ) ≡ 0 or Nd,2(·, t, P ) ≡ 0 or Nb,2(·, t, P ) ≡ 0.

In the case where Nd,1(·, t, P ) ≡ 0, ∀ t ≥ 0. From the first equation of (2.1), we

see that Nb,1(·, t, P ) ≡ 0, ∀ t ≥ 0. Thus, (Nd,2(·, t, P ), Nb,2(·, t, P )) satisfies system

(3.9). It follows from Lemma 3.1 that either

lim
t→∞

(Nd,2(·, t, P ), Nb,2(·, t, P )) = (N∗
d,2(x), N

∗
b,2(x)), uniformly for x ∈ [0, L],

or

lim
t→∞

(Nd,2(·, t, P ), Nb,2(·, t, P )) = (0, 0), uniformly for x ∈ [0, L].

In the case where Nd,1(·, t1, P ) 	≡ 0, for some t1 ≥ 0. Then we can show that

(Nd,1(·, t, P ), Nb,1(·, t, P )) � (0, 0), ∀ t > t1. Then for each t > t1, we have

Nd,2(·, t, P ) ≡ 0 or Nb,2(·, t, P ) ≡ 0. In the case where Nd,2(·, t, P ) ≡ 0, ∀ t > t2.

From the third equation of (2.1), we see that Nb,2(·, t, P ) ≡ 0, ∀ t > t1. Thus,

(Nd,1(·, t, P ), Nb,1(·, t, P )) satisfies system (3.8), for all t > t1. It follows from

Lemma 3.1 that either

lim
t→∞

(Nd,1(·, t, P ), Nb,1(·, t, P )) = (N∗
d,1(x), N

∗
b,1(x)), uniformly for x ∈ [0, L],
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or

lim
t→∞

(Nd,1(·, t, P ), Nb,1(·, t, P )) = (0, 0), uniformly for x ∈ [0, L].

In the case where Nd,2(·, t2, P ) 	≡ 0, for some t2 > t1. Then we can show that

(Nd,2(·, t, P ), Nb,2(·, t, P )) � (0, 0), ∀ t > t2, which is a contradiction. By the

above discussions, the claim is proved.

Claim. For j = 0, 1, 2, there exists δj > 0 such that

lim sup
t→∞

|Φt(P )− E∗
j | ≥ δj, ∀ P ∈ X0.

We prove the claim for E∗
0 . Assume that φ∗

1 and φ∗
2 are positive eigenfunctions

of the eigenvalue problems associated with (3.4) and (3.5) corresponding to the

principal eigenvalues λ∗
1 > 0 and λ∗

2 > 0, respectively. Similarly as in Theorem 3 in

[9], we can prove that for sufficiently small ε > 0, the eigenvalue problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ab(x)
Ad(x)

μ(x)Nb,i − σi(x)Nd,i −md,i(x)Nd,i + LiNd,i = λNd,i, x ∈ (0, L), t > 0,

(fi(x, 0, 0)− ε− μi(x))Nb,i +
Ad(x)
Ab(x)

σi(x)Nd,i = λNb,i, x ∈ (0, L), t > 0,

α1Nd,i(0, t)− β1
∂Nd,i

∂x
(0, t) = 0, t > 0,

α2Nd,i(L, t) + β2
∂Nd,i

∂x
(L, t) = 0, t > 0,

(3.21)

admits a principal eigenvalue λ∗
i,ε with a positive eigenfunction φ∗

i,ε(x), where i =

1, 2. Moreover, λ∗
i,ε → λ∗

i as ε → 0. Then, there exists a small ε̄ > 0 such that λ∗
i,ε >

0 for all ε ∈ (0, ε̄). Take ε0 ∈ (0, ε̄). By the continuity of fi, there exists a δ0 > 0

such that |fi(x,Nb,1, Nb,2)− fi(x, 0, 0, )| < ε0 for both i = 1 and 2 when | Nb,j |< δ0
for all x ∈ [0, L] and j = 1, 2. Assume, for the sake of contradiction, that there

exists P0 ∈ X0 and a positive solution (Nd,1(x, t), Nb,1(x, t), Nd,2(x, t), Nb,2(x, t)) of

(2.1) with the initial value P0 such that

lim sup
t→∞

||(Nd,1(x, t), Nb,1(x, t), Nd,2(x, t), Nb,2(x, t))− (0, 0)|| < δ0. (3.22)

