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Dynamics of a Benthic-Drift Model for Two
Competitive Species

Yu Jin * Feng-Bin Wang!

Abstract

Population dynamics of multiple interactive species in rivers and streams
is important in river/stream ecology. In this paper, we consider a model for
two competitive species living in a river environment where the populations
grow and compete in the benthic zone and disperse in the drifting water
zone. We establish threshold conditions for persistence and extinction of two
species and obtain the existence of a positive steady state under persistence
conditions. We also numerically investigate the influences of factors, such
as advection rates, diffusion rates, river length, competition rates, transfer
rates, and spatial heterogeneity on persistence of the two competitive species.

Keywords. Benthic-drift model, competition, principal eigenvalue, persis-
tence, stability
AMS subject classifications. 35K10, 47A75, 92B05

1 Introduction

Numerous species and organisms live in river and stream environments. Popula-
tion dynamics in rivers or streams have attracted increasing attentions of biologists,
ecologists and mathematicians in recent years. There are two important issues in
stream ecology. One is the “drift paradox” [16], which asks how stream dwelling
organisms can persist in a river/stream environment when continuously subjected
to a unidirectional water flow. The solution of this problem provides not only
better understanding of ecodynamics inside a river, but also strategies for how to
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keep a native species persistent or how to control the growth of an invasive species.
The other issue is called the “Instream Flow Needs” [9, 14], which asks how to
design reasonable flows to maintain desired levels of ecosystem in a river/stream
environment. With increasing demands for human beings’ daily life, industry, agri-
culture, etc, for limited freshwater resources, it is crucial to understand how much
water can human beings utilize without destroying the heath and diversity of river
ecosystems. Mathematical models, such as ordinary or partial differential equa-
tions and integro-differential or integro-difference equations have been established
to study the effect of population demography, individual movement and flow dy-
namics on spatial spread and persistence of populations in streams and rivers and
to provide water management strategy for maintaining ecosystem in rivers (see e.g.,
6, 7,8, 10, 11, 14, 17, 19, 2]).

For a single species, in recent works [9] and [14], population dynamics has been
described by reaction-diffusion-advection equations that couple population demog-
raphy and hydraulic dynamics in the cases where a single species only lives in
flowing water and where the species lives in both flowing water and river benthos,
respectively. Three measures have been established to determine a population’s fun-
damental niche, source and sink regions, and global persistence in a river, through
the next generation operator, which maps the population from one generation to
its next generation offsprings.

In natural rivers or streams, multiple species live in the same environment. They
interact with each other and are also interfered with the physical and hydrological
environment. The study of a single species cannot provide its accurate dynamics
in a river, so it is important and necessary to consider the interactions of a species
with other species and the habitat. Competition is a simple but typical interaction
between species. The study of competitive models has been an interesting topic
in river ecodynamics studies. Li et al (see e.g., [23]) studied spreading speeds and
traveling waves or cooperative systems; their results can be applied to competitive
models for river species. Vasilyeva and Lutscher [21] studied dynamics of competi-
tive models in a spatially homogeneous river and approximated the dispersal terms
by linear terms depending on the principal eigenvalue of the dispersal operator.
Recently, Zhou and Zhao [25] studied a competitive model for two river/stream
species. Their model consists of two reaction-diffusion-advection equations and
they analyzed the dynamics of the model including the existence and stability of
steady states.

In this work, we will extend the earlier works [9, 14, 25] and consider a com-
petitive model for two river species that live not only in the flowing water but also
on the benthos. Such species can be invertebrates, which live on the benthos of
the river but jump into water and settle down to the bottom from time to time [1].
They actually spend most of their time on the benthos and only drift in water for a



very short period every time. The species can also be those who stay in a transient
storage zone on the benthos or near the river side, which suffers different physical
or hydrological conditions from the flowing water and hence provides different eco-
logical habitat than the water column [4, 15]. Therefore, it is very important to
incorporate the benthic stage into a mathematical model for competitive species.
Moreover, the model can also describe the dynamics of a species that has a storage
zone in a river or it almost does not move in the zone close to the river bank.
Hence, this work is a mathematical and biological extension of previous works.

In our model, we consider a one-dimensional river and assume that individuals
reproduce and compete on the benthos but only disperse in the flowing water.
This yields a system consisting of two reaction-diffusion-advection equations that
describe dynamics in the free water, coupled to two ordinary differential equations
that describe dynamics on the benthos. We consider very general competitors in
our model so that all the parameters including the advection rates (see [20, 25]
and references therein) may be different for two species. We are interested in
the persistence criteria for such two species. Overall, there might be three cases
for the dynamics of the species: none of them can survive, one species wins the
competition, and two species coexist. Since there are two species, it is hard to
define the next generation operator to map one population to its offspring and the
resulted net reproductive rate. Because of the two ordinary differential equations,
the solution maps of the system are not compact, and hence, traditional theories of
eigenvalue problems in infinite-dimensional dynamical systems based on the Krein-
Rutman theorem [5] (see e.g., [14]), are therefore not applicable to our model. Wang
and Zhao [22] has developed a theory of eigenvalue problems for compartmental
epidemic models of reaction-diffusion equations, where some of diffusion coefficients
could be zeros. Hsu et al [6] has established estimates for the principal eigenvalue
of second order differential operators with variable coefficients. We adapt these
theories to our model and show that the eigenvalue problems corresponding to the
linearized systems at the trivial steady state and semi-trivial steady states admit
principal eigenvalues. Then we use the theories of monotone dynamical systems to
show that these principal eigenvalues serve as thresholds for extinction and uniform
persistence of one or two populations under investigation.

The paper is organized as follows. In the next section, we introduce a benthic-
drift model for two competitive species in a river or stream. In section 3, we
establish threshold conditions for existence and stability of the trivial steady state,
semi-trivial steady states, and a coexistence steady state, by mainly using the
theories of monotone dynamical systems and eigenvalue problems. In section 4, we
numerically investigate how biotic and abiotic factors such as diffusion coefficients,
competition rates, transfer rates, advection rates, and river length affect population
persistence or extinction, by studying the dependence of the principal eigenvalues



of corresponding eigenvalue problems on these factors. We also analyze the effect
of spatial heterogeneity on population density distributions in the positive steady
state. A short discussion section completes the paper.

2 The model

We consider two competitive species in a river. They live both in the water column
and in the benthic zone, while they only reproduce in the benthic zone and disperse
in water. They compete in the benthic zone for space and nutrients so that the
reproduction of either species depends on the densities of both species in the benthic
zone. The dynamics of these two species are then governed by the following system

o] T o)
(25 = 228411 (1) Not — 01(2) Ny — ma (2) Noy — 555 52

ON,
tabn e | D) Ad@) 5|
81;:’1 = fi(z, Ny1, No2) Nyt — pir (2) Ny g + ﬁ‘;gg o1(x)Na,,

ON, T ON,
# = QZEQC;IUQ(QZ)NbQ — 09 (ZL‘)NdQ — md72($)Nd72 — Ai%) 8;12

AN,
k2 [ Do) Aae) B2
\% = fo(z, N1, Noo) Npo — po(z) Ny o + :2:83 02(x)Ng,2,

(2.1)

in (z,t) € (0,L) x (0,00) with boundary and initial value conditions

a1N(0,) — 518N(0 t)=0,1>0, N=Ngi, Nag,
aaN (L, t) + BB (L, 1) = 0, t >0, N = Ny, Naa, (2.2)
N(ZL‘,O) = NO( ) > 0, <z < L, N = (Nd71, Nd72, Nb71, Nb72).

