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In this paper, a nonautonomous predator—prey dispersion model with functional
response and continuous time delay is studied, where all parameters are time
dependent. In this system, which consists of n-patches, the prey species can
disperse among n-patches, but the predator species is confined to one patch and
cannot disperse. It is proved the system is uniformly persistent under any disper-
sion rate effect. Furthermore, the sufficient conditions are established for global
attractivity of a periodic solution of the system.  © 2001 Academic Press
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1. INTRODUCTION

For many species spatial factors are important in population dynamics,
as discussed by many authors. The theoretical study of spatial distribution
can be traced back at least as far as Skellem [11], and has been extensively
studied in many papers (for example in [1, 4, 6, 7, 9, 10, 14] and references
cited therein). Most of the previous papers focused on the coexistence of
populations modelled by systems of ordinary differential equations and the
stability (local and global) of equilibria. Many existing models deal with a

" The research is supported by the National Science Foundation of China.
2 E-mail: Ischen@math08.math.ac.cn

0022-247X /01 $35.00
Copyright © 2001 by Academic Press
All rights of reproduction in any form reserved.



2 SONG AND CHEN

single population dispersing among patches. Some of them deal with
competition and predator—prey interactions in patchy environments.

On the other hand, the effect of the past history on the systems’ stability
is also an important problem in population biology. Recently persistence
and stability of a population dynamical system involving time delays have
been discussed by some authors (for example [2, 3, 8] and references cited
therein). They obtained some sufficient conditions that guarantee perma-
nence of population or stability of positive equilibria or positive periodic
solution. Song and Chen [12, 13] extended the autonomous Lotka—Volt-
erra system to a two species nonautonomous dispersion Lotka—Volterra
system, and they investigated persistence of the populations and periodic
behavior of the system.

In this paper, we consider a nonautonomous predator—prey dispersion
model with functional response and continuous time delay. In this system,
which consists of n-patches, the prey species can disperse among n-patches,
but the predator species is confined to one patch and cannot disperse. Our
purpose is demonstrate that the dispersion rates have no effect on uniform
persistence of the solution of the system. Furthermore, we establish
conditions under which the system admits a positive periodic solution
which attracts all solutions.

2. MODEL AND BACKGROUND CONCEPT

In this paper, we consider the predator—prey dispersion-delay model

X =x1(al(t) —by(t)x; — Bn(f)fiku(s)xl(t +s) ds

c(t)y )

S
+i_i2Di1(t)(xi —Xx,)

b= a0 =805 = 8,0 [ ky©xG ) s] @
+ L0, )

Y P L O L HE
y=J 1+ a()x, Y

_Bw(t)f_OTklo(S)Y(f +5) ds),
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where j=2,3,...,n (i #j), x;, and y are population density of prey
species x and predator species y in patch 1, and x; is density of prey
species x in patch j. Predator species y is confined to patch 1, while the
prey species x can disperse among n-patches. D, (1) (i,j = 1,2,...,n) are
dispersion coefficients of species x.

Now we let f'=inf{f(¢): t € R} and f™ = sup{f(¢): t € R}, for a
continuous and bounded function f(¢).

In system (2.1), we always assume:

H) af0),b(0),D;(1) (i,j = 1,2,...,n), c(t), dt), e(t), (1), a(t),
and B,,(¢) are continuous and strictly positive functions, which satisfy

mln{a b!, D!, e, d, ql,a’, ij} >0

i»Yis Hij»

max{ b, DY e, dM, e, q", a, ,81’;’} < oo,

17

(Hy) kyj(s) =0 on[—7,0], (0 < 7<), and k,/(s) is a piecewise
continuous and normalized function such that [% k,(s)ds =1 (j = 0,1,

).

We adopt the following notations and concepts throughout this paper.

Let x = (X, X5,..., %,, V) ER"™ ! ={x eR" L x, >0 =1,2,...,n),
y > 0} Denote x > 0 if x € Int R”“ For ecological reasons, we con51der
system (2.1) only in Int R"*".

