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1. Introduction

The fully dynamic Biot’s model (known as poroelastic model) describes the time-dependent fluid flow
through a porous media material with elastic deformation and it can trace back to the work of Terzaghi
and Biot. Terzaghi [25] built the corresponding theory by analyzing the consolidation of a soil column under
one-dimensional situation. Then, Biot [2] generalized Terzaghi’s work to three-dimensional case. Since then,
on account of its ubiquity and special properties, quasi-static Biot’s model [3] which is degenerated through
fully dynamic Biot’s model by ignoring the second order temporal derivative term, has been widely used
and studied in different fields of scientific research and engineering applications, including materials science
[6], reservoir engineering [26], environmental engineering [14] and bio-mechanical engineering applications
[4]. There are some related researches to the quasi-static Biot’s model. Zenisek [27] built the well-posedness
of this Biot’s model. Then, Phillips and Wheeler [17,18] addressed some efficient numerical scheme to solve
this problem based on both continuous and discontinuous Galerkin methods. However, there is locking
phenomenon [19] in this problem under certain circumstances, which presents a pseudo pressure when
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the reservoir coefficient ¢, is verge or equal to zero and the permeability tensor is small. For avoiding the
locking phenomenon, people utilized the non-conforming and discontinuous Galerkin methods to this model,
Riviere [22] used the interior penalty discontinuous Galerkin methods to discrete the Biot’s model based
on mixed formulations, and Feng et al. [10,11] rearranged the Biot’s model equations and novelly proposed
a multi-physics scheme, both of which are well overcome the locking phenomenon. For the original fully
dynamic Biot’s model, Showalter slightly refer to this model problem in [24], but Showalter does not keep
work on relevant study. Recently, Lotfian and Sivaselvan [16] proposed a scheme combining mixed finite
element method and difference formula and validated the scheme is efficient by some numerical experiments.
Particularly, it is meaningful and representative that to study this fully dynamic Biot’s model, because some
related coupling problems with the fully dynamic Biot’s model have been introduced, such as the coupled
Navier-Stokes problems/Biot model [7] and fluid-structure interaction problems [5].

In this paper, we apply the interior penalty discontinuous Galerkin method to discrete the fully dy-
namic Biot’s model. Discontinuous Galerkin methods introduced by Reed and Hill [20] in neutron transport
equations have become very popular in theoretical study and engineering applications [8,15,18,23] in the
past four decades, because it has some particular and remarkable features e.g., arbitrary order accuracy,
ability to deal with hanging nodes, local mass conservation, ready parallelization and adaption. To build
a well-posed and efficient numerical scheme for the fully dynamic Biot’s model, we have to resort the nu-
merical scheme of wave equation, because the wave equation exists a second order time derivative term
that is similar with fully dynamic Biot’s model problem. For the wave equation, Grote and Schétzau [12]
proposed a explicit fully discrete scheme, in which a CFL condition is required. Then, in [13], Han et al.
presented an implicit-explicit fully discrete scheme for the wave equation, which does not need the CFL
condition. Based on these thoughts we put forward a implicit-explicit fully discrete scheme for the fully
dynamic model problem, which is constructed by using interior penalty discontinuous Galerkin method for
the spatial approximation and a tailor difference formula to approximate the first and second order time
derivative terms. However, it certainly is a big difference from the fully discrete scheme of wave equation,
the main difference includes two parts, one is we have to introduce a proper difference formula to discrete
the first order temporal derivative terms and the other one is the selection of initial values. The theoretical
analysis and numerical results show that the proposed fully discrete scheme is proved to be efficient.

The outline of the rest of this article is arranged as follows: Section 2 introduces and states the fully
dynamic Biot’s model, and some basic notions and useful results used throughout this article are given. In
Section 3, based on original model problem we propose the fully discrete scheme and prove the existence
and uniqueness of solutions. Section 4 is contributed to a priori error estimates. In Section 5, we show
some numerical tests to examine and support the convergence analysis results. Section 6 presents some
conclusions.

2. Preliminaries

In this section, we introduce some preliminary preparations. Firstly, the fully dynamic Biot’s model
problem is given. Then, we recall some basic notions and list some inequalities.

2.1. Model problem

Let Q C R4(d = 2,3) be a open bounded domain with Lipschitz continuous boundary 9 and [0,7) is an
time interval with 7' > 0, the space-time domain is defined by @ = ©Q x[0,T). There are two model equations
with respect to the fully dynamic Biot’s problem, one (1) is called the momentum equation and the other
one (2) is termed as the mass equation, which are coupled by Biot-Willis constant «. The initial-boundary
valued problem of fully dynamic Biot’s model we consider is to find displacement u(x,¢) and pore pressure
p(x,t) such that
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Table 1
Summary of physical parameters.
Parameters Description
A, 1 Positive Lamé constants
co >0 Storage coefficient
a Biot-Willis constant
K Symmetric permeability tensor
Table 2
Summary of constitutive relations.
(u,p) = o(u) — apl Total stress
o(u) = Atr(e(w))I + 2ue(un) Effective stress
e(w) = 3 (Vu+ vu™) Strain tensor
0*u

W—V-U(u)—l—an:f in Q,

%(cop+av-u)—V~(KVp)=l in Q,

p=pp on I',x][0,T),
—KVp-n=g¢qny on T;x][0,T),
u=up on I, x][0,7T),

—on=ty on TI;x][0,7),

0 .
Plico=p° in 9,
uf;—o = u’ in Q,
u|j—o=1u;, in Q.

