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A theorem of Ferenc Lukacs states that if a periodic function f is integrable in´
the Lebesgue sense and has a discontinuity of the first kind at some point x, then
the mth partial sum of the conjugate series of its Fourier series diverges at x at the
rate of log m. The aim of the present paper is to extend this theorem to the
rectangular partial sum of the conjugate series of a double Fourier series when
conjugation is taken with respect to both variables. We also consider functions of
two variables which are of bounded variation over a rectangle in the sense of
Hardy and Krause. As a corollary, we obtain that the terms of the Fourier series of

� � � �a periodic function f of bounded variation over the square �� , � � �� , �
determine the atoms of the finite Borel measure induced by f. � 2001 Academic

Press
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1. CONJUGATE SERIES ON T

1Ž . � .Given a periodic function f � L T , T � �� , � , with Fourier series

�1
i j x �i juˆ ˆf j e , f j � f u e du ,Ž . Ž . Ž .Ý H2� ��j�Z
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its conjugate series is defined by

ˆ i j x1.1 �i sign j f j e ,Ž . Ž . Ž .Ý
j�Z

where

1 if j � 0,�	 0 if j � 0,sign j �
�1 if j � 0.

Ž .It is well known that the symmetric partial sum of series 1.1 can be
represented in the form

�1
i j xˆ ˜s f ; u � �i sign j f j e � � f ; u D u du ,Ž . Ž . Ž . Ž . Ž .˜ Ý Hm x m� 0� �j �m

where

� f ; u � f x � u � f x � uŽ . Ž . Ž .x

and

m cos u�2 � cos m � 1�2 uŽ . Ž .˜1.2 D u � sin ju � ,Ž . Ž . Ým 2 sin u�2Ž .j�1

m � 1, 2, . . . ,

is the conjugate Dirichlet kernel.
2 Ž �The theorem of Ferenc Lukacs reads as follows see 3; 5, Vol. 1, p.´

�.60 .
1Ž . Ž .THEOREM 1.1. Let f � L T and x � T. If there exists a number d fx

such that

1 h
� �lim � f ; u � d f du � 0,Ž . Ž .H x xhh�0� 0

then

s f ; x d fŽ . Ž .m̃ x
1.3 lim � .Ž .

log m �m��

By log we mean the natural logarithm.

2 Ž .Ferenc Lukacs 1891�1918 , a very capable Hungarian mathematician, was an Associate´
Professor at the Technical University of Budapest.
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The following corollary was also deduced by Ferenc Lukacs.´
1Ž .COROLLARY 1.2. If f � L T and the finite limit

lim � f ; u � d fŽ . Ž .x x
u�0�

Ž .exists at some point x � T, then we ha�e 1.3 .

In particular, Corollary 1.2 applies at any point x � T if f is of bounded
� � Ž Ž . Ž ..variation on the interval �� , � by periodicity, f � � f �� with

d f � f x � 0 � f x � 0 .Ž . Ž . Ž .x

The aim of the present paper is to extend these results from single to
double conjugate series.

2. DOUBLE CONJUGATE SERIES ON T 2

1Ž 2 . Ž .Given a periodic function f � L T in each variable with Fourier
series

ˆ iŽ j x�k y .2.1 f j, k e ,Ž . Ž .Ý
2Ž .j , k �Z

where

� �1
�i Ž ju�k� .f̂ j, k � f u , � e du d� ,Ž . Ž .H H24� �� ��

its double conjugate series with respect to both variables is defined by

ˆ iŽ j x�k y .2.2 �i sign j �i sign k f j, k e .Ž . Ž . Ž . Ž .Ý
2Ž .j , k �Z

The following representation of the symmetric rectangular partial sum
Ž .of series 2.2 is also well known,

ˆ iŽ j x�k y .2.3 s f ; x , y � �i sign j �i sign k f j, k eŽ . Ž . Ž . Ž . Ž .˜ Ý Ým n
� � � �j �m k �n