Let C*=C(—r,0I; R"“) denote the Banach space of all nonnegative
continuous functions with

@l = sup |®(s)], for ® e C*.
se[—1,0]

Then, if we choose the initial function space of system (2.1) to be C*, it is
easy to see that, for any ® = (®,,P,,...,d,,,) € CT and P(0) > 0,
there exists a € (0,) and a unique solution x(z, ®) of system (2.1) on
[— 7, @), which remains positive for all ¢ € [0, a); such solutions of system
(2.1) are called positive solutions. Hence, in the rest of this paper, we
always assume that

deCt, ®0)>0. (2.2)

DEFINITION.  The system (2.1) is said to be uniformly persistent if there
exists a compact region D C Int(R""') such that every solution Z(¢) =
(x,(8), x,(2), ..., x,(2), y(¢)) of system (2.1) with initial condition (2.2) even-
tually enters and remains in region D.
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3. UNIFORM PERSISTENCE

LEMMA 3.1. Every solution Z(t) of system (2.1) with initial conditions
(2.2) exists in the interval [0, + %) and remains positive for all t > 0.

Proof. 1Tt is true because

n
%ile,—0= 2 Dy(t)x; >0 for x; > 0,

i=2
n

Xily=0= X Dy(t)x; >0  forx;>0(i+#j),
i=1

e(s)x,

TTa()n —q(s)y

—d(s) +

y(1)

y<0)exp{ fo’

~8(s) [ k()35 + 0) du} ds},
for y(0) > 0.

LEMMA 3.2. Let Z(t) = {x,(¢), x,(t),..., x,(t), y(t)} denote any positive
solution of system (2.1) with the initial conditions (2.2). Then there exists a

T > 0 such that
x(t)y <M, (i=12,...,n), y(t) <M,, fort>T (3.1)

where
M, > My, M, > M}

al" ay ar e"M;
M] = max b_ll’b_é"“’b_,ll , Mz = ql . (32)

Proof. We define
V(t) = max{x,(1), x,(1),..., x,(1)}.

Calculating the upper right derivative of V" along the positive solution of
system (2.1), we have

(P) If V(¢) = x,(¢), then
D*V(t) =x,
<x()[a)(t) = by(1)x,(1)]
<V(t)[ar — by (1)].
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(P,) If V(1) = x,(t) (j = 2,3,...,n), then
DTV (t) =x;(t)
<x(0)]a,(1) = b(1)x,(1)]
<sV()|ar =bV()]  (j=2.3,....n).
From (P,) and (P,), we derive
D'V (t) < V(t)[a — bV (1)]. (3.3)
From (3.3), we can obtain

D If max{x,(0), x,(0),...,x,0)} <M, then max{x,(¢), x,(¢),...,
x, ()} <M, t=0.

D If max{x,0), x,(0),..., x,(0)} > M,, then let —a = max{M (a’
— b/M,)} (> 0); if V(0) =x,0) > M, holds, then there exists e > 0,
such that if ¢ € [0, €), V(¢) = xj(t) > M, and we have

DV (x,(1), x5(t),..., x,(2)) =%(t) < —a<0  (j=1,2,...,n).
So there exists 7} > 0 if ¢ > T,, and we have
V(1) = max{x,(t), x,(2),...,x,(t)} < M,.
In addition, from the system (2.1), we obtain
y(1) <y(t)(e™M, —q'y(t))  fort>T,. (3.4)

Suppose y(¢) is not oscillatory about e”M, /q'; that is, there exists a
T, > 0 (T, > T,), such that

y(t)y > ——, fort>T, (3.9)
q
or
eli
y(t) <——, fort=T,. (3.6)
q

Suppose (3.6) holds; then (3.1) follows.

Suppose (3.5) holds. We can choose M, such that y(t) > M, > e™M,/q'
> M} and e"™M, — q'M, < 0; if we let —8 = M,(e™M, — q¢'M,) (> 0),
then y(#) < —B < 0. Hence, in this case y(¢) is strictly monotone decreas-
ing with speed at least B. So there exists T) > 0 (Ty > T,), such that
y(t) < M, if t > T).
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Suppose that y(¢) is oscillatory about e™M,/q'. Let y(f) denote an
arbitrary local maximum of y(¢). It is easy to see from (3.4) that

dy() . ;
0= " sy(t)(eli - qu(t)), (3.7)
and this implies
- e"M,
y(1) < ¢ (3.8)

Since y(f) is an arbitrary local maximum of y(¢), we can conclude that
y(t) < M, holds eventually.
Let T = T). Then

x(t)y <M, (i=12,...,n), y(t)y<M,, fort>T.

