
J. Math. Anal. Appl. 475 (2019) 94–122
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Doubly nonlocal Fisher–KPP equation: Speeds and uniqueness 

of traveling waves

Dmitri Finkelshtein a,∗, Yuri Kondratiev b, Pasha Tkachov c

a Department of Mathematics, Swansea University, Fabian Way, Swansea SA1 8EN, UK
b Fakultät für Mathematik, Universität Bielefeld, Postfach 110 131, 33501 Bielefeld, Germany
c Gran Sasso Science Institute, Viale Francesco Crispi, 7, 67100 L’Aquila AQ, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 October 2018
Available online 19 February 2019
Submitted by J. Lenells

Keywords:
Nonlocal diffusion
Reaction-diffusion equation
Fisher–KPP equation
Traveling waves
Minimal speed
Nonlocal nonlinearity

We study traveling waves for a reaction-diffusion equation with nonlocal anisotropic 
diffusion and a linear combination of local and nonlocal monostable-type reactions. 
We describe relations between speeds and asymptotic of profiles of traveling waves, 
and prove the uniqueness of the profiles up to shifts.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

We will study traveling wave solutions to the equation

∂u

∂t
(x, t) = κ+

∫
Rd

a+(x− y)u(y, t)dy −mu(x, t) − u(x, t)G
(
u(x, t)

)
,

G
(
u(x, t)

)
:= κ�u(x, t) + κn�

∫
Rd

a−(x− y)u(y, t)dy.
(1.1)

Here d ∈ N; κ+, m > 0 and κ�, κn� ≥ 0 are constants, such that

κ− := κ� + κn� > 0; (1.2)

the kernels 0 ≤ a± ∈ L1(Rd) are probability densities, i.e. 
∫
Rd a

±(y)dy = 1.
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The present paper is a continuation of [15]; they both are based on thesis [29] and, in the particular case 
κ� = 0, on our unpublished preprint [13]. For the case of the local nonlinearity in (1.1), when κn� = 0, the 
equation (1.1) was considered, in particular, in [1,5,6,20,23,25–27,31,33]. For a nonlocal nonlinearity and, 
especially, for the case κ� = 0 in (1.1), see e.g. [8,10–13,16,19,24,32]. For details, see the introduction to [15]
and also the comments below.

The solution u = u(x, t) describes the local density of a species at the point x ∈ Rd at the moment 
of time t ≥ 0. The individuals of the species spread over the space Rd according to the dispersion kernel 
a+ and the fecundity rate κ+. The individuals may die according to both constant mortality rate m and 
density dependent competition, described by the rate κ−. The competition may be local, when the density 
u(x, t) at a point x is influenced by itself only, with the rate κ�, or nonlocal, when the density u(x, t) is 
influenced by all values u(y, t), y ∈ Rd, averaged over Rd according to the competition kernel a− with the 
rate κn�. See also [2,5,8,10,11,19,24–26].

Under assumption

κ+ > m, (A1)

the equation (1.1) has two constant stationary solutions: u ≡ 0 and u ≡ θ, where

θ := κ+ −m

κ− > 0. (1.3)

Moreover, one can then also rewrite the equation in a reaction-diffusion form

∂u

∂t
(x, t) = κ+

∫
Rd

a+(x− y)
(
u(y, t) − u(x, t)

)
dy + u(x, t)

(
β −G

(
u(x, t)

))
,

where β = κ+−m > 0. We treat then (1.1) as a doubly nonlocal Fisher–KPP equation, see the introduction 
to [15] for details.

By a (monotone) traveling wave solution to (1.1) in a direction ξ ∈ Sd−1 (the unit sphere in Rd), we will 
understand a solution of the form

u(x, t) = ψ(x · ξ − ct), t ≥ 0, a.a. x ∈ Rd,

ψ(−∞) = θ, ψ(+∞) = 0,
(1.4)

where c ∈ R is called the speed of the wave and the function ψ ∈ Mθ(R) is called the profile of the wave. 
Here Mθ(R) denotes the set of all decreasing and right-continuous functions f : R → [0, θ], and x ·ξ denotes 
the scalar product in Rd.

In [15, Propositions 3.7], we have shown (cf. also [5]) that the study of a traveling wave solution (1.4)
with a fixed ξ ∈ Sd−1 can be reduced to the study of the one-dimensional version of (1.1) with the kernels

a±(s) :=
∫

{ξ}⊥

a±(sξ + η) dη, s ∈ R, (1.5)

where {ξ}⊥ := {x ∈ Rd | x · ξ = 0}. For d = 1 and ξ ∈ S0 = {−1, 1}, (1.5) reads as follows: a±(s) = a±(sξ), 
s ∈ R. Clearly, 

∫
R
a±(s) ds = 1.

For simplicity, we omit ξ from the notations for functions a±, assuming that the direction ξ ∈ Sd−1 is 
fixed for the sequel. We denote also

Jθ(s) := κ+a+(s) − θκn�a
−(s), s ∈ R. (1.6)
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Under (A1), we assume that

Jθ ≥ 0, a.a. s ∈ R, (A2)

and that there exists μ = μ(ξ) > 0, such that

∫
Rd

a+(x)eμx·ξ dx =
∫
R

a+(s)eμs ds < ∞. (A3)

Suppose also, that a+ is not degenerated in the direction ξ ∈ Sd−1, i.e.

there exist r = r(ξ) ≥ 0, ρ = ρ(ξ) > 0, δ = δ(ξ) > 0, such that

a+(s) ≥ ρ, for a.a. s ∈ [r − δ, r + δ].
(A4)

A sufficient condition for (A4) is that a+(x) ≥ ρ′ for a.a. x ∈ Rd such that |x − rξ| ≤ δ′, for some ρ′, δ′ > 0.
By [17], (A2) implies the comparison principle for the mentioned one-dimensional version of (1.1), that 

was a background for results we obtained in [15], see Theorem 1.1 below. Stress that the assumption (A2) is 
redundant for the case of the local nonlinearity in (1.1), when κn� = 0. For κn� > 0, note that (A2) always 
holds, in particular, for equal kernels, a− = a+ (or just a− = a+), because of (1.2) and (1.3). On the other 
hand, if κn� > 0 and (A2) fails, the bifurcation of the constant solution u ≡ θ is possible, developing an 
infinite family of spatially periodic stationary solutions (see [22] for more details). For example, consider, 
for some h ∈ R,

a+(s) = 1√
4π

e−
s2
4 , a−(s) = 1

2
√

4π
(
e−

(s−h)2
4 + e−

(s+h)2
4

)
, s ∈ R.

Then, under (A1), there exists h0 such that, for all h ≤ |h0|, the assumption (A2) holds true, and, for all 
h > |h0|, it does not hold.

The assumption (A3) is necessary for existence of traveling waves (see [14, Proposition 1.4]). In fact, if 
(A3) fails, then the solution propagates with a superlinear rate which depends on the asymptotic of a+. See 
e.g. [3,16,20] for more details.

Theorem 1.1 ([15, Theorem 1.1, Propositions 3.7, 3.14, 3.15]). Let ξ ∈ Sd−1 be fixed and suppose that (A1), 
(A2), (A3) hold. Then there exists c∗ = c∗(ξ) ∈ R, such that, for any c < c∗, a traveling wave solution to 
(1.1) of the form (1.4) with ψ ∈ Mθ(R) does not exist; whereas for any c ≥ c∗,

1) there exists a traveling wave solution to (1.1) with the speed c and a profile ψ ∈ Mθ(R) such that (1.4)
holds;

2) if c 	= 0, then the profile ψ ∈ C∞
b (R) (the class of infinitely many times differentiable functions on R

with bounded derivatives); if c = 0 (in the case c∗ ≤ 0), then ψ ∈ C(R);
3) there exists μ = μ(c, a+, κ−, θ) > 0 such that

∫
R

ψ(s)eμs ds < ∞; (1.7)

4) if, additionally, (A4) holds, then, for any c 	= 0, there exists ν > 0, such that ψ(t)eνt is a strictly 
increasing function;

5) if, additionally, (A4) holds with r = 0, then the profile ψ is a strictly decreasing function on R.
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The smoothness of the profile ψ implies, see [15, Proposition 3.11] for details, that ψ satisfies the equation

cψ′(s) + κ+(a+ ∗ ψ)(s) −mψ(s) − κn�ψ(s)(a− ∗ ψ)(s) − κ�ψ
2(s) = 0 (1.8)

for all s ∈ R. Here ∗ denotes the classical convolution of functions on R, i.e.

(a± ∗ ψ)(s) :=
∫
R

a±(s− τ)ψ(τ) dτ, s ∈ R.

To study (1.8), we will use a bilateral-type Laplace transform

(Lf)(z) =
∫
R

f(s)ezs ds, Re z > 0, f ∈ L∞(R). (1.9)

For each f ∈ L∞(R), there exists σ(f) ∈ [0, ∞], called the abscissa of f , such that the integral in (1.9) is 
convergent for 0 < Re z < σ(f) and divergent for Re z > σ(f), see Lemma 2.1 below for details.

We assume that

a+ ∈ L∞(R), (A5)

that is evidently fulfilled if e.g. a+ ∈ L∞(Rd). Then, under (A3) and (A5), there exists σ(a+) ∈ (0, ∞]. 
Similarly, because of (1.7), for any profile ψ of a traveling wave solution to (1.1), there exists σ(ψ) ∈ (0, ∞].

Finally, for the fixed ξ ∈ Sd−1, we assume that
∫
Rd

|x · ξ|a+(x) dx =
∫
R

|s|a+(s) ds < ∞. (A6)

Under assumption (A6), we define

mξ :=
∫
Rd

x · ξ a+(x) dx =
∫
R

s a+(s) ds. (1.10)

We formulate now the first main result of the present paper.

Theorem 1.2. Let, for the fixed ξ ∈ Sd−1, the conditions (A1)–(A6) hold. Let c∗ = c∗(ξ) ∈ R be the minimal 
traveling wave speed according to Theorem 1.1, and let, for any c ≥ c∗, the function ψ = ψc ∈ Mθ(R) be a 
traveling wave profile corresponding to the speed c. Then

1. There exists a unique λ∗ ∈ R, such that

c∗ = min
λ>0

1
λ

(
κ+

∫
R

a+(s)eλs ds−m

)

= 1
λ∗

(
κ+

∫
R

a+(s)eλ∗s ds−m

)
> κ+mξ.

