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Li and Llibre in [J. Differential Equations 252 (2012) 3142–3162] proved that a 
Liénard system of degree four: dx

dt
= y − (ax + bx2 + cx3 + x4), dy

dt
= −x has at 

most one limit cycle. Moreover, the limit cycle is stable and hyperbolic if it exists. 
Based on their works, the aim of this paper is to give the complete bifurcation 
diagram and global phase portraits in the Poincaré disc of this system further. First 
we analyze the equilibria at both finity and infinity. Then, a necessary and sufficient 
condition for existence of separatrix loop is founded by the rotation property. 
Moreover, a necessary and sufficient condition of the existence of limit cycles is 
also obtained. Finally, we show that the complete bifurcation diagram includes one 
Hopf bifurcation surface and one bifurcation surface of separatrix loop.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction and main results

In nonlinear applied science and engineering, the Liénard system ẍ+ f(x)ẋ + g(x) = 0 is very common. 
Therefore, mathematicians and physicists et al. are very interested in the Liénard system, see [23,26,33] and 
the references therein. Lins, de Melo and Pugh in [22] planned to study the number of limit cycles of

{
ẋ = y − F (x),
ẏ = −x,

(1)

where F (x) :=
∫ x

0 f(s)ds is a polynomial. Lins, de Melo and Pugh have proved completely that system (1)
has at most one limit cycle when degF := m = 3 and no limit cycles for the cases m ≤ 2. Moreover, they 
conjectured that the upper bound of the number of limit cycle of system (1) is [k−1

2 ] when m ≥ 4. This 
problem has also attracted Smale, see [30]. Until 2012, Li and Llibre in [21] proved the uniqueness of limit 
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cycle for the case m = 4. However, the conjecture is incorrect for the cases m ≥ 6 since Dumortier et al. in 
[16] provided one additional limit cycle so that it is not true when m ≥ 7, and Maesschalck and Dumortier 
in [25] providing two additional limit cycles when m ≥ 6, De Maesschalck and Huzak in [9] proved further 
that the maximum number of limit cycles of system (1) is at least m −2 when m ≥ 6. As far as we know, we 
do not know whether the conjecture for the case m = 5 is correct. Summarizing the aforementioned results, 
Llibre and Zhang in [24] gave the following improved open problem:

What is the maximum number of limit cycles for the Liénard differential systems (1) when degF = 5?
Besides, many mathematicians were also interested in

{
ẋ = y − F (x),
ẏ = −g(x),

(2)

where g(x) �= x and F (x) are polynomials. For simplicity, let (degF, deg g) := (m, n). By Dulac criterion, it is 
clear that system (2) has no limit cycle as m = 1. For the simplest case (m, n) = (2, 2), note that system (2) is 
a famous Bogdnov-Takens system, see [7,19]. In this case, Coppel in [6] proved the uniqueness of limit cycle. 
Based on the result of the uniqueness for limit cycle, Perko in [27] gave the complete bifurcation diagram 
and all global phase portraits of system (2) and Gasull et al. in [18] solved the Perko’s two conjectures 
about the properties of the homoclinic bifurcation curve. For the case (m, n) = (2, 3), Dumortier and 
Rousseau investigated the complete bifurcation diagram and all global phase portraits of system (2) except 
they conjectured the number of limit cycle surrounding three equilibria is at most one. Later, Dumortier 
himself and Li in [10] solved this conjecture. For the case (m, n) = (3, 2), Dumortier and Li in [11] also 
investigated the complete bifurcation diagram and all global phase portraits of system (2). However, for the 
cases m + n ≥ 6, the dynamics are more complex than the cases m + n ≤ 5. For example, the maximum 
number of limit cycles are larger than one for the cases m +n ≥ 6. Up to now, the maximum number of limit 
cycles for any case m +n ≥ 6 is still unknown. We can still find many articles about the case (m, n) = (3, 3), 
see [1–5,8,12–15,17,20,31].