� �1 ˜ ˜� � f ; u , � D u D � du d� ,Ž . Ž . Ž .H H x y m n2� 0 0

where

� f ; u , � � f x � u , y � � � f x � u , y � � � f x � u , y � �Ž . Ž . Ž . Ž .x y

� f x � u , y � � .Ž .
Our main result reads as follows.
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1Ž 2 . Ž . 2THEOREM 2.1. Let f � L T and x, y � T . If there exists a number
Ž .d f such that forx y

2.4Ž .
h k

� �� h , k � � f ; h , k � � f ; u , � � d f du d�Ž . Ž . Ž . Ž .H Hx y x y x y
0 0

we ha�e

2.5 lim � h , k �hk � 0Ž . Ž .
h , k�0�

and

� 42.6 � h , k � C min h , k , 0 � h , k � � ,Ž . Ž .

where C is a constant, then

s f ; x , y d fŽ . Ž .m̃ n x y
2.7 lim � .Ž . 2log m log n �m , n�� Ž . Ž .

Ž . Ž .A few remarks about conditions 2.5 and 2.6 are appropriate here. It
Ž � �. 1 � Ž 2 .is well known see, e.g., 5, Vol. 2, p. 306 that if f � L log L T , then

Ž .its double integral in the Lebesgue sense is strongly differentiable at
almost every point; and that the integrability condition imposed on f is
best possible. Hence it follows in a routine way that almost every point is a

Ž .Lebesgue point of f in the strong sense. Consequently condition 2.5 is
Ž . Ž . 2satisfied with d f � 0 at almost every point x, y � T . On the otherx y

hand, if the finite limit

2.8 lim � f ; u , � � d fŽ . Ž . Ž .x , y x y
u , ��0�

Ž . 2 Ž .exists at some point x, y � T , then condition 2.5 is satisfied trivially at
Ž Ž ..that point cf. Definition 2.4 .

Ž .As to condition 2.6 , consider, for example, the case when 0 � h � k �
� . It is easy to see that

�� h , k 1Ž . h
� � � �� f x � u , � � f x � u , � du d� � � d f .Ž . Ž . Ž .H H x yh h 0 ��

Ž .So, condition 2.6 is surely satisfied in this case if

�
� �2.6� f x � u , � � f x � u , � d� � C , 0 � u � � .Ž . Ž . Ž .H

��
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Ž . Ž . 2Condition 2.6� is clearly satisfied for all x, y � T if

�
� �2.6� f u , � d� � C , u � T.Ž . Ž .H

��

This is always the case if the function f is bounded.
The case when 0 � k � h � � can be treated in an analogous way. In

Ž .particular, the symmetric counterpart of 2.6� is the requirement that

�
� �2.6� f u , � du � C , � � T.Ž . Ž .H

��

We formulate explicitly only the following corollary of Theorem 2.1.
1Ž 2 . Ž .COROLLARY 2.2. Let f � L T be such that conditions 2.6� and

Ž . Ž . Ž . 22.6� are satisfied. If the finite limit 2.8 exists at some point x, y � T ,
Ž .then we ha�e 2.7 .

3. PROOF OF THEOREM 2.1

The following known limit relation plays an important role in our proof:

�lm ˜3.1 lim � 1, where l � D u du.Ž . Ž .Hm mlog mm�� 0

Ž .Note that Definition 1.2 can be rewritten in the form

1 � cos mu 1 1 1
D̃ u � � 1 � cos mu � � sin mu.Ž . Ž .m ž /u 2 tan u�2 u 2Ž .