(1.11)

2. For any c ≥ c∗ the abscissa of the corresponding profile ψc is finite:

σ(ψc) ∈ (0, λ∗], (1.12)
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and the mapping (0, λ∗] � σ(ψc) �→ c ∈ [c∗, ∞) is a (strictly) decreasing bijection, given by

c = 1
σ(ψc)

(
κ+

∫
R

a+(s)eσ(ψc) s ds−m

)
. (1.13)

In particular,

σ(ψc∗) = λ∗. (1.14)

3. For any c ≥ c∗,

(Lψc)
(
σ(ψc)

)
= ∞. (1.15)

Note that, in light of (1.11), the kernel a+ may be so slanted to the direction opposite to ξ, that c∗(ξ) < 0. 
A sufficient condition to exclude this, by the inequality in (1.11), is that mξ = 0; in particular, this evidently 
holds if a+ is symmetric.

We will show also that σ(ψc∗) = λ∗ ≤ σ(a+). We will distinguish two cases: the non-critical case when 
σ(ψc∗) < σ(a+), and the critical case when σ(ψc∗) = σ(a+). Note that a kernel a+ which is compactly 
supported or decreases faster than any exponential function corresponds to the non-critical case, as then 
λ∗ < ∞ = σ(a+).

The critical case is characterized by the following conditions (cf. Proposition 2.5 and Definition 2.6 below)

σ̂ := σ(a+) < ∞,

∫
R

(1 + |s|)a+(s)eσ̂s ds < ∞, (1.16)

m ≤ κ+
∫
R

(1 − σ̂s)a+(s)eσ̂s ds. (1.17)

Note that, informally, (1.17) implies upper bounds for both m and σ̂; cf. also the example (1.21) below.
Our second main result is about the asymptotic and the uniqueness (up to a shift) of the profile for a 

traveling wave with a given speed c ≥ c∗(ξ), c 	= 0.

Theorem 1.3. Let ξ ∈ Sd−1 be fixed, and let conditions (A1)–(A6) hold. Let c∗ = c∗(ξ) ∈ R be the minimal 
traveling wave speed given by (1.11), and let, for any speed c ≥ c∗, ψc ∈ Mθ(R) be the corresponding profile 
with the abscissa σ(ψc). If (1.16) holds and if, cf. (1.17), for σ̂ = σ(a+),

m = κ+
∫
R

(1 − σ̂s)a+(s)eσ̂s ds, (1.18)

we assume, additionally, that
∫
R

s2a+(s)eσ̂s ds < ∞. (1.19)

Let c ≥ c∗ and c 	= 0; then the following holds.

1) There exists D > 0, such that

ψc(s) ∼ Dsj−1 e−σ(ψc)s, s → ∞. (1.20)
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Here j = 1 in two cases: 1) c > c∗; 2) c = c∗ and (1.16) holds as well as the strict inequality in (1.17). 
Otherwise, j = 2, i.e. when c = c∗ and either (1.16) fails or both (1.16) and (1.18) hold. Moreover, 
D = Dj may be chosen equal to 1 by a shift of ψc.

2) If, additionally, there exist ρ, δ > 0, such that

Jθ(s) ≥ ρ, for a.a. |s| ≤ δ, (A7)

then the traveling wave profile ψc is unique up to a shift.

Clearly, (A7) implies that (A4) holds with r = 0. If, additionally, (A4) holds with r = 0, e.g. if a+ is 
separated from 0 in a neighborhood of the origin, then (A7) holds as well.

Therefore, in the non-critical case, the profile of a traveling wave with a non-minimal speed decays 
exponentially at infinity with the rate equal to the abscissa of the profile, whereas for the minimal speed 
it decays slower: with an additional linear factor. However, in the critical case, the profile of the traveling 
wave with the minimal speed will not have that additional factor, unless both (1.16) and (1.18) hold (and 
we can prove the latter under the additional assumption (1.19) only).

To demonstrate the critical case, consider the kernel

a+(s) := αe−μ|s|

1 + |s|q , s ∈ R, q ≥ 0, μ > 0, (1.21)

where α > 0 is a normalizing constant. Then (A3)–(A6) evidently hold and σ̂ = σ(a+) = μ. In Example 2.8
below, we will show that, for q > 2, there exist μ∗ > 0 and m∗ ∈ (0, κ+), such that σ(ψc∗(ξ)) = σ̂, if only 
μ ∈ (0, μ∗] and m ∈ (0, m∗]. The condition (1.19) does not take place only for q ∈ (2, 3], μ ∈ (0, μ∗] and 
m = m∗.

Another specific of the critical case is visible from the behavior on the positive half-line of the so-called 
characteristic function hξ,c, corresponding to the traveling wave with a speed c ≥ c∗, see (3.1) and Propo-
sition 3.1 below:

hξ,c(λ) := κ+(La+)(λ) −m− cλ,

cf. e.g. [25]. (This function is equal to infinity for λ > σ̂.) Then the minimal positive root of hξ,c is σ(ψc). 
The sketches on Fig. 1 reflect the difference between the critical and non-critical cases for the function hξ,c.

In the case of the local nonlinearity in (1.1), when κn� = 0, the results of Theorems 1.2–1.3 were mainly 
known in the literature under additional assumptions. For example, in [26], the kernel a+ was symmetric
and compactly supported; in [5], the kernel a+ was anisotropic, but a+ was supposed to be compactly 
supported; whereas the conditions in [33] corresponded to a symmetric a+, such that the inequality in (A3)
holds for all μ > 0. In these both cases, σ̂ = σ(a+) = ∞; and hence, recall, σ(ψc∗(ξ)) < σ̂. In [1], an 
anisotropic kernel which satisfies (A3) was considered (that allows σ̂ < ∞ as well), however, it was assumed 
that σ(ψc∗(ξ)) < σ̂. The critical case σ(ψc∗(ξ)) = σ̂, therefore, remained an open problem.

For a nonlocal nonlinearity in (1.1), i.e. when κn� 	= 0, the only known results [32] also concerned the 
more simple case σ(a+) = ∞.

The paper is organized as follows: in Section 2 we prove Theorem 1.2 for both critical and non-critical 
cases, and in Section 3 we discuss properties of the function hξ,c and prove Theorem 1.3.
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Fig. 1. Sketches of the characteristic function hξ,c for the critical (where (1.16)–(1.17) hold) and the non-critical cases.

2. Speed and profile of a traveling wave

2.1. Properties of the bilateral-type Laplace transform

For an f ∈ L∞(R), let Lf be the bilateral-type Laplace transform of f given by (1.9), cf. [30, Chapter VI]. 
We collect several results about L in the following lemma.

Lemma 2.1. Let f ∈ L∞(R).

(L1) There exists σ(f) ∈ [0, ∞] such that the integral (1.9) converges in the strip {0 < Re z < σ(f)}
(provided that σ(f) > 0) and diverges in the half plane {Re z > σ(f)} (provided that σ(f) < ∞).

(L2) Let σ(f) > 0. Then (Lf)(z) is analytic in {0 < Re z < σ(f)}, and, for any n ∈ N,

dn

dzn
(Lf)(z) =

∫
R

ezssnf(s) ds, 0 < Re z < σ(f).

(L3) Let f ≥ 0 a.e. and 0 < σ(f) < ∞. Then (Lf)(z) has a singularity at z = σ(f). In particular, Lf has 
not an analytic extension to a strip 0 < Re z < ν, with ν > σ(f).

(L4) Let f ′ := d
dsf ∈ L∞(R), f(∞) = 0, and σ(f ′) > 0. Then σ(f) ≥ σ(f ′) and, for any 0 < Re z < σ(f ′),

(Lf ′)(z) = −z(Lf)(z). (2.1)

(L5) Let g ∈ L∞(R) ∩ L1(R) and σ(f) > 0, σ(g) > 0. Then σ(f ∗ g) ≥ min{σ(f), σ(g)} and, for any 
0 < Re z < min{σ(f), σ(g)},

(
L(f ∗ g)

)
(z) = (Lf)(z)(Lg)(z). (2.2)
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(L6) Let 0 ≤ f ∈ L1(R) ∩ L∞(R) and σ(f) > 0. Then

lim
λ→0+

(Lf)(λ) =
∫
R

f(s) ds.

(L7) Let f ≥ 0, σ(f) ∈ (0, ∞) and A :=
∫
R
f(s)eσ(f)s ds < ∞. Then

lim
λ→σ(f)−

(Lf)(λ) = A.

(L8) Let f ≥ 0 be decreasing on R, and let σ(f) > 0. Then, for any 0 < λ < σ(f),

f(s) ≤ λeλ

eλ − 1(Lf)(λ)e−λs, s ∈ R. (2.3)

Moreover,

σ
(
f2) ≥ 2σ(f), (2.4)

and for any 0 ≤ g ∈ L∞(R) ∩ L1(R), σ(g) > 0,

σ
(
f(g ∗ f)

)
≥ σ(f) + min

{
σ(g), σ(f)

}
. (2.5)

Proof. We can rewrite L = L+ + L−, where

(L±f)(z) =
∫
R±

f(s)ezs ds, Re z > 0,

R+ = [0, ∞), R− = (∞, 0]. Let L denote the classical (unilateral) Laplace transform:

(Lf)(z) =
∫
R+

f(s)e−zs ds,

and s(f) be its abscissa of convergence (see details, e.g. in [30, Chapter II]). Then, clearly, (L+f)(z) =
(Lf)(−z), (L−f)(z) = (Lf−)(z), where f−(s) = f(−s), s ∈ R. As a result, σ(f) = −s(f).

It is easily seen that, for f ∈ L∞(R), s(f−) ≤ 0, in particular, the function (L−f)(z) is analytic on 
Re z > 0.

Therefore, the Properties (L1)–(L3) are direct consequences of [30, Theorems II.1, II.5a, II.5b], respec-
tively. The Property (L4) may be easily derived from [30, Theorem II.2.3a, II.2.3b], taking into account that 
f(∞) = 0. The Property (L5) one gets by a straightforward computation, cf. [30, Theorem VI.16a]; note 
that f ∗ g ∈ L∞(R).

Next, σ(f) > 0 implies s(f) < 0, therefore, L+f can be analytically continued to 0. If s(f−) < 0, then 
L−f can be analytically continued to 0 as well, and (L6) will be evident. Otherwise, if s(f−) = 0 then (L6)
follows from [30, Theorem V.1]. Similar arguments prove (L7).