Here N,; is the density of the drift population of species i (i = 1,2), Ny, is the
density of the benthic population of species i, D; is the diffusion rate of species 1,
mg,; is the death rate of drift population, o; is the transfer rate of the drift popula-
tion to benthos, u; is the transfer rate of the benthic population to drifting water,
fi is the growth rate of species i (in the benthic zone), «; and [3; are nonnegative
constants, A, and A, are the cross-sectional areas of the benthic zone and the drift
zone, respectively, () is the water discharge,  is a nonnegative constant that repre-
sents the ratio between the advection rates of two species. N? represents the initial
distribution of the population. For simplicity, we denote spatial operators as

Li[u] :==— A%)&u + l(x) [Dy(x) Ag(z )glﬂ ,
Lofu] = — QU%+§@[%@M(£Q

Throughout this paper, we make the following assumptions for the functions
and parameters in model (2.1):



H(i) pi(z), oi(z), and mg,(z) are nonnegative continuous functions.

H(ii) D;, Ay, Aq € C*([0, L], (0,00)), and there exist positive constants ¢; and ¢y
such that ¢; < Ag(x), Ap(z) < o for any = € [0, L].

H(iii) f; : [0, L] x (0,00) x (0,00) — R is continuous; f; is monotonically decreas-
ing and Liptschiz continuous with respect to N1 and Nyo; fi(2,0,0) < oo;
fi(x,0,0) — p;(z) < 0 for all z € (0, L); there exist K; > 0 and K, > 0 such
that for all x € [0, L], fi(z, Np1,0) < 0 for N3 > K, and fao(z,0, Nyo) < 0
for Nb72 > K.

Typical examples of f; and fy for two competitive species can be chosen as
follows:

N N
Sil@, Noa, Nyo) = 11(2) (1= 5000 — oty ) (2.3)

N N, :
fo(@, Noy, Nyp) = 12(2) (1= 5005 = Ty )

where r; is the intrinsic growth rate, Kj; is the carrying capacity, and 1/K;; repre-
sents the competition rate.

3 Dynamics of model (2.1)

In this section, we investigate the dynamics of (2.1) and establish existence and
stability conditions for all types of steady states of (2.1).
Let X = C([0, L], R*) and Xt = C([0, L], R}) with norm ||u|| = max max_|u;(z)|

1<i<d z€[0,L]
for w = (uy, ug, us, uy) € X in the case of Robin boundary conditions for (2.1) or
X = C4([0,L], R*) and X+ = C4([0, L], RY) with norm ||u|| = max ( max_|u;(z)]+

1<i<4 ‘z€[0,L)]

m[mz |u!(x)]) for u = (uy,us,us,us) € X in the case of Dirichlet boundary con-
elo

ditions for (2.1). Then X is the positive cone in the Banach space X with the
above norm.

By [13, Proposition 3 and Remark 2.4], we can show that system (2.1) admits
a unique solution for all ¢ > 0 for each N° € X*. Furthermore, X* is positively
invariant for (2.1). Define the solution map of (2.1) as

q)t(NO)(,CL’) = (NdJ(iB,t), Nb71(.’£,t),N&Q(.ﬁlﬁ,f),Nb’Q(ilf,t)), Vo € [07[1], t 2 0,
(3.1)
where (Ng1(2,t), Np1(x,t), Na2(2,t), Np2(x,t)) is the solution of (2.1) with initial
condition (Nd,l('a O), Nb71(', 0), Nd,g(', 0), Nbg(', 0)) = NO S X+.



We define the following quantities, which will be used to construct a positively

invariant set for (2.1):

Amax max Amax max

( 3 min 3
Kb,l - lnf{p > 0 : fl(xJ p7 ) /’Ll + Amm Amln( m1n+mdm11n) S O m [07 L]}?

Ko =inf{p>0: fo(z,0,p) — pin Ao Aptgn g g
< b2 — m {p 2(33, 7p /’LZ + Aznin Aglin(o.énin+mg\i2n) — m [ ) ]}7
Amax max ’
Kd,l - WKI) 1,
An ax 12nax &
\Kd,Q = -Aglin(a'énin“‘mg:g‘)Kb’Z’

(3.2)

where ¢™* = max,ej ) g(x) and ¢™" = min,ep, ) g(z) for any g € C([0, L], Ry).

3.1 Existence and stability of trivial and semi-trivial steady

states

It is easy to see that Ejf = (0,0,0,0) is a trivial steady state of (2.1). The lineariza-

tion of (2.1) at Ef is

(250 = 248y (@) Ny — 01 (2) Nat = mm(x)Nd,l + L1[Nay),
Pt = fi(2,0,0)Nyy — 11 () Not + 558 0y () Ny,
8];?2 ﬁzguz( )Nb,z - 02( )Nd2 — Mq2 SL’)Nd,2 + 52[Nd,2],
22 = fo(2,0,0)Np2 — p1a(2) Ny 2 + 348 05(2) N,
arN(0,t) — B12E(0,t) =0, t >0, N = Ng1, Nao,
asN(L,t) + Bo2Y(L,t) =0, t >0, N = Ny, Nyp,

\N(x70) - NO( ) 2 07 0 <z < La N - (Nd,lv Nd,Za Nb,h Nb,2)7

which can be written as two decoupled systems

81;(;,1 = Abgﬂl(x)Nb 1 — o1(2) Ny —ma ()N + L1[Naa),
8N“ = f1(2,0,0)Ny1 — p (@) Np1 + f,dgmg(ﬁ( )Na1,
mNd,l(o,t) — B0, 1) = 0, aaNgy (L, t) + B 5381 (L,t) = 0, t > 0,

N(z,0) =N°(z) >0, 0<z < L, N=(Ng1, Np1),

and

a];‘:’Q = 3#2( )Np2 — 02(2) Ny — ma2(x)Nga + L2[Napol,

Ap(

Aq(
aNb,z = f2(2,0,0)Nyo — pro(x) Ny g + Adéngz( )Na2,
oledg(O t) — B 2242(0,£) = 0, agNga(L,t) + B 2202 (L, t
N(z,0) =N%z) >0, 0 <z < L, N=(Nga, Nys).

t) =0, t>0,

(3.3)

(3.4)

(3.5)



It follows from [9, Discussion] that if f;(x,0,0) — p;(x) > 0 then (0,0) is always
unstable for (3.4) or (3.5), and hence Ej is unstable for (3.3). If f;(2,0,0)—pu;(z) <
0, we substitute Ng;(z,t) = eM¢y () and Ny (z,t) = eMgo (z) into (3.4) and (3.5)
and consider the following eigenvalue problem associated with (3.4) and (3.5):

A1 = ﬁgg pi(x)poi — 0i(x)p1i — mai(x) b1 + Lilorl,
)\¢2,i = fi(x 0 0)¢2i - Ni(x)¢2,i Ajégffz( )¢1 i (3-6)
a1¢1,:(0) — 51(%“( 0) =0, aspr,(L) +528¢“( L) =0,

for i = 1,2. By [9, Theorem 3], we can obtain the following result.

Theorem 3.1. Assume ﬁ(x) = fi(2,0,0) = p;(z) < 0 and f; is locally Lipschitz at
some mazimum point x, € [0, L]. Then (3.6) admits a unique principal eigenvalue
Af € (Aci, 00), where Aoy = m[euz]{fi(x)}.

z€|0,

Define
A; = the unique principal eigenvalue of (3.6), i =1, 2. (3.7)

It then follows from Lemma 4 and Theorem 5 in [9] that (0,0) is stable for (3.4)
if A} < 0 and unstable if A7 > 0, and that (0,0) is stable for (3.5) if \J < 0 and
unstable if \j > 0. We then obtain the following theorem regarding the stability
of Ej.

Theorem 3.2. If \7 <0 and X5 < 0, then Ej s globally asymptotically stable for
(2.1) in X+.

