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1. INTRODUCTION AND MAIN RESULTS

Consider the Dirichlet boundary value problem

−�u=λku+ g�u� − h�x� in �	

u= 0 on ∂�	
(1)

where � ⊂ RN �N ≥ 1� is a bounded smooth domain, λk is the kth eigen-
value of the problem −�u = λu in �, u = 0 on ∂�, g ∈ C�R	R�, and
h ∈ L2���.

Under the condition that

lim
	t	→∞

g�t�
t

= 0	 (2)

the problem (1) is called the elliptic resonant problem at the kth eigen-
value. The solvability of this problem has been studied by many authors.
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When k = 1, there are some well-known sufficient conditions, such as
the Landesman–Lazer-type condition (see [1–4] and their references), the
monotonicity condition (see [5]), the periodicity condition (see [6, 7]), the
sign condition (see [8, 9] and their references), and the strong resonant
condition (see [10, 11]). When k > 1, there are many well-known existence
results (see [1, 5, 7, 10–16]). In this case, most of them are under the condi-
tion of boundedness for nonlinear terms, that is, sup�	g�t�	 	 t ∈ R
 < +∞.
The elliptic resonant problem with unbounded nonlinear terms has been
considered in [12–16].

Recently a new Landesman–Lazer-type solvability condition was given
for the two-point boundary value problem and the following theorem was
obtained in [4].

Theorem A ([4]). Suppose that g ∈ C�R	R� satisfies (2). Assume that
h ∈ L2�0	 π�, satisfying

�F�−∞�
∫ π

0
sin xdx <

∫ π

0
h�x� sin xdx < F�+∞�

∫ π

0
sin xdx	

where �F�−∞� = lim supt→−∞ F�t�, F�+∞� = lim inf t→+∞ F�t� and

F�t� =
{
�2/t� ∫ t

0 g�s�ds − g�t� t �= 0,
g�0� t = 0.

(3)

Then the two-point boundary value problem

−u′′ = u+ g�u� − h�x�	 u�0� = u�π� = 0	

has at least one solution.

This result was extended to the quasilinear elliptic resonant problem in
[17].

In this paper we first replace the condition in (2) with the weaker one
that g ∈ C�R	R� such that

0 ≤ lim inf
	t	→∞

g�t�
t

≤ lim sup
	t	→∞

g�t�
t

< λ2 − λ1	 (4)

and we obtain the same result for the semilinear elliptic problem. Then we
extend the result in [4] to the semilinear elliptic resonant problem at higher
eigenvalues. The main results are the following theorems, which are proved
using the Saddle Point theorem.

Theorem 1. Suppose that (4) holds. Assume that h ∈ L2���, satisfying
�F�−∞�

∫
�
ψ�x�dx <

∫
�
h�x�ψ�x�dx < F�+∞�

∫
�
ψ�x�dx	 (5)

where ψ is the normal eigenfunction corresponding to λ1, ψ�x� > 0 for all
x ∈ �. Then problem (1), where k = 1, has at least one solution in the Hilbert
space H1

0���.
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Remark 1� Theorem 1 generalizes Theorem A in two directions: one is
from one-dimension to a higher dimension and the other is with the growth
of g; that is, g may grow linearly in our Theorem 1 and not in Theorem A.
Besides this, the proof of Theorem A essentially relies on the condition in
(2); one cannot prove Theorem 1 with the technique used in the proof of
Theorem A.

Remark 2� There are functions g and h satisfying our Theorem 1 and
not satisfying the corresponding results in [1–11]. For example (e.g. [4]), let

g�t� =
{

1 − e−t
4	 sin t	 ln�1 + t4�	 t ≥ 0,

2et − 1	 t ≤ 0,
(6)

and h = 0. In fact, on one hand �F�−∞� = −1, and that F�+∞� = 1
follows from the fact that

∫∞
0 e−t

4	 sin t	 ln�1 + t2�dx < +∞, which can be
checked without difficulty. On the other hand, g is not monotone, not peri-
odic, and not unbounded from both above and below, does not satisfy the
sign condition, and does not satisfy the Landesman–Lazer condition, where
ḡ�−∞� = −1 and g�+∞� = −∞.

Theorem 2. Suppose that g ∈ C�R	R� satisfies (2). Assume that h ∈
L2��� satisfying∫

�
hv dx < F�+∞�

∫
�
v+ dx− �F�−∞�

∫
�
v− dx (7)

for all v ∈ Ker��+ λk� \ �0
, where v+�x� = max�v�x�	 0
 and v− = �−v�+.
Then the problem (1), where k > 1, has at least one solution in H1

0���.
Remark 3� There are functions g and h satisfying Theorem 2 and not

satisfying the corresponding results in [1, 5, 7, 10–16]. For example, let g
be given in (6) and h = 0. The reason is the same as that in Remark 2.

Theorem 3. Suppose that g ∈ C�R	R� satisfies (2). Assume that h ∈
L2��� satisfying∫

�
hv dx < F�−∞�

∫
�
v+ dx− �F�+∞�

∫
�
v− dx

for all v ∈ Ker��+ λk� \ �0
. Then the problem (1), where k > 1, has at least
one solution in H1

0���.
Remark 4� There are functions g and h satisfying Theorem 3 and not

satisfying the corresponding results in [1, 5, 7, 10–16]. For example, let

g�t� =
{
e−t

4	 sin t	 ln�1 + t2� − 1 t ≥ 0,
1 − 2et t ≤ 0,

and h = 0. The reason in the same as that in Remark 2.
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2. PROOF OF THEOREMS

Define ϕ on the Sobolev space H1
0��� by

ϕ�u� = 1
2
�u�2 − 1

2
λk�u�2

L2��� −
∫
�
G�u�dx+

∫
�
hudx	

where G�t� = ∫ t
0 g�s�ds and �u� = �∫u 	∇u	2 dx�1/2 is the norm in H1

0���.
Then ϕ is continuously differentiable and

�ϕ′�u�	 v� =
∫
�
∇u∇v dx− λk

∫
�
uv dx−

∫
�
g�u�v dx−

∫
�
hv dx

for u, v ∈ H1
0���. It is well-known that u ∈ H1

0��� is a solution of the
problem (1) if and only if u is a critical point of ϕ. By Sobolev’s inequality
there exists a positive constant C such that

�u�L1��� ≤ C�u�	 �u�L2��� ≤ C�u� (8)

for all u ∈ H1
0���.

In order to prove our result we require the following lemmas.

Lemma 1. Assume that (4) and (5) hold. Then the functional ϕ, where
k = 1, satisfies the (PS) condition.

Proof. Suppose that �un� is a (PS) sequence of ϕ in H1
0���; that is,

ϕ′�un� → 0 as n → ∞ and �ϕ�un�
 is bounded. We shall prove that �un� is
bounded by way of contradiction. Assume that �un� is unbounded and put
vn = un/�un�. Passing to a subsequence if necessary, we may assume that

�un� → ∞	

vn ⇀ v weakly in H1
0���	

vn → v in L2���
(9)

as n → ∞. By (4) there exists a real constant γ satisfying

lim sup
	t	