To prove (L8) for a decreasing nonnegative f , note that, for any 0 < λ < σ(f),

f(s)
s∫
eλτ dτ ≤

s∫
f(τ)eλτ dτ ≤ (Lf)(λ), s ∈ R,
s−1 s−1
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that implies (2.3). Next, by (L5), σ(g ∗ f) > 0, and conditions on g yield that g ∗ f ≥ 0 is decreasing as 
well. Therefore, by (2.3), for any 0 < λ < σ(g ∗ f),

∣∣(L(f(g ∗ f))
)
(z)

∣∣ ≤ ∫
R

f(s)(g ∗ f)(s)esRe z ds

≤ λeλ

eλ − 1
(
L(g ∗ f)

)
(λ)

∫
R

f(s)e−sλesRe z ds < ∞,

provided that Re z < σ(f) + λ < σ(f) + σ(g ∗ f). As a result, σ
(
f(g ∗ f)

)
≥ σ(f) + σ(g ∗ f) that, by (L5), 

implies (2.5). Similarly one can prove (2.4). �
2.2. Proof of Theorem 1.2

Through the rest of the paper we will always assume that (A1) holds. Note also, that (A2) and (A5)
imply a− ∈ L∞(R).

Remark 2.2. By [15, Remark 3.6], if ψ ∈ Mθ(R), c ∈ R gets (1.4) then, for any s ∈ R, ψ(· + s) is a traveling 
wave to (1.1) with the same c.

Fix any ξ ∈ Sd−1. For μ > 0, we denote, cf. (1.5),

aξ(μ) :=
∫
Rd

a+(x)eμx·ξ dx =
∫
R

a+(s)eμs ds ∈ (0,∞]. (2.6)

Under (A2), (A3) and (A5), σ(a±) > 0 and

aξ(μ) = (La+)(μ) < ∞, 0 < μ < σ(a+).

Consider, the following complex-valued function, cf. (A3),

Gξ(z) := κ+(La+)(z) −m

z
, Re z > 0, (2.7)

which is well-defined on 0 < Re z < σ(a+). We have proved in [15, formula (3.18)] that

c∗(ξ) ≤ inf
λ>0

Gξ(λ), (2.8)

where c∗(ξ) is the minimal speed of traveling waves, cf. Theorem 1.1. We will show below that in fact there 
exists equality in (2.8).

We start with the following notations to simplify the further statements.

Definition 2.3. Let m > 0, κ+ > 0, κ�, κn� ≥ 0, 0 ≤ a− ∈ L1(R) be fixed, and (A1) and (1.2) hold. For an 
arbitrary ξ ∈ Sd−1, denote by Uξ the subset of functions 0 ≤ a+ ∈ L1(R) such that (A2)–(A6) hold.

For a+ ∈ Uξ, denote also the interval Iξ ⊂ (0, ∞) by

Iξ :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(0,∞), if σ(a+) = ∞,(
0, σ(a+)

)
, if σ(a+) < ∞ and (La+)

(
σ(a+)

)
= ∞,(

0, σ(a+)
]
, if σ(a+) < ∞ and (La+)

(
σ(a+)

)
< ∞.

(2.9)
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Proposition 2.4. Let ξ ∈ Sd−1 be fixed and a+ ∈ Uξ. Then there exists a unique λ∗ = λ∗(ξ) ∈ Iξ such that

inf
λ>0

Gξ(λ) = min
λ∈Iξ

Gξ(λ) = Gξ(λ∗) > κ+mξ. (2.10)

Moreover, Gξ is strictly decreasing on (0, λ∗] and Gξ is strictly increasing on Iξ \ (0, λ∗] (the latter interval 
may be empty).

Proof. We continue to use the notation σ̂ := σ(a+) ∈ (0, ∞]. Denote also

Fξ(λ) := κ+aξ(λ) −m = λGξ(λ), λ ∈ Iξ. (2.11)

By (L2), for any λ ∈ (0, ̂σ),

a′′ξ (λ) =
∫
R

s2a+(s)eλs ds > 0, (2.12)

therefore, a′ξ(λ) is increasing on (0, ̂σ); in particular, by (A6), we have, for any λ ∈ (0, ̂σ),

∫
R

sa+(s)eλs ds = a′ξ(λ) > a′ξ(0) =
∫
R

sa+(s) ds = mξ. (2.13)

Next, by (L6), Fξ(0+) = κ+ −m > 0, hence,

Gξ(0+) = ∞. (2.14)

Finally, for λ ∈ (0, ̂σ), we have

G′
ξ(λ) = λ−2(λF ′

ξ(λ) − Fξ(λ)
)

= λ−1(F ′
ξ(λ) −Gξ(λ)

)
, (2.15)

G′′
ξ (λ) = λ−1(F ′′

ξ (λ) − 2G′
ξ(λ)). (2.16)

We will distinguish two cases.
Case 1. There exists μ ∈ (0, ̂σ) with G′

ξ(μ) = 0. Then, by (2.16), (2.12),

G′′
ξ (μ) = μ−1F ′′

ξ (μ) = μ−1κ+a′′ξ (μ) > 0.

Hence any stationary point of Gξ is with necessity a point of local minimum, therefore, Gξ has at most one 
such a point, thus it will be a global minimum. Moreover, by (2.15), (2.13), G′(μ) = 0 implies

Gξ(μ) = F ′
ξ(μ) = κ+a′ξ(μ) > κ+mξ. (2.17)

Therefore, in the Case 1, one can choose λ∗ = μ (which is unique then) to fulfill the statement.
List the conditions under which the Case 1 is possible.

1. Let σ̂ = ∞. Then, by (A4),

1
λ
aξ(λ) ≥ 1

λ

r+δ∫
r

a+(s)eλs ds ≥ ρ
1
λ2

(
eλ(r+δ) − eλr

)
→ ∞, (2.18)

as λ → ∞. Then, in such a case, Gξ(∞) = ∞. Therefore, by (2.14), there exists a zero of G′
ξ.



104 D. Finkelshtein et al. / J. Math. Anal. Appl. 475 (2019) 94–122
2. Let σ̂ < ∞ and aξ(σ̂) = ∞. Then, again, (2.14) implies the existence of a zero of G′
ξ on (0, ̂σ).

3. Let σ̂ < ∞ and aξ(σ̂) < ∞. By (2.11), (2.15),

lim
λ→0+

λ2G′
ξ(λ) = −Fξ(0+) = −(κ+ −m) < 0.

Therefore, the function G′
ξ has a zero on (0, ̂σ) if and only if takes a positive value at some point 

from (0, ̂σ).

Now, one can formulate and consider the opposite to the Case 1.
Case 2. Let σ̂ < ∞, aξ(σ̂) < ∞, and

G′
ξ(λ) < 0, λ ∈ (0, σ̂). (2.19)

Therefore,

inf
λ>0

Gξ(λ) = inf
λ∈(0,σ̂]

Gξ(λ) = lim
λ→σ̂−

Gξ(λ) = Gξ(σ̂), (2.20)

by (L7). Hence we have the first equality in (2.10), by setting λ∗ := σ̂. To prove the second inequality in 
(2.10), note that, by (2.15), the inequality (2.19) is equivalent to F ′

ξ(λ) < Gξ(λ), λ ∈ (0, ̂σ). Therefore, by 
(2.20), (2.11), (2.13),

Gξ(σ̂) = inf
λ∈( σ̂

2 ,σ̂)
Gξ(λ) ≥ inf

λ∈( σ̂
2 ,σ̂)

F ′
ξ(λ) ≥ κ+a′ξ

( σ̂
2

)
> κ+mξ,

where we used again that, by (2.12), a′ξ and hence F ′
ξ are increasing on (0, ̂σ). The statement is fully proved 

now. �
The second case in the proof of Proposition 2.4 requires additional analysis. Let ξ ∈ Sd−1 be fixed and 

a+ ∈ Uξ, σ̂ := σ(a+). By (L2), one can define the following function

tξ(λ) := κ+
∫
R

(1 − λs)a+(s)eλs ds ∈ R, λ ∈ [0, σ̂). (2.21)

Note that ∫
R−

|s|a+(s)eσ̂s ds < ∞, (2.22)

and 
∫
R+

sa+(s)eσ̂s ds ∈ (0, ∞] is well-defined. Then, in the case σ̂ < ∞ and aξ(σ̂) < ∞, one can continue tξ
at σ̂, namely,

tξ(σ̂) := κ+
∫
R

(1 − σ̂s)a+(s)eσ̂s ds ∈ [−∞,κ+). (2.23)

To prove the latter inclusion, i.e. the strict inequality tξ(σ̂) < κ+, consider the function f0(s) :=
(1 − σ̂s)eσ̂s, s ∈ R. Then, f ′

0(s) = −σ̂2seσ̂s, and thus f0(s) < f0(0) = 1, s 	= 0. Moreover, the func-
tion g0(s) = f0(−s) − f0(s), s ≥ 0 is such that g′0(s) = σ̂2s(eσ̂s − e−σ̂s) > 0, s > 0. As a result, for any 
δ > 0, f0(−δ) > f0(δ), and∫

R

f0(s)a+(s) ds ≤ f0(−δ)
∫

R\[−δ,δ]

a+(s) ds +
∫

[−δ,δ]

a+(s) ds <
∫
R

a+(s) ds = 1.
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Proposition 2.5. Let ξ ∈ Sd−1 be fixed and a+ ∈ Uξ. Suppose also that σ̂ := σ(a+) < ∞ and aξ(σ̂) < ∞. 
Then (2.19) holds iff

tξ(σ̂) ∈ (0,κ+), (2.24)

m ≤ tξ(σ̂). (2.25)

Proof. Define the function, cf. (2.11),

Hξ(λ) := λF ′
ξ(λ) − Fξ(λ), λ ∈ (0, σ̂). (2.26)

By (2.15), the condition (2.19) holds iff Hξ is negative on (0, ̂σ). By (2.26), (2.12), one has H ′
ξ(λ) = λF ′′

ξ (λ) >
0, λ ∈ (0, ̂σ) and, therefore, Hξ is (strictly) increasing on (0, ̂σ). By Proposition 2.4, G′

ξ, and hence Hξ, are 
negative on a right-neighborhood of 0. As a result, Hξ(λ) < 0 on (0, ̂σ) iff

lim
λ→σ̂−

Hξ(λ) ≤ 0. (2.27)

On the other hand, by (2.11), (2.21), one can rewrite Hξ(λ) as follows:

Hξ(λ) = −tξ(λ) + m, λ ∈ (0, σ̂). (2.28)

By the monotone convergence theorem,

lim
λ→σ̂−

∫
R+

(λs− 1)a+(s)eλs ds =
∫
R+

(σ̂s− 1)a+(s)eσ̂s ds ∈ (−1,∞].