The proof is complete.
We let

1 BV ES m % ! m £ ! m £
ay — c"M; — BM{ a; — BhM a, — Bi,Mj

= min
m 2 m > > m
bi b3 b,

*
ny

THEOREM 3.1.  Suppose the system (2.1) satisfies
(Hy) m* >0,
H) A+ a™™F) te'mf >d™ + BEM;;
then system (2.1) is uniformly persistent

Proof.  Suppose Z(t) = (x,(2), x,(¢), ..., x,(¢), y(¢)) is a solution of sys-
tem (2.1) which satisfies (2.2).
According to the system (2.1) and Lemma 3.1 if # > T, we can obtain

X le(ai —¢"M, — BlIM, — b{'x,)

+ Z Dy(t)(x; —xy),
i=2
) . (3.9)
X; ij(aj — ﬂﬁM1 — b-’"xj)

+4iDij(t)(x,-—xj) (j=2,3,...,n).

From (3.2) and (H;), we know a} — ¢"M¥ — B/iM; > 0, aj — BIIM; > 0

hold. Also from the proof of Lemma 3.1, we obtain that M, can be chosen
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close enough to M} (i =1,2) to make a} — c¢"M, — B{{M, >0, a} —
BiM, > 0 hold.

We choose m, as 0 < m; < m¥.

Define V(¢) = min{x,(¢), x,(¢), ..., x,(t)}. Then by calculating the lower
right derivative of V/,(¢) along the positive solution of system (2.1), similar
to the discussion for the inequality (3.3), it is easy to obtain

xl(t)[a€ — "M, — BIM, — b{”x](t)]

) (i=1)
D Vi(t) =x,(t) =
(1) =40 x;(1)[af = BiM, = b"x(1)]
(j=2,3,...,n) fort > T.

(3.10)

From (3.10), we can derive

(D If V,0) = min{x,(0), x,(0),..., x,(0)} > m,, then min{x,(s),
x,(8), ., x, (O} = my, t > 0.

In 1If ¥(0) = min{x,(0), x,(0),..., x,(0)} < m,, then let

m= min{xl(O)(a{ — "M, — BiiM, — b{"ml),
x2(0)(a’2 - BLM, — bgnml)a'-'axn(o)(aﬁl - BiM, — b;:nm1)}§
if V,(0) = xj(O) < m, holds, then there exists € > 0 such that if ¢ € [0, €),
we have Vi(x,(2), x,(1),..., x,()) = x;(t) and D, V\(t) =x,(t) > p>0(j
=1,2,...,n). So there exists fl > T > 0 such that, if r > fl, we have
Vi(x(2), x5(8), ..., x,(1)) = my.

_From the system (2.1) and Lemma 3.1, we know that there exists
T, > T, + 7 such that

. m m -1 m m

$(0) 2y(D]=d" + (1+ a"My) ' e'my = q"y(1) = BiiM]

=}’(t)[(1 +a™M,) " elm, — (d" + BiM,) — qm}’(t)]-

From (3.2) and (H,), the inequality (1 + a«”™M;) " 'e'm* — (d™ + BEM})
> 0 holds; we know that m, can be close to m} and M, can be sufficiently
close to M (i = 1,2) to make the inequality (1 + «™M,) " 'e'm, — (d™ +
By M,) > 0 hold.

Suppose y(¢) is not oscillatory about

m -1 m m
(1+ a™)) e'm, — (d" + B}M,)

o (> 0);
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then either

1+ a™M,) 'elm, — (d" + BIIM. i
y(1) < ( Y L ( . 2), fort > T, (3.11)
q

or

1+ a™M,) 'e'm, — (d" + "M _
y(t) . ) = ( Bit 2), fort > T,. (3.12)
q

If (3.11) holds, then there exists a constant m,,

(1+a”™M;) em1 = (d™ + B{yM,)

m >

q

such that y(¢) < m, and (1 + a’"Ml) e'm, — (d™ + BIM,) — myq™ >
0; thus, letting A = (1 + a™M,) 'e'm, — (d™ + BM,) — m,q™, we ob-
tain

0<m, <Mjf=

y(t) > Aay(t) > 0.

This implies that y(¢) is strictly monotone increasing with speed A. Hence
there exists 75 > T, such that

y(t) =m, fort>T,.
If (3.12) holds, then
y(t) > M§ > m, fort > T,.

