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we also obtain that the ball is the unique minimizer of the isoperimetric problem.
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1. Introduction

This paper is concerned with a study of the following nonlocal isoperimetric problem: minimize the energy 
functional

E(u) :=
∫

RN

|∇u| +
∫

RN

∫

RN

K(x− y)u(x)u(y)dxdy −
∫

RN

V (x)u(x)dx, (1.1)

subject to the constraint

A := {u : BV (RN ; {0, 1}),
∫

RN

udx = m}. (1.2)

Here N > 2, the power-law potentials K(x) = 1
p |x|−p − 1

q |x|−q where q < p < N , the external potential 
V (x) satisfies some appropriate conditions, and the first term in E(u) computes the total variation of the 
function u, i.e.,
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∫

RN

|∇u| = sup{
∫

RN

u divφ dx : φ ∈ C1
0 (RN ;RN ), |φ| ≤ 1}. (1.3)

In other world, the problem can be seen as a minimization problem over sets of finite perimeter:

min{P (E) +
∫

E

∫

E

K(x− y)dxdy −
∫

E

V (x)dx : |E| = m},

where |E| denotes the Lebesgue measure of E and P (E) is its perimeter.
Recently, a rather detailed study of such variational problem described above was performed. For the 

nonlocal isoperimetric problem with the repulsive Coulombic interaction

Enlip(u) =
∫

R3

|∇u| +
∫

R3

∫

R3

u(x)u(y)
|x− y| dxdy, (1.4)

over 
∫
RN udx = m, Choksi and Peletier ([5]) conjectured that the minimizer of the problem (1.4) is a ball 

whenever it exists. The answer to this question is not obvious at all, since the two terms in the problem (1.4)
are in direct competition with each other. Lu and Otto ([15]) proved the non-existence of the problem (3) for 
sufficiently large m. Julin ([8]), Knüepfer and Muratov ([9]) obtained the existence of a radially symmetric 
minimizer (i.e., a ball) for m sufficiently small. On the other hand, the problem (1.4) corresponds to the 
classical Gamow’s liquid drop model of an atomic nucleus ([7,10–13,18]). In 2015, Frank and Lieb ([6]) 
obtained the existence of a nucleus with minimal binding energy per particle. For the external potential 
V (x), Alama, Bronsard, Choksi and Topaloglu ([1]) considered the following a variant of liquid drop problem

EV (u) =
∫

R3

|∇u| +
∫

R3

∫

R3

u(x)u(y)
|x− y| dxdy −

∫

R3

V (x)u(x)dx, (1.5)

where the potential V (x), with long range decay, in the sense that V (x) � |x|−1 for large |x|, and obtained 
the existence of ground states.

Potentials in power-law form have been frequently considered ([2,4,20,18,21]). In these works, the delicate 
balance between attraction and repulsion often leads to complex equilibrium configurations. In 2015, Choksi, 
Fetecau and Topaloglu ([4]) established the existence of global minimizers for a class of energy functionals 
consisting of power-law potentials.

In this paper, firstly, as 0 < p < q < N , the external potential V (x) satisfies

(L1) V ≥ 0, and V ∈ L1
loc(RN ),

(L2) lim|x|→∞ V (x) = 0,

we have

Theorem 1.1. Suppose that 0 < q < p < N , V (x) satisfies (L1) and (L2). Then for any m > 0, there exists 
a minimizer of the problem (1.1) in A.

Secondly, as q = −2, 0 < p < N , and V (x) = 0, we have

Theorem 1.2. Suppose that q = −2, 0 < p < N , and V (x) = 0. Then for sufficiently large m > 0, the 
problem (1.1) in A has a unique solution up to translation, the ball of volume m.
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Remark 1.3. When 0 < q < p < N , we utilize a technical concentration-compactness result for sets of finite 
perimeter by Frank and Lieb ([6]), and prove a lower bound on the energy in case minimizing sequence {un}
lose compactness via splitting, of the form

lim
n→∞

E(un) ≥ e(m0) + e0(m1) + e0(m−m0 −m1), (1.6)

where

e(m) = inf{E(u) : u ∈ BV (RN ; {0, 1}),
∫

RN

udx = m},

0 < mi < m(i = 0, 1) with m0 + m1 ≤ m and e0(m) is defined in section 3. However, by the external 
attraction, we will show that e(m) actually lies strictly below the value given in (1.6).