Therefore, by (2.22), (2.28), tξ(σ̂) ∈ R iff Hξ(σ̂) = lim
λ→σ̂−

Hξ(λ) ∈ R. Next, clearly, Hξ(σ̂) ∈ (m − κ+, 0]
holds true iff both (2.25) and (2.24) hold.

As a result, (2.19) is equivalent to (2.27) and the latter, by (2.22), implies that tξ(σ̂) ∈ R and hence 
Hξ(σ̂) ∈ (m − κ+, 0]. Vice versa, (2.24) yields tξ(σ̂) ∈ R that together with (2.25) give that Hξ(σ̂) ≤ 0, i.e. 
that (2.19) holds. �

According to the above, it is natural to consider two subclasses of functions from Uξ, cf. Definition 2.3.

Definition 2.6. Let ξ ∈ Sd−1 be fixed. We denote by Vξ the class of all kernels a+ ∈ Uξ such that one of the 
following assumptions does hold:

1. σ̂ := σ(a+) = ∞;
2. σ̂ < ∞ and aξ(σ̂) = ∞;
3. σ̂ < ∞, aξ(σ̂) < ∞ and tξ(σ̂) ∈ [−∞, m), where tξ(σ̂) is given by (2.23).

Correspondingly, we denote by Wξ the class of all kernels a+ ∈ Uξ such that σ̂ < ∞, aξ(σ̂) < ∞, and 
tξ(σ̂) ∈ [m, κ+). Clearly, Uξ = Vξ ∪Wξ.

As a result, combining the proofs and statements of Propositions 2.4 and 2.5, one immediately gets the 
following corollary.

Corollary 2.7. Let ξ ∈ Sd−1 be fixed, a+ ∈ Uξ, and λ∗ be the same as in Proposition 2.4. Then λ∗ < σ̂ :=
σ(a+) iff a+ ∈ Vξ; moreover, then G′(λ∗) = 0. Correspondingly, λ∗ = σ̂ iff a+ ∈ Wξ; in this case,

lim
λ→σ̂−

G′
ξ(λ) = m− tξ(σ̂)

(σ̂)2 ≤ 0. (2.29)
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Example 2.8. To demonstrate the cases of Definition 2.6 on an example, consider the following family of 
functions, cf. (1.21),

a+(s) := αe−μ|s|p

1 + |s|q , s ∈ R, p ≥ 0, q ≥ 0, μ > 0, (2.30)

where α > 0 is a normalizing constant to get 
∫
R
a+(s) ds = 1. Clearly, the case p ∈ [0, 1) implies σ(a+) = 0, 

that is impossible under assumption (A3). Next, p > 1 leads to σ(a+) = ∞, in particular, the corresponding 
a+ ∈ Vξ. Let now p = 1, then σ(a+) = μ. The case q ∈ [0, 1] gives aξ(σ̂) = ∞, i.e. a+ ∈ Vξ as well. 
In the case q ∈ (1, 2], we will have that aξ(σ̂) < ∞, however, 

∫
R
sa+(s)eμs ds = ∞, i.e. tξ(μ) = −∞, and 

again a+ ∈ Vξ. Let q > 2; then, by (2.21),

tξ(μ) = κ+α

∫
R−

1 − μs

1 + |s|q e
2μs ds + κ+α

∫
R+

1 − μs

1 + sq
ds

≥ κ+α

∫
R+

1 − μs

1 + sq
ds = πκ+α

q

(
1

sin π
q

− μ

sin 2π
q

)
≥ m,

if only μ ≤ 2 cos π
q − mq

κ+απ sin 2π
q (note that q > 2 implies sin 2π

q > 0); then we have a+ ∈ Wξ. On the other 
hand, using the inequality te−t ≤ e−1, t ≥ 0, one gets

tξ(μ) = κ+α

∫
R+

(1 + μs)e−2μs + 1 − μs

1 + sq
ds (2.31)

≤ κ+α

∫
R+

1 + 1
2e + 1 − μs

1 + sq
ds = πκ+α

q

(
1 + 4e
2e sin π

q

− μ

sin 2π
q

)
< m,

if only μ > 1+4e
e cos π

q − mq
κ+απ sin 2π

q ; then we have a+ ∈ Vξ. Since

d

dμ

(
(1 + μs)e−2μs + 1 − μs

)
= −se−2μs(1 + 2sμ) − s < 0, s > 0, μ > 0,

we have from (2.31), that tξ(μ) is strictly decreasing and continuous in μ, therefore, there exists a critical 
value

μ∗ ∈
(
2 cos π

q
− mq

κ+απ
sin 2π

q
, (4 + e−1) cos π

q
− mq

κ+απ
sin 2π

q

)
,

such that, for all μ > μ∗, a+ ∈ Vξ, whereas, for μ ∈ (0, μ∗], a+ ∈ Wξ.

Now we are ready to prove the main statement of this subsection.

Theorem 2.9. Let ξ ∈ Sd−1 be fixed and a+ ∈ Uξ. Let c∗(ξ) be the minimal traveling wave speed according 
to Theorem 1.1, and let, for any c ≥ c∗(ξ), the function ψ = ψc ∈ Mθ(R) be a traveling wave profile 
corresponding to the speed c. Let λ∗ ∈ Iξ be the same as in Proposition 2.4. Denote, as usual, σ̂ := σ(a+). 
Then
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1. Theorem 1.2 holds.
2. For a+ ∈ Vξ, one has λ∗ < σ̂ and there exists another representation for the minimal speed than (1.13), 

namely,

c∗(ξ) = κ+
∫
Rd

x · ξ a+(x)eλ∗x·ξ dx

= κ+
∫
R

sa+(s)eλ∗s ds > κ+mξ.

(2.32)

Moreover, for all λ ∈ (0, λ∗],

tξ(λ) ≥ m, (2.33)

and the equality holds for λ = λ∗ only.
3. For a+ ∈ Wξ, one has λ∗ = σ̂. Moreover, the inequality (2.33) also holds as well as, for all λ ∈ (0, λ∗],

c ≥ κ+
∫
R

sa+(s)eλs ds, (2.34)

whereas the equalities in (2.33) and (2.34) hold true now for m = tξ(σ̂), λ = λ∗, c = c∗(ξ) only.

Proof. By Theorem 1.1, for any c ≥ c∗(ξ), there exists a profile ψ ∈ Mθ(R), cf. Remark 2.2, which define 
a traveling wave solution (1.4) to (1.1) in the direction ξ. Then, by (1.8), we get

−cψ′(s) = κ+(a+ ∗ ψ)(s) −mψ(s)

− κ�ψ
2(s) − κn�ψ(s)(a− ∗ ψ)(s), s ∈ R. (2.35)

Step 1. By (1.7), we have that σ(ψ) > 0. Rewrite (A2) as follows

κ+a+(s) ≥ κn�θa
−(s), a.a. s ∈ R, (2.36)

therefore, σ(a−) ≥ σ(a+) > 0, if κn� > 0. Take any z ∈ C with

0 < Re z < min
{
σ(a+), σ(ψ)

}
≤ σ(ψ)

< min{σ(ψ2), σ
(
ψ(a− ∗ ψ)

)
}, (2.37)

where the later inequality holds by (2.4) and (2.5). As a result, by (L5), (L8), being multiplied on ezs the 
l.h.s. of (2.35) will be integrable (in s) over R. Hence, for any z which satisfies (2.37), (Lψ′)(z) converges. 
By (L4), it yields σ(ψ) ≥ σ(ψ′) ≥ min

{
σ(a+), σ(ψ)

}
.

Therefore, by (2.1), (2.2), we get from (2.35)

cz(Lψ)(z) = κ+(La+)(z)(Lψ)(z) −m(Lψ)(z)

− κ�

(
L(ψ2)

)
(z) − κn�

(
L(ψ(a− ∗ ψ))

)
(z), (2.38)

if only

0 < Re z < min
{
σ(a+), σ(ψ)

}
. (2.39)
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Since ψ 	≡ 0, we have that (Lψ)(z) 	= 0, therefore, one can rewrite (2.38) as follows

Gξ(z) − c =
κ�

(
L(ψ2)

)
(z) + κn�

(
L(ψ(a− ∗ ψ))

)
(z)

z(Lψ)(z) , (2.40)

if (2.39) holds. By (2.37), both nominator and denominator in the r.h.s. of (2.40) are analytic on 0 < Re z <

σ(ψ), therefore. Suppose that σ(ψ) > σ(a+), then (2.40) holds on 0 < Re z < σ(a+), however, the r.h.s. of 
(2.40) would be analytic at z = σ(a+), whereas, by (L3), the l.h.s. of (2.40) has a singularity at this point. 
As a result,

σ(a+) ≥ σ(ψ), (2.41)

for any traveling wave profile ψ ∈ Mθ(R). Thus one gets that (2.40) holds true on 0 < Re z < σ(ψ).
Prove that

σ(ψ) < ∞. (2.42)

Since 0 ≤ ψ ≤ θ yields 0 ≤ a− ∗ ψ ≤ θ, one gets from (2.40) that, for any 0 < λ < σ(ψ),

c ≥ Gξ(λ) − κ− θ

λ
= κ+(La+)(λ) − κ+

λ
. (2.43)

If σ(a+) < ∞ then (2.42) holds by (2.41). Suppose that σ(a+) = ∞. By (2.18), the r.h.s. of (2.43) tends to 
∞ as λ → ∞, thus the latter inequality cannot hold for all λ > 0; and, as a result, (2.42) does hold.

Step 2. Recall that (2.8) holds. Suppose that c ≥ c∗(ξ) is such that, cf. (2.10),

c ≥ Gξ(λ∗) = inf
σ̂∈(0,λ∗]

Gξ(λ) = inf
σ̂∈Iξ

Gξ(λ). (2.44)

Then, by Proposition 2.4, the equation Gξ(λ) = c, λ ∈ Iξ, has one or two solutions. Let λc be the unique 
solution in the first case or the smaller of the solutions in the second one. Since Gξ is decreasing on (0, λ∗], 
we have λc ≤ λ∗. Since the nominator in the r.h.s. of (2.40) is positive, we immediately get from (2.40) that

(Lψ)(λc) = ∞, (2.45)

therefore, λc ≥ σ(ψ). On the other hand, one can rewrite (2.40) as follows

(Lψ)(z) =
κ�

(
L(ψ2)

)
(z) + κn�

(
L(ψ(a− ∗ ψ))

)
(z)

z(Gξ(z) − c) . (2.46)

By (2.40), Gξ(z) 	= c, for all 0 < Re z < σ(ψ) ≤ λc ≤ λ∗ ≤ σ(a+). As a result, by (2.37), (L1), and (L3), 
λc = σ(ψ), that together with (2.45) proves (1.12) and (1.15), for waves whose speeds satisfy (2.44). By 
(A3), (2.6), we immediately get, for such speeds, (1.13) as well. Moreover, (1.13) defines a strictly monotone 
function (0, λ∗] � σ(ψ) �→ c ∈ [Gξ(λ∗), ∞).