Suppose now that y(¢) is oscillatory about M. Let y(¢*) (¢* > T,)
denote an arbitrary local minimum of y(¢); it is easy to see from system
(2.1) that

dy(r*)
At

and this implies

> y(r*)[—d™ + (1 + a"M,) " elm, — BlsM, — q"y(1%)].

m, < MF <y(t*)  fort* = T,.

Since y(¢*) is an arbitrary local minimum of y(¢), we conclude that
0 < m, < M§ < y(t) eventually.
Finally we let

(0 1) s 5, (1) 3(1)):
my <x(t) <M, (i=1,2,...,n),my <y(t) <M,}.
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Then D is a bounded compact region inﬂR’frl which has positive distance
from coordinate hyperplanes. Let 7' = T5; then from the proof above, we
obtain that if ¢ > 7, then every positive solution of system (2.1) with the
initial condition (2.2) eventually enters and remains in region D. The proof
is complete.

4. GLOBAL ATTRACTIVITY OF PERIODIC SOLUTION

In this section, we suppose that all the coefficients in system (2.1) are
continuous and w-periodic positive functions; then system (2.1) is a w-peri-
odic system. Naturally, assumption (H,) holds.

We let Z(t,Z%) = {x,(t, Z°), x,(t, Z°),..., x,(t, Z°), y(t, Z°)} denote
the unique solution of periodic system (2.1) for initial value Z° = {x{,

0 0 0
x5, ..., x), v}
Define Poincaré mapping 4: R"*!' — R"*! as follows:

A(Z") = Z(w,2%), Z°eRH\

D is a bound, closed, and convex set in R”""! The mapping A is
continuous because the solution of system (2.1) is continuous about the
initial value, and from the proof of Theorem 3.1, we know that mapping A
maps D into itself. Under assumptions (H;) and (H,), from the Brouwer
fixed point theorem, we obtain the following:

THEOREM 4.1.  If w-periodic system (2.1) satisfies assumptions (H;) and
(H,), then there is at least one strictly positive periodic solution of system (2.1).

THEOREM 4.2. In addition to (H;) and (H,), assume further that system
(2.1) satisfies

(Hs)
c"a"MF + e™ " D

B+ —— + Y, — < b
11 (1 n almT)z P mT 1»

pn D .
B{?+m_%+'z:2m—%<bj’ (j=2,3,...,n),
iz

Cm

moy < l;
Bio 1+ a'm? 1
then system (2.1) has a globally attractive positive periodic solution.

Proof.  Suppose Z(t) = (x,(¢), x,(¢),..., x,(t), y(¢)) is a solution of sys-
tem (2.1) with x,0) >0 (G =1,2,...,n), y0) >0, U@k =
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(u (), uy(2),...,u,(t),v(2)) is a strictly positive periodic solution of system
(2.1). We have from uniform persistence of system (2.1) that there exist
positive constants m; and M;, (i = 1,2,...,n) such that for all ¢ > * (¢*
sufficiently large),

0<my <x,(t) <M, (i=1,2,...,n), 0<m,<y(t) <M,
0<m; <ult) <M, (i=1,2,...,n), 0<m, <v(t) <M,.
We define
(1) =Inx(r), () =lny(r), a(r) =Inug(r),
0(t) =Inv(t) (i=1,2,...,n).
Consider the following Lyapunov functional:

V= ¥ (lfi(t) — (1)

i=1

+B1’?f_07k1i(5)/;:s |x;(0) — ui(9)|d9ds)

~ ~ m (9 t
+5(0) =8|+ Bls [* kig(s) [ 19(0) = v(6)|dods.
-7 t+s
Now we calculate and estimate the upper right derivative of V,(¢) along
the solutions of system (2.1):
DTV, (1)
X,(t) —iy(t)

= M[_bl(t)(xl(t) —uy(1))

=Bu(D) [ ku()(u(t +5) —u(t +5)) ds

L y(1) @
O T aom® ™ T aa
n x (1) u(r)

+i=22Di1(t)(xl(t) N u,(1)

x(t) —a(t)

=2 |fj(l) - f‘j(f)|

—Blj(t)f_”rklj(s)(xj(z +5) —u,(t +5)) ds

—+

[—bj(t)(xj(t) —u(1))
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n xi(t) ui(t)
+E1Dij(t)(xj(t) () )]
5(1) — 0(1)

xy(1) u(1) )

BEOEL0] [e(‘) T+ a(Da() 1+ a(u(0)