Remark 1.4. For the liquid drop model, the nonlocal energy is purely repulsive. However, Alama ([1]) 
considers the liquid model with an attractive background nucleus. It is natural that we consider more 
general potentials, the power-law potentials with attractive and repulsive parts.

In the application of Frank and Lieb ([6]), the nonlocal energy is purely repulsive (the interaction kernel 
is monotonically decreasing) and there exists a minimizer only for small mass. However, here we obtain that 
there exists a minimizer for any mass in Theorem 1.1. The reason for the existence of a minimizer for any 
mass is chiefly due to the property that interaction potential is attractive for large distances. Alama utilizes 
a compactness result by Frank and Lieb to prove the liquid drop model with an attractive background in 
([1]), and Choksi uses the concentration-compactness lemma to establish the existence of global minimizers 
of interaction functionals with competing attractive and repulsive potentials in ([4]). Motivated by ([1]) 
and ([4]), we prove that the isoperimetric problem with power-law potentials and external attraction has a 
minimizer for any mass by using the concentration-compactness lemma.

Remark 1.5. When q = −2 and 0 < p < N , our approach is via a relaxation of the problem (1.1). Then we 
show that the ball satisfies the first-order variational inequality corresponding to the relaxed problem when 
the mass is sufficiently large, and obtain that the ball is the solution of (1.1) in A.

Remark 1.6. Let us now comment on the mathematical motivations of the power-law potentials. It is worthy 
to notice that these functionals appear in biological swarms, granular media, self-assembly of nanoparticles 
and molecular dynamics simulations of matter ([4,20,21]). In the context of biological swarms, K incorporates 
social interactions (attraction and repulsion) between ground individuals. These sums of attractive and 
repulsive power-law potentials have collective effect which is repulsive at short ranges but attractive at long 
ranges. Hence, the equilibrium solution is complex and properties of the potential K(x) are important for 
us to analyze the behavior of solutions. As we can see from the Fig. 1, when 0 < q < p < N , the potential 
K becomes negative, approaches 0 as |x| → ∞ and is not convex, whereas when 0 < p < N and q = −2, 
K is positive, convex and K → ∞ as |x| → ∞. In addition, recently there are many works about 1-Laplace 
operator ([3,19]) and TFDW models ([11,14,12,15]).

2. Preliminaries

In the case 0 < p < q < N , our proof relies on a technical concentration-compactness lemma for sets of 
finite perimeter. As noted in the introduction, our goal is to obtain a splitting property. Hence, we will use 
the following splitting form.
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Fig. 1. Generic examples of K for various values of p and q.

Lemma 2.1. Let {Fn} and {En} be sequences of measurable sets in RN with uniformly bounded measure, 
and |Fn ∩ En| = 0 for all n. Assume that

Fn → F (globally) and En → 0 (locally),

for some set F . Then we have

I(Fn ∪ En) = I(Fn) + I(En) + o(1), (2.1)

and

I(Fn) = I(F ) + o(1), (2.2)

where

I(A) =
∫

A

∫

A

D(x− y)dxdy,

where D(x) ∈ L1
loc(RN ), lim|x|→∞ D(x) = 0 and A is a measurable set in RN .

Proof. First note that

|I(Fn, En) − I(F,En)| ≤ |I(FnΔF,En)| = |
∫

FnΔF

∫

En

D(x− y)dxdy| → 0, (2.3)

as n → ∞, where FnΔF := (Fn \ F ) ∪ (F \ Fn). Now we claim that

I(Fn, En) =
∫

Fn

∫

En

D(x− y)dxdy → 0, as n → ∞.

Indeed, for given ε > 0, we choose R > 0 such that

|
∫

F

D(x− y)dy| ≤ ε,

for any |x| ≥ R. Then we have
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|I(F,En)| = |I(F,En ∩BR) + I(F,En \BR)|

≤
∫

F

∫

En∩BR

D(x− y)dxdy + ε|En \BR|,

where BR denotes the open ball of radius R centered at 0 ∈ RN . Since En → 0 (locally) as n → ∞, we have 
|En ∩BR| → 0 as n → ∞, and therefore I(F, En) → 0 as n → ∞. By (2.3), we have

I(Fn, En) =
∫

Fn

∫

En

D(x− y)dxdy → 0, as n → ∞.