In (1)-(9), £, I and n are body force, source term and unit outward normal vector to 9€, respectively. In

addition, some notions corresponding to the model problem are presented in Table 1 and Table 2 in which

“tr” stands for trace of the given functions and I denotes the unit matrix. 02 =T, UT'f and 0Q2 =T, UT,

respectively, represent the boundary subdivision of pore pressure and displacement. The permeability tensor

K is the uniformly elliptic, that is, there exist two positive constants Apmin and A\paz, for any & € R? such

that

/\min§2 S gTKg S )‘maz§2~

2.2. Basic notation and inequalities

Let 7, = {K} be a family of non-overlap and shape-regular subdivision of ) parameterized by h > 0,

where h denotes the discrete spatial mesh-size and triangle/tetrahedron K stands for physical computation

element, we define hxg = diam(K) and h = max hi. Besides, all element faces are denoted by &, and
h

En =& UEY. & and & represent the inner and boundary edges, respectively. Similarly, for each element
face e of K € Tp, we define h, = diam(e). Let e be an interior face shared by two elements K; and K;(i > j),
n is unit normal vector from K; to Kj. For a scalar function p, let p; = plak,, p; = plok,, and we define
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1

{p}r =5l +pl), [Pl = (pl: = pl))-

For a vector function u, let w; = ulyk,, u; = u|aK]., and we define

fu} = Sl ), o] = (i —ul))

Moreover, if e € 012,

[p] = {p} =ple, [ ={u} =ul..

More details about the interior penalty discontinuous Galerkin methods one can see references [15,21].

The standard functional spaces W*? in classical Sobolev spaces theory (see [1,9]) are frequently used in
this paper, with norm ||- || 5 and semi-norm |- |1 5. Particularly, for a given region D € R%(d = 1,2, 3), when
P = 2, we have W*2(D) = H*(D) with norm ||+ ||x.p and when D = 2, we ignore the index D. Furthermore,
for k = 0 and p = 2, we define the norm of W%2(Q) by || - || ,2(q), which is the standard L?-norm, and (-, -)p
denotes the L?(D) inner product. In addition, we consider spaces

T
L0, T Y) = {2 : (0,T) — Y,/ I2]l5-dt < oo},
0

with
T
21 02y = [ Nl
0
where s > 1 and Y is a normed space equipped with the norm || - ||y. Similarly, we can define C*(0,T;Y).

In this paper, it is noticeable that the bold fonts stand for the corresponding vector-valued functions or
functional spaces.

Some discontinuous/broken Sobolev spaces (see [21]) on the decomposition 7Tj shall be recalled. For some
nonnegative integer s, define

H(Th) ={ve L*(Q) : plx € H¥(K), VYK €T}

Based on the discontinuous Sobolev spaces, the energy norms of relevant spaces are defined by

Vp e HY(Th), plz= 3 /KVp-Vpdx+h;1 Z/[pup]ds,

KeTh i e€lp
YVu € H*(Ty), ul|? = Z /Vu : Vudx + ht Z /[u} - [u]ds.
KeTh i e€€n

For some nonnegative integer r, P.(K) stands for a family of polynomials with polynomials degree no more
than r. Then, we introduce the discontinuous finite element spaces Qp and Vj, used in this article, define

On={qe H*(Ts) : q|lx € P-(K), VK e€T,},

also, define
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Vi, =[Qn)¢ ={uecH T,) :u|g € P (K), VK €T}

Note that, 9y, is a approximation space of pore pressure and V}, is a approximation space of displacement.
For convenience, Vp € H*(T,) we always consider

2= % / PR pp = 3 / (Vp)2dx., [pl2 = Ipll® + lol?,
KEThK KEThK

and

Vp,q € H*(Th), (@) = Y /pqu.
K

KeTn

Next, some useful and classical inequalities shall be listed (see [21]).

Lemma 2.1. (Discrete Gronwall inequality). Let constants At, B, C > 0 and {a,}, {bn}, {cn} be a sequences
of nonnegative real series satisfying

n

n n
an+ ALY b <B+CAtY a;+AtY ¢, n>0.
=0 1=0 1=0
Then, if CAt < 1,
an + ALY b < CUTVA(B L ALY "), Yn > 0.
1=0 1=0

Lemma 2.2. (Trace inequality). There exists a constant ¢y independent of mesh-size h, such that
Vp € P.(K),Ve C OK, ||pllr2(ey < cerle]™ K72 Ipl| 12 (x),
ifp € H'(K),
Ve C OK, ||pllz2(e) < cerle" 1K |72 (IIpll L2 (0 + Rellpll a1 ()
where | - | represents the Lebesgue measure of relevant area.