~4()(3(1) = (1))
~Bu(®) [ k(5 (3t +5) = vt +5)) ds]

v X[ ol ~ (o)l
_fffkli(s)|xi(t +5) —u(t + s)|ds]
+Bi [ ku(9)|y() — v()ds

= B[ Kan($)] vt + 5) = ot + 5)]ds,

oy OO (e
|2(0) =@ ()| \ 1+ a()x, (1) 1+ a(t)u(r)
< %UU) —v(1)]
c(t)a(t)v(r)
T a() ()1 + a(D)uy (D)) [xi(0) = w(0)]

|)’(t)_U(t)|+ 2|x](t)—u](t)|,

c"a™M,
(1 + alml)
x(1) uy(1) ”

L+ a(0)x(r) 1+ a(t)u(r)

s |x1(t) - ul(t)l
=D AT a()m(0)) 1 + a(Dul0)

= ]
1+ a'm,

y(t) — (1)
|5(e) = 8(1)]

o

m

< — a0 — ()],

(1+ a'my)

11
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We let

N RO (0wl
D) = |x1<r>—u1(r)|,zz ”“( (1) l(r>)’

Dy(t) = |x(t) — (t)| lZlDu(t)(xj(t) u,-(t))

There are the following three cases to consider for D,():

@ If x,(¢) > uy(¢) and ¢ > ¢*, then

= L Dy -
by < 2 () o)) =

PN 2 2—1|x(1) ()]

(i) If x,(t) <u®) and ¢ > t*, then

Dy(1) < Z Dult )( u(1) —x,(1)) < —|x(t) u (1) ].
i=2 (t) i=2 M

(iii) If x,(t) = uy(¢), similar to the argument above, we can derive
the same conclusion as (i) and (ii).

From (i), (ii), and (iii), we have
Dy(1) <

—|x(t) u(t)|, fort>r*.
=2 my

Consider that for li-(t) in the same way we can obtain

n

ljj(t) ” |x(t) u,.(t)| (j=2,3,...,n).
i= 1 my
Hence we have
a™M, + e n DI
D*Vy(1) < —(bi—ﬁf;——i X )Ix(t)—u(t)l
(1+am1) =

pr DI

i=2 1

J
—(ql - ﬁ ,310)|Y(f) —v(1)].
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From the proof of Theorem 3.1 and assumption (Hs), we can select M,
close to M} sufficiently and get m, close to m¥ enough too, such that

"M, + e™ n o D
Bll 2 Z : <bi’
( +am1) i—2 ™
Bl + —— + Z 24 <bl  (j=23,...,n),
my -2 My
c™ .

nt ———— <4
Bl 1+cvlml 1

So there exists «; > 0 such that

DTIy(t) < _0‘1( _i %, (1) —u ()| +]y() - U(t)l) (4.1)
Integrating both sides of (4.1) leads to
o+ £l - a6 4150 = o0 i

<V, (t*) < +o for ¢ > r*,

which leads to
Yo lxi(t) —u ()| +|y(r) —o(t)| € L'(t*, +=).
i=1

From the persistence hypothesis of (2.1) and the boundedness of the
solutions of (2.1), we can obtain that [x;(¢#) — u,()] i = 1,2,...,n), [y(¢)
— v(1)], and their derivatives remain bounded on [0, %). As a consequence

E 50) = a0 +1y(0) = o)

is uniformly continuous. By Barbalat’s lemma [5, P,, Lemma 1.2.2], it
follows that

lim §| $) = u(s)| +1y(s) = o(5)]] =
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Hence

lim |x;(¢) —u ()| =0 (i=1,2,...,n),
t— o

Il
o

lim |y(£) = o()]

This result implies that the system (2.1) has a globally attractive positive
periodic solution. The proof is complete.

5. CONCLUSIONS

In this paper, we consider a predator—prey system with functional
response and time delay in which the prey population can disperse among
n-patches. Moreover, all coefficients in system (2.1) are time dependent.
We first show that the system is persistent independent of the dispersion
rates. In the second part we assume that all the coefficients are indeed
periodic and prove that all solutions converge to a periodic solution of the
system.

From this paper, we can find that the dispersion rates have also no
effect on the existence of the positive periodic solution, but they have an
effect on the global attractivity of the periodic solution.

We expect a similar technique to work in higher-dimensional systems
with discrete time delays and dispersion. We leave this investigation for
future work.
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