Then there exists a large t0 > 0, such thatNb,j(x, t) < δ0 and fi(x,Nb,1(x, t), Nb,2(x, t))

> fi(x, 0, 0)− ε0 for all x ∈ [0, L] and t ≥ t0. Therefore,⎧⎨
⎩

∂Nd,i

∂t
= Ab(x)

Ad(x)
μi(x)Nb,i − σi(x)Nd,i −md,i(x)Nd,i + LNd,i, x ∈ (0, L),

∂Nb,i

∂t
≥ (fi(x, 0, 0)− ε)Nb,i − μi(x)Nb,i +

Ad(x)
Ab(x)

σi(x)Nd,i, x ∈ (0, L),
(3.23)

for all t ≥ t0. Since Nd,i(t0, x) � 0, Nb,i(t0, x) � 0 in the interior of [0, L], we can

choose a sufficiently small number η > 0, such that (Nd,i(t0, ·), Nb,i(t0, ·)) ≥ ηφ∗
i,ε0

(·),
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where φ∗
i,ε0

(·) is the positive eigenfunction of (3.21) (with ε = ε0) corresponding to

λ∗
i,ε0

. Note that ηeλ
∗
i,ε0

(t−t0)φ∗
i,ε0

(x) is a solution of⎧⎨
⎩

∂Nd,i

∂t
= Ab(x)

Ad(x)
μi(x)Nb,i − σi(x)Nd,i −md,i(x)Nd,i + LNd,i, x ∈ (0, L),

∂Nb,i

∂t
= (fi(x, 0, 0)− ε)Nb,i − μi(x)Nb,i +

Ad(x)
Ab(x)

σi(x)Nd,i, x ∈ (0, L),
(3.24)

for t ≥ t0. Then it follows from the comparison principle that (Nd,i(x, t), Nb,i(x, t)) ≥
ηeλ

∗
i,ε0

(t−t0)φ∗
i,ε0

(x) for all x ∈ [0, L], t ≥ t0, and hence, maxx∈[0,L] Nd,i(x, t) → ∞
and maxx∈[0,L] Nb,i(x, t) → ∞ as t → ∞, which contradicts (3.22). Therefore,

lim sup
t→∞

|Φt(P0)−E∗
0 | > δ0 for any P0 ∈ X0. We can similarly prove lim sup

t→∞
|Φt(P0)−

E∗
j | > δj for j = 1, 2 and P ∈ X0. The claim is proved.

For φ ∈ X+, we define p(φ) := min
1≤i≤4

{ min
x∈[0,L]

φi(x)} in the case of Robin boundary

conditions for (2.1) or p(φ) := sup{β ∈ R+ : φi(x) ≥ βẽ(x), ∀x ∈ [0, L], 1 ≤ i ≤ 4}
in the case of Dirichlet boundary conditions for (2.1), where ẽ is a given element

in Int(C1
0([0, L], R

4
+)). Clearly, p−1(0,∞) ⊆ X0. Furthermore, one can show that

p is a generalized distance function for the semiflow Φt in the sense that p has the

property that if p(φ) > 0 or φ ∈ X0 with p(φ) = 0, then p(Φt(φ)) > 0, ∀ t > 0

(see, e.g., [18]). By the above claims, it follows that any forward orbit of Φt in M∂

converges to {E∗
0} or {E∗

1} or {E∗
2}. Further, {E∗

j } is isolated in X+, for j = 0, 1, 2

and W s({E∗
j }) ∩ X0 = ∅, ∀ j = 0, 1, 2, where W s({Ej}) is the stable set of {Ej}

(see [18]). It is easy that no subsets of {{E∗
0}, {E∗

1}, {E∗
2}} forms a cycle in M∂ .

It then follows from Theorem 3 in [18] that there exists η > 0 such that

lim inf
t→∞

p(Φt(φ)) > η for any φ ∈ X0. That is, [Φt(φ)]i(x) > η (1 ≤ i ≤ 4) in

the case of Robin boundary conditions or [Φt(φ)]i(x) > ηẽ(x) (1 ≤ i ≤ 4) in the

case of Dirichlet boundary conditions, for any φ ∈ X0. Clearly, this implies that

Φt is uniformly persistent with respect to (X0, ∂X0). Then Theorem 1.3.7 in [24]

implies that Φt has a stationary coexistence state E∗∗ ∈ X0, i.e., Φt(E
∗∗) = E∗∗,

t ≥ 0, or E∗∗(x) = (N∗∗
d,1(x), N

∗∗
b,1(x), N

∗∗
d,2(x), N

∗∗
b,2(x)) is a positive steady state of

(2.1).