By the aforementioned introduction, we know that the bifurcation diagrams and global phase portraits of 
the cases m +n ≤ 5 have been solved completely except the case (m, n) = (4, 1). The purpose of this paper 
is to give the bifurcation diagram and all global phase portraits of the case (m, n) = (4, 1). The Liénard 
system of the case (4, 1) is

{
dx
dt = y − (a1x + a2x

2 + a3x
3 + a4x

4),
dy
dt = −x,

(3)

where (a1, a2, a3) ∈ R3 and a4 �= 0. To reduce the number of parameters, with the following transformation:

x → 1
3
√
a4

x, y → 1
3
√
a4

y,

we change (3) to
{

dx
dt = y − (ax + bx2 + cx3 + x4),
dy
dt = −x,

(4)

where

(a, b, c) := (a1,
a2
3
√
a4

,
a3

3
√
a42 ) ∈ R3.

With (x, t, c) → (−x, −t, −c), system (4) is invariant. Therefore, we only need to discuss the case c ≥ 0.
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Fig. 1. The cross-section b = b∗ of the bifurcation diagram and global phase portraits of system (4) for any fixed b∗.

The main results of this paper are the following theorem.

Theorem 1.1. The global bifurcation diagram of system (4) consists of the origin and two bifurcation surfaces

(a) Bifurcation of separatrix loop surface SL = {(a, b, c) ∈ R2 × [0, +∞)| c = ϕ(a, b), a ≤ 0},
(b) Hopf bifurcation surface H = {(a, b, c) ∈ R2 × [0, +∞)| a = 0, c > 0},

where ϕ is continuous in a, b and decreasing in a. The cross-section b = b∗ of the bifurcation diagram and 
all global phase portraits of (4) are shown in Fig. 1, where

O = {(a, b, c) ∈ R2 × [0,+∞)| a = c = 0},

I = {(a, b, c) ∈ R2 × [0,+∞)| a > 0, c ≥ 0},

II = {(a, b, c) ∈ R2 × [0,+∞)| a < 0, c > ϕ(a)},

III = {(a, b, c) ∈ R2 × [0,+∞)| a < 0, 0 ≤ c < ϕ(a)}.

Remark. By Figure 7 of [22] and Figure 2 of [24], we can obtain the global phase portrait in the region O
directly.

In the rest of this paper, we study the global bifurcation diagram and the global phase portraits of system 
(4). In section 2, the equilibria at both finity and infinity are analyzed, Hopf bifurcation at the origin point 
is investigated. We give a necessary and sufficient condition for existence of separatrix loop and also a 
necessary and sufficient condition for existence of limit cycle in section 3. In section 4, we classify the global 
phase portraits and obtain the complete global bifurcation diagram. Moreover, to show the existence of the 
bifurcation of separatrix loop surface numerically, we give two numerical phase portraits in II and III.
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2. Local dynamics of system (4)

In this section we analyze the local dynamics of system (4). Firstly, we discuss the finite equilibria.

Lemma 2.1. System (4) has a unique finite equilibrium O : (0, 0). O is a stable (resp. an unstable) node for 
a ≥ 2 (resp. a ≤ −2); a stable (resp. an unstable) focus when 0 < a < 2(resp. − 2 < a < 0); a center for 
a = c = 0; a stable weak focus of order one for a = 0, c > 0.

Proof. It is easy to know that there is only one equilibrium O of system (4). Clearly, the Jacobian matrix 
at O is

J =
(
−a 1
−1 0

)
.

Obviously, detJ = 1, trJ = −a. Then, we have tr2J − 4detJ = a2 − 4. Therefore, when either a ≥ 2 or 
a ≤ −2, O is a node. O is stable (resp. unstable) when a ≥ 2 (resp. a ≤ −2). Moreover, O is a focus and 
stable (resp. unstable) when 0 < a < 2 (resp.−2 < a < 0). When a = 0, i.e., trJ = 0, we only know that O
is a center or focus. In other words, we need to judge O further when a = 0. Considering a = 0, we rewrite 
system (4) as follows