Proof. When A} < 0 and A\ < 0, Ef is the unique steady state of (2.1). By the
dynamics of (3.4) and (3.5), we can obtain that £ is globally asymptotically stable
for (3.3) when A} < 0 and A\ < 0. Note that by H(iii) we have f(z, Np1, Np2) <
fl(ZE,O, 0) and fg(l’,Nb’l,Nb,g) S fg(:U,0,0) for Nb,l Z 0 and Nb’g Z 0. Hence, the
comparison principle implies that the solution of (2.1) is controlled from above by
the solution of (3.3). Thus, if A} < 0 and A5 < 0, then Ej is globally asymptotically
stable for (2.1) for any initial condition in X*. O

Lemma 3.1. (i) If \] > 0, then the system

8]\3[? = 23595))/11( JNb1 — o1(x)Na1 — ma1(x)Ngg + L1[Na),
8Nb1 = fi(@, No1,0)Np1 — pra () N1 + Adgg 1() N,
alNd,l(o,t) B340, 8) = 0, yNyy (L, t) + Bo 231 (L, 1) = 0,
Nga(x,0) = Ng, () >0, Npu(2,0) = Ny (2) >0,0 <2 <L,

(3.8)

admits a unique positive steady state (N, (), Ny, (x

), which is globally asymp-
totically stable for all initial functions in C([0, L], R

)\ {(0,0)}.

7



(i1) If X5 > 0, then the system

o] T
% = ﬁz_gw))ﬂ2<x)Nb,2 — 09(x)Ng2 — maa(x)Nao + L2[ Ny o],

8];:’2 = fa(x,0, Np2)Npo — pra(x) Ny o + ﬁzgg 02(2) Ny 2,
14Vg2(U, 1) — 18](;;’ ) = U, aalVgal L, 282;’ ) =Y,
a1 Ng2(0,t) — B1=522(0,t) = 0, aaNgo(L,t) + fo—522(L,t) =0

Naa(2,0) = Ny(z) >0, Nyo(z,0) = Npy(z) >0,0 <z <L,

admits a unique positive steady state (Nj (), Ny o(x)), which is globally asymp-
totically stable for all initial functions in C([0, L], R%) \ {(0,0)}.

Proof. We prove (i) and omit the proof of (ii).

By [13, Proposition 3 and Remark 2.4], we can show the local existence of
solutions for system (3.8) with initial functions in C([0, L], B2 ), and we can also
show that C([0, L], R2) is positively invariant for (3.8). Let

v, C([0, L], %) — C([0, L], RY)

be the solution map associated with system (3.8), that is, for x € [0, L] and ¢ > 0,
Wy (Ng,, Ny1)(x) == (Nga(z,t), Np1(z,t)), where (Ngi(x,t), Npi(x,t)) is the solu-
tion of (3.8) with (Ng1(z,0), Ny1(2,0)) = (Ng,(z), Ny, (x)) € C([0, L], R%).

We first prove that for any ¢ > 0, U, satisfies the following claims.

Claim 1. ¥V, is strongly positive.

Let N° = (N3, Ny;) > 0 with N # 0. We prove that Ny, (z,t) > 0 and
Npa(z,t) > 0forallt >0, 2z €0, L]

Suppose Ng1(z1,t1) = 0 for some z; € [0, L],t; > 0. Then —BZ;Z’I —0o1(x)Ng1 —
ma1(x)Ng1+L1[Ngq] = —jzgg p1(z)Nyy < 0. If 2y € (0, L), then strong maximum
principle implies that Ny (z,¢) =0onz € [0, L], ¢ > 0. Substituting Ny, (z,t) =0
into the first equation of (3.8), we have Ny, (x,t) =0 on z € [0, L], t > 0. Then
it follows that N = (N¢, Ny;) = (Nga(-,0), Ny1(-,0) = (0,0), a contradiction. If
x1 = 0, we have N;1(0,%1) = 0, and hence, dNy1/0x(0,t1) > 0. So a1 Ng1(0,%1) —
P1ONg1/02(0,t1) < 0. Contradiction. If 23 = L, it follows from the boundary
condition that ONg1/0x(L,t;) < 0, contradiction again. Thus Ny (x,t) > 0 for all
x € |0,L],t>0.

Suppose Np1(xa,t3) = 0 for some xzy € [0,L], to > 0. Then ON,;/0t =
Ag/Ayo1Ng1 > 0 at (xg,13). So Npi(xa,ta —ts5) < Npi(w2,t2) = 0 for some sufhi-
ciently small 5 > 0. This contradicts the fact Ny;(x,t) > 0 for ¢t € [0,¢5]. Thus
Npa(z,t) >0 for all x € [0, L], t > 0.

Therefore, N° > 0 with N° £ (0,0) implies (Ng1(z,t), Ny1(z,t)) > 0 for all
x €0, L],t > 0. Hence, for any ¢t > 0, ¥, is strongly positive.

Claim 2. ¥V, is strongly monotone.




Let (N3 (x,t,Ni°), N/ | (x,¢,N’°)) be the solution of (3.8) with initial condition
N = (N33, NJY), j = 1,2, where N'© > N and N'0 £ N, Let Ngy = N}, —
Ny, Ny, = N, — N;,. Note that ¥, is monotone. Then N1 > 0 and

St = 8 (2) Ny (1) — (01(x) + ma (1) Naa (2, ) + L1 [Ngy)(x, 1),
et = —m(@)No1 + 44501 (2)Nag + fil, Ny, O)NY, — fulw, Ny, 0)NZ,

> —L(x)Nyy — p11(2) Nyt + 54804 () Nas,

where L(z) > 0 is the Liptschiz constant of the function fi(x, N,0)N with respect
to N.

Consider the following system

31;:,1 = 281 (2) Ny (w,8) = (01(2) + man (2)) Na (,8) + L1[Naa (2, 1),
Bt = —L(x) Ny — i (2) Npy + 54801 () Ny,

a1Ng1(0,1) — 513Nd1(0 ) =0, asNg1(L,t) + 52‘9Nd1(L,t) =0,

with the initial condition (N, NJ;) = (Nj{=N39, N} —NZX) >, # (0,0). By the
similar arguments to those in Claim 1, we can show that (Ny, (,t), Ny (z,t)) > 0,
for all x € [0,L], t > 0. Then by comparison principle, (Ng;(z,t), Ny (x,t)) >
(Ng1(2,t), Ny1(x,t)) > 0, for all 2 € [0, L], t > 0. This implies that the solution
map V¥, is strongly monotone.
Claim 3. V¥, is strictly subhomogenous.

Assume that (Ngq(x, ¢, N?), N,1(z,t,N?)) is a solution of (3.8) with initial con-
dition N = (Ng,, N},). For any A € (0,1), (ANg1(z,t,N°), AN, 1 (, ¢, N?)) satis-
fies

iy

8()\Nd’l) = Ab(i;pjl(.%))\NbJ — al(ac))\Nd,l — md,l(ac))\Nd,l + El[)\NdJ],

ot Aqg(
B(/\é\ib,l) — fl(l', Nb,l, O)ANb,l — ﬂl(x)/\Nb,l + izgg 01(1’))\Nd71
< fil@, ANy1, 0)AN, 1 — i (2)ANp 1 + G450 (2) ANy 1.

This implies that (ANg1(z,t,N%), AN, 1 (2, t,N?)) is a lower solution of the system
(3.8). Hence ¥;(AN?) > AW (N?) for any N° > 0 and X € (0,1).