4 Influences of parameters on population persis-

tence

In this section, by virtue of numerical simulations, we study the dependence of

the principal eigenvalues λ∗
i ’s and λ∗

Ei
’s on parameters of model (2.1) in order to

understand how different factors influence population persistence and extinction

for (2.1).
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To calculate λ∗
i ’s and λ∗

Ei
’s, we use the finite difference method to discretize

(3.6), (3.15), and (3.17) with the zero-flux condition at the upstream end and the

free-flow condition at the downstream end, that is,{
Di(0)

∂φ1,i

∂x
(0, t)− vi(0)φ1,i(0, t) = 0, t > 0, i = 1, 2,

∂φ1,i

∂x
(L, t) = 0, t > 0, i = 1, 2,

(4.1)

and then use the principal eigenvalues of the resulted matrix operators to approx-

imate λ∗
i ’s and λ∗

Ei
’s. In all numerical simulations, we choose logistic growth and

competition as

f1(x,Nb,1, Nb,2) = r1

(
1− Nb,1

K11(x)
− Nb,2

K12

)
,

f2(x,Nb,1, Nb,2) = r2

(
1− Nb,1

K21
− Nb,2

K22(x)

)
,

where ri > 0 is the intrinsic growth rate, Kii > 0 is the carrying capacity, and

1/Kij > 0 is the competition rate.

Upon our interest, the following parameters are fixed for all simulations in this

section: Ad = Ab = 1, md,1 = md,2 = 0.000001. Other parameter values will be

specified in each figure.

4.1 Influence of the river length and advection rates on

population persistence

We first consider the influence of the river length L and advection rates on λ∗
i ’s and

λ∗
Ei
’s. Assume that all the parameters for the two species are the same except that

the advection rate of species 2 is only half of the advection rate of species 1 (i.e.,

δ = 0.5). Figure 4.1 shows that λ∗
1 and λ∗

2 increase from negative to positive as L

increases . This indicates that when the river becomes longer, the stability of the

trivial solution (0, 0) of the single species models (3.8) and (3.9) changes from stable

to unstable, and hence the dynamics of a single species may change from extinction

to persistence when the river length increases. This coincides with the earlier results

in [9]. Note that λ∗
2 becomes positive at smaller L values than λ∗

1 does. This means

that small advection rate helps population persistence in short rivers, which also

coincides with earlier results. Then we see that once E∗
1(x) = (N∗

d,1(x), N
∗
b,1(x), 0, 0)

and E∗
2(x) = (0, 0, N∗

d,2(x), N
∗
b,2(x)) both exist, that is, when both λ∗

1 and λ∗
2 are

positive, we have λ∗
E1

> 0 but λ∗
E2

< 0, which implies that E∗
1 is unstable but E∗

2

is stable. Note that in this case E∗
0 = (0, 0, 0, 0) is unstable and there exists no

positive equilibrium. Therefore, for such two species with only different advection

rates, the species with smaller advection rate wins the competition. The length of

the river does not seem to change the stability of E∗
1 or E∗

2 once they exist.
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Figure 4.1: The relationship between λ∗
i ’s, λ

∗
Ei
’s, and the length of the river L.

Parameter values are: Q = 0.0005, δ = 0.5, μ1 = μ2 = 0.5, σ1 = σ2 = 2.2,

D1 = D2 = 0.3, r1 = r2 = 0.000499, K11 = K12 = K21 = K22 = 998.

4.2 Influence of diffusion and advection rates on population

persistence

We then consider the influence of different diffusion and advection rates of two

species on λ∗
i ’s and λ∗

Ei
’s. Assuming that all parameters are the same except that

the diffusion rate of species 1 is larger than that of species 2 (i.e., D1 > D2), we vary

the ratio δ between two advection rates. For parameter values in the simulation, we

obtain λ∗
1 > 0, which implies the existence of E∗

1 . When δ increases, λ∗
E1

decreases

from positive to negative, λ∗
2 decreases from positive (when E∗

2 exists) to negative

(when E∗
2 does not exist) but λ∗

E2
increases from negative to positive. See Figure

4.2. Therefore, if the advection rate of species 2 is far less than the advection rate

of species 1, then E∗
1 is unstable but E∗

2 is stable if exists; if the advection rate of

species 2 is larger than the advection rate of species 1, then E∗
1 is stable but E∗

2 is

unstable if exists. This indicates that high advection rate decreases the competition

ability of a species and hence reduces the possibility of existence. The results in

Figure 4.2 coincide with the results in [25] where the model did not include benthic

stages for two competitive species and only in the case of D1 > D2.