Lemma 2.3. (Broken Poincaré inequality). Let constant c, be independent of mesh-size h, and if we assume
that the Dirichlet boundary Tp of p is non-empty subset of OS), then it satisfies

1
vp € H'(Th), llpll < e, (1V0l* + Y Tll[p]lliz(e))

e€E}UTD ‘6‘7

/2

Lemma 2.4. (Korn inequality). Let constant cy, be independent of mesh-size h, and if we assume that the
Dirichlet boundary Tp of u is non-empty subset of 9S), we then get

1

1
‘ ‘d—l

Yue H'(Th), [Vull < collle(w)* + >

eESﬁUTD

I[u]l1Z, e

Indeed, these inequalities defined by scalar-valued functions in this section, can be extended to vector-
valued functions.



6 J. Wen et al. / J. Math. Anal. Appl. 485 (2020) 123837

3. Numerical scheme

In this section, firstly, a fully discrete scheme of the model problem is proposed, we then prove the
existence and unique solvability of the numerical scheme.

8.1. Fully discrete scheme
Let At represent the discrete time step-size, for some positive integer N, which satisfies the relation

At = %, and t, = nAt for n =1,2,---, N. Before giving the fully discrete scheme, some bilinear operators
shall be introduced. For V¥p,q € H'(T},), the bilinear operator ap is defined by

g =Y / KVp- Vodx — 3 / {KVp} - nlglds (10)

KeTh i e€&n
-y /{KVq} ‘nlplds + B Y h? /[p] [q)ds,
ec&y e ec&y e

where 81 > 1 is a stability coefficient. For Vu,v € Hl(ﬂl), the bilinear operator a, is defined by

ay(u,v) = Y /U(u):e(v)dx— > /{o’(u)}n-[v]ds (11)

KeTh i e€En
- {o()In-[uds+ > p b’ [ [u] - [V]ds,
z/ Dl

where 3 > 1 is a stability constant. For Vg € H*(T3), u € Hl(’ﬁl)7 define

b(u,q) = Z /V -ugdx — Z /[u} -n{q}ds. (12)

KeTh i e€&l e

For simplicity, we only consider the homogeneous Dirichlet boundary conditions, that is boundary con-
ditions (4) and (6) are not involved in this paper. Then, based on bilinear forms (10), (11) and (12), we
present the following numerical fully discrete scheme of the fully dynamic Biot’s problem: Find pZH € 9
and uZH € Vy (n > 2), for any g, € 9y and v, € Vj,, such that

n+1 n n—1 n+1 n—1
u," " —2uy +uy u, " +uy,

( A s Vh) + au( 5 s Vh)

— ab(vp, M) = (f(-,tn),vn), (13)
n+1 n—1 n+1 n—1

0(1%,%) +0lb(uh+2%,%)

rap (T g = (Mot Hltnc) s (1)
and

u?L EVy, (- u%,vh) =0, Vv, €Vy, (15)
Ph € Qn,  (P° —phoan) =0, Van € Qn, (16)

up €V, (ug—ugp,vy) =0, Vv, €V, (17)
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u,lI = u?L +up p At + u87hAt2, (18)
where ug,h € Vy;, and it satisfies
(ug,hvvh) - (f('7t0)7vh) - au(u07vh) + ab(vh7p0)7 vvh € Vh7 (19)
1 0 1 0

- +
Ph € Qs col Pl an) + ap (P2 1) (20)

t 2

(-, to) +1(-, t1 ul —u?
= (%ﬂh) - ab(%»%), Van € Q.-

It is noticeable that the numerical scheme (13)-(14) is nothing but a general numerical scheme. (13) is a
classical discretization formulation for the second order derivative with respect to temporal variable (see
[13]) and (14) is the Crank-Nicolson formulation with two time step-size. Particularly, a Taylor expansion
to derive uj, (18) and a standard Crank-Nicolson formulation (20) to solve pj..

Hereafter, we always use constant ¢ to denote a constant varying with different occurrences, which is
independent of mesh-size h.

8.2. Eristence and uniqueness

Lemma 3.1. (Coercivity and Boundedness). If the penalty parameters 81 and Po are sufficiently large, there
exist two positive constants Cepe1 AN Cepen, such that

VDhsah € Qh, eoet|[Pnll? < ap(@nspn)s  ap(Pr,an) < cllpnllellanlle.

Vi, vi, € Vi, ccoea|un||? < au(in, un),  au(un, vi) < cllun|c]|valle-
Theorem 3.1. (Existence and Uniqueness). There exist solutions ( ”H,pﬁﬂ) satisfying the fully discrete
scheme (13)-(20), and solutions (u} ™, pp*t) is unique.