{
ẋ = y + p(x),
ẏ = −x + q(x),

where p(x) = −bx2−cx3−x4 and q(x) = 0. By [19, p. 152], we can obtain the first focal value at (x, y) = (0, 0)
of system (4)

g3 = 1
16{(pxxx + pxyy + qxxy + qyyy) − [pxy(pxx + pyy) − qxy(qxx + qyy) − pxxqxx + pyyqyy]}

= −3c
8 < 0

for c > 0. Thus, O is a stable weak focus of order one when c > 0.
Considering the other case a = c = 0, O is a center by the symmetric property of vector field (y− bx2 −

x4, −x) to the y-axis. �
By Lemma 2.1, it follows that O is a stable weak focus of order one for a = 0, c > 0 and a source for 

a < 0. Therefore, when a crosses the value a = 0 into the second quadrant, O loses the stability. In other 
words, a Hopf bifurcation occurs at O. Then, in the following lemma we will prove it.

Lemma 2.2. Assume that c > 0. System (4) undergoes a Hopf bifurcation at (0, 0) and generates a unique, 
stable, limit cycle at a small neighborhood of (0, 0) as a decreases from zero.

Proof. When a = ε, the eigenvalues of J at O are λ1,2 = − ε
2 ±

√
ε2

4 − 1, where |ε| > 0 is small. It is easy 
to see that λ1,2 are a simple pair of pure imaginary roots when ε = 0. Thus, it is easy to obtain

d

dε
(Reλ1,2(ε))|ε=0 = d(−ε/2)

dε
= −1

2 �= 0

and
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Fig. 2. Equilibria at infinity of system (4) on the Poincaré disc.

κ(ε) := εg3
d

dε
(Reλ1,2(ε))|ε=0 = 3cε

16 .

By Theorem 2.4 of [7, Chapter 3], κ(ε) < 0 implies that system (4) undergoes a Hopf bifurcation at (0, 0)
when ε < 0 and a stable limit cycle bifurcates from O. �

In order to study the dynamics of large |x| + |y| of system (4), we study the qualitative properties of 
equilibria at infinity.

Using a Poincaré transformation x = 1/z, y = u/z, we change system (4) to
{

du
dt1

= u + cuz + buz2 − z3 + auz3 − u2z3,

dz
dt1

= z + cz2 + bz3 + az4 − uz4,
(5)

where dt = z3dt1. Obviously, system (5) has a unique equilibrium A : (0, 0) on the u-axis. Clearly, A is an 
unstable star node. A on the (u, z)-plane corresponds to two nodes I+

A and I−A at infinity on the x-axis on the 
(x, y)-plane, where I+

A is an unstable node and I−A is a stable node. With the other Poincaré transformation 
x = v/z, y = 1/z, we can write system (4) in the following form

{
dv
dt1

= z3 − v4 − avz3 − cv3z − bv2z2 + v2z3,

dz
dt1

= vz4,
(6)

where dt = z3dt1. One needs to investigate the unique equilibrium B : (0, 0) on the (v, z)-plane. It is obvious 
that B is degenerate. B on (v, z)-plane corresponds to I+

B and I−B at infinity of the positive and negative 
y-axis on (x, y)-plane.

Definition 2.1. An equilibrium is called a saddle when it has exactly two stable manifolds and two unstable 
manifolds. An equilibrium is called a cusp when it has exactly one stable manifold and one unstable manifold.

By [22] and [24], we can obtain the following lemma directly. However, a proof of this lemma is sketchy 
in [22], and Llibre and Zhang in [24] did not prove it. Therefore, we intend to give a different complete proof 
of this lemma.

Lemma 2.3. I+
B is a degenerate saddle and I−B is a cusp. Moreover, the equilibria at infinity on the Poincaré 

disc are shown in Fig. 2.