We then vary both the diffusion rates and the advection rates and obtain the

influence of D2 and δ on λ∗
Ei
’s in the case where D1 and Q are fixed. See Figure 4.3.

When D2 and δ are both small (i.e., the diffusion rate and the advection rate of

species 2 are much smaller than those of species 1), both λ∗
E1

and λ∗
E2

are negative.
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Figure 4.2: The relationship between λ∗
2, λ

∗
Ei
’s, and δ. Parameter values for Di’s:

left figure: D1 = 0.5, D2 = 0.0002; right figure: D1 = 0.0002, D2 = 0.5. Other

parameter values: L = 1, Q = 0.0005, μ1 = μ2 = 0.5, σ1 = σ2 = 2.2, r1 = r2 =

0.000499, K11 = K12 = K21 = K22 = 998. Here λ∗
1 = 0.00031292.

0.92 0.94 0.96 0.98 1 1.02

0
0.1

0.2
0.3

0.4
−10

−8

−6

−4

−2

0

2

4

6

x 10
−6

δ

D
2

λ
E

2

∗

λ
E

1

∗

0.05 0.1 0.15 0.2 0.25 0.3
0.98

0.985

0.99

0.995

1

D
2

λ
E

1

∗ <0

λ
E

1

∗ >0

λ
E

2

∗ <0

λ
E

2

∗ <0

δ

λ
E

2

∗ >0λ
E

1

∗ <0

Figure 4.3: The influence of D2 and δ on λ∗
Ei
’s. Parameter values are the same as

in Figure 4.2 except that D1 = 0.1. In the right figure, the dash curve represents

λ∗
E1

= 0; the solid curve represents λ∗
E2

= 0.

When δ is small (i.e., the advection rate of species 2 is small) but the diffusion rate

D2 becomes larger, λ∗
E1

> 0 and λ∗
E2

< 0, and hence E∗
1 is unstable but E∗

2 is stable.

When δ becomes larger, λ∗
E1

< 0 and λ∗
E2

> 0, and hence E∗
1 is stable but E∗

2 is
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Figure 4.4: The influence of competition rates on λ∗
Ei
’s. Parameter values are:

L = 1, Q = 0.00005, δ = 1, μ1 = μ2 = 0.5, σ1 = σ2 = 2.2, D1 = D2 = 0.01,

r1 = r2 = 0.5, K11 = 1050, K22 = 1000.

unstable. Therefore, when the advection rate of species 2 is small, the increase of

the diffusion rate D2 helps species 2 persist and easily destroys the persistence of

species 1. However, when the advection rate of species 2 is large, species 2 may not

be persistent no matter what its diffusion rate is. In this case, species 1 easily win

the competition.

4.3 The influence of competition on population persistence

We then consider the influence of the competition rates on λ∗
Ei
’s. We assume

all parameters are the same for the two species except the competition rates. In

particular, we fix K11 and K22 but vary K12 and K21 to obtain Figure 4.4, which

shows the regions for values of K12 and K21 where λ∗
E1

and λ∗
E2

have different

signs. If inter-species competition rates (i.e., 1/K12 and 1/K21) are larger than

the intra-species competition rates (i.e., 1/K11 and 1/K22), both λ∗
E1

and λ∗
E2

are

negative and hence E∗
1 and E∗

2 are both locally asymptotically stable. In this case,

either species could win the competition depending on the initial distribution of the

populations. If inter-species competition rates are smaller than the intra-species

competition rates, then both λ∗
E1

and λ∗
E2

are positive and two species may coexist.

If the competition rate of species i is higher than the competition rate of species

j, then species i wins the competition (i.e., λ∗
Ei

< 0 but λ∗
Ej

> 0). These results

coincide with the dynamics of the nonspatial logistic competition model.
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Figure 4.5: The influence of transfer rates on λ∗
Ei
’s. Parameter values are: L = 1,

Q = 0.00005, μ1 = 0.5, σ1 = 2.2, D1 = D2 = 0.01, r1 = r2 = 0.5, K11 = K12 =

K21 = K22 = 1000, μ2/σ2 = 0.1.