The second and third terms on the right are bounded for 0 � u � � , while

� m�1 � cos mu 1 � cos u
du � duH Hu u0 0

m� m�du cos u
� C � � du ,H Hu u1 1

where C is a constant. Hence it follows that

�1 1 � cos mu
lim duHlog m um�� 0

m�11 cos uŽ .j�1 �� lim log m� � du � 1.Ý Hž /log m um�� j�j�1
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Ž . Ž . Ž .Relying on 2.3 and 3.1 , in order to prove 2.7 it is enough to prove that
� �1 ˜ ˜3.2 lim � f ; u , � � d f D u D � du d� � 0.Ž . Ž . Ž . Ž . Ž .H H x y x y m nl lm , n�� 0 0m n

Ž .We shall actually prove 3.2 in its stronger form, where the integrand is
replaced by its absolute value. In the interest of brevity, we introduce the
notation

� �P u , � � P f ; u , � � � f ; u , � � d f .Ž . Ž . Ž . Ž .x y x y x y

Ž .To begin with, by 2.5 , given any 	 � 0 there exists 
 � 0 such that

3.3 � h , k � 	 hk , 0 � h , k � 
 .Ž . Ž .
We also recall the following elementary estimate of the conjugate Dirich-
let kernel:

˜� � � 43.4 D u � min m , ��u , m 
 1 and 0 � u � � .Ž . Ž .m

Ž .Now, we consider integers m, n � 1�
 , where 
 is from 3.3 , and
Ž . Ždecompose the double integral in 3.2 while putting the integrand be-

.tween absolute value bars as
�1�m 


3.5 � �Ž . H H H½ 5
0 1�m 


�1�n 
 ˜ ˜� �� � � P u , � D u D � du d�Ž . Ž . Ž .H H H m n½ 5
0 1�n 


� I � I � I � I � ��� �I , say.11 12 13 21 33

Ž . Ž . Ž .By 2.4 , 3.3 , and 3.4 , we have

3.6 I � mn� 1�m , 1�n � 	 .Ž . Ž .11

Ž . Ž . Ž .Again by 2.4 , 3.3 , and 3.4 , Fubini’s theorem and integration by parts
yield

du
 1�n
3.7 I � � n P u , � d�Ž . Ž .H H21 ž / u1�m 0



u1 1�n

� � n P u , � d� duŽ .H H 1 1ž /u 0 0 u�1�m

u du
 1�n
� � n P u , � d� duŽ .H H H 1 1 2ž /ž / u1�m 0 0

� n 1 � u , 1�nŽ .

� � 
 , � � n duH 2ž /
 n u1�m

� �	 1 � log m
 ;Ž .
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and analogously,
3.8 I � �	 1 � log n
 .Ž . Ž .12

Ž .By 3.4 , we have

d� du
 
23.9 I � � P u , � .Ž . Ž .H H22 ž /� u1�m 1�n

In order to estimate the right-hand side, we need two preliminary esti-
mates: integration by parts with respect to � gives

�d� 1 d�
 
 

3.10 P u , � � P u , � d� � P u , � d� ,Ž . Ž . Ž . Ž .H H H H1 1 1 1 1 2ž /� 
 �1�n 0 1�n 0

while integration by parts with respect to u gives
du 1
 


3.11 P u , � � P u , � duŽ . Ž . Ž .H H1 1 1 1u 
1�m 0

u du

� P u , � du .Ž .H H 1 1 1 2ž / u1�m 0

Ž . Ž .By Fubini’s theorem, 3.9 , and 3.10 , we obtain
1 du
 
�2� I � P u , � d�Ž .H H22 1 1ž /
 u1�m 0

� d� du
 

� P u , � d�Ž .H H H 1 1 2ž /ž / u�1�m 1�n 0

1 du
 

� P u , � d�Ž .H H 1 1ž /
 u0 1�m

� du d�
 

� P u , � d� ,Ž .H H H 1 1 2ž /ž /u �1�n 0 1�m

Ž .whence, making use of 3.11 , we obtain
1 1
 
�2� I � P u , � du d�Ž .H H22 1 1 1 1ž /
 
0 0

u1 du
 

� P u , � du d�Ž .H H H 1 1 1 12ž /ž /
 u0 1�m 0

� 1 d�
 

� P u , � du d�Ž .H H H 1 1 1 1 2ž /ž /
 �1�n 0 0

� u du d�
 

� P u , � du d� ,Ž .H H H H 1 1 1 12 2ž /ž /ž /u �1�n 0 1�m 0
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Ž . Ž .whence, again by Fubini’s theorem, 2.4 , and 3.3 , we obtain

1 1 � u , 
Ž .
�23.12 � I � � 
 , 
 � duŽ . Ž . H22 2 2

 u1�m

1 � 
 , � � u , �Ž . Ž .
 