Proof. The existence and uniqueness of the fully discrete scheme and its homogeneous problem is equivalent,
because it is a linear, finite dimensional and square system, therefore, we only to prove the corresponding
homogeneous problem has unique null solutions. The homogeneous problem of fully discrete scheme is find
pZH € 9y, and uZ“ € Vy, for any ¢, € Qp and vy, € Vy, such that

n+1 un+l n+1
( At2 »V ) + au(thvh) - ab(vfu ) = Oa (21)
n+1 n+1 n+1
by, u, Dy,
o\ g A2 ab ) ) 22
C(2At an) + ab(L— AT an) + ap(— 2 qn) = 0. (22)
Choosing v, = u}'t! in (21), we obtain
n+1 n+1 n+1
u n 1 ll n+1 n+1 P
() + (M ) — byt P — 0. (23)
Taking g, = Atp"+1 (22), we have
pn+1 n+1 pn+1
cof h2 PpY) + ab(T— ,pZ“) + Atay( h2 o) =0. (24)

Adding (23) to (24) and Multiplying by 2, we get
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n+1
20 2w w ) el R At (o7 ) = 0,

by the coercivity of bilinear forms a, and a, and At > 0, ¢, > 0, we have [[u}*!||. = 0 and ||p}*!|. = 0,

and complete the proof of existence and uniqueness of solutions. O
4. Priori error estimates

In this section, a priori error estimates based on fully discrete scheme shall be derived. Before giving the
error estimates, the projections and estimates for the initial values are presented [21].

Lemma 4.1. (L%-projection). Let Vp € H*(Q)(s > 1), there exists a unique p, € Qp, such that
Van € Qn,  (p—ph,an) =0,
with the approximation property
P = pall + hllp = prlli < ch”[Ipll s (o),
where p = min(r 4+ 1, s).
Lemma 4.2. (Elliptic projection). Let Yu € H*(Q)(s > 0), there exist a unique up, € Vy,, such that
Vv, € Vi,  au(u—up, vp) =0,
with the approximation properties

[u—upl < ch“||u||Hs(Q),

[u— || < ch||ulg (),
where p = min(r + 1,8) — 1 and g1 = min(r + 1, s) — 1, specially, py = min(r + 1, s), if Q is convez.
Lemma 4.3. Let function z(-,t) be sufficient smoothness, then, the following estimates holds

tn41

thwO*Z@%WQSAt/H%hﬂWﬁ,
tn
tnt1
z(+ytn —22(,tn) + 2(, th—
2ete) = 22 B2 bt < A [ et P,
tn—1

where z:(-,t) and zu(-,t) represent the first and second order derivative of z(-,t) with respect to temporal
variable, respectively.

Proof. The first estimate is the direct result of the Cauchy-Schwarz inequality

trnt1 tnt1

12 1) = 20 ta) 1P = | / Zt('vt)dt”zSAt/ 22 (-, )|t
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Similarly, by the Taylor expansion and Cauchy-Schwarz inequality, we have

12(, tn1) = 22(, tn) + 2, ta-1) |1

tny1 tn
I [ (= 0zt + [ (0 = Dl 0]
tn th—1
tntt
<588 [ et olPa o
th—1

Lemma 4.4. Let z € H™1(Q) N H%(T;,) and its L*-projection z, € Qp,, we then have
Vi € Qn,  ap(z — zn, 2n) < &||2n||2 + eh™,
where ¢ is a small constant and ¢ is a bounded constant, both of which are independent of mesh-size h.

Proof. This inequality is a general conclusion after one use the approximation property of L2-projection,
and Cauchy-Schwarz, Young and trace inequalities to it, the specific proof one can see [21]. O

Lemma 4.5. Let initial values satisfy
uc 02([0,t1], .l-TlJ,ni»l(gz))7 Uy € L2(0,t1; HI(Q)),pttt c L2(0,t1; L2(Q)),
we have the following error estimates

lu® — wpll + 1p° = Pl + lluG — woull < ch™,
lu® — wplle + [Ip° = pille + [[ug — wopnlle < ch”,

(o) —u®  (u), — )

u
(- t1) —up|| + || | < (k™' + At?),

At At
1 ll(',t1> —u’ (u}z — ll%) r 2
: - - <
lu t1) = wplle + 1 =—%; A lle e+ A8,

Collp(,t1) = pill + Ip( 1) = phlle < e(h” + AL?).

Proof. In light of the approximation property of L2-projection, we obtain

l® —ui ||+ [1p" = pall + [[ug —uonll < ch™,

lu® =il + [1p” — phlly + Jup — woufls < ch”

By trace inequality, we have

[u® =} e +[1p° = phlle + l[ug —wonlle < ch.
Note that, by the original model equation (1), it satisfies
(utt('7t0)avh) = (f(‘,to),Vh) - a’u(uoyvh) + Oéb(vhapo)7vvh S th (25)

subtracting (19) from (25) yields
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(utt(') tO) - u&}p"h) = O,VV}L S Vh?

thus, ug,h is the L?-projection of uy (-, tg), by the approximation property of L2-projection and trace in-
equality, we obtain

e (-, o) — ug | + hlluge (-, to) — wg [l + Alluge (- to) —uf ,lle < k™t

According to the Taylor expansion, there holds

ty

1

u(-,t1) = u’ + Atufy + At?uy (-, to) + 5 / (t1 — t) %y (-, t)dt. (26)

to

Subtracting (18) from (26), it satisfies
u(-, 1) —w, =(u” —uj) + At(uh —up,p) (27)
ty
1
+ A to) —ug) + 5 / (t1 — t)*uge (-, t)dt,
to

immediately, the triangle inequality implies

[u(-,t1) = wp || <[lu® = wj || + Atflug —uo
t1
1
+ AL [[uge (- o) —ug || + 5l / (t1 — )% wpe (-, )t ],
to
[u(-,t1) — w1 <[lu” =il + Atflug —uoplls

ty
1
4 A2 t0) = 1+ 51 [ (6= 0Pl e,
to
by applying the corresponding approximation property, we obtain
[u(, t1) —wp || < e(h™ + At?),
[u(, t1) — w1 < e(h” + At?),
also, by trace inequality, we have
[u(t1) —wylle < e(h” + A2).