Let Ngi(z,t) = Ngi(z,t, AN®) — ANy (z,t,N°), Ny (z,t) = Ny (z,t, ANO) —
ANp1(z,t,N?). Then ]\AfdJ >0, Nb,l > 0, and (NdJ,NbJ) satisfies

PR = e (@) N — (01(2) + maa (@) Kig + L1[N,

61(;@1 = —p1 () Ny + Adgngﬁ( )Ny

+f1(x, Ny i (z, 6, AN®), 0)Np 1 (@, £, ANO) — f1 (2, Ny1(z,t,N°), 0)AN, 1 (z, t, N?),
01 Na (0,1) — B 258(0,1) = 0, ap Ny (L, 1) + o 52 (L, 1) = 0,
Ny1(-,0) =0, Ny (-,0) = 0.




Let Ty(t) be the semigroup generated by ~—&* oN 5 = —(o1(z) +maa(z ) N1+ L1[Nai]
and (Ty(t)¢)(z) = e 1@ Then the solutlon of the above system can be written
as

Ndl (z,t) fo Tyt — S)Adgx)),ul( )Nbl(x s)ds,
Ny (z,t) fo Ty(t — s)[fi(z, Np1(x, s, AN®), 0) N, 1 (x, s, AN?)
— fi(@, Ny (2,5, N°), 0)AN, 1 (2, 5, N°) + 4480 () Ny (2, 9)]ds,
(3.10)
It follows from Claim 2 that Nyi(z,t, AN?) < Np1(z,¢,N°). H(iii) then im-

plies that
f1<l‘,Nb71(£B,t, )‘No)ao) 27 ;é fl(x>Nb,1(xat7N0>70)‘

Therefore, we have
fl(xa Nb,l(xa t7 ANO)’ O)NbJ(I, tu )‘NO)_fl(xa Nb,l(xa t) N0)7 0))\Nb71(l‘7 ta NO) 27 §é O)

for all € [0, L] and ¢ > 0. This together with the second equation of (3.10) imply
that Nbi(x,t) >, # 0, and hence, Ndvl(az, t) >0, forall x € [0, L], t > 0, due to the
first equation of (3.10). Therefore, W;(AN®) > AW,(N?) for any (Ng,, Ny,) > 0,
t > 0and X € (0,1), that is, ¥, is strictly subhomogeneous.
Claim 4. V¥, is k-contracting.

Let k be the Kuratowski measure of noncompactness defined by «(B) = inf{r :
B has a finite cover of diameter < r} for any bounded set B (see e.g., [24]). By
using the assumptions H(i)-H(iii), similarly as in Lemma 4.1 in [7], we can prove
U, is k-contracting in the sense that tlg& k(Uy(B)) = 0 for any bounded set B C
([0, L], R%).

Now we prove the existence of a unique positive steady state of (3.8).

Let

Y+ = {(ul,uQ) S C([O, L], Ri) . (Ul,UQ) S (Kd,17 Kb,l)}7 (311)

and
Yo=Y\ {(0,0)} (3.12)

where (Ky1, K1) is defined in (3.2). Since (K41, K1) is an upper solution of (3.8),
we obtain that for any ¢t > 0, the solution map W, of (3.8) is point dissipative (i.e.,
solutions of (3.8) are ultimately bounded) and uniformly bounded on Y.

Let t > 0. Since VU; is k-contracting on Y+, Uy is point dissipative on Y,
and positive orbits of bounded subsets of Yt for ¥; are bounded, it follows from
Theorem 2.6 in [12] that W7 has a global attractor that attracts each bounded set
in Y. Note that Theorem 5 in [9] implies that Uy is weakly uniformly persistent
with respect to (Yp, 0Yy) when A} > 0. It follows from Theorem 1.3.3 in [24] that Wy
is uniformly persistent with respect to (Y, 9Yp) in the sense that there exists € > 0
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such that lign inf [|Wz(P)|| > ¢, for all P € Yy. Then Uy : Yy — Y admits a global
—00

attractor Ag. Note that Uy is strongly monotone and strictly subhomogeneous.
Since Ay is in Yy and Ay = Uz(Ap), we have Ay C Int(C([0,L]), R%). Then by
Theorem 2.3.2 in [24] with K = Ay that U7 has a fixed point e > 0 in Y| such that
Ao = {e}. Since (3.8) is an autonomous system, we can consider it as a ¢-periodic
system. For any ¢ > 0, we have U,(e) = ¥;(Vz(e)) = Vz(¥;(e)), which implies that
U,(e) is a fixed point of Wz. Hence, ¥;(e) = e for all ¢ > 0 since the fixed point of
U; is unique. Thus, e is a globally attractive steady state of the system (3.8) in Y.
The comparison principle guarantees the local stability of e. Hence, e is globally
asymptotically stable in Y.

For any initial value N = (N3, Ny,) € C([0, L], R3) \ {(0,0)}, we can find
a constant ¢ > 1, such that N° € Y+ = {(u,u) € C([0,L], R%) : (uy,ug) <
C(Ky1,K51)}. By the comparison principle, we have ¥, : Y+ — Y+ and hence
U, is point dissipative and uniformly bounded on Y+ for all ¢ > 0. Therefore,
applying the above proof for ¥; on Y*, we can obtain that there exists a unique
globally attractive steady state & of the system (3.8) in Y+ \ {(0,0)}. Note that
Y, € Y\ {(0,0)}. By the uniqueness of the globally attractive steady state in
Y+ \ {(0,0)}, we have e = &, which implies tlinolo || ¥ (NY) — e|| = 0. Therefore, we

have proved that e attracts any solution of (3.8) in C'([0, L], R%) \ {(0,0)}. Hence,
e is globally asymptotically stable in C([0, L], R%) \ {(0,0)}.

We then complete the proof of Lemma 3.1 (i) by writing e = (Nj (), Ny, ()).

[

It follows from Lemma 3.1 that system (2.1) admits a semi-trivial steady state
Ef(x) = (Nj,(z), Ny, (2),0,0) when AT > 0 and that it admits a semi-trivial steady
state E5(z) = (0,0, Njy(x), Nyy(z)) when A3 > 0.

The linearization of (2.1)-(2.2) at EY is

Bar — ) (1) Ny — 01(2) Ny — maa (2)Nag + L1[Naa),
« df1(x,Ny,,0 "
8];:’1 ~ (fl(x’ Np1:0) + %Nm) N1 — pa () Ny
A Af1(z,Ny1,0) -y
; +3 § 1) Nag + =55 2= Ny Noz, (3.13)
N, x
5 = %M( JNp2 — oa(z )Nd2—md2( )Na2 + L2[Nga),

8];:’2 = fulz Nblv 0)Np2 — pa(2)Np2 + ) Ex)az( ) N2,
with initial and boundary value conditions as in (2.2).
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The linearization of (2.1)-(2.2) at E} is

8]\8[:’1 - ﬁz_gﬂl(m)]\fm —o1(z)Nag — my 1( JNay + L1[Naa ),

31(\97;,1 _ (fl(x,()’ N;2)) Nb,l — Nl( )Nbl + A E ; 1(1’)Nd,1a

Tt = GBa(0) Ny — 05(x) Na — mas () Nag + La[Naa),

ON N Of2(x,0,N7 5) ~ 1y T

o = <f2(56’ 0, Nio) + 5wy Nia — <x>) Noa + 5i502(2)Na
0 fa(z,0,N,
2(8N—;,162Nb ng 1,

with initial and boundary value conditions as in (2.2).
(3.14)

Lemma 3.2. (7). If fo(x, Nj;,0) — po(z) < 0 and A} > 0, then the eigenvalue
problem

A1 = jzggm(@%g — 0a(T) P12 — Ma, 2( )¢1 2+ 52[951,2],
Ao = fo(, Ny1s 0)pa,2 — p2(2) P22 e N (x 02( ) 01,2, (3.15)
a1612(0) — H17552(0) = 0, asdia(L) + 87552 (L) = 0,

associated with

=4 Um<wm—@@wm—mm@mw+@wm,
P = fo(w, Niy, 0)Ni2 — o) Nyo + G855 (x) Ny, (3.16)