 

� d� � du d�H H H2 2 2
 � u �1�n 1�m 1�n

� 	 1 � log m
 � log n
 � log m
 log n
 .Ž . Ž .Ž .
Ž . Ž . Ž .By 2.4 , 2.6 , and 3.4 , we have

�� n � n 1 � C1�n
3.13 I � P u , � du d� � � � , � ;Ž . Ž .H H31 ž /
 
 n 

 0

and analogously,

� C
3.14 I � .Ž . 13 


Ž .By Fubini’s theorem and integration by parts, while making use of 2.4 ,
Ž . Ž .2.6 , and 3.4 , we find that

2
�� d�


3.15 I � P u , � duŽ . Ž .H H32 ž /
 �1�n 



2 � �� 1
� P u , � du d�Ž .H H 1 1ž /
 � 0 
 ��1�n

2 � �� d�

� P u , � du d�Ž .H H H 1 1 2ž /ž /
 �1�n 0 


� 2 � 2 � � , �Ž .

� � � , 
 � d�Ž . H2 2

 �1�n

� 2 C
� 1 � log n
 ;Ž .




and analogously,

� 2 C
3.16 I � 1 � log m
 .Ž . Ž .23 


Ž . Ž . Ž .Finally, by 2.4 , 2.6 , and 3.4 , we have

� � du d�
2 2 2 3 23.17 I � � P u , � � � � � , � �
 � � C�
 .Ž . Ž . Ž .H H33 u �
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Ž . Ž . Ž . Ž . Ž .Combining 3.2 , 3.5 � 3.8 , 3.12 � 3.17 , we find that

� �1 ˜ ˜� �P u , � D u D � du d�Ž . Ž . Ž .H H m nl l 0 0m n

1 � 2 � C2� 1 � � 	 � 2 � 2� �Ž .½ ž /l l 
 
m n

� C
�� 	 � �	 �ž /


� log m
 � log n
 � � 2	 log m
 log n
Ž . Ž . Ž . 5
� � 2 � 1 	 ,Ž .

Ž .provided m and n are large enough. Taking into account 3.1 this proves
Ž .2.7 .

4. FUNCTIONS OF BOUNDED VARIATION IN
TWO VARIABLES

We begin by recalling the definition. A function f defined on a bounded
� � � �rectangle R � a, b � c, d is said to be of bounded variation over R in

Ž � � �the sense of Hardy and Krause see 1 and see also the discussion in 2,
�.Sect. 254 if the following three quantities are finite,

m n

�V � sup f x , y � f x , yŽ . Ž .Ý Ý11 j k j�1 k
PP �PP j�1 k�11 2

�� f x , y � f x , y ,Ž . Ž .j k�1 j�1 k�1

m

� �V � sup f x , c � f x , c ,Ž . Ž .Ý10 j j�1
PP j�11

and
n

� �V � sup f a, y � f a, y ,Ž . Ž .Ý01 k k�1
PP k�12

where
PP : a � x � x � x � ��� � x � b1 0 1 2 m

and
PP : c � y � y � y � ��� � y � d2 0 1 2 n
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are arbitrary finite partitions. The sum

V f � V f ; R � V � V � VŽ . Ž . 11 10 01

is called the total variation of f over R.
It is easy to see that if f is of bounded variation over R, then not only

Ž . Ž .are the marginal functions f �, c and f a, � of bounded variation in the
� � � �usual sense over the intervals a, b and c, d , respectively, but so are the

Ž . � � Ž . � �functions f �, y where y � c, d is fixed and f x, � where x � a, b is
fixed. It is easy to check that the total variation of each of these functions
Ž . � � Ž . � � Ž .f �, y over a, b or f x, � over c, d does not exceed V f ; R .