Next, by (2.21), (L2), (2.11), (2.15), we have that, for any λ ∈ Iξ,

tξ(λ) = κ+aξ(λ) − κ+λa′ξ(λ) = m + Fξ(λ) − λF ′
ξ(λ) = m− λ2G′

ξ(λ). (2.47)

Recall that, by Proposition 2.4, the function Gξ is strictly decreasing on (0, λ∗). Then (2.47) implies that 
tξ(λ) > m, λ ∈ (0, λ∗). On the other hand, by the second equality in (2.15), the inequality G′

ξ(λ) < 0, 
λ ∈ (0, λ∗), yields Gξ(λ) > F ′

ξ(λ), for such a λ. Let c > Gξ(λ∗). By (1.13), (2.11), we have then c > κ+a′ξ(λ), 
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for all λ ∈ [σ(ψ), λ∗). By (2.12), F ′
ξ is increasing, hence, by (L2), the strict inequality in (2.34) does hold, 

for λ ∈ (0, λ∗).
Let again c ≥ Gξ(λ∗), and let a+ ∈ Vξ. Then, by Corollary 2.7, λ∗ < σ(a+) and G′(λ∗) = 0. By (2.15), 

the latter equality and (2.47) give tξ(λ∗) = m, that fulfills the proof of (2.33), for such a+ and m. Moreover, 
by (2.17),

Gξ(λ∗) = κ+a′ξ(λ∗) = κ+
∫
R

sa+(s)eλ∗s ds. (2.48)

Let a+ ∈ Wξ, then λ∗ = σ(a+). It means that tξ(λ∗) = m if m = tξ(σ̂) only, otherwise, tξ(λ∗) > m. Next, 
we get from (2.44), (2.15) (2.29),

c ≥ Gξ(λ∗) ≥ lim
λ→λ∗−

F ′
ξ(λ) = κ+

∫
R

sa+(s)eλ∗s ds, (2.49)

where the latter equality may be easily verified if we rewrite, for λ ∈ (0, λ∗),

F ′
ξ(λ) = κ+

∫
R−

sa+(s)eλs ds + κ+
∫
R+

sa+(s)eλs ds, (2.50)

and apply the dominated convergence theorem to the first integral and the monotone convergence theorem 
for the second one. On the other hand, (2.29) implies that the second inequality in (2.49) will be strict iff 
m < tξ(σ̂), whereas, for c = Gξ(λ∗) = inf

λ>0
Gξ(λ) and m = tξ(σ̂), we will get all equalities in (2.49).

Step 3. Let now c ≥ c∗(ξ) and suppose that σ(a+) > σ(ψ). Prove that (2.44) does hold. On the contrary, 
suppose that the c is such that

c∗(ξ) ≤ c < inf
λ∈(0,λ∗]

Gξ(λ) = inf
λ>0

Gξ(λ). (2.51)

Again, by (2.40), Gξ(z) 	= c, for all 0 < Re z < σ(ψ), and (2.46) holds, for such a z. Since we supposed 
that σ(a+) > σ(ψ), one gets from (2.37), that both nominator and denominator of the r.h.s. of (2.46) are 
analytic on

{0 < Re z < ν} � {0 < Re z < σ(ψ)},

where ν = min
{
σ(a+), σ

(
ψ(a− ∗ ψ)

)
, σ(ψ2)

}
. On the other hand, (L3) implies that Lψ has a singularity at 

z = σ(ψ). Since

min{
(
L(ψ2)

)
(σ(ψ)),

(
L(ψ(a− ∗ ψ))

)
(σ(ψ))} > 0,

the equality (2.46) would be possible if only Gξ(σ(ψ)) = c, that contradicts (2.51).
Step 4. By (2.41), it remains to prove that, for c ≥ c∗(ξ), (2.44) does holds, provided that we have 

σ(a+) = σ(ψ). Again on the contrary, suppose that (2.51) holds. For 0 < Re z < σ(ψ), we can rewrite (2.38)
as follows

z(Lψ)(z)(Gξ(z) − c) = κ�

(
L(ψ2)

)
(z) + κn�

(
L(ψ(a− ∗ ψ))

)
(z). (2.52)

In the notations of the proof of Lemma 2.1, the functions L−ψ and L−a+ are analytic on Re z > 0. 
Moreover, (L+ψ)(λ) and (L+a+)(λ) are increasing on 0 < λ < σ(a+) = σ(ψ). Then, cf. (2.50), by the 



110 D. Finkelshtein et al. / J. Math. Anal. Appl. 475 (2019) 94–122
monotone convergence theorem, we will get from (2.52) and (2.37), that
∫
R

ψ(s)eσ(ψ)s ds < ∞,

∫
R

a+(s)eσ(a+)s ds < ∞. (2.53)

We are going to apply now [15, Proposition 2.10], in the case d = 1, to the equation
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂φ

∂t
(s, t) = κ+(a+ ∗ φ)(s, t) −mφ(s, t) − κ�φ

2(s, t)

− κn�φ(s, t)(a− ∗ φ)(s, t), t > 0, a.a. s ∈ R,

φ(s, 0) = ψ(s), a.a. s ∈ R,

(2.54)

where the initial condition ψ is a wave profile with the speed c which satisfies (2.51). Namely, we set 
ΔR := (−∞, R) ↗ R, R → ∞ and

a±R(s) := 1ΔR
(s)a±(s), s ∈ R, (2.55)

A±
R :=

∫
ΔR

a±(x) dx ↗ 1, R → ∞. (2.56)

Consider a strictly monotone sequence {Rn | n ∈ N}, such that 0 < Rn → ∞, n → ∞ and

A+
Rn

>
m

κ+ ∈ (0, 1). (2.57)

Let θn := θRn
be given by

θRn
=

κ+A+
Rn

−m

κn�A
−
Rn

+ κ�

→ θ, Rn → ∞. (2.58)

Then, by [15, formula (2.17)], θn ≤ θ, n ∈ N.
Fix an arbitrary n ∈ N. Consider the ‘truncated’ equation (2.54) with a± replaced by a±Rn

, and the initial 
condition w0(s) := min{ψ(s), θn} ∈ Cub(R). By [15, Proposition 2.10], there exists the unique solution 
w(n)(s, t) of the latter equation. Moreover, if we denote the corresponding nonlinear mapping by Q̃

(n)
t , we 

will have from [15, formulas (2.15)–(2.16)], that

(Q̃(n)
t w0)(s) ≤ θn, s ∈ R, t ≥ 0, (2.59)

and

(Q̃(n)
t w0)(s) ≤ φ(s, t), (2.60)

where φ solves (2.54).
By [15, Remark 3.4], we get from (2.60) that (Q̃(n)

1 w0)(s +c) ≤ ψ(s), s ∈ R. The latter inequality together 
with (2.59) imply

(Q̃(n)
1 w0)(s + c) ≤ w0(s). (2.61)

Then, by the same arguments as in the proof of [15, Theorem 1.1], we obtain from [31, Theorem 5] that there 
exists a traveling wave ψn for the equation (2.54) with a± replaced by a±Rn

, whose speed will be exactly c
(and c satisfies (2.51)).
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Now we are going to get a contradiction, by proving that

inf
λ>0

Gξ(λ) = lim
n→∞

inf
λ>0

G
(n)
ξ (λ), (2.62)

where G(n)
ξ is given by (2.7) with a± replaced by a±n := a±Rn

. The sequence of functions G(n)
ξ is point-wise 

monotone in n and it converges to Gξ point-wise, for 0 < λ ≤ σ(a+); note we may include σ(a+) here, 
according to (2.53). Moreover, G(n)

ξ (λ) ≤ Gξ(λ), 0 < λ ≤ σ(a+). As a result, for any n ∈ N,

G
(n)
ξ (λ(n)

∗ ) = inf
λ>0

G
(n)
ξ (λ) ≤ inf

λ>0
Gξ(λ) = Gξ(λ∗). (2.63)

Hence if we suppose that (2.62) does not hold, then

inf
λ>0

Gξ(λ) − lim
n→∞

inf
λ>0

G
(n)
ξ (λ) > 0.

Therefore, there exist δ > 0 and N ∈ N, such that

G
(n)
ξ (λ(n)

∗ ) = inf
λ>0

G
(n)
ξ (λ) ≤ inf

λ>0
Gξ(λ) − δ = Gξ(λ∗) − δ, n ≥ N. (2.64)

Clearly, (2.55) with ΔRn
= (−∞, Rn) implies that σ(a+

n ) = ∞, hence G(n)
ξ is analytic on Re z > 0. One 

can repeat all considerations of the first three steps of this proof for the equation (2.54). Let c(n)
∗ (ξ) be the 

corresponding minimal traveling wave speed, according to Theorem 1.1. Then the corresponding inequality 
(2.42) will show that the abscissa of an arbitrary traveling wave to (2.54) (with a± replaced by a±Rn

) is less 
than σ(a+

n ) = ∞. As a result, the inequality c(n)
∗ (ξ) < inf

λ>0
G

(n)
ξ (λ), cf. (2.51), is impossible, and hence, by 

the Step 3,

c ≥ c
(n)
∗ (ξ) = inf

λ>0
G

(n)
ξ (λ) = G

(n)
ξ (λ(n)

∗ ), (2.65)

where λ(n)
∗ is the unique zero of the function d

dλG
(n)
ξ (λ). Let t(n)

ξ be given on (0, ∞) by (2.21) with a+

replaced by a+
n . Then

d

dλ
t
(n)
ξ (λ) = −λκ+

Rn∫
−∞

a+(s)s2eλs ds < 0, λ > 0. (2.66)

By (2.33), the unique point of intersection of the strictly decreasing function y = t
(n)
ξ (λ) and the horizontal 

line y = m is exactly the point (λ(n)
∗ , 0).