OélNd,Q( ) — 518Nd2( 0) =0, aaNga(L )+528Nd2(L) =0,

admits a unique principal eigenvalue Ni with a corresponding positive eigenfunc-
tion (¢T,2> ¢§2)
(ii). If fi(x,0, Nyy) — pa(z) <0 and N5 > 0, then the eigenvalue problem

Ap1y = QZEQM(@%J —o1(z)P11 —ma 1( )¢1 1+ ﬁ1[¢1,1],
A1 = fi(z,0, N§2)¢2,1 1 () Pa1 +4 3 (I 01( )11, (3.17)
a1¢11(0) — 51%11( 0) =0, axpi(L )+528¢11( L) =0,

associated with

Bt = 48 (1) Nyy — 01(2)Nay — ma (£)Nag + L1[Naa],

Pl = fu(w, 0, Nyp) Ny — (@) Nyt + 558 0y () N, (3.18)

a1Ng1(0) — 518Nd1( 0) =0, aoNg1(L )+528Nd1(L) =0,

admits a unique principal eigenvalue Ng, with a corresponding positive eigenfunc-

tion (71, 05,)-
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Proof. The proof is similar to the proof of Theorem 3.1. O

Denote
Ag, : the principal eiganvalue of (3.15) ,

Ag, : the principal eiganvalue of (3.17).

We can prove the following results about the stability of the trivial and semi-
trivial steady states of (2.1).

Theorem 3.3. For model (2.1),

1) 1 < 0 an > 0, then 15 unstable an 15 globally asymptotically
) if AT < 0 and A5 > 0, then Ej ¢ bl d E3 is globall call
stable;

(i) if A} > 0 and A5 < 0, then Ej is unstable and Ef is globally asymptotically
stable;

(iii) if \} >0, A3 >0, A, <0 and Xy, > 0, then Ej is unstable, EY is stable, 3
18 unstable;

(iv) if AT >0, X5 >0, A\, > 0 and Ny, <0, then Ej is unstable, EY is unstable,
E3 s stable;

(v) if AT >0, A5 >0, A, <0 and A, <0, then Ef is unstable, EY is stable, E;
is stable.

Proof. Tt follows from Theorem 5 in [9] that Ej is unstable for (2.1) if A} > 0 or
A; > 0, so we only need to prove stability for £ and E;. We provide the proof for
(i) and (iii). The other results can be similarly proved.

(). Note that fi(z, Np1, Np2) < fi(x, Np1,0) for all N1, Npo > 0. Theorem 5
in [9] implies that when A} < 0, (0,0) is stable for (3.8). It then follows from the
comparison principle that every solution of (2.1) satisfies Ny — 0 and Ny; — 0 as
t — oo. Hence, (3.9) is the limiting system of (2.1), which admits a unique, pos-
itive, globally asymptotically stable steady state (Nj,(z), Nj,(z)), when A5 > 0.
Recall that ®; is the solution semiflow of (2.1). Let w be the w-limit set of ®;(N°)
for N® = (N9, NJ;, N9, N2,) € X*. Then w = {(0,0)} x @, @ € C([0, L], R%).
Restricting ®; on w, we have ®;|,(0,0, Ng2, Ny2) = (0,0, qjt(NdQ, Np2)), where 0,
is the solution semiflow of (3.9). By [24, Lemma 1.2.1°], w is an internal chain
transitive set for ®,. Thus by the relationship between w and @, we have @ is an
internal chain transitive set for ¥,. Since for (3.9) there are only two steady states
(0,0) and (Nj,(w), Nyo(z)) when A3 > 0 and (Nj,(z), Nyy(r)) is globally asymp-
totically stable in C([0, L], R%) \ {(0,0)}, by the continuous time version of [24,
Theoren 1.2.2], @ should be (0,0) or (Nj,(z), Nyy(z)). If @ = (0,0), then w = Ef,
which contradicts to the fact the Ej is unstable. Therefore, & = (Nj, (), Ny, (7)),
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and hence, w = (0,0, Nj,(7), Nyy(7)) = E5. That is, E3 is globally asymptotically
stable for (2.1).

(iii). If A%, > 0, then (0,0) is unstable for the first two equations of (3.14),
hence, (0,0,0,0) is unstable for (3.14). The comparison principle implies that Fj
is unstable for (2.1). When A, <0, Ngo — 0 and Ny — 0 for the solution of
(3.13). Therefore, the limiting system of (3.13) is

ag?l = 23%#1( N1 — 01(2)Nag — ma () Nay + L1[Naa,
N df1(x * z
= (f1($, Npy,0) + 1(a—Nb 1) Noa = (@) Noi + izgxggl(x)Nd’l’

(3.19)

which is the linearization of (3.8) at (Nj,(z), Ny, (x)). It follows from Lemma 3.1

that (0,0) is globally asymptotically stable for (3.19) when A} > 0. By similar

arguments as in the proof for (i), we can prove that (0,0,0,0) is asymptotically

stable for (3.14), which then implies that £} is locally asymptotically stable for
(2.1).

O

3.2 Existence of a coexistence steady state

In this subsection, we will prove that system (2.1) admits a coexistence steady
state when all the trivial and semi-trivial steady states are unstable. Throughout
this subsection, we assume A} > 0, A\; > 0, A, > 0 and A, > 0, which implies the
existence of both semi-trivial steady states £} and EJ.

Let

Xt = {(Ul,UQ,Ug,’U,4) €X+ 0< (Ul,UQ,Ug,U4) (Kdl,Kbl,Kdg,Kbg)}
(3.20)
with Kj;’s and Ky,;’s defined in (3.2). By using H(iii), (3.2), and monotonicity of
systems (3.8) and (3.9), we can show that X T is positively invariant for (2.1), and

hence, the solution map of (2.1) @, : X+ — X7 is point dissipative and uniformly
bounded on X .

() ()t e

where

Of1(-,¢1, 0,
My = fi(; 61, 02) + ‘fléJv?l@)'cbl —m, My = o) 2¢2)¢ 1
M21 6f28]\<;:)11¢2 (b 2 M22 = f2<'7 ¢17 ¢2> anéNb 2¢2)¢

for all ¢ = (¢1,¢2) € C([0, L], R%) with 0 < ¢(x) < (Kp1, Ky9) for all z € [0, L].
Assume
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H(iv) There exists a constant x > 0 such that v/ M (¢(z))v < —xvTv, for any
veR? ¢eC([0,L],R%) with 0 < ¢(x) < (K1, Kpp) for all z € [0, L].

Due to the loss of two diffusion terms in (2.1), the associated solution maps are
not compact. However, under the assumptions H(i)-H(iv), we can prove by sim-
ilar arguments as in Lemma 4.3 of [8] that @, is k-contracting in the sense that
tlggo k(®¢(B)) = 0 for any bounded set B C X*. It then follows from Theorem 2.6

in [12] that ®, admits a global attractor that attracts each bounded set in X*.
Then we can prove the following main result in this subsection.

Theorem 3.4. If \7 > 0, A\; > 0, A\, > 0 and Xy, > 0, then (2.1) admits a
positive steady state E**(z) = (N’ (x), Nyi(r), Nj5(x), Nys(z)).