Similarly, from (27), it holds

||ll(t1) — ll(to) o (ullz — u(fJL
At At
0

u(ty) —u(ty) (u,ll —uy) , 9
— < A .
” At At ”6 = C(h t )

)” < C(hr+1+At2),

Based on the standard Crank-Nicolson scheme, there holds
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ty) —p t) +p
Var € @ BT g o, PEIEE (28)
1, t1) + (-t u(-,t1) —u°
= (B EII) y ap BT ) (0.0 + Rf0,1),00),
where
t1 t!
, At
Fp(O,t) = — 4_At (tl — 8) Pttt(', s)ds -+ I pttt('; S)dS
to to
t1
1 2
N (to — 8) pete (-, 8)ds,
to
17 At
t
F“(O,t) = — 4_At / (tn+1 — 8)2v . uttt('; S)dS -+ T V . um(~, S)dS
to tn—1
L7
— E / (t(] — S)QV . uttt('a S)dS.
to

By Cauchy-Schwarz inequality we have
[Fp(0,6)]] < A%, [ Fa(0, )] < AL,

Subtracting (20) from (28), the error equation holds

p(-t1) —pp — (P° —pj) p(,t1) — pp + " — 1))
Col hAt 2 an) + ap( ( g b an)
u(,t1) —uj, — (0’ —u)

= —ab(

At 7Qh)_(Fp(ovt)+Fu(O7t>7Qh)7

multiplying by At and rearranging it, we get

(p7(~,t12) 7p'11,qh)

= - Oéb(ll(',tl) - u}n - (uO - ug)v Qh) - At(Fp(O’t) + Fu(ovt)7q}L)

co(p(,t1) — ph, qn) + Atay,

p° —ph

+ co(p” — PY), an) — Atay( L qh).

Then, in light of general error estimates of parabolic problem (see [21]) and previous results, immediately,
we can obtain

Collp(,t1) = pill + 1P 1) — palle < e(h” + AL%). O

Theorem 4.1. (A priori error estimates). Let (u} ™, pi ") be the solutions of fully discrete scheme (13)-(14)
and (u(x,t),p(x,t)) be the solutions of fully dynamic Biot’s model (1)-(9). In addition, we assume

ue C%0,T; H(Q)), uy € L*(0,T; H(Q)), uyy € L*(0,T; H*()),
Uit € L2(07T; L2(Q))7ptt € L2(0,T; Hl(Q))apttt € L2(07T§ LQ(Q»-
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Then, for V2 < m < N, we have
[u(-, tm) — w2 < c(h*" + At?),

m—1 n-+1 n—1

P +p r
D Atllp(-,tn) = g |2 < (B + ALY,
n=1

Proof. To simply the notions, for a given function z(-,t), define

n+1 n—1 n+ i n—2L1 _
atzn _ z —Z _ 8tZ 2 + 87522 2 8tzn+% _ u
2At 2 ’ At
1 1
a " ZnJrl _ 22” + anl 8tzn+§ _ 8,52”75 n% ZnJrl + anl
e = = 27 =
At? At ’ 2 ’

where 2™ stands for z(-, ¢, ). Based on these notions, at ¢, moment, the momentum equation (1) satisfies

(D™, V1) + au(W¥2,vy,) — ab(vy, pV2) — (Dpu —uly, vy) (29)

= (fnavh) + (F(u7n7t) + F(panvt)vvh)7
where

F(u,n,t) = Au" — Au™?,

F(p,n,t) = Vp™2 — Vp".

Then, by the idea of Taylor expansion and the process of construction of Crank-Nicolson scheme, the mass
equation (2) satisfies

Co(atpn, qh) + ab(atunv qh) + ap (pn% B qh) (30)

= (Zn:%7qh) - (Fp(nvt) + Fu(nvt)vqh)’

where
tn+1 A tn+1
1 t
Fy(n,t) = - 3AL / (tng1 — 8)pese (-, 8)ds + > / Peee(c, 8)ds
tn—1 th—1
tn+1
1 2
~ A (tn—1 — 8)"peae (-, )ds,
tnfl
tnt1 gntt
1 At
Fu(n,t) = — @ / (tn+1 — 8)2v . um(s)ds + 7 V . um(~, S)dS
t”71 tn,1
tn+1
1 2
— @ (tn—l - 8) V- uttt('a S)dS
tn—1

Note that, similar to Lemma 4.3, the following estimates holds
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tn+t1