That is,

I(Fn ∪ En) = I(Fn) + I(En) + o(1).

The proof of (2.2) is similar. �
Lemma 2.2. Let

E0(u) :=
∫

RN

|∇u| +
∫

RN

∫

RN

K(x− y)u(x)u(y)dxdy

where 0 < q < p < N , then, for e(m) given as the infimum of the problem (1.1), we have

e(m) ≤ e(m0) + e0(m1) + e0(m−m0 −m1), (2.4)

where 0 ≤ m0 + m1 ≤ m and

e0 = inf{E0(u) : u ∈ BV (RN ; {0, 1}),
∫

RN

udx = m}.

Proof. First, we prove the following inequality

e(m) ≤ e(m0) + e0(m1), where m = m0 + m1. (2.5)

Inequality (2.5) can be obtained as follows: for given ε > 0, there exist bounded sets Ωi(i = 0, 1), with 
E(χΩi

) ≤ e0(mi) + ε. Hence, we can choose R > 0 such that Ωi ⊂ BR(0). Define Ω̃ = Ω0 + (d + Ω1) with a 
shift vector d with |d| > 2R. Note that for x ∈ Ω0 and y ∈ d + Ω, we have

0 < |d| − 2R ≤ |x− y| ≤ |d| + 2R.

In particular, we have 
∫
RN |∇χΩ̃| =

∫
RN |∇χΩ0 | +

∫
RN |∇χΩ1 | and |Ω̃| = |Ω0| + |Ω1| = m0 +m1, so that we 

may use Ω̃ in the definition of e(m), and

e(m) ≤ E(χΩ̃) ≤ E(χΩ0) + E0(χΩ1) + 2
p
m0m1(d− 2R)−p + 2

q
m0m1(d + 2R)−q +

∫

RN

V (x)χd+Ω1dx

≤ e(m0) + e0(m1) + 2ε + 2
p
m0m1(d− 2R)−p + 2

q
m0m1(d + 2R)−q +

∫

RN

V (x)χd+Ω1dx.

Let first d tend to infinity, and then ε to 0 yields (2.5).
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Next, we show

e0(m) ≤ e0(m0) + e0(m1), where m = m0 + m1. (2.6)

In the same argument of the above proof of (2.5), assume Ω0 and Ω1 are bounded sets that approximately 
minimize e0(m0) and e0(m1) respectively, by considering Ω̃ = Ω0 + (d + Ω1) with a shift vector d, we have

e0(m) ≤ E0(χΩ̃) ≤ E0(χΩ0) + E0(χΩ1) + 2
p
m0m1(d− 2R)−p + 2

q
m0m1(d + 2R)−q

≤ e0(m0) + e0(m1) + 2ε + 2
p
m0m1(d− 2R)−p + 2

q
m0m1(d + 2R)−q.

As d tend to infinity, we have ε to 0 yields (2.6).
In conclusion, using (2.5) and (2.6), we have,

e(m) ≤ e(m0) + e0(m−m0) ≤ e(m0) + e0(m1) + e0(m−m0 −m1). �
Definition 2.3. If u(x) ∈ L1(RN ), the Fourier transform of the function u(x) is defined as

û(ξ) =
∫

RN

e−2πiξxu(x)dx.

Lemma 2.4. For q = −2, 0 < p < N and V (x) = 0, the minimizer of the problem

E(u) =
∫

RN

|∇u| +
∫

RN

∫

RN

(1
2 |x− y|2 + 1

p
|x− y|−p)u(x)u(y)dxdy

over

Am,1 = {u ∈ L1(RN ) ∩ L∞(RN ) ∩BV (RN ) : ‖u‖L1(RN ) = m, 0 ≤ u(x) ≤ 1, and
∫

RN

|∇u| < ∞},

is unique up to translation.

Proof. Now, we split the energy into two parts E = E1 + E2, where

E1 =
∫

RN

|∇u|, and E2 =
∫

RN

∫

RN

(1
2 |x− y|2 + 1

p
|x− y|−p)u(x)u(y)dxdy.