Proof. Let Xo = {(¢1,¢2,¢3,64) € X7 : ¢ 0, V1< i <4}, 0Xo= X"\ Xp =
{(¢1, 2, 03,04) € XT : ¢y =0 or ¢pp =0 or ¢3 =0 or ¢4 = 0}. Then
®,(Xo) € Xo. We will use My to denote the maximal positively invariant set of
the semiflow ®; in 90X, that is,

My = {PG@XO : CI)t(P> € 0Xo, VtZO},

and let w(P) be the w-limit set of the forward orbit v (P) := {®;(P) : t > 0}.
Claim. Upg,, w(P) C {E5tU{ET} U {ES}

For any given P € My, we have ®,(P) € My, V¢t > 0. Then for each ¢t > 0,
we have Ng1(-,t, P) =0 or Ny1(-,t, P) =0 or Nya(-,t,P) =0 or Nya(-,t,P) = 0.
In the case where Ny (-,t,P) =0, V¢t > 0. From the first equation of (2.1), we
see that Ny (-, t, P) =0, V't > 0. Thus, (Ng2(-,t, P), Np2(-, t, P)) satisfies system
(3.9). It follows from Lemma 3.1 that either

tlim (Naa(-,t, P), Npa(-,t, P)) = (Nj,(x), Ny o(x)), uniformly for = € [0, L],
—00 ’ ’

or
tlim (Nasa(-,t, P), Npao(-,t, P)) = (0,0), uniformly for = € [0, L].
—00

(.
In the case where Ny;(-,t;,P) # 0, for some t; > 0. Then we can show that
(Naa(t, P),Np1(-,t, P)) > (0,0), V ¢t > t;. Then for each ¢ > t;, we have
Nao(+,t,P) =0 or Nyso(-,t, P) = 0. In the case where Nyo(-, ¢, P) =0, V¢ > t5.
From the third equation of (2.1), we see that Nyo(-,t,P) = 0, V ¢t > t;. Thus,
(Naga(:t, P), Ny1(-,t, P)) satisfies system (3.8), for all ¢ > ¢;. It follows from
Lemma 3.1 that either

~— —

tlim(NdJ(-,t, P),Ny1(-,t, P)) = (N;,(2), N (x)), uniformly for z € [0, L],
—00 ’ ’
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or
tlim (Nga(+t, P), Np1(,t, P)) = (0,0), uniformly for = € [0, L].
—00

In the case where Nyo(-,t2, P) # 0, for some t5 > ¢;. Then we can show that
(Naa(-t, P), Npao(-,t, P)) > (0,0), ¥ t > to, which is a contradiction. By the
above discussions, the claim is proved.

Claim. For j = 0,1, 2, there exists J; > 0 such that

limsup |®4(P) — Ej| > 6, V P € Xo.

t—o00

We prove the claim for Ej. Assume that ¢} and ¢} are positive eigenfunctions
of the eigenvalue problems associated with (3.4) and (3.5) corresponding to the
principal eigenvalues A} > 0 and \j > 0, respectively. Similarly as in Theorem 3 in
[9], we can prove that for sufficiently small € > 0, the eigenvalue problem

jz((igu(I)Nbﬂ — O'i(l‘)NdJ‘ — mdl( )Ndz -+ ,CiNdJ‘ = )\Nd,z‘, T € (0, L),t > 0,
(fi(xvoa 0) — €= ,UZ( ))Nb,i + idéga—l( )Ndﬂ' - )\]\/Yb,i;'r € (O7L)7t > 07
OélNd7i(O,t) 51 8Ndl( ) = 0, t > 0,

QaNgi(L,t) + B 254 (L, 1) = 0, >0,

(3.21)
admits a principal eigenvalue Aj_ with a positive eigenfunction ¢; (), where i =
1,2. Moreover, A7, — A as € — 0. Then, there exists a small € > 0 such that A7, >
0 for all € € (0,€). Take ¢y € (0,€). By the continuity of f;, there exists a §y > 0
such that |f;(z, Np1, Np2) — fi(2,0,0,)| < € for both ¢ =1 and 2 when | Ny, ; |< dg
for all z € [0,L] and j = 1,2. Assume, for the sake of contradiction, that there
exists Py € Xy and a positive solution (Ngi(z,t), Npi(z,t), Ngo(x,t), Nya(x,t)) of
(2.1) with the initial value P, such that

limsup ||(Ng1(z,t), Np1(x,t), Ngo(z,t), Np2(z,t)) — (0,0)]] < do. (3.22)
t—»00
Then there exists a large to > 0, such that N, ;(z,t) < dp and f;(z, Np1(x, 1), Npo(x, 1))
> fi(x,0,0) — ¢ for all x € [0, L] and t > to. Therefore,

31;;1,1‘ — QZE:;;”’(%)NW — Ui(x)Ndi — mdi(x)Ndi + ENdi, S (O L),

(3.23)

Bt > (fi(2,0,0) = )Ny — () Nii + 558 () Nag, x € (0, L),

for all t > ¢o. Since Ny;(to,z) > 0, Ny;(to, z) > 0 in the interior of [0, L], we can
choose a sufficiently small number 1 > 0, such that (Ngi(to, -), Noi(to, ")) = 197, (),
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where ¢;  (+) is the positive eigenfunction of (3.21) (with € = ¢) corresponding to

Al .- Note that neieot710) i () is a solution of

81;:,1- - ﬁ;gi;ﬂi<x>Nb7i —0i(2)Ngi — mai(r)Ng; + LNg;, x € (0,L),

8];:7i = (fz($70a 0) - E)Nb,i - ,uz( )sz + A (x)a—z( )Ndh M (0 L)

(3.24)

for t > ty. Then it follows from the comparison principle that (Ng(z,t), Ny (x,t)) >
ne Xieg (1= o) g (@) for all x € [0,L],t > ty, and hence, max,efo,r] Nai(7,t) — 00
and maxyepo,z) Npi(w,t) — 0o as t — oo, which contradicts (3.22). Therefore,

hm sup |D:(Py)— E§| > 0p for any Py € X,. We can similarly prove hm sup |D4(Fy) —

E*| S 9; for j =1,2 and P € Xy. The claim is proved.

For ¢ € X, we define p(¢) := 1@124{ rrfén] ¢i(z)} in the case of Robin boundary
i c

conditions for (2.1) or p(¢) :=sup{S € Ry : ¢:i(x) > pé(x),Vr € [0,L],1 <i <4}
in the case of Dirichlet boundary conditions for (2.1), where € is a given element
in Int(C([0, L], RY)). Clearly, p~*(0,00) C Xy. Furthermore, one can show that
p is a generalized distance function for the semiflow ®; in the sense that p has the
property that if p(¢) > 0 or ¢ € X,y with p(¢) = 0, then p(P,(¢)) >0, Vit >0
(see, e.g., [18]). By the above claims, it follows that any forward orbit of ®; in My
converges to { Eg} or {E7} or {E5}. Further, { £} is isolated in X, for j =0, 1,2
and W*({Ej}) N Xo =0, ¥ j =0,1,2, where W*({E}}) is the stable set of {E}}
(see [18]). It is easy that no subsets of {{Ej}, {ET}, {E3}} forms a cycle in Mp.
It then follows from Theorem 3 in [18] that there exists n > 0 such that
liminfp(cbt(¢)) > n for any ¢ € Xo. That is, [®4(¢)]i(z) > n (1 < i < 4) in
the case of Robin boundary conditions or [®:(¢)];(x) > né(z) (1 < i < 4) in the
case of Dirichlet boundary conditions, for any ¢ € X,. Clearly, this implies that
®, is uniformly persistent with respect to (Xo,9Xo). Then Theorem 1.3.7 in [24]
implies that ®; has a stationary coexistence state E** € X, i.e., O,(E*) = E*,
t >0, or E(z) = (Nji(r), Nyi(z), Ni5(z), Np5(x)) is a positive steady state of
(2.1).
[

4 Influences of parameters on population persis-
tence

In this section, by virtue of numerical simulations, we study the dependence of
the principal eigenvalues \;’s and A% ’s on parameters of model (2.1) in order to
understand how different factors influence population persistence and extinction
for (2.1).
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To calculate Aj’s and A% ’s, we use the finite difference method to discretize
(3.6), (3.15), and (3.17) with the zero-flux condition at the upstream end and the
free-flow condition at the downstream end, that is,

{Di(O) 9L5(0,) — v;(0)p1i(0,8) =0, £> 0,7 =1,2, 1)

PLi(Lt)=0,t>0,i=1,2,

and then use the principal eigenvalues of the resulted matrix operators to approx-
imate A]’s and A% ’s. In all numerical simulations, we choose logistic growth and
competition as

_ Np,1 Np2
f1<x7Nb,17Nb,2) =T 1_ Kll(z) - Ko 3

o Nb71 Nb,2
fQ(xa Nb,lﬂ Nb,2) =T Ko Kooy )7

where r; > 0 is the intrinsic growth rate, K; > 0 is the carrying capacity, and
1/K;; > 0 is the competition rate.