Proof. By the polar coordinates v = r cos θ and z = r sin θ, system (6) can be written in polar form

1 dr = H1(θ) + O(r)

r dθ G1(θ) + O(r)



6 X. Chen, H. Chen / J. Math. Anal. Appl. 485 (2020) 123802
where G1(θ) = − sin4 θ and H1(θ) = cos θ sin3 θ. It is easy to obtain that G1(θ) = 0 has two real roots 
0 and π, and H1(0) = H1(π) = 0. By [33], we need H(θ) �= 0 in any exceptional direction so that we 
can use the normal sector method. Therefore, we intend to blow up this degenerate equilibrium. With the 
Briot-Bouquet transformation v → v, z → z1v, we rewrite system (6) as

{
dv
dt2

= −v2 − cz1v
2 − bz2

1v
2 + z3

1v − az3
1v

2 + z3
1v

3,

dz1
dt2

= z1v + cz2
1v − z4

1 + bz3
1v + az4

1v,
(7)

where v2dt1 = dt2. We need only to analyze equilibrium (0, 0) of system (7). Obviously, it is degenerate. 
With polar coordinates, by (7) we obtain

1
r

dr

dθ
= H2(θ) + O(r)

G2(θ) + O(r)

where G2(θ) = 2 sin θ cos2 θ and H2(θ) = cos θ
(
sin2 θ − cos2 θ

)
. It is easy to compute that the roots of 

G1(θ) = 0 are 0, π2 , π, 
3π
2 . Since

G′
2(0)H2(0) = G′

2(π)H2(π) = −2 < 0,

system (7) has a unique orbit connecting (0, 0) along θ = 0 as t → +∞ and a unique orbit connecting (0, 0)
along θ = π as t → −∞. Because H2(π2 ) = H2(3π

2 ) = 0, we need to use Briot-Bouquet transformation 
further. With v → v1z1, z1 → z1, we change system (7) to

{
dv1
dt3

= −2v2
1 − 2cv2

1z1 − 2bv2
1z

2
1 − 2av2

1z
3
1 + 2v1z

2
1 + v3

1z
4
1 ,

dz1
dt3

= v1z1 + cv1z
2
1 − z3

1 + bv1z
3
1 + av1z

4
1 ,

(8)

where z1dt2 = dt3. Here, we need only to study (0, 0) of system (8). Clearly, the origin of system (8) is 
degenerate. By v1 = r cos θ, z1 = r sin θ, from (8) we obtain

1
r

dr

dθ
= H3(θ) + O(r)

G3(θ) + O(r)

where G3(θ) = 3 sin θ cos2 θ and H3(θ) = cos θ
(
sin2 θ − 2 cos2 θ

)
. Clearly, G3(θ) = 0 has exactly four roots 

0, π2 , π, 
3π
2 and G′

3(0)H3(0) = G′
3(π)H3(π) = −6 < 0. Then, system (8) has a unique orbit connecting (0, 0)

along θ = 0 as t → +∞ and a unique orbit connecting (0, 0) along θ = π as t → −∞. However, H3(π2 ) =
H3(3π

2 ) = 0. Thus, we need to use Briot-Bouquet transformation further in the directions θ = π/2, 3π/2. 
Repeating the aforementioned process, with v1 → v2z1, z1 → z1, (8) is changed into

{
dv2
dt4

= −3v2
2 + 3v2z1 − 3cv2

2z1 − 3bv2
2z

2
1 − 3av2

2z
3
1 + v3

2z
5
1 ,

dz1
dt4

= v2z1 − z2
1 + cv2z

2
1 + bv2z

3
1 + av2z

4
1 ,

(9)

where z1dt3 = dt4. Here, we need only to study the degenerate equilibrium (0, 0) of system (9). By v2 =
r cos θ, z1 = r sin θ, from (9) we obtain

1
r

dr

dθ
= H4(θ) + O(r)

G4(θ) + O(r)

where

G4(θ) = 4 cos2 θ sin θ − 4 cos θ sin2 θ and H4(θ) = −3 cos3 θ + 3 cos2 θ sin θ + cos θ sin2 θ − sin3 θ.
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Then, G4(θ) = 0 has exactly six roots 0, π4 , 
π
2 , π, 

5π
4 , 3π2 . Moreover,

G′
4(0)H4(0) = G′

4(π)H4(π) = −12 < 0 and G′
4(
π

2 )H4(
π

2 ) = G′
4(

3π
2 )H4(

3π
2 ) = −4 < 0.