IF(w, )] < A8 / | Aug (-, 1)) 2dt, (31)
tn—l
trnt1

IF(p.n,1)]]? < A / Vo),
tn—1
tn+t1

1By, )7 < A / s (- )],
tn—1
tnt1

| Fa(n D < AP / Va0 )|t

tn—1

Now, subtracting (13)-(14) from (29)-(30), respectively, we can obtain the error equations. For Vv; € Vy,
and Vg, € Qp, such that

1 .
(O™ — Ogpu, vy) + au(u":% - uZ'Q ,Vh) — ab(vh,p"'% — pZ

=

?)
= (F(u7n7t) + F(p7n7t)7vh) + (attun - u?t7vh)7

1

Co(0ip™ — Oupt, qn) + ab(dpu™ — Al qi) + ap (P — Py 2, qn)
= 7(Fp(na t) + Fu(na t)v qh)'

For simplicity, we introduce the following notions

Xp = ,p"™ — phy, & =T,p" —p", (32)
Xﬁ = Huun - u27 51? = Huun - un7

where L2-projection IL, and elliptic projection Il are given in Lemma 4.1 and Lemma 4.2. Then, applying
(32) to error equations, we have

1

1 n: .1 1=
(Ortxu — Oy V) + CLu(X;L'Q —& Vi) — ab(VhyX; ’ = ; ) (33)
= (F(u7 nvt) + F(p7 nvt)avh) + (attun - ugtavh)v

W=

1

co(OeXy — Ol an) + ab(Oixy — Ol an) + ap(xp > — & 2, an) (34)
= _(Fp(na t) + Fu(nv t)7 Qh)'

By the definition of L?-projection II,, and elliptic projection ITy, (33) and (34) can be rewritten as

(8ttxﬁ7vh) - O[b(Vh7XZ:§) + au(XZ:§7vh> - (8tt§171l7vh) + ab(vfhé—g:§) (35)
= (F(u,n,t) + F(p,n,t),vy) + (Ogu™ — upy, vy),

co(0eX, an) + ab(Oexiy, an) + ap(Xp 2 qn) — ap(&p 2, an) — ab(OE], an)

= 7(Fp(nat)+Fu(nat)7Qh)' (36)

Taking vy, = Orxiy in (35), it satisfies
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(Orexi, Dex) —ab(Oexins X =) + aulxu 2, Oexy) (37)
:(F(u’ n, t) + F(p, n, t)? 8tX:1L) + (3tt§3a 3tX3)

nil
—ab(Oixy, &p 2 ) + (Opu™ — iy, Orxy)-

1
Choosing g, = xp 2 in (36), it produces

Nf=

n:i n n:i n:i
CO(atXZaXp 2)+ab(Oxys xp ?) +ap(Xp 2 xp ) (38)

= —(Fy(n,t) + Fa(mt), Xi72) + ap (€072, Xi72) + ab(h€l, X 2).

o= B3

Adding (37) to (38) yields

.1

(Drexi 00) + o™ 0X2) + 000X ) + a5 2 X3 ) (39)
=(F(a,n,1) + Fpm,0), 0000) + (6755 7)
+ (O D) — ab(O, &%) + ab(D&, xp )

n:l
- (Fp(n7t) + Fll(n7t)ﬂ Xp 2) + (8ttun - u;ﬂn atXﬁ)'

To this end, we need to estimate the left and right-hand side terms of (39), respectively. For the left-hand
side terms, from the symmetry of a,, we have

(DX DX™) + aulxn , 0™ + o0 Xi ) + ap(xi 2 X ?) (40)

1 il o1
= (o™ P = o IP) +
1 1

_ _ n:l n:l
+ A OaT oA - et o) Fale o )

o (P — )

Then, we only to estimate the right-hand side terms, term by term. For convenience, we define by Iy, I, -
-, Iy the right-hand side terms of (39), respectively. I; can be bounded by using Cauchy-Schwarz, Young
and broken Poincaré inequalities and (31),

I = ~(Fy(n.t) + Fa(n. ), < (I, )] + | Falm, 0Dl |

Ccoel
c([|Fp (n, 1)|1* + [ Ea(n, 6)[1) + I 212
tnt1
Ccoel
< oAt / (Ipeee (5 O + [V (-, )]|*)dt + I # 12
tn*l

Similarly,

I2 ( (ll,n,t) +F1(p7nat>7atX171L)
<IF(,n, )| + [|F(p, n, ) Oexa |
< F(un, )7 + 1 F(pyn, )12+ [19exit |1

n+i n—21
Note that, 20, x7 = Orxu > + Oixu 2, thus
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tnt1
B OO [ (|Bu )P+ [Tpa )t + [0 P + o,

th—1

I3 can be bounded by applying the Cauchy-Schwarz inequality, Young inequality, Lemma 4.3 and approxi-
mation property of elliptic projection,

Is = (0u&l, 0ix3) < 110u&d 10Xl < 10:&0 17 + ll0exi |1,

in light of u € C2(0, T; H"T1(Q)) (see [13]), we get

Ch2 (r+1) na 1
<M / laee D2t + [0 + e 21

For the estimate of Iy, by Cauchy-Schwarz, trace, Young and broken Poincaré inequalities and the approx-
imation properties of elliptic projection, we have