Prove that there exist λ1 > 0, such that λ(n)
∗ > λ1, n ≥ N , and there exists N1 ≥ N , such that 

t
(n)
ξ (λ) ≤ t

(m)
ξ (λ), n > m ≥ N1, λ ≥ λ1. Recall that (2.57) holds; we have

λG
(n)
ξ (λ) = κ+

∫
R

a+
n (s)(eλs − 1) ds + κ+A+

Rn
−m

≥ κ+
0∫

−∞

a+
n (s)(eλs − 1) ds + κ+A+

R1
−m,

and the inequality 1 − e−s ≤ s, s ≥ 0 implies that
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∣∣∣∣
0∫

−∞

a+
n (s)(eλs − 1) ds

∣∣∣∣ ≤ λ

0∫
−∞

a+
n (s)|s| ds ≤ λ

∫
R

a+(s)|s| ds < ∞,

by (A6). As a result, if we set

λ1 := (κ+A+
R1

−m)
(
κ+

∫
R

a+(s)|s| ds + |Gξ(λ∗)|
)−1

> 0,

then, for any λ ∈ (0, λ1), we have

λG
(n)
ξ (λ) ≥ κ+A+

R1
−m− λ1κ

+
∫
R

a+
n (s)|s| ds = λ1|Gξ(λ∗)| ≥ λGξ(λ∗),

i.e. G(n)
ξ (λ) ≥ Gξ(λ∗) = inf

λ>0
Gξ(λ). Then, for any n ≥ N , (2.64) implies that λ(n)

∗ , being the minimum point 

for G(n)
ξ , does not belong to the interval (0, λ1). Next, let N1 ≥ N be such that Rn ≥ 1

λ1
, for all n ≥ N1. 

Then, for any λ ≥ λ1, and for any n > m ≥ N1, we have Rn > Rm and

t
(n)
ξ (λ) − t

(m)
ξ (λ) = κ+

Rn∫
Rm

(1 − λs)a+(s)eλs ds

≤ κ+
Rn∫

Rm

(1 − λ1s)a+(s)eλs ds ≤ 0.

As a result, the sequence {λ(n)
∗ | n ≥ N1} ⊂ [λ1, ∞) is monotonically decreasing (cf. (2.66)). We set

ϑ := lim
n→∞

λ
(n)
∗ ≥ λ1. (2.67)

Next, for any n, m ∈ N, n > m ≥ N1,

G
(n)
ξ (λ(n)

∗ ) ≥ G
(m)
ξ (λ(n)

∗ ) ≥ G
(m)
ξ (λ(m)

∗ ), (2.68)

where we used that G(n)
ξ is increasing in n and λ(m)

∗ is the minimum point of G(m)
ξ . Therefore, the sequence 

{G(n)
ξ (λ(n)

∗ )} is increasing and, by (2.64), is bounded. Then, there exists

lim
n→∞

G
(n)
ξ (λ(n)

∗ ) =: g ≤ Gξ(λ∗) − δ. (2.69)

Fix m ≥ N1 in (2.68) and pass n to infinity; then, by the continuity of G(n)
ξ ,

g ≥ lim
λ→ϑ+

G
(m)
ξ (λ) = G

(m)
ξ (ϑ) ≥ G

(m)
ξ (λ(m)), (2.70)

in particular, ϑ > 0, as G(m)
ξ (0+) = ∞. Next, if we pass m to ∞ in (2.70), we will get from (2.69)

lim
m→∞

G
(m)
ξ (ϑ) = g ≤ Gξ(λ∗) − δ < Gξ(λ∗). (2.71)

If 0 < ϑ ≤ σ(a+) then
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lim
m→∞

G
(m)
ξ (ϑ) = Gξ(ϑ) ≥ Gξ(λ∗),

that contradicts (2.71). If ϑ > σ(a+), then lim
m→∞

G
(m)
ξ (ϑ) = ∞ (recall again that L−(a+)(λ) is analytic and 

L−(a+)(λ) is monotone in λ), that contradicts (2.71) as well.
The contradiction we obtained shows that (2.62) does hold. Then, for the chosen c ≥ c∗(ξ) which 

satisfies (2.51), one can find n big enough to ensure that, cf. (2.65),

c < inf
λ>0

G
(n)
ξ (λ) = c

(n)
∗ (ξ).

However, as it was shown above, for this n there exists a profile ψn of a traveling wave to the ‘truncated’ 
equation (2.54) with a± replaced by a±Rn

. The latter contradicts the statement of Theorem 1.1 applied to 

this equation, as c(n)
∗ (ξ) has to be a minimal possible speed for such waves.

Therefore, the strict inequality in (2.51) is impossible, hence, we have equality in (2.8). As a result, (A3)
and (2.6) imply (1.11), and (2.48) may be read as (2.32). The rest of the statement is evident now. �
Remark 2.10. Clearly, the assumption a+(−x) = a+(x), x ∈ Rd, implies mξ = 0, for any ξ ∈ Sd−1. As a 
result, all speeds of traveling waves in any directions are positive, by (1.11).

3. Asymptotic and uniqueness

In this subsection we will prove the uniqueness (up to shifts) of a profile ψ for a traveling wave with 
given speed c ≥ c∗(ξ), c 	= 0. We will use the almost traditional now approach, namely, we find an a priori
asymptotic for ψ(t), t → ∞, cf. e.g. [1,4] and the references therein.

We start with the so-called characteristic function of the equation (1.1). Namely, for a given ξ ∈ Sd−1

and for any c ∈ [c∗(ξ), ∞), we set

hξ,c(z) := κ+(La+)(z) −m− zc = zGξ(z) − zc, Re z ∈ Iξ. (3.1)

Proposition 3.1. Let ξ ∈ Sd−1 be fixed, a+ ∈ Uξ, σ̂ := σ(a+), c∗(ξ) be the minimal traveling wave speed in 
the direction ξ. Let, for any c ≥ c∗(ξ), the function ψ ∈ Mθ(R) be a traveling wave profile corresponding to 
the speed c. For the case a+ ∈ Wξ with m = tξ(σ̂), we will assume, additionally, that

∫
R

s2a+(s)eσ̂s ds < ∞. (3.2)

Then the function hξ,c is analytic on {0 < Re z < σ(ψ)}. Moreover, for any β ∈ (0, σ(ψ)), the function hξ,c
is continuous and does not equal to 0 on the closed strip {β ≤ Re z ≤ σ(ψ)}, except the root at z = σ(ψ), 
whose multiplicity j may be 1 or 2 only.

Proof. By (2.40) and the arguments around, hξ,c(z) = z(Gξ(z) − c) is analytic on {0 < Re z < σ(ψ)} ⊂ Iξ
and does not equal to 0 there. Then, by (1.13) and Proposition 2.4, the smallest positive root of the function 
hξ,c(λ) on R is exactly σ(ψ). Prove that if z0 := σ(ψ) + iβ is a root of hξ,c, then β = 0. Indeed, hξ,c(z0) = 0
yields

κ+
∫
R

a+(s)eσ(ψ)s cosβs ds = m + cσ(ψ),

that together with (1.13) leads to
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κ+
∫
R

a+(s)eσ(ψ)s(cosβs− 1) ds = 0,

and thus β = 0.
Regarding multiplicity of the root z = σ(ψ), we note that, by Proposition 2.4 and Corollary 2.7, there 

exist two possibilities. If a+ ∈ Vξ, then σ(ψ) ≤ λ∗ < σ(a+) and, therefore, Gξ is analytic at z = σ(ψ). By 
the second equality in (3.1), the multiplicity j of this root for hξ,c is the same as for the function Gξ(z) − c. 
By Proposition 2.4, Gξ is strictly decreasing on (0, λ∗) and, therefore, j = 1 for c > c∗(ξ). By Corollary 2.7, 
for c = c∗(ξ), we have G′

ξ(σ(ψ)) = G′
ξ(λ∗) = 0 and, since h′′ξ,c(σ̂) > 0, one gets j = 2.

Let now a+ ∈ Wξ. Then, we recall, λ∗ = σ̂ := σ(a+) < ∞, Gξ(σ̂) < ∞ and (2.29) hold. For c > c∗(ξ), 
the arguments are the same as before, and they yield j = 1. Let c = c∗(ξ). Then hξ,c(σ̂) = 0, and, for all 
z ∈ C, Re z ∈ (0, ̂σ), one has

hξ,c(σ̂ − z) = hξ,c(σ̂ − z) − hξ,c(σ̂) = κ+
∫
R

a+(τ)(e(σ̂−z)τ − eσ̂τ )dτ + cz

= z

(
−κ+

∫
R

a+(τ)eσ̂τ
τ∫

0

e−zs dsdτ + c

)
. (3.3)

Let z = α + βi, α ∈ (0, ̂σ). Then 
∣∣eσ̂τe−zs

∣∣ = eσ̂τ−αs. Next, for τ ≥ 0, s ∈ [0, τ ], we have eσ̂τ−αs ≤ eσ̂τ ; 
whereas, for τ < 0, s ∈ [τ, 0], one has eσ̂τ−αs = eσ(τ−s)e(σ̂−α)s ≤ 1. As a result, 

∣∣eσ̂τe−zs
∣∣ ≤ eσ̂ max{τ,0}. 

Then, using that a+ ∈ Wξ implies 
∫
R
a+(τ)eσ̂ max{τ,0} ds < ∞, one can apply the dominated convergence 

theorem to the double integral in (3.3); we get then

lim
Re z→0+
Im z→0

hξ,c(σ̂ − z)
z

= −κ+
∫
R

a+(τ)eσ̂ττdτ + c. (3.4)

According to the statement 3 of Theorem 2.9, for m < tξ(σ̂), the r.h.s. of (3.4) is positive, i.e. j = 1 in such 
a case. Let now m = tξ(σ̂), then the r.h.s. of (3.4) is equal to 0. It is easily seen that one can rewrite then 
(3.3) as follows

hξ,c(σ̂ − z)
z

= κ+
∫
R

a+(τ)eσ̂τ
τ∫

0

(1 − e−zs) dsdτ

= zκ+
∫
R

a+(τ)eσ̂τ
τ∫

0

s∫
0

e−zt dt ds dτ. (3.5)

Similarly to the above, for Re z ∈ (0, ̂σ), one has that |eσ̂τ−zt| ≤ eσ̂ max{τ,0}. Then, by (3.2) and the 
dominated convergence theorem, we get from (3.5) that

lim
Re z→0+
Im z→0

hξ,c(σ̂ − z)
z2 = κ+

2

∫
R

a+(τ)eσ̂ττ2dτ ∈ (0,∞).