Therefore, system (9) has a unique orbit connecting (0, 0) along θ = 0 as t → +∞, a unique orbit connecting 
(0, 0) along θ = π/2 as t → +∞, a unique orbit connecting (0, 0) along θ = π as t → −∞ and a unique 
orbit connecting (0, 0) along θ = 3π/2 as t → −∞. But H3(π4 ) = H3(5π

4 ) = 0. Thus, we need to blow up 
the degenerate equilibrium. By transformation v2 → v2, z1 → z2v2, (9) can be rewritten as

{
dv2
dt5

= −3v2 + 3v2z2 − 3cv2
2z2 − 3bv3

2z
2
2 − 3av4

2z
3
2 + v7

2z
5
2 ,

dz2
dt5

= 4z2 − 4z2
2 + 4cvz2

2 + 4bv2
2z

3
2 + 4av3

2z
4
2 − v6

2z
6
2 ,

(10)

where v2dt4 = dt5. To study the exceptional directions π/4 and 5π/4 of system (9), we need only to study 
the degenerate equilibrium (0, 1) of system (10). For simplicity, we move the point (0, 1) to the origin. In 
other words, with transformation v2 → v2, z2 → z3 + 1, system (10) becomes

{
dv2
dt5

= 3v2z3 − 3cv2
2 (z3 + 1) − 3bv3

2 (z3 + 1)2 − 3av4
2 (z3 + 1)3 + v7

2 (z3 + 1)5 ,
dz3
dt5

= 4cv2 − 4z3 − 4z2
3 + 8cv2z3 + 4cv2z

2
3 + 4bv2

2 (z3 + 1)3 + 4av3
2 (z3 + 1)4 − v6

2 (z3 + 1)6 .
(11)

With transformation v2 → v2, z3 → −z4 + cv2, t5 → −t5/4, system (11) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv2

dt5
= − 3

4v2 (−z4 + cv2) + 3
4cv

2
2 (−z3 + cv2 + 1) + 3

4bv
3
2 (−z4 + cv2 + 1)2

+ 3
4av

4
2 (−z4 + cv2 + 1)3 − 1

4v
7
2 (−z4 + cv2 + 1)5 ,

dz4

dt5
=z4 − z2

4 + 3
4cz4v2 + c2v2

2 + cv2z
2
4 − 11

4 c2v2
2z4 + 7

4c
3v3

2

+ bv2
2 (−z4 + cv2 + 1)3 + av3

2 (−z4 + cv2 + 1)4 − 1
4v

6
2 (−z4 + cv2 + 1)6

+ 3
4bcv

3
2 (−z4 + cv2 + 1)2 + 3

4acv
4
2 (−z4 + cv2 + 1)3 − c

4v
7
2 (−z4 + cv2 + 1)5 .

(12)

By the implicit function theorem and dz4/dt5 = 0, we can compute

z4 = Υ (v2) = a2v
2
2 + a3v

3
2 + a4v

4
2 + a5v

5
2 + a6v

6
2 + o

(
v6
2
)
, (13)

where a2 = −c2 − b, a3 = −c3 − 3 bc − a, a4 = −c4 − 6 bc2 − 4 ac − 2 b2, a5 = −c5 − 10 bc3 − 10 ac2 − 10 b2c −
5 ab, a6 = −c6 − 15 bc4 − 20 ac3 − 30 b2c2 − 30 abc − 5 b3 − 3 a2 + 1/4. Therefore, by (13), we have

dv2

dt5
= − 1

16v
7
2 + O

(
|v2|7

)
.