—

): a(v'atéfvaZ:z)

[N

—a > (0] 0, g P e

ec&}

<allV- ol +a Y 10 e 1w Mz

ecE}

Iy = ab(0El, xp

< allV - 02l I+ c(h~ D] + 1962 1) lIxs 2|

n — n n 60051 %
< (V- &P + 2060 1 + 00 11 + Ixp * 112

Ceoel
< ch?r 4 Stz
Similarly,

n LM
Is = —ab(Oixy,&p °)

=a > (03] n{&

=

De — a(V - X, 6072

ecE}
n:t
=a > (0] 0 {& e
<a Y 0] vll 2 1€ 2 Mz
ecE}

n:d n:g n
< (B2 2 17 + 116 19) + oexal®

1
< b (1B E I+ 100 |1
Ig can be bounded by utilizing Lemma 4.4,

n:i
Io = ay(&5°4 2 74) < ch® + g )2

Then, we only to consider I7, by Cauchy-Schwarz and Young inequalities, we get
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I7 = (Ouu™ — ugy, Orxy ) < [0 — g ||| O xy ||

+1 _1
< (|0 — w1+ [0xa 1P+ 100 2 1%,
by the identities (see [13])
1 tn+1
o = 55 [ (@t taud 0t
tn—1
tny1
D™ — ult = —— (At — |t — t,|)3ud,, (-, t)dt
tt tt 6At2 n tttt\ ’
tn—1
and by Cauchy-Schwarz inequality, we have
tnt1
n n |2 3 2
o~ < eAt [ (e 0Pt
tn—1
therefore
tnt1
+1 _1
Fr< et [ O+ 1006+ oo
tn—1

Based on the estimates of left and right-hand side terms, there holds

1 +3 -3 1 n+l n
Q—At(llatxff 201? = 1 0exu 2||2)+4—Atau(Xu+17Xu+l)
T 2 G~ ) + a0 )
4Atau(><u s Xu L Xp ap(Xp *, Xp
tn41
Ccoel n:i
<cAt? / (IVpu (5 OI17 + [[pese (-, 1) 1*)dt + Tllxp 2|12
tn—1
tnt+1
+ear / (A (N1 + lwseee GO + ([ Vagee (-, 8)[1?)dt
tnfl

tnt1
ch2(r+1) , n+l n—1
+ B [ IR e+ e+ oG+ oo

tn—1

Multiplying (41) by 4At, and in light of the coercivity, we have

+1 _1
2010 2 1* = 100 2 11%) + aula ™)

L1 _
el P = 1) + Seeon A I = au(a=" 32
tnt1
<eAf! / (19Dt )12 + [pece (- D)t + A2

tn—1

(42)
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tn+1
+ cAtt / (1Aug (- )7 + [ Vager (- 17 + [fugee (-, £)]1%)dt
tn—l
tnt1
il 1
+ ch?r ) / e (-, 0)|12 41t + eAL([0exu 212 + [18exu 2 [12).
tnfl

Summation over (41) from n =1 to m(m < N — 1), we get

m
+1 .1
2HatXum : H2 + au(XT-Ha X:ln+l) + CO|‘X;n—~_1||2 + Ceoe1 At Z ”XZ : ||§

n=1
m
n+i n—3i1 1
<c(At'+ B + At > ([0xa 2P+ 100w 2 11?) + 2010 |12
n=1

+ au(Xus Xu) + au(xu Xa) + oI + I 11%).-

From the boundedness and Lemma 4.5, we have

au(Xm Xu) + au(xa xa) + o (Il + [xp11%)
< e(|lxall? + lIxall?) + collxpll® + IIxpl*)
< c(At* + 1),

1
Note that, according to the definition of d; x4 , it satisfies

1 1 _ ;0 1II 1 _ II 0
[ i e e A L L]
At At

u! —u — (uf —u?) u! —u’ - I, (u! —u?)
< LA | . I7.

- At At

Lemma 4.5 gives

u' —u’ — (), — )

| At

| < cAt? 4 ch™,

and by Cauchy-Schwarz inequality and approximation property of elliptic projection, we get

t1
ul —u (I-1I,)
=) = 1S [ war
to
ty
1
=5 / (1= Ty )udt]| < [[(T = Th)u, | < eh®7 Y,
to

where I is identity operator. Therefore, it satisfies

190x2 |17 < (At 4 R2HD),

17

(44)
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Then, we obtain

+
2000 P17+ anla o) + ol IR+ ccoelAtZ 211

n=1
< A 4+ ch® 4+ AL (|9 F 7 + o % )17).
n=1

By the coercivity of a, and a,, we get

J’_
10 117 + ceoea (2 + IX12)

+ oI P + DG I%) + ceoer At Z I 212

n=1
m
1
< ¢At* + ch® + cAt Z 1002 |12
n=0

In light of the Gronwall inequality, there holds

m+1
collxp 1P + l0exa” 2 |2
m

n:l
FXTZ ALY x 212 < eAtt 4 ch®.

n=1

Using triangle inequality, we have
.1
ot — 2 § ol =l

m
.1 .1
= bt = EHE Y At - &7 12
n=1
m

n:l
< X R + 3 At 12 + N6 12)

n=1

< ch®" + cAt*.