Upon our interest, the following parameters are fixed for all simulations in this
section: Ay = Ay = 1, mg1 = mge = 0.000001. Other parameter values will be
specified in each figure.

4.1 Influence of the river length and advection rates on
population persistence

We first consider the influence of the river length L and advection rates on \}’s and

7, 's. Assume that all the parameters for the two species are the same except that
the advection rate of species 2 is only half of the advection rate of species 1 (i.e.,
d = 0.5). Figure 4.1 shows that A} and A} increase from negative to positive as L
increases . This indicates that when the river becomes longer, the stability of the
trivial solution (0, 0) of the single species models (3.8) and (3.9) changes from stable
to unstable, and hence the dynamics of a single species may change from extinction
to persistence when the river length increases. This coincides with the earlier results
in [9]. Note that A\j becomes positive at smaller L values than A} does. This means
that small advection rate helps population persistence in short rivers, which also
coincides with earlier results. Then we see that once Ef(z) = (Nj, (), Ny, (z),0,0)
and Ej(z) = (0,0, Nj,(z), Njy(z)) both exist, that is, when both A} and Aj are
positive, we have A\, > 0 but A\, < 0, which implies that £} is unstable but £3
is stable. Note that in this case Ej = (0,0,0,0) is unstable and there exists no
positive equilibrium. Therefore, for such two species with only different advection
rates, the species with smaller advection rate wins the competition. The length of
the river does not seem to change the stability of £} or EJ once they exist.
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Figure 4.1: The relationship between \}’s, A% ’s, and the length of the river L.
Parameter values are: @ = 0.0005, 6 = 0.5, 1 = ps = 0.5, 09 = 09 = 2.2,
D1 = D2 = 03, THT = T9 = 0000499, K11 = K12 —= Kgl = KQQ = 998.

4.2 Influence of diffusion and advection rates on population
persistence

We then consider the influence of different diffusion and advection rates of two
species on A}’s and Ap’s. Assuming that all parameters are the same except that
the diffusion rate of species 1 is larger than that of species 2 (i.e., D1 > Ds), we vary
the ratio 0 between two advection rates. For parameter values in the simulation, we
obtain A} > 0, which implies the existence of Ef. When 0 increases, A}, decreases
from positive to negative, \5 decreases from positive (when Ej exists) to negative
(when E5 does not exist) but A}, increases from negative to positive. See Figure
4.2. Therefore, if the advection rate of species 2 is far less than the advection rate
of species 1, then E is unstable but Ej is stable if exists; if the advection rate of
species 2 is larger than the advection rate of species 1, then Ej is stable but Ej is
unstable if exists. This indicates that high advection rate decreases the competition
ability of a species and hence reduces the possibility of existence. The results in
Figure 4.2 coincide with the results in [25] where the model did not include benthic
stages for two competitive species and only in the case of Dy > Ds.

We then vary both the diffusion rates and the advection rates and obtain the
influence of Dy and § on A\ ’s in the case where Dy and @ are fixed. See Figure 4.3.
When D, and § are both small (i.e., the diffusion rate and the advection rate of
species 2 are much smaller than those of species 1), both A}, and \j, are negative.
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Figure 4.2: The relationship between A3, AL ’s, and 0. Parameter values for D;’s:
left figure: Dy = 0.5, Dy = 0.0002; right figure: D; = 0.0002, Dy = 0.5. Other
parameter values: L = 1, Q = 0.0005, g1 = po = 0.5, 01 = 09 = 2.2, 1) = 1ry =
0.000499, K11 = K3 = Ko = Koy = 998. Here A} = 0.00031292.
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Figure 4.3: The influence of Dy and 6 on AL ’s. Parameter values are the same as
in Figure 4.2 except that D; = 0.1. In the right figure, the dash curve represents

Ag, = 0; the solid curve represents Ay, = 0.

When ¢ is small (i.e., the advection rate of species 2 is small) but the diffusion rate
D, becomes larger, A\ > 0 and A\j, < 0, and hence E7 is unstable but £5 is stable.
When ¢ becomes larger, A\, < 0 and A}, > 0, and hence EY is stable but E3 is
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Figure 4.4: The influence of competition rates on A3 ’s. Parameter values are:
L = ]., Q = 000005, 0 = 1, H1 = M2 = 05, 01 = 09 = 22, D1 = D2 = 001,
TH = T9 = 05, Kll = 1050, KQQ = 1000.

unstable. Therefore, when the advection rate of species 2 is small, the increase of
the diffusion rate D, helps species 2 persist and easily destroys the persistence of
species 1. However, when the advection rate of species 2 is large, species 2 may not
be persistent no matter what its diffusion rate is. In this case, species 1 easily win
the competition.

4.3 The influence of competition on population persistence

We then consider the influence of the competition rates on Ap’s. We assume
all parameters are the same for the two species except the competition rates. In
particular, we fix Ky, and Ky but vary Ki5 and K»; to obtain Figure 4.4, which
shows the regions for values of Ky and Ky where Ay and A%, have different
signs. If inter-species competition rates (i.e., 1/Kj5 and 1/Ky;) are larger than
the intra-species competition rates (i.e., 1/Ky; and 1/Kj), both AL and A}, are
negative and hence F; and Ej are both locally asymptotically stable. In this case,
either species could win the competition depending on the initial distribution of the
populations. If inter-species competition rates are smaller than the intra-species
competition rates, then both A% and A%, are positive and two species may coexist.
If the competition rate of species ¢ is higher than the competition rate of species
J, then species i wins the competition (i.e., A, < 0 but )\*Ej > (). These results
coincide with the dynamics of the nonspatial logistic competition model.

21



8 T 6 T T T T
§=2.2 [ U S
- - 0=23 .~
6 N -
- - 524 4 =22
| - - -5=23
4 - -804
Al
1
ot B ittt
- 1 7
w e W b
*d |\ * 0 ,/
0\ I
S S~ o
T T T T s T s s s s - s
_of B
1
1 4
41\ -
\
’6 == T T =y 76 L L L L
0 0.1 0.2 0.3 04 0.5 0 0.1 0.2 03 0.4 0.5
Ly Hy

Figure 4.5: The influence of transfer rates on Aj ’s. Parameter values are: L =1,
Q = 0000057 H1 = 05, o1 = 22, D1 = D2 = 001, " = T = 05, KH = K12 =
Kgl = K22 == 1000, ,ug/O'Q =0.1.