By Theorem 7.1 of [33, Chapter 2], we can conclude that (0, 0) of system (12) is a saddle, as shown in 
Fig. 3(a). Therefore, the origin of system (11) is also a saddle, as shown in Fig. 3(b). In other words, (0, 1)
of system (10) is still a saddle, as shown in Fig. 3(c). Now, the number of orbits connecting the origin along 
θ = π/4, 5π/4 of system (9) is clear. Then, the origin of system (9) is shown in Fig. 3(d). So, the origin of 
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Fig. 3. Orbits changing under the Briot-Bouquet transformations.

system (8) is shown in Fig. 3(e), the origin of system (7) is shown in Fig. 3(f) and the origin of system (6)
is shown in Fig. 3(g). Thus, I+

B is a saddle and I−B is a cusp by Definition 2.1. Combining the qualitative 
properties of I±A and I±B , these equilibria at infinity on the Poincaré disc are shown in Fig. 2. �
3. Nonlocal dynamics

As said in Section 1, system (4) has at most one limit cycle by [21]. However, the exact number of limit 
cycle is still unclear. In this section, we will give the necessary and sufficient condition of the existence of 
limit cycles of system (4).

Lemma 3.1. A necessary condition of the existence of limit cycles of system (4) is ac < 0.

Proof. First, we claim that system (4) has no limit cycle for a = c = 0. Assume that system (4) exhibits a 
limit cycle Γ for a = c = 0. In other words, Γ is a isolated closed orbit. Then, all orbits except O are closed 
by the symmetry of (y − F (x), −x) for a = c = 0. However, a limit set of a orbit in a small neighborhood 
of Γ is Γ since Γ is a limit cycle. This is a contradiction.
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Second, we claim that system (4) has no limit cycle for ac ≥ 0 and a2 + c2 > 0. Since

F (x) − F (−x) = 2ax + 2cx3 > 0

for x > 0, the assertion can be proven by [22] and [24, Proposition 4]. Thus, this proof is finished. �
When ac < 0, we give further the following proposition.

Proposition 3.1. When ac < 0, there is a continuous function c = ϕ(a, b) which is strictly decreasing on a, 
for which the following statements hold:

(a) System (4) has a separatrix loop if and only if c = ϕ(a, b).
(b) System (4) has a unique limit cycle if and only if c > ϕ(a, b).
(c) System (4) has no limit cycles for c < ϕ(a, b).

Proof. First, we will prove that vector fields of system (4) are rotated about a and c. It is clear that

∣∣∣∣∣ y − (a1x + bx2 + cx3 + x4), −x

y − (a2x + bx2 + cx3 + x4), −x

∣∣∣∣∣ = (a1 − a2)x2 > 0, (14)

where x > 0 and a1 > a2 are arbitrary. Thus, by [32, Section 3 ] and [33, Section 3 of Chapter 4], the vector 
field (y − (ax + bx2 + cx3 + x4), −x) is a generalized vector field with respect to parameter a. It is also 
obvious that

∣∣∣∣∣ y − (ax + bx2 + c1x
3 + x4), −x

y − (ax + bx2 + c2x
3 + x4), −x

∣∣∣∣∣ = (c1 − c2)x4 > 0, (15)

where x > 0 and c1 > c2 are arbitrary. Then, the vector field (y − (ax + bx2 + cx3 + x4), −x) is rotated 
about c.

Second, we claim that the unstable and stable manifolds of I+
B either intersect the negative y-axis or 

connect with O. On the one hand, by Lemma 2.3, the unstable manifolds of I+
B cannot connect with I+

A and 
I−B since I+

A is unstable and I−B is a cusp. On the other hand, the unstable manifolds of I+
B cannot intersect 

anticlockwise the positive y-axis since ẋ > 0 in the positive y-axis. The assertion is proven.
Let a − c +k = 0, where k > 0 is a any constant. By Lemma 3.1, system (4) has no limit cycle for ac ≥ 0. 