¥l
Particularly, we use pZ'2 to approximate p™, thus

m
.1 .1 :1
> At —p P = ZNHP prE 4P —p, R 2
n=1 n=1
m

m
.1 1 :1
<N ALt —pmEZ 4 Y Atz — 2

n=1 n=1

< ch®" + cAtt.
Based on the above analysis, we finish the proof of the priori error estimates by replace m + 1 with m. O

.1
Note that, the estimate for pore pressure p is reasonable, because we use pZ' 2 to approximate p(-,t,) not
pj in fully discrete scheme (13)-(14).
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Fig. 1. Uniform mesh-grid.

5. Numerical experiments

In this section, we list some numerical tests to examine the convergence analysis, both spatial and
temporal convergence rates are validated by the prescribed examples. Some suitable parameters are chosen
to verify the theoretical results in numerical examples. For simplicity, we consider the computation domain
with © = [0, 1] x [0, 1] and set parameters ¢, = 1, « = 1, A = 1, p = 1 and K =T (unit matrix). Particularly,
the rest of parameters may vary with different numerical tests. For the finite element spaces, = 1 and
r = 2, are chosen in the following numerical experiments. Let u = (u1, u3), then we consider the problem
has exact solutions and the exact solutions of original problem (1)-(9) are defined by

p =sin(t)sin(mz)sin(my),
uy =sin(t)sin(rz)sin(ry),

ug =sin(t)sin(rz)sin(mry),

where source terms f and [ can be determined by model equations (1) and (2), respectively. Moreover, the
initial-valued conditions p°, u and uf, are obtained by taking values at ¢ = 0, respectively, and we can get
the Dirichlet boundary conditions by using the corresponding exact solutions to confined to the boundary
0f). Particularly, we consider the uniform mesh-grid Fig. 1 in the following numerical tests. For simplicity,
we introduce the norms which is discontinuous in time

N
éll720.7x) = At D 1611
n=1

5.1. Spatial convergence order

In this subsection, we verify the spatial convergence orders of fully discrete scheme by choosing a small
time step-size At = 0.00001 and terminal time 7" = 0.00101. In addition, we take 81 = 2 = 10 when r = 1
and 81 = B2 = 20 when r = 2.

From Table 3 and Table 4, we can observe that the spatial convergence rate is the first order when r = 1
and square order when r = 2, both of which are all optimal and accord with theoretical convergence analysis.
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Table 3
Spatial convergence rate with » = 1.
h P — palllL2co. 71 Rate [T —wnlllL2c0.7)1-51) Rate
1 1.6620e-04 - 3.1028e-05 -
1 1.1156e—04 - 1.6478e-05 -
1 4.6555e-05 1.26 8.3670e-06 0.97
+ 1.3345¢-05 1.80 4.1998¢-06 0.99
+ 3.6874¢-06 1.85 2.1024¢-06 0.99
Table 4
Spatial convergence rate with r = 2.
h P — palllLzco.zi-11) Rate [T — wnlllL2c0.7)1-51) Rate
1 5.4091e-05 - 1.2706e-05 -
1 1.0267e-05 2.39 3.3623e-06 1.91
L 1.5403e-06 2.77 8.5233e-07 1.98
& 2.2482e-07 2.74 2.1352e-07 1.99
= 3.9845¢-08 2.50 5.3114e-08 2.00
Table 5
Temporal convergence rate with » = 1.
At h®llp =l Rate  |[Ju—unlllz2o,75.p)  Rate
& 1 2.9958e-01 - 5.3730e-01 -
& + 8.7184e-02 1.78 1.3047e¢-01 2.04
el & 2.2936e—02 1.92 3.1672e—02 2.04
Table 6
Temporal convergence rate with » = 2.
At h lllp — prlllezo 710 Rate  |llu—unlllz20,7;.,)  Rate
& i 1.9184e-01 - 2.997e-01 -
= 1 5.5064e-02 1.80 8.3238e-02 1.84
+ 1 1.4571e-02 1.91 2.1388e-02 1.96
= + 3.7264¢-03 1.96 5.3858¢-03 1.98
s = 9.4061e-04 1.98 1.3496e-03 1.99

5.2. Temporal convergence order

In this subsection we report the temporal convergence rate of proposed fully discrete scheme with a fixed
T = 1. For efficiently validate the square convergence order of temporal variable, we shall make a proper
match between step-size At and mesh-size h. Particularly, we choose 5At = h and 1 = (2 = 10, when
r =1 and set 5At = h and 7 = 2 = 20, when r = 2.

From Table 5 and Table 6, we can make a conclusion that the fully discrete scheme has the square
temporal convergence rate according to the relation between At and h, and these numerical results well
support the theoretical analysis.

6. Conclusions

In this paper, we propose a fully discrete scheme for the dynamic Biot’s model by using discontinuous
Galerkin method and proper difference formulations. The proposed scheme is proved to be efficient in both
theoretical analysis and numerical examples by taking ingenious initial values for both pore pressure and
displacement.
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