Thus j = 2 in such a case. The statement is fully proved now. �
Remark 3.2. Combining results of Theorem 2.9 and Proposition 3.1, we immediately get that, for the case 
j = 2, the minimal traveling wave speed c∗(ξ) always satisfies (2.32).
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Remark 3.3. If a+ is given by (2.30), then, cf. Example 2.8, the case a+ ∈ Wξ, m = tξ(σ̂) together with 
(3.2) requires p = 1, μ < μ∗, q > 3.

In order to include the critical case σ(a+) = σ(ψc∗), we consider the following analogue of the Ikehara 
complex Tauberian theorem, cf. [7,21,28]. Let, for any D ⊂ C, H(D) be the class of all holomorphic functions 
on D.

Proposition 3.4 ([18, Theorem 2]). Let ϕ : R+ → R+ := [0, ∞) be a non-increasing function such that, for 
some μ > 0, ν > 0,

the function eνtϕ(t) is non-decreasing, (3.6)

and

∞∫
0

eztdϕ(t) < ∞, 0 < Re z < μ. (3.7)

Let also the following assumptions hold.

1. There exist a constant j > 0 and complex-valued functions

H ∈ H(0 < Re z ≤ μ), F ∈ H(0 < Re z < μ) ∩ C(0 < Re z ≤ μ),

such that the following representation holds

∞∫
0

eztϕ(t)dt = F (z)
(μ− z)j + H(z), 0 < Re z < μ. (3.8)

2. For any T > 0,

lim
σ→0+

qj(σ) sup
|τ |≤T

∣∣F (μ− 2σ − iτ) − F (μ− σ − iτ)
∣∣ = 0, (3.9)

where, for σ > 0,

qj(σ) :=

⎧⎪⎪⎨
⎪⎪⎩
σj−1, 0 < j < 1,
log σ, j = 1,
1, j > 1.

(3.10)

Then ϕ has the following asymptotic

ϕ(t) ∼ F (μ)
Γ(j) t

j−1e−μt, t → ∞. (3.11)

Now, we can apply Proposition 3.4 to find the asymptotic of the profile of a traveling wave.

Proposition 3.5. In conditions and notations of Proposition 3.1, for c 	= 0, there exists D = Dj > 0, such 
that

ψ(t) ∼ De−σ(ψ)ttj−1, t → ∞. (3.12)
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Proof. We set μ := σ(ψ) and

f(z) := κ�

(
L(ψ2)

)
(z) + κn�

(
L(ψ(a− ∗ ψ))

)
(z),gj(z) := hξ,c(z)

(z − μ)j ,

H(z) := −
0∫

−∞

ψ(t)eztdt, F (z) := f(z)
gj(z)

.

(3.13)

For any μ > β > 0, T > 0, we set

Kβ,μ,T :=
{
z ∈ C

∣∣ β ≤ Re z ≤ μ, |Im z| ≤ T
}
.

By (2.37) and Lemma 2.1, we have that f, H ∈ H(0 < Re z ≤ μ); in particular, for any T > 0, β > 0,

f̄ := sup
z∈Kβ,μ,T

|f(z)| < ∞. (3.14)

By Proposition 3.1, the function gj is continuous and does not equal to 0 on the strip {0 < Re z ≤ μ}, in 
particular, for any T > 0, β > 0,

ḡj := inf
z∈Kβ,μ,T

|g(z)| > 0. (3.15)

Therefore, F ∈ H(0 < Re z < μ) ∩ C(0 < Re z ≤ μ). As a result, one can rewrite (2.46) in the form (3.8), 
with ϕ = ψ and with F , H as in (3.13).

Taking into account the fourth statement of Theorem 1.1, to apply Proposition 3.4 it is enough to prove 
that (3.9) holds. Assume that 0 < 2σ < μ.

Let j = 2. Clearly, F ∈ C(0 < Re z ≤ μ) implies that F is uniformly continuous on Kβ,μ,T . Then, for 
any ε > 0 there exists δ > 0 such that, for any τ ∈ [−T, T ], the inequality

|σ| = |(μ− 2σ − iτ) − (μ− σ − iτ)| < δ,

implies

|F (μ− 2σ − iτ) − F (μ− σ − iτ)| < ε,

and hence (3.9) holds (with j = 2).
Let now j = 1. If F ∈ H(Kβ,μ,T ), we have, evidently, that F ′ is bounded on Kβ,μ,T , and one can apply 

a mean-value-type theorem for complex-valued functions, see e.g. [9], to get that F is a Lipschitz function 
on Kβ,μ,T . Therefore, for some K > 0,

|F (μ− 2σ − iτ) − F (μ− σ − iτ)| < K|σ|,

for all τ ∈ [−T, T ], that yields (3.9) (with j = 1). By Proposition 2.4 and Corollary 2.7, the inclusion 
F ∈ H(Kβ,μ,T ) always holds for c > c∗; whereas, for c = c∗ it does hold iff a+ ∈ Vξ. Moreover, the case 
a+ ∈ Wξ with m = tξ(σ̂) and c = c∗ implies, by Proposition 3.1, j = 2 and hence it was considered above.

Therefore, it remains to prove (3.9) for the case a+ ∈ Wξ with m < tξ(σ̂), c = c∗ (then j = 1). Denote, 
for simplicity,

z1 := μ− σ − iτ, z2 := μ− 2σ − iτ. (3.16)
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Then, by (3.13), (3.14), (3.15), one has

∣∣F (z2) − F (z1)
∣∣ ≤ ∣∣∣ f(z2)

g1(z2)
− f(z1)

g1(z2)

∣∣∣ +
∣∣∣ f(z1)
g1(z2)

− f(z1)
g1(z1)

∣∣∣
≤ 1

ḡ1

∣∣f(z2) − f(z1)
∣∣ + f̄

ḡ2
1
|g1(z1) − g1(z2)|. (3.17)

Note that, if 0 < φ ∈ L∞(R) ∩ L1(R) be such that σ(φ) > μ then

∣∣(Lφ)(z2) − (Lφ)(z1)
∣∣ ≤ ∫

R

φ(s)eμs|e−2σs − e−σs|ds

≤ σ

∞∫
0

φ(s)e(μ−σ)ssds + σ

0∫
−∞

φ(s)e(μ−2σ)s|s| ds = O(σ), (3.18)

as σ → 0+, where we used that sups<0 e
(μ−2σ)s|s| < ∞, 0 < 2σ < μ, and that (L2) holds. Applying (3.18)

to φ = ψ(a− ∗ ψ) ≤ θ2a− ∈ L1(R) ∩ L∞(R), one gets

sup
τ∈[−T,T ]

∣∣f(z2) − f(z1)
∣∣ = O(σ), σ → 0 + .

Therefore, by (3.17), it remains to show that

lim
σ→0+

log σ sup
τ∈[−T,T ]

|g1(z1) − g1(z2)| = 0. (3.19)

Recall that, in the considered case c = c∗, one has hξ,c(μ) = 0. Therefore, by (3.1), (3.13), (3.16), we have

|g1(z1) − g1(z2)| =
∣∣∣∣hξ,c(z1) − hξ,c(μ)

z1 − μ
− hξ,c(z2) − hξ,c(μ)

z2 − μ

∣∣∣∣
=

∣∣∣∣κ+(La+)(z1) − κ+(La+)(μ)
z1 − μ

− κ+(La+)(z2) − κ+(La+)(μ)
z2 − μ

∣∣∣∣
≤ κ+

∫
R

a+(s)eμs
∣∣∣∣1 − e(−σ−iτ)s

σ + iτ
− 1 − e(−2σ−iτ)s

2σ + iτ

∣∣∣∣ ds

= κ+
∫
R

a+(s)eμs
∣∣∣∣

s∫
0

(
e(−σ−iτ)t − e(−2σ−iτ)t) dt∣∣∣∣ ds

≤ κ+
∞∫
0

a+(s)eμs
s∫

0

∣∣e−σt − e−2σt∣∣ dt ds

+ κ+
0∫

−∞

a+(s)eμs
0∫

s

∣∣e−σt − e−2σt∣∣ dt ds (3.20)

and since, for t ≥ 0, 
∣∣e−σt − e−2σt

∣∣ ≤ σt; and, for s ≤ t ≤ 0,
∣∣e−σt − e−2σt∣∣ = e−2σt∣∣eσt − 1

∣∣ ≤ e−2σsσ|t|,

one can continue (3.20)
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≤ 1
2σκ

+
∞∫
0

a+(s)eμss2 ds + 1
2σκ

+
0∫

−∞

a+(s)e(μ−2σ)ss2 ds.

Since μ > 2σ, one has sup
s≤0

e(μ−2σ)ss2 < ∞, therefore, by (3.2), one gets

sup
τ∈[−T,T ]

|g1(z1) − g1(z2)| ≤ const · σ,

that proves (3.19). The statement is fully proved now. �
Remark 3.6. By (3.11) and (3.13), one has that the constant D = Dj in (3.12) is given by

D = D(ψ) =
(
κ�

(
L(ψ2)

)
(μ) + κn�

(
L(ψ(a− ∗ ψ))

)
(μ)

)
lim
z→μ

(z − μ)j

hξ,c(z)
,

where μ = σ(ψ). Note that, by Proposition 3.1, the limit above is finite and does not depend on ψ. Next, 
by Remark 2.2, for any q ∈ R, ψq(s) := ψ(s + q), s ∈ R is a traveling wave with the same speed, and hence, 
by Theorem 2.9, σ(ψq) = σ(ψ). Moreover,

(
L(ψq(a− ∗ ψq))

)
(μ) =

∫
R

ψ(s + q)
∫
R

a−(t)ψ(s− t + q) dt eμs ds

= e−μq
(
L(ψ(a− ∗ ψ))

)
(μ),(

L(ψ2
q )
)
(μ) =

∫
R

ψ2(s + q)eμsds = e−μq
(
L(ψ2)

)
(μ).

Thus, for a traveling wave profile ψ one can always choose a q ∈ R such that, for the shifted profile ψq, the 
corresponding D = D(ψq) will be equal to 1.

Finally, we are ready to prove the uniqueness result.

Theorem 3.7. Let ξ ∈ Sd−1 be fixed and a+ ∈ Uξ. Suppose, additionally, that (A7) holds. Let c∗(ξ) be 
the minimal traveling wave speed according to Theorem 1.1. For the case a+ ∈ Wξ with m = tξ(σ̂), we 
will assume, additionally, that (3.2) holds. Then, for any c ≥ c∗, such that c 	= 0, there exists a unique, 
up to a shift, traveling wave profile ψ for (1.1).