4.4 The influence of transfer rates on population persis-

tence

We study the influence of transfer rates on λ∗
Ei
’s, and hence on persistence of the

species. Assume all parameters of the two species are the same except the transfer

rates and the advection rates. In particular, we fix the transfer rates of species 1

and vary those of species 2 with a fixed ratio between μ2 and σ2. Figure 4.5 shows

that if the ratio μ2/σ2 is fixed, then as μ2 and σ2 become larger, λ∗
E1

decreases

and λ∗
E2

increases. Both λ∗
E1

and λ∗
E2

quickly approach some limit values when

the transfer rates are not very large. This indicates that when the transfer rates

of species 1 are fixed, the more species 2 transfer between the water column and

the benthic zone, the easier for species 1 to persist and the harder for species 2 to

persist or compete with species 1. Moreover, we change the value of δ and compare

the values of λ∗
Ei
’s for different δ values. It turns out that when δ becomes larger,

that is, when the advection rate of species 2 becomes larger, λ∗
E1

is smaller and λ∗
E2

is larger. This also coincides with our previous understanding of river population

dynamics. Larger advection rate of species 2 decreases the chance of species 2 to

persist or compete and hence increases the possibility of species 1 to persist. For

Figure 4.5, μ2/σ2 = 0.1 < μ1/σ1 = 0.5/2.2. However, when we change the ratio

μ2/σ2 (for example when μ2/σ2 > μ1/σ1), we obtain similar results.
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Figure 4.6: A positive (co-existence) steady state of (2.1) and the time evolution

of (2.1) with initial values Nb,i = Nd,i = 200 for i = 1, 2. Parameters: L = 1,

Q = 0.00005, δ = 0.5, μ1 = μ2 = 0.5, σ1 = σ2 = 2.2, D1 = D2 = 0.01, r1 =

r2 = 0.5. Other parameters and values: (a) and (b): K11 = 800 + 50 sin(10x),

K22 = 1100 + 300 sin(10x), K12 = K21 = 1900, λ∗
E1

= 0.2386, λ∗
E2

= 0.1788; (c):

K11 = 800 + 350 sin(10x), K22 = 1100 + 300 sin(10x), K12 = K21 = 1900, λ∗
E1

=

0.2503, λ∗
E2

= 0.1788; (d): K11 = 1050, K12 = 1910, K21 = 1400, K22 = 1000,

λ∗
E1

= 0.1027, and λ∗
E2

= 0.1971. The values of λ∗
i ’s are all about 0.4199.

4.5 Stability of the positive steady state E∗∗(x) and the

effect of spatial heterogeneity on E∗∗(x)

Theorem 3.4 guarantees the existence of a positive steady state E∗∗(x) under the
conditions λ∗

1 > 0, λ∗
2 > 0, λ∗

E1
> 0 and λ∗

E2
> 0, but does not imply the stability

of E∗∗(x). We choose parameters satisfying these conditions and numerically solve
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(2.1) with ∂Nb,i/∂t = 0 and ∂Nd,i/∂t = 0 for i = 1, 2 to obtain E∗∗(x). See Figure

4.6(a). We also numerically solve (2.1) with the same parameters and for con-

stant initial values. The time evolution is shown in Figure 4.6(b), which indicates

that the solution approaches E∗∗(x) as time t becomes larger. Therefore, we can

conclude that the positive steady state E∗∗(x) obtained in Theorem 3.4 might be

asymptotically stable. In this simulation, we only find one positive steady state,

but we are not able to prove the uniqueness.

We also consider the influence of spatial heterogeneity on distribution of the

positive steady state E∗∗(x). In Figure 4.6, we obtained the steady state in three

different situations, (a) and (c) for (2.1) with spatially varying carrying capacities

of two species, (d) for (2.1) with spatially homogeneous carrying capacities of two

species. Since two species are competitive, we assume that the carrying capacities

are large or small in the same locations. When K11 is overall lower than K22 and

its amplitude is much less than K22’s, in the positive steady state, the density

of species 2 reaches its maximum (minimum) where its carrying capacity is the

largest (smallest), while the density distribution of species 1 reaches its maximum

(minimum) where its carrying capacity is the smallest (largest); see Figure 4.6(a).