Since the energy E is invariant translation, we assume, without loss of generality, that the center of mass 
of admissible densities is zero, that is, 

∫
RN xu(x)dx = 0.

We firstly show E2 =
∫
RN

∫
RN (1

2 |x − y|2 + 1
p |x − y|−p)u(x)u(y)dxdy is strictly convex over Am,1. Since ∫

RN xu(x)dx = 0, this implies that
∫

RN

∫

RN

|x− y|2u(x)u(y)dxdy =
∫

RN

∫

RN

(|x|2 − 2xy + |y|2)u(x)u(y)dxdy

=
∫

RN

∫

RN

(|x|2 + |y|2)u(x)u(y)dxdy

= 2m
∫

|x|2u(x)dx.

RN
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Hence, we get that 
∫
RN

∫
RN |x − y|2u(x)u(y)dxdy is linear in u. On the other hand, when 0 < p < N , by 

Theorem 5.10 in ([13]), we have

∫

RN

∫

RN

1
p
|x− y|−pu(x)u(y)dxdy =

∫

RN

C(N − p)
p

|ξ|−(N−p)|û(ξ)|2dξ.

Since 
∫
RN

C(N−p)
p |ξ|−(N−p)|û(ξ)|2dξ is strictly convex, we get that

∫

RN

∫

RN

1
p
|x− y|−pu(x)u(y)dxdy

is strictly convex. Thus, E2 is strictly convex among all functions in Am,1, that is,

E2(tu1 + (1 − t)u2) ≤ tE2(u1) + (1 − t)E2(u2), (2.7)

for any u1 and u2 ∈ Am,1.
Clearly, E1 =

∫
RN |∇u| is convex, that is,

E1(tu1 + (1 − t)u2) ≤ tE1(u1) + (1 − t)E1(u2), (2.8)

for any u1 and u2 ∈ Am,1.
Thus, using (2.7) and (2.8), we have that

E(tu1 + (1 − t)u2) ≤ tE(u1) + (1 − t)E(u2),

for any u1 and u2 ∈ Am,1, that is, E is strictly convex among all functions in Am,1 when q = −2, 0 < p < N

and V (x) = 0. Hence, the solution of the problem (1.1) is unique up to translation. �
3. Proof of main theorems

Our approach to Theorem 1.1 is via a concentration-compactness lemma for sets of finite perimeter. We 
define “minimization problem at infinity” e0 by

e0(m) := inf{E0(u) : u ∈ BV (RN ; {0, 1}),
∫

RN

udx = m},

where

E0(u) :=
∫

RN

|∇u| +
∫

RN

K(x− y)u(x)u(y)dxdy.

Proof of Theorem 1.1. When 0 < q < p < N , the interaction potential satisfies

K(x) ≥ 1
p
− 1

q
.

By (L1) and (L2), we choose R > 0 such that

V (x) ≤ 1,
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for |x| ≥ R. Hence, we have

E(u) =
∫

RN

|∇u| +
∫

RN

∫

RN

K(x− y)u(x)u(y)dxdy −
∫

RN

V (x)u(x)dx

≥ (1
p
− 1

q
)
∫

RN

∫

RN

u(x)u(y)dxdy −
∫

|x|<R

V (x)u(x)dx−
∫

|x|≥R

u(x)dx

≥ (1
p
− 1

q
)m2 − ‖V ‖L1(BR) −m.

This implies that

e(m) = inf{E(u) : u ∈ BV (RN ; {0, 1}),
∫

RN

udx = m} > −∞.

Now let {un} ⊂ BV (RN ; {0, 1}) with 
∫
RN undx = m be a minimizing sequence of the problem (1.1) in A, 

we have that the minimizing sequence has uniformly bounded perimeter. To simplify the proof, we define 
the sets of finite perimeter {Ωn} ⊂ RN satisfying χΩn

= un and |Ωn| = m for n ∈ N. Applying Corollary 
12.27 in ([17]), there exist a subsequence {un} and a set of finite perimeter Ω0 ⊂ RN satisfying

un → χΩ0 , in L1
loc(RN ).

At this point, we admit the possibility that χΩ0 ≡ 0, i.e., |Ω0| = 0. However, in step 3 we show that χΩ0 �= 0. 
Next, by contradiction argument, indeed we show |Ω0| = m.