� �The following characterization of bounded variation is due to Hardy 1 .

Ž .THEOREM 4.1. A necessary and sufficient condition that a function f x, y
be of bounded �ariation in the sense of Hardy and Krause o�er a bounded

� � � �rectangle R � a, b � c, d is that it can be represented in the form f � f1
� f , where both f and f are bounded and nondecreasing functions in each2 1 2
�ariable on R and such that

f x , y � f x , y � f x , y � f x , y 
 0, i � 1, 2,Ž . Ž . Ž . Ž .i i i i

for all a � x � x � b and c � y � y � d.

The functions f and f occurring in Theorem 4.1 are called ‘‘mono-1 2
� �tonely monotone’’ by W. H. Young and G. C. Young 4 . They belong to

�the class of the ‘‘quasi-monotone’’ functions as defined by Hobson 2, Sect.
�255 .

Ž � �.The next theorem see, for example, 2, Sect. 307 guarantees the
Ž .existence of the so-called ‘‘sector’’ or ‘‘quadrant’’ limits of a quasi-mono-

tone function.

THEOREM 4.2. If f is a quasi-monotone function on a bounded rectangle
� � � �R � a, b � c, d , then the sector limits

f x � 0, y � 0 � lim f x , y ,Ž . Ž .0 0
x�x � , y�y �0 0

f x � 0, y � 0 � lim f x , y ,Ž . Ž .0 0
x�x � , y�y �0 0

f x � 0, y � 0 � lim f x , y ,Ž . Ž .0 0
x�x � , y�y �0 0

f x � 0, y � 0 � lim f x , yŽ . Ž .0 0
x�x � , y�y �0 0

Ž .exist at each point x , y � R at which the left and�or right approaches are0 0
a�ailable inside R.
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Combining Theorems 4.1 and 4.2 yields that if f is of bounded variation
in the sense of Hardy and Krause over R, then each of the four sector
limits exists at the points of R where the left and�or right approaches are
available inside R.

After these preliminaries, Corollary 2.2 and Theorems 4.1 and 4.2 give
the following.

Ž .COROLLARY 4.3. If a function f x, y is periodic in each �ariable and of
� �bounded �ariation in the sense of Hardy and Krause o�er the square �� , �

� � Ž . Ž . 2� �� , � , then we ha�e 2.7 at each point x, y � T with

d f � f x � 0, y � 0 � f x � 0, y � 0 � f x � 0, y � 0Ž . Ž . Ž . Ž .x y

� f x � 0, y � 0 .Ž .

The values of f at the points of the upper horizontal and the right
� � � �vertical edges of the square �� , � � �� , � are, by periodicity,

f x , � � f x , �� , f � , y � f �� , y for �� � x , y � � ,Ž . Ž . Ž . Ž .

and

f � , � � f �� , �� � f �� , � � f � , �� .Ž . Ž . Ž . Ž .Ž .

Given an arbitrary function f defined on a bounded rectangle R �
� � � �a, b � c, d , we can associate with it a so-called rectangle function F as

Ž . Ž .follows. If R � a , b � c , d is an open subrectangle of R, then set1 1 1 1 1

F R � f b � 0, d � 0 � f a � 0, d � 0Ž . Ž . Ž .1 1 1 1 1

� f b � 0, c � 0 � f a � 0, c � 0 .Ž . Ž .1 1 1 1

It is clear that the Borel measure induced by F on R is finite if and only if
V � �.11

We may also introduce marginal interval functions as follows: If I �
Ž . � � Ž .a , b is an open subinterval of a, b and J � c , d is an open1 1 1 1