When K11 is overall lower than K22 but K11’s amplitude is not too much smaller

or even larger than K22’s, the density distributions in the positive steady state

all reach the maximum (minimum) where the carrying capacities are the largest

(smallest); see Figure 4.6(c). When all the parameters are constants, the density

distributions in the positive steady state all slightly increase from the upstream to

the downstream, due to the effect of the boundary conditions; see Figure 4.6(d).

4.6 Bistability

For parameter values L = 1, Q = 0.00005, δ = 1, μ1 = μ2 = 0.5, σ1 = σ2 = 2.2,

D1 = D2 = 0.01, r1 = r2 = 0.5, K11 = 1050, K22 = 1000, k12 = 600 and

K21 = 500, we obtain that λ∗
1 = 0.4199 > 0, λ∗

2 = 0.4199 > 0, λ∗
E1

= −0.4289 < 0

and λ∗
E2

= −0.2649 < 0. This is the case of bistability, in which both semitrivial

steady states are locally stable and the outcome of model (2.1) depends on initial

conditions. While theoretical results have not been established, our computation

shows that when bistability occurs, it is unlikely to have long-term coexistence

steady states for (2.1).

5 Discussion

In this paper, we investigated the dynamics of a competitive model for two river

species living both in the flowing water and in the benthic zone of the river. We

established existence of the trivial steady state, the semi-trivial steady states, and
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a co-existence steady state, as well as the conditions for stability of the trivial

steady state and the semi-trivial steady states, by using the theories of monotone

dynamical systems and eigenvalue problems. We also conducted numerical simu-

lations to understand the influences of biotic and abiotic factors such as the river

length, the diffusion coefficients, the advection rates, the competition rates, and

the transfer rates on the principal eigenvalues of eigenvalue problems corresponding

to linearization of the system at steady states, and hence on existence and stabil-

ity of the above mentioned steady states, which imply population persistence or

extinction of one or two species. We also considered the effect of spatially varying

carrying capacities on density distributions in the positive steady states.

The solution maps of our model (2.1) and its linearized systems are not compact

due to the ordinary differential equations in the systems, so we proved a weaker

result that the solution maps are κ-contracting, which by using the theory of mono-

tone dynamical systems can guarantee the existence of positive steady states for

corresponding systems under our model assumptions.

The results in this work extend the understanding of existing non-spatial com-

petitive models or competitive models of only parabolic equations [25]. To our

knowledge, this is the first time that the dynamics of a benthic-drift competitive

model is comprehensively analyzed in a spatially heterogeneous habitat. We ana-

lyzed the existence and stability of the trivial and semi-trivial steady states in all

situations, proved the existence of co-existence steady state and verified its stability

numerically when other steady states are unstable. We also numerically found the

possibility of non-existence of a positive steady state when two semi-trivial steady

states are locally stable. Numerical simulations showed that for such two benthic-

drift competitive species, factors such as the diffusion rates, the advection rates are

critical on population persistence and extinction. We also saw that higher birth

rate increases the possibility of one species to win, which is easily understandable,

so we did not include any simulation results here.

The concept of persistence measure in [9] and [14] can also be extended to a

competitive system. In [9] and [14], for a single species living only in flowing water

or both in flowing water and on river benthos, the net reproductive rate R0 was

defined to describe the average number of offsprings that a single individual can

produce during its lifetime and R0 was used to determine population persistence

(extinction) when R0 > 1 (R0 < 1). For two competitive species considered in

this paper, we can apply the theory in [14] to define R01 and R02 for (3.8) and

(3.9), respectively, as the net reproductive rates for isolated species 1 and species

2, respectively, satisfying R0i > (<)1 equivalent to λ∗
i > (<)0. Similarly, we can

define R
E∗

i
0 for (3.16) and (3.18) satisfying R

E∗
i

0 > (<)1 equivalent to λ∗
Ej

> (<)0,

representing the net reproductive rate of species i when species j is at its steady

state. Theorem 3.4 then implies that if either species can persist in a habitat
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without the other species and in a habitat with the other species in its steady

state, then both species can coexist. Theorems 3.2 and 3.3 indicate that none

species can survive in a competitive environment if either of them cannot persist

in an isolated environment, that a species who cannot survive itself cannot win the

competition, and that the species who can persist in the habitat with the other

species wins the competition.
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