Step 1. We will show that the energy splits. Indeed, we assume that 0 < |Ω0| < m. By Lemma 2.2 in ([6]), 
there exists a sequence {rn} such that the sets

F 0
n = Ωn ∩Brn and E0

n = Ωn ∩ (RN \ B̄rn),

satisfy

lim
n→∞

(Per(Ωn) − Per(F 0
n) − Per(E0

n)) = 0,

and

F 0
n → Ω0 (globally) and E0

n → ∅ (locally).

In particular,

lim
n→∞

|F 0
n | = |Ω0| = m0 and lim inf

n→∞
Per(F 0

n) ≥ Per(Ω0).

We denote f0
n = χF 0

n
, f0 = χΩ0 , Ω0

n = E0
n and u0

n = χΩ0
n

such that

un = f0
n + u0

n = f0 + u0
n + o(1) in L1(RN ), and u0

n → 0 in L1
loc(RN ).

Using Lemma 4 in ([1]), we obtain
∫

V undx =
∫

V (f0
n + u0

n)dx =
∫

V f0dx + o(1).

RN RN RN
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By Lemma 2.1, we have

E(un) =
∫

RN

|∇un| +
∫

RN

∫

RN

K(x− y)un(x)un(y)dxdy −
∫

RN

V undx

≥ E(f0) + E0(u0
n) + o(1).

Step 2. Now we locate a concentration set for the remainder. We repeat the procedure in step 1, that is to 
say, we replace {un} by {u0

n} and {Ωn} by {Ω0
n}. It is known that

u0
n = χΩ0

n
→ 0 in L1

loc(RN ) and |Ω0
n| = m−m0 + o(1).

By Proposition 2.1 in ([6]), we obtain there exist a set Ω1 with 0 < |Ω1| ≤ m −m0 and a sequence {xn} ⊂ RN

such that

χΩ0
n−xn

→ χΩ1 (locally).

Note that χΩ0
n
→ 0 in L1

loc(RN ), we have xn → ∞ as n → ∞. Moreover, by a similar argument, we also 
obtain that the sets {Ω0

n − xn} = {F 1
n} ∪ {E1

n} satisfy

χF 1
n
→ χΩ1 in L1(RN ) and χE1

n
→ 0 in L1

loc(RN ).

Again, we have that

E(u0
n) = E0(u0

n) + o(1) ≥ E0(f1) + E0(u1
n) + o(1),

where f1 = χΩ1 , u1
n = χE1

n+xn
and |E1

n| = |E0
n| − m1 + o(1). We denote the re-centered remainder set 

Ω1
n = E1

n + xn, so that u1
n(x) = χE1

n+xn
(x). In conclusion, we have

E(un) ≥ E(f0) + E0(u0
n) + o(1) ≥ E(f0) + E0(f1) + E0(u1

n) + o(1),

and m = m0 + m1 + |Ω1
n| + o(1). By Lemma 4.8 in ([10]), we obtain

e(m) ≥ e(m0) + e0(m1) + e0(m−m0 −m1). (3.1)

Step 3. Now, we show |Ω0| �= 0. Indeed, if χΩ0 ≡ 0, we have {u1
n} = {un}. Using the translation sequence 

obtained above, we define a sequence {fn} = {un(x + xn)}, and obtain

χF 1
n
→ χΩ1 in L1(RN ), and χE1

n
→ 0 in L1

loc(RN ).

Hence, using Lemma 4 in ([1]) and the translation invariance of the first two terms of E(u), we get that

E(fn) − E(un) = −
∫

RN

V χΩ1dx < 0.

Since E(fn) −E(un) > 0, it is a contradiction, so we have |Ω0| �= 0.

Step 4. Now we prove that e(m0) = E(f0) and e0(m1) = E0(f1). By Lemma 2.2, we have

e(m) ≤ e(m0) + e0(m1) + e0(m−m0 −m1),
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and by (3.1), we obtain

e(m0) + e0(m1) + e0(m−m0 −m1) ≥ e(m)

≥ E(f0) + E0(f1) + lim inf
n→∞

E0(u1
n)

≥ e(m0) + e0(m1) + e0(m−m0 −m1).