� �subinterval of c, d , then set

F I ; c � f b � 0, c � f a � 0, c andŽ . Ž . Ž .1 1

F a; J � f a, d � 0 � f a, c � 0 .Ž . Ž . Ž .1 1

Ž . � �It is clear again that the Borel measures induced by F �; c on a, b and by
Ž . � �F a; � on c, d are finite if and only if V � � and V � �, respectively.10 01

Ž . � � Ž .The interval functions F �; y , where y � c, d is fixed and F x; � , where
� �x � a, b is fixed, can be defined analogously.
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Ž .Obviously, the Borel measures induced by F on R and by F �; y and
Ž . � � � �F x; � on a, b and c, d , respectively, are all finite if and only if f is of

bounded variation over R in the sense of Hardy and Krause.
Now, Corollary 4.3 says that the terms of the Fourier series of a periodic

function f of bounded variation in the sense of Hardy and Krause
Ždetermine the atoms of the Borel measure induced by f via its rectangle

.function F . In particular, the Borel measure induced by f is nonatomic
Ž . Ž .or, equivalently, is continuous if and only if the limit in 2.7 equals 0 at

Ž . 2each point x, y � T . As to the nonatomic property of the Borel mea-
Ž . Ž Ž . .sures induced by f �, y via its interval function F �; y , where y is fixed

Ž . Ž Ž . .and by f x, � via its interval function F x; � where x is fixed , respec-
tively, we can draw conclusions by means of Corollary 1.2.

In our last corollary, we give simple sufficient conditions in terms of the
Fourier coefficients of a periodic function f of bounded variation in order
that the Borel measure induced by f be nonatomic.

Ž̂ .COROLLARY 4.4. If the Fourier coefficients f j, k of a periodic function f
of bounded �ariation in the sense of Hardy and Krause o�er the square
� � � ��� , � � �� , � satisfy the condition

ˆ4.1 lim jkf j, k � 0,Ž . Ž .
� � � �j , k ��

then the Borel measure induced by f is nonatomic.

Ž .In fact, given any 	 � 0, by 4.1 there exists a positive integer j such0
that

ˆ� � � � � �jkf j, k � 	 if j , k � j .Ž . 0

Ž .By this and 2.3 , for m, n � j we have0

m n
ˆ� � � �4.2 s f ; x , y � f j, kŽ . Ž . Ž .˜ Ý Ým n

� � � �j �1 k �1

j j jm0 0 0 V fŽ .ˆ� �� f j, k �Ž .Ý Ý Ý Ý � �� j� � � � � � � �j �1 k �1 j �j �1 k �10

j n m n0 V f 	Ž .
� � ,Ý Ý Ý Ý� � � �� k jk� � � � � � � �j �1 k �j �1 j �j �1 k �j �10 0 0

where we used the well-known estimate of the Fourier coefficients of a
periodic function of bounded variation by its total variation over the
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� � Ž � �.interval �� , � see, e.g., 5, Vol. 1, p. 48 in the following way:

� �1 1
�i ju �i k�ˆ� �f j, k � f u , � e du e d�Ž . Ž .H H2� 2��� ��

� �1 1
�i ju� f u , � e du d�Ž .H H2� 2��� ��

� ��1 V f �, � ; �� , �Ž .Ž .
� d�H � �2� � j��

V fŽ . � � � �� , where V f � V f ; �� , � � �� , � ,Ž . Ž .
� �� j

provided j � 0. Analogously, the symmetric counterpart

V fŽ .ˆ� �f j, k �Ž .
� �� k

also holds, provided k � 0.
Ž .It follows from 4.2 that

4 j V fŽ .02� � � �s f ; x , y � j f � log mŽ .˜ �m n 0 �

4 j V fŽ .0� log n � 4	 log m log nŽ . Ž .
�

� 5	 log m log n ,Ž . Ž .

provided both m and n are large enough. This proves the limit relation

s f ; x , yŽ .m̃ n
lim � 0.

log m log nm , n�� Ž . Ž .

Ž .Applying Corollary 4.3 gives d f � 0, which is the statement of Corol-x y
lary 4.4.
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