4.4 The influence of transfer rates on population persis-
tence

We study the influence of transfer rates on A% ’s, and hence on persistence of the
species. Assume all parameters of the two species are the same except the transfer
rates and the advection rates. In particular, we fix the transfer rates of species 1
and vary those of species 2 with a fixed ratio between py and 0. Figure 4.5 shows
that if the ratio ps/os is fixed, then as ps and oy become larger, AL, decreases
and A}, increases. Both A% and A} quickly approach some limit values when
the transfer rates are not very large. This indicates that when the transfer rates
of species 1 are fixed, the more species 2 transfer between the water column and
the benthic zone, the easier for species 1 to persist and the harder for species 2 to
persist or compete with species 1. Moreover, we change the value of 6 and compare
the values of A% ’s for different 0 values. It turns out that when 6 becomes larger,
that is, when the advection rate of species 2 becomes larger, A3, is smaller and A%,
is larger. This also coincides with our previous understanding of river population
dynamics. Larger advection rate of species 2 decreases the chance of species 2 to
persist or compete and hence increases the possibility of species 1 to persist. For
Figure 4.5, us/oo = 0.1 < py/oy = 0.5/2.2. However, when we change the ratio
o /og (for example when ps /09 > 11 /01), we obtain similar results.

22



1200

1000 .+

800

1000

Z B0 et

Xx 00

900

10000
X 00

10000 10000
0 0

X 00

800

700

600

5001

4007

300

200

100

0 02 0.4 06 0.8 1 0 0.2 04 0.6 038 1

Figure 4.6: A positive (co-existence) steady state of (2.1) and the time evolution
of (2.1) with initial values N,; = Ng; = 200 for i = 1,2. Parameters: L = 1,
Q = 000005, 0 = 05, H1 = U = 05, 01 = 09 = 22, D1 = DQ = 001, T =
ro = 0.5. Other parameters and values: (a) and (b): K;; = 800 + 50sin(10z),
Ky = 1100 + 300sin(10z), K12 = Ky = 1900, A}, = 0.2386, Ap, = 0.1788; (c):
K11 = 800 + 350sin(10z), K = 1100 + 300sin(10z), K12 = Ky = 1900, A}, =
0.2503, A\p, = 0.1788; (d): K1 = 1050, K1 = 1910, Ky = 1400, Ka = 1000,
Ap, = 0.1027, and Ap, = 0.1971. The values of A}’s are all about 0.4199.

4.5 Stability of the positive steady state E**(x) and the
effect of spatial heterogeneity on £E**(z)

Theorem 3.4 guarantees the existence of a positive steady state E**(x) under the
conditions A} > 0, A\; > 0, A, > 0 and Ap, > 0, but does not imply the stability
of E**(x). We choose parameters satisfying these conditions and numerically solve
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(2.1) with ON,; /0t = 0 and ONg4; /0t = 0 for i = 1,2 to obtain E**(z). See Figure
4.6(a). We also numerically solve (2.1) with the same parameters and for con-
stant initial values. The time evolution is shown in Figure 4.6(b), which indicates
that the solution approaches E**(z) as time ¢ becomes larger. Therefore, we can
conclude that the positive steady state E**(z) obtained in Theorem 3.4 might be
asymptotically stable. In this simulation, we only find one positive steady state,
but we are not able to prove the uniqueness.

We also consider the influence of spatial heterogeneity on distribution of the
positive steady state E**(x). In Figure 4.6, we obtained the steady state in three
different situations, (a) and (c¢) for (2.1) with spatially varying carrying capacities
of two species, (d) for (2.1) with spatially homogeneous carrying capacities of two
species. Since two species are competitive, we assume that the carrying capacities
are large or small in the same locations. When K7, is overall lower than Ksy and
its amplitude is much less than Kss’s, in the positive steady state, the density
of species 2 reaches its maximum (minimum) where its carrying capacity is the
largest (smallest), while the density distribution of species 1 reaches its maximum
(minimum) where its carrying capacity is the smallest (largest); see Figure 4.6(a).
When K, is overall lower than Ky but Ki;’s amplitude is not too much smaller
or even larger than Ksy,’s, the density distributions in the positive steady state
all reach the maximum (minimum) where the carrying capacities are the largest
(smallest); see Figure 4.6(c). When all the parameters are constants, the density
distributions in the positive steady state all slightly increase from the upstream to
the downstream, due to the effect of the boundary conditions; see Figure 4.6(d).

4.6 Bistability

For parameter values L = 1, Q = 0.00005, 6 = 1, uy = o = 0.5, 09 = 09 = 2.2,
D1 = D2 = 001, rn = T9 = 05, K11 = 10507 KQQ = 1000, k?lg = 600 and
K3 = 500, we obtain that A} = 0.4199 > 0, A5 = 0.4199 > 0, A\, = —0.4289 < 0
and \p, = —0.2649 < 0. This is the case of bistability, in which both semitrivial
steady states are locally stable and the outcome of model (2.1) depends on initial
conditions. While theoretical results have not been established, our computation
shows that when bistability occurs, it is unlikely to have long-term coexistence
steady states for (2.1).

5 Discussion

In this paper, we investigated the dynamics of a competitive model for two river
species living both in the flowing water and in the benthic zone of the river. We
established existence of the trivial steady state, the semi-trivial steady states, and
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a co-existence steady state, as well as the conditions for stability of the trivial
steady state and the semi-trivial steady states, by using the theories of monotone
dynamical systems and eigenvalue problems. We also conducted numerical simu-
lations to understand the influences of biotic and abiotic factors such as the river
length, the diffusion coefficients, the advection rates, the competition rates, and
the transfer rates on the principal eigenvalues of eigenvalue problems corresponding
to linearization of the system at steady states, and hence on existence and stabil-
ity of the above mentioned steady states, which imply population persistence or
extinction of one or two species. We also considered the effect of spatially varying
carrying capacities on density distributions in the positive steady states.

The solution maps of our model (2.1) and its linearized systems are not compact
due to the ordinary differential equations in the systems, so we proved a weaker
result that the solution maps are x-contracting, which by using the theory of mono-
tone dynamical systems can guarantee the existence of positive steady states for
corresponding systems under our model assumptions.

The results in this work extend the understanding of existing non-spatial com-
petitive models or competitive models of only parabolic equations [25]. To our
knowledge, this is the first time that the dynamics of a benthic-drift competitive
model is comprehensively analyzed in a spatially heterogeneous habitat. We ana-
lyzed the existence and stability of the trivial and semi-trivial steady states in all
situations, proved the existence of co-existence steady state and verified its stability
numerically when other steady states are unstable. We also numerically found the
possibility of non-existence of a positive steady state when two semi-trivial steady
states are locally stable. Numerical simulations showed that for such two benthic-
drift competitive species, factors such as the diffusion rates, the advection rates are
critical on population persistence and extinction. We also saw that higher birth
rate increases the possibility of one species to win, which is easily understandable,
so we did not include any simulation results here.

The concept of persistence measure in [9] and [14] can also be extended to a
competitive system. In [9] and [14], for a single species living only in flowing water
or both in flowing water and on river benthos, the net reproductive rate R, was
defined to describe the average number of offsprings that a single individual can
produce during its lifetime and Ry was used to determine population persistence
(extinction) when Ry > 1 (Ry < 1). For two competitive species considered in
this paper, we can apply the theory in [14] to define Ry and Rg for (3.8) and
(3.9), respectively, as the net reproductive rates for isolated species 1 and species
2, respectively, satisfying Ry, > (<)1 equivalent to A} > (<)0. Similarly, we can
define Rf"* for (3.16) and (3.18) satisfying R(Iff > (<)1 equivalent to A > (<)0,
representing the net reproductive rate of species ¢ when species j is at its steady
state. Theorem 3.4 then implies that if either species can persist in a habitat
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without the other species and in a habitat with the other species in its steady
state, then both species can coexist. Theorems 3.2 and 3.3 indicate that none
species can survive in a competitive environment if either of them cannot persist
in an isolated environment, that a species who cannot survive itself cannot win the
competition, and that the species who can persist in the habitat with the other
species wins the competition.
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