Therefore, that implies

E(f0) − e(m0) + E0(f1) − e0(m1) + lim inf
n→∞

E0(u1
n) − e0(m−m0 −m1) = 0.

Thus, we have

E(f0) = e(m0), E0(f1) = e0(m1) and lim inf
n→∞

E0(u1
n) = e0(m−m0 −m1).

Step 5. By the regularity of minimizers in ([16]), there exists R > 0 such that Ω0, Ω1 ∈ BR(0). Let 
a ∈ SN−1 be any unit vector, where SN−1 denotes the unit sphere in RN . For t large enough, we have 
Ω0 ⋂(Ω1 + ta) = φ. We define

h1(t) =
∫

RN

∫

RN

(1
p
|x− y|−p − 1

q
|x− y|−q)f0(x)f1(y − ta)dxdy,

and

h2(t) =
∫

RN

V (x)f1(x− ta)dx.

Since K(x) < 0 for |x| large enough, we have

h1(t) =
∫

RN

∫

RN

(1
p
|x− y|−p − 1

q
|x− y|−q)f0(x)f1(y − ta)dxdy < 0,

and

h2(t) =
∫

RN

V (x)f1(x− ta)dx > 0,

for all t large enough. Hence, for given ε > 0, we can choose t0 > 0 such that

h1(t0) − h2(t0) < −ε < 0,

and there exists a compact set G = G(ε) with |G| = m −m0 −m1 such that

E0(χG) < e0(m−m0 −m1) + ε

3 .

Next, we can choose τ > 0 large enough, and let Gτ = G − τa, and

−ε

3 <

∫
0

∫
K(x− y)dxdy < 0 and − ε

3 <

∫
1

∫
K(x− y)dxdy < 0.
Ω Gτ Ω +ta Gτ
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By f(x) = f0(x) + f1(x − t0a) + χGτ
as a test function which is admissible for e(m), we have

e(m) ≤ E(f) = E(f0) + E0(f1) + E0(χGτ
) + 2h1(t0) − h2(t0)

+ 2
∫

Ω0

∫

Gτ

K(x− y)dxdy + 2
∫

Ω1+ta

∫

Gτ

K(x− y)dxdy −
∫

Gτ

V (x)dx

≤ e(m0) + e0(m1) + e0(m−m0 −m1) −
2ε
3 .

Hence, it is a contradiction, that is |Ω0| = m.

Step 6. Since {un}n∈N is locally convergent in L1(RN ), there exists a subsequence converges almost every-
where in RN . In addition, since ‖un‖L1(RN ) = ‖χΩ0‖L1(RN ) = m, we have

un → χΩ0 in L1(RN ),

by Brezis-Lieb Lemma in ([13]). The weak lower semicontinuity follows directly Proposition 4.29 in ([17]) 
and Lemma 2.1. Thus, we obtain that the minimization problem (1.1) in A has a solution. �

Now, we prove Theorem 1.2, and consider

ε(u) := inf{E(u) : u ∈ Am,1}, (3.2)

where

E(u) =
∫

RN

|∇u| +
∫

RN

∫

RN

(1
2 |x− y|2 + 1

p
|x− y|−p)u(x)u(y)dxdy,

and

Am,1 = {u ∈ L1(RN ) ∩ L∞(RN ) ∩BV (RN ) : ‖u‖L1(RN ) = m, 0 ≤ u(x) ≤ 1, and
∫

RN

|∇u| < ∞}.

Clearly, A ⊂ Am,1, and

inf
u∈A

E(u) ≥ inf
u∈Am,1

E(u).

If any the function u ∈ A, then u ∈ Am,1. Hence, if u ∈ BV (RN ; {0, 1}) is a global minimizer for E in Am,1, 
then clearly it is a global minimizer for E in A. So we will show the ball of volume m satisfies the first-order 
variational inequality corresponding to the problem (3.2) when the mass is sufficiently large. That is, the 
ball of volume m is the solution of the problem (1.1) in A.