Assume that the first intersection points of the unstable and stable manifolds of I+
B and the negative y-axis 

are respectively P1 and P2, where one of P1 and P2 allows to be O. On the one hand, we consider a = 0 and 
c = k. Since O is a stable focus by Lemma 2.1, we claim that yP1 > yP2 , as shown in Fig. 4(a). Otherwise, 
when yP1 < yP2 , system (4) has an unstable limit cycle by a Poincaré-Bendixson theorem; when yP1 = yP2 , 
i.e., system (4) has a separatrix loop, system (4) has an unstable limit cycle for small a < 0 by the rotated 
parameter a and homoclinic bifurcation. This is a contradiction. Thus, the assertion is proven. On the other 
hand, we can prove similarly that yP1 < yP2 for c = 0 and a = −k, as shown in Fig. 4(b). It is easy to check 
that the vector field (y − (ax + bx2 + (a + k)x3 + x4), −x) is rotated about a. By [28,29], the unstable and 
stable manifolds of I+

B vary monotonically as a vary monotonically. Further, yP1 decreases and yP2 increases 
as a increases. By the mean value theorem, there is a unique value a0 ∈ (−k, 0) for fixed b and k such that 
yP1 = yP2 , i.e., system (4) has a separatrix loop. Note that k is arbitrary and the vector fields of system (4)
is rotated about a and c. Therefore, there is a continuous decreasing function c = ϕ(a, b) such that system 
(4) has a separatrix loop. Thus, the statement (a) is proven.
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Fig. 4. The first intersection points of the unstable and stable manifolds of I+
B and the negative y-axis.

Consider c > ϕ(a, b), i.e., yP1 > yP2 . With yP1 > yP2 and the instability of O, system (4) has at least 
one stable limit cycle by the Poincaré-Bendixson theorem. By [21], system (4) has at most one limit cycle. 
Moreover, the limit cycle is stable and simple if it exists. Thus, the statement (b) is proven.

Finally, consider c < ϕ(a, b), i.e., yP1 < yP2 . Assume that system (4) exhibits one stable limit cycle. By 
yP1 < yP2 and the Poincaré-Bendixson theorem, system (4) has at least one unstable limit cycle surrounding 
the stable limit cycle. This is a contradiction. Thus, the statement (c) is proven. Consequently, this proof 
is finished. �
4. Proof of Theorem 1.1 and numerical examples

Proof of Theorem 1.1. By the aforementioned lemmas and propositions, system (4) occurs a Hopf bifurca-
tion H and a bifurcation of separatrix loop SL. Then, the upper half ac-plane is divided by H and SL into 
three regions I, II, III when b is fixed. In other words, the complete bifurcation diagram is given, as shown 
in Fig. 1.

It is note that the equilibria at infinity of system (4) are fixed for all (a, b, c) ∈ R × R × [0, ∞) by 
Lemma 2.3. In I ∪H, the origin of system (4) is a sink by Lemma 2.1 and system (4) has no limit cycle by 
Lemma 3.1. Therefore, the global phase portrait in the region I ∪H can be obtained. In II, the origin of 
system (4) is a source by Lemma 2.1 and system (4) has a unique limit cycle by Proposition 3.1. Therefore, 
the global phase portrait in the region II can be obtained. In III, the origin of system (4) is a source by 
Lemma 2.1 and system (4) has no limit cycle by Proposition 3.1. Therefore, the global phase portrait in 
the region III can be obtained. In O, the global phase portrait has been given in [22] and [24]. In SL, 
the origin of system (4) is a source by Lemma 2.1 and system (4) has a separatrix loop and no limit cycle 
by Proposition 3.1. Therefore, the global phase portrait in the region SL can be obtained. Thus, we have 
completed this proof. �

Then, to demonstrate the analytical results of the existence of the bifurcation of separatrix loop surface, 
we give the following two numerical examples.

Example 1. When (a, b, c) = (−1, 1, 3), the numerical phase portrait is shown in Fig. 5(a). We can find that 
system (4) has a unique limit cycle by numerical simulations, implying (−1, 1, 3) ∈ II.
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Fig. 5. The numerical phase portraits.

Example 2. When (a, b, c) = (−1, 1, 1), the numerical phase portrait is shown in Fig. 5(b). We can find that 
system (4) has no limit cycle by numerical simulations, implying (−1, 1, 1) ∈ III.
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