Proof. We will follow the sliding technique from [5]. Let ψ1, ψ2 ∈ C1(R) ∩Mθ(R) are traveling wave profiles 
with a speed c ≥ c∗, c 	= 0, cf. Theorem 1.1. By Proposition 3.5 and Remark 3.6, we may assume, without 
lost of generality, that (3.12) holds for both ψ1 and ψ2 with D = 1. By the proof of Proposition 3.1, 
the corresponding j ∈ {1, 2} depends on a±, κ±, m only, and does not depend on the choice of ψ1, ψ2. 
By Theorem 2.9, σ(ψ1) = σ(ψ2) =: λc ∈ (0, ∞).

Step 1. Prove that, for any τ > 0, there exists T = T (τ) > 0, such that

ψτ
1 (s) := ψ1(s− τ) > ψ2(s), s ≥ T. (3.21)

Indeed, take an arbitrary τ > 0. Then (3.12) with D = 1 yields

lim ψτ
1 (s)

j−1 −λc(s−τ) = 1 = lim ψ2(s)
j−1 −λcs

.

s→∞ (s− τ) e s→∞ s e
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Then, for any ε > 0, there exists T1 = T1(ε) > τ , such that, for any s > T1,

ψτ
1 (s)

(s− τ)j−1e−λc(s−τ) − 1 > −ε,
ψ2(s)

sj−1e−λcs
− 1 < ε.

As a result, for s > T1 > τ ,

ψτ
1 (s) − ψ2(s) > (1 − ε)(s− τ)j−1e−λc(s−τ) − (1 + ε)sj−1e−λcs

= sj−1e−λcs

((
1 − τ

s

)j−1
eλcτ − 1 − ε

((
1 − τ

s

)j−1
eλcτ + 1

))

≥ sj−1e−λcs

((
1 − τ

T1

)j−1
eλcτ − 1 − ε

(
eλcτ + 1

))
> 0, (3.22)

if only

0 < ε <

(
1 − τ

T1

)j−1
eλcτ − 1

eλcτ + 1 =: g(τ, T1). (3.23)

For j = 1, the nominator in the r.h.s. of (3.23) is positive. For j = 2, consider f(t) :=
(
1 − t

T1

)
eλct − 1, 

t ≥ 0. Then f ′(t) = 1
T1
eλct(λcT1 − λct − 1) > 0, if only T1 > t + 1

λc
, that implies f(t) > f(0) = 0, 

t ∈
(
0, T1 − 1

λc

)
.

As a result, choose ε = ε(τ) > 0 with ε < g
(
τ, τ + 1

λc

)
, then, without loss of generality, suppose that 

T1 = T1(ε) = T1(τ) > τ + 1
λc

> τ . Therefore, 0 < ε < g
(
τ, τ + 1

λc

)
≤ g(τ, T1), that fulfills (3.23), and hence 

(3.22) yields (3.21), with any T > T1.
Step 2. Prove that there exists ν > 0, such that, cf. (3.21),

ψν
1 (s) ≥ ψ2(s), s ∈ R. (3.24)

Let τ > 0 be arbitrary and T = T (τ) be as above. Choose any δ ∈
(
0, θ4

)
. By (1.4), and the dominated 

convergence theorem,

lim
s→−∞

(a− ∗ ψ2)(s) = lim
s→−∞

∫
R

a−(τ)ψ2(s− τ) dτ = θ > δ. (3.25)

Then, one can choose T2 = T2(δ) > T , such that, for all s < −T2,

ψτ
1 (s) > θ − δ, (3.26)

κ�ψ2(s) + κn�(a− ∗ ψ2)(s) > δ. (3.27)

Note also that (3.21) holds, for all s ≥ T2 > T , as well. Clearly, for any ν ≥ τ ,

ψν
1 (s) = ψ1(s− ν) ≥ ψ1(s− τ) > ψ2(s), s > T2.

Next, lim
ν→∞

ψν
1 (T2) = θ > ψ2(−T2) implies that there exists ν1 = ν1(T2) = ν1(δ) > τ , such that, for all 

ν > ν1,

ψν
1 (s) ≥ ψν

1 (T2) > ψ2(−T2) ≥ ψ2(s), s ∈ [−T2, T2].

Let such a ν > ν1 be chosen and fixed. As a result,
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ψν
1 (s) ≥ ψ2(s), s ≥ −T2, (3.28)

and, by (3.26),

ψν
1 (s) + δ > θ > ψ2(s), s < −T2. (3.29)

For the ν > ν1 chosen above, define

ϕν(s) := ψν
1 (s) − ψ2(s), s ∈ R. (3.30)

To prove (3.24), it is enough to show that ϕν(s) ≥ 0, s ∈ R.
On the contrary, suppose that ϕν takes negative values. By (3.28), (3.29),

ϕν(s) ≥ −δ, s < −T2; ϕν(s) ≥ 0, s ≥ −T2. (3.31)

Since lim
s→−∞

ϕν(s) = 0 and ϕν ∈ C1(R), our assumption implies that there exists s0 < −T2, such that

ϕν(s0) = min
s∈R

ϕν(s) ∈ [−δ, 0). (3.32)

We set also

δ∗ := −ϕν(s0) = ψ2(s0) − ψν
1 (s0) ∈ (0, δ]. (3.33)

Next, both ψν
1 and ψ2 solve (1.8). By (1.6), 

∫
R
Jθ(s) ds = κ+−κn�θ. Denote Lθϕ := Jθ∗ϕ −(κ+−κn�θ)ϕ. 

Then one can rewrite (1.8)

cψ′(s) + (Lθψ)(s) + (θ − ψ(s))
(
κ�ψ(s) + κn�(a− ∗ ψ)(s)

)
= 0.

Writing the latter equation for ψν
1 and ψ2 and subtracting the results, one gets

cϕ′
ν(s) + (Lθϕν)(s) + A(s) = 0,

A(s) := (θ − ψν
1 (s))

(
κ�ψ

ν
1 (s) + κn�(a− ∗ ψν

1 )(s)
)

−(θ − ψ2(s))
(
κ�ψ2(s) + κn�(a− ∗ ψ2)(s)

)
.

(3.34)

Consider (3.34) at the point s0. By (3.32),

ϕ′
ν(s0) = 0, (Lθϕν)(s0) ≥ 0. (3.35)

Next, (3.33) yields

A(s0) =(θ − ψν
1 (s0))

(
κ�ψ

ν
1 (s0) + κn�(a− ∗ ψν

1 )(s0)
)

+ (δ∗ − (θ − ψν
1 (s0))

(
κ�ψ2(s0) + κn�(a− ∗ ψ2)(s0)

)
=(θ − ψν

1 (s0))
(
κ�ϕν(s0) + κn�(a− ∗ ϕν)(s0)

)
+ δ∗

(
κ�ψ2(s0) + κn�(a− ∗ ψ2)(s0)

)
=(θ − ψν

1 (s0))
(
κ�ϕν(s0) + κn�(a− ∗ (ϕν + δ∗))(s0)

)
+ δ∗

(
κ�ψ2(s0) + κn�(a− ∗ ψ2)(s0) − (θ − ψν

1 (s0))
)

>0, (3.36)
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because of (3.32), (3.26), and (3.27). The strict inequality in (3.36) together with (3.35) contradict to (3.34). 
Therefore, (3.24) holds, for any ν > ν1.

Step 3. Prove that, cf. (3.24),

ϑ∗ := inf{ϑ > 0 | ψϑ
1 (s) ≥ ψ2(s), s ∈ R} = 0. (3.37)

On the contrary, suppose that ϑ∗ > 0. Let ϕ∗ := ϕϑ∗ be given by (3.30). By the continuity of the profiles, 
ϕ∗ ≥ 0.

First, assume that ϕ∗(s0) = 0, for some s0 ∈ R, i.e. ϕ∗ attains its minimum at s0. Then (3.35) holds with 
ϑ replaced by ϑ∗, and, moreover, cf. (3.34),

A(s0) = κn�(θ − ψϑ
1 (s0))(a− ∗ ϕ∗)(s0) ≥ 0.

Therefore, (3.34) implies

(Lθϕ∗)(s0) = 0. (3.38)

By the same arguments as in the proof of Proposition 2.4, one can show that (A7) implies that the function 
Jθ also satisfies (A7), for d = 1, with some another constants. Then, arguing in the same way as in the 
proof of [17, Proposition 5.2] (with d = 1 and a+ replaced by Jθ), one gets that (3.38) implies that ϕ∗ is a 
constant, and thus ϕ∗ ≡ 0, i.e. ψϑ∗

1 ≡ ψ2. The latter contradicts (3.21).
Therefore, ϕ∗(s) > 0, i.e. ψϑ∗

1 (s) > ψ2(s), s ∈ R. By (3.21) and (3.25), there exists T3 = T3(ϑ∗) > 0, such 

that ψ
ϑ∗
2

1 (s) > ψ2(s), s > T3, and also, for any s < −T3, (3.27) holds and (3.29) holds with ϑ replaced by 
ϑ∗
2 (for some fixed δ ∈

(
0, θ4

)
). For any ε ∈

(
0, ϑ∗

2
)
, ψϑ∗−ε

1 ≥ ψ
ϑ∗
2

1 , therefore,

ψϑ∗−ε
1 (s) > ψ2(s), s > T3,

and also (3.29) holds with ϑ replaced by ϑ∗ − ε, for s < −T3. We set

α := inf
t∈[−T3,T3]

(ψϑ∗
1 (s) − ψ2(s)) > 0.

Since the family 
{
ψϑ∗−ε

1 | ε ∈
(
0, ϑ∗

2
)}

is monotone in ε, and lim
ε→0

ψϑ∗−ε
1 (t) = ψϑ∗

1 (t), t ∈ R, we have, by Dini’s 
theorem, that the latter convergence is uniform on [−T3, T3]. As a result, there exists ε = ε(α) ∈

(
0, ϑ∗

2
)
, 

such that

ψϑ∗
1 (s) ≥ ψϑ∗−ε

1 (s) ≥ ψ2(s), s ∈ [−T3, T3].

Then, the same arguments as in the Step 2 prove that ψϑ∗−ε
1 (s) ≥ ψ2(s), for all s ∈ R, that contradicts the 

definition (3.37) of ϑ∗.
As a result, ϑ∗ = 0, and by the continuity of profiles, ψ1 ≥ ψ2. By the same arguments, ψ2 ≥ ψ1, that 

fulfills the statement. �
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