Lemma 3.1. If T (u) is strictly convex over any admissible class Am,1, and if u ∈ Am,1 satisfies

(K ∗ u)(x)

⎧⎪⎪⎨
⎪⎪⎩

= λ, 0 < u(x) < 1,
≥ λ, u(x) = 0,
≤ λ, u(x) = 1,

(3.3)

where K(x) = 1 |x|2 + 1 |x|−p and
2 p
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T (u) =
∫

RN

∫

RN

(1
2 |x− y|2 + 1

p
|x− y|−p)u(x)u(y)dxdy.

Then u is the unique minimizer of T (u) over Am,1.

Proof. Suppose u1 and u2 satisfy (3.3), we will obtain a contradiction.

Case 1. If T (u1) �= T (u2), without loss of generality, we can assume that T (u1) < T (u2). Since u1 and u2
satisfies (3.3), we have

lim
t→0+

T (u2 + t(u1 − u2)) − T (u2)
t

= 2
∫

RN

((1
2 |x|

2 + 1
p
|x|−p) ∗ u2(x))(u1(x) − u2(x))dx

≥ 2
∫

{u2(x) �=1}

((K ∗ u2)(x))u1(x)dx− 2
∫

{u2(x) �=0}

((K ∗ u2)(x))u2(x)dx

≥ 2
∫

{u1(x) �=0}

λu1(x)dx− 2
∫

{u2(x) �=0}

λu2(x)dx

≥ 0. (3.4)

Moreover, since T (u) is strictly convex, we have

T (tu1 + (1 − t)u2) ≤ tT (u1) + (1 − t)T (u2). (3.5)

Combining (3.4) with (3.5), we obtain

0 ≤ lim
t→0+

T (tu1 + (1 − t)u2) − T (u2)
t

≤ T (u1) − T (u2).

Hence, it is a contradiction.

Case 2. Suppose T (u1) = T (u2). Since T (u) is strictly convex, there exists a function ψ ∈ Am,1 such that 
T (ϕ) < T (u1). Again, by the strict convexity of T (u) and u1 satisfies (3.3), we have

0 ≤ lim
t→0+

T ((1 − t)u1 + tψ) − T (u1)
t

≤ T (ϕ) − T (u1).

It is a contradiction, since T (ϕ) < T (u1). So we have u1 = u2. In conclusion, the proof is completed. �
Proof of Theorem 1.2. We divided into the following three steps.

Step 1. Firstly, we will show that the characteristic function of a ball satisfies (3.3) for large mass m. By 
inspecting the interaction function K(x), we split it into two parts:

K2 = 1
2 |x|

2 and Kp = 1
|p| |x|

−p.

Now, denote by R the radius of a ball with mass m. Note that K2 and Kp are radially symmetric, we have 
K2 ∗ χBR

and Kp ∗ χBR
are radially symmetric. We have K2 ∗ χBR

is radial increasing following from K2. 
Similarly, Kp ∗ χBR

is radial decreasing. For |x| ≥ R , we have
2
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(∇(K2 ∗ χBR
)(x) · x

|x| ) =
∫

{|y|≤R}

(x− y) · x

|x|dy||x|=R
2
≥ C2R

N+1, (3.6)

where

C2 = 2−N inf
t≥ 1

2

∫

{|y|≤1}

(t− y1)dy.

Similarly, for |x| ≥ R
2 , we also get

(∇(Kp ∗ χBR
)(x) · x

|x| ) ≤ CpR
N−p−1, (3.7)

for some constant Cp. Since −p < 2, there exists R such that C2R
2 > CpR

−p. Combining (3.6) with (3.7), 
we have

∇(K2 + Kp) ∗ χBR
(x) · x

|x| ≥ 0,

for |x| ≥ R
2 . Hence,

K ∗ χBR
(x) = (K2 + Kp) ∗ χBR

(x) ≥ K ∗ χBR
(x)||x|=R = λR,

for |x| ≥ R. Moreover, K ∗ χBR
(x) ≤ λR for R2 ≤ |x| < R.

Secondly, we show that K ∗ χBR
(x) ≤ λR for |x| < R

2 . Indeed, since Kp ∗ χBR
(x) and K2 ∗ χBR

(x) are 
radially symmetric, we have

λR =
∫

{|y|≤R}

( |Re1 − y|2
2 + |Re1 − y|−p

p
)dy

= RN+2
∫

{|y|≤1}

|e1 − y|2
2 dy + RN−p

∫

{|y|≤1}

|e1 − y|−p

p
dy

= C̄2R
N+2 + C̄pR

N−p,

(3.8)

where C̄2 = K2 ∗ χB1(x)||x|=1 > 0, C̄p = Kp ∗ χB1(x)||x|=1 > 0 and e1 denotes a unit vector in RN . Since 
(K2 ∗ χBR

) is increasing in |x| and (Kp ∗ χBR
) is decreasing in |x|, we have

(K ∗ χBR
)(x) ≤ (K2 ∗ χBR

)(x)|x=R
2

+ (kq ∗ χBR
)(0) = ¯̄C2R

N+2 + ¯̄CpR
N−p,

where

¯̄C2 = K2 ∗ χB1(x)||x|= 1
2
.

Since K2 ∗ χBR
is radially increasing, we get ¯̄C2 < C̄2 for R large enough. Combining with (3.8), we obtain

(K ∗ χBR
)(x) ≤ λR, (3.9)

for |x| ≤ R/2, if R is sufficiently large.
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Step 2. We will show the characteristic function of a ball for large enough mass m satisfies the first-order 
variational inequality corresponding to E(u) in Am,1. That is, the characteristic function is the solution of 
the problem (3.2).

We construct perturbations that are nonnegative on S0 := {x : |x| > R}, nonpositive on S1 = {x : |x| ≤
R}, and preserve mass. Let φ and ϕ ∈ BV (RN ) be compactly supported, bounded, nonnegative functions 
with φ = 0, a.e. in S1, ϕ = 0, a.e. in S0, and

∫

RN

φ(x)dx =
∫

RN

ϕ(x)dx = 1.

By construction, χBR
+ t(φ − ϕ) lies in Am,1 and the perturbation is small for sufficiently small values of 

t > 0. We claim that

d

dt
|t=0+E(χBR

+ t(φ− ϕ)) =
∫

RN

|∇(φ− ϕ)| + 2
∫

RN

K ∗ χBR
(φ− ϕ)(x)dx ≥ 0. (3.10)

For the second term in the right hand of (3.10), combining (3.3) with (3.9), we get
∫

RN

K ∗ χBR
(φ− ϕ)(x)dx =

∫

{φ(x) �=0}

K ∗ χBR
(x)φ(x)dx−

∫

{ϕ(x) �=0}

K ∗ χBR
(x)ϕ(x)dx ≥ 0. (3.11)

Clearly, we have
∫

RN

|∇(φ− ϕ)| ≥ 0. (3.12)

Hence, using (3.11) and (3.12), we have

d

dt
|t=0+E(χBR

+ t(φ− ϕ)) ≥ 0.

That implies the function χB(0,R) with R = ( m
wN

) 1
N is the solution of the problem (3.2) for large enough m. 

By Lemma 2.4, E(u) is strictly convex. Hence, the function χB(0,R) is the unique solution of the problem 
(3.2) up to translation.

Step 3. Since

inf
u∈A

E(u) ≥ inf
u∈Am,1

E(u),

and χB(0,R) ∈ A, we obtain that the ball of volume m is the unique solution of the problem (1.1) in A for 
sufficiently large m. �
4. Conclusions

In this paper, for the nonlocal isoperimetric with power-law potentials and external attraction, we consider 
various minimization problem, depending on the signs of the repulsive and attraction power exponents of 
potential and external attraction. As 0 < q < p < N , we prove the existence of minimizer. As q = −2, 
0 < p < N and V (x) = 0, the proofs rely on a relation between the problem (1.1) in A and the relaxed 
problem (3.2).
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Note that the other cases q < 0 < p < N and q < p < 0 have been not considered in this paper. For 
q < 0 < p < N , we conjecture that the existence of minimizers would be true for sufficiently small m as 
the energy is dominated by the external attraction and the perimeter which is minimized by the balls of 
measure m and Theorem 1.2 could extend to the general case q < −1 since the energy is dominated by the 
attractive term which is minimized by the balls of measure m. For q < p < 0, the existence of minimizers 
would be true for any m > 0 as the repulsion is bounded and the energy is dominated by the perimeter and 
the attractive term. In the forthcoming work, we will continue to discuss the existence of solution for the 
problem (1.1) as q < 0 < p < N and q < p < 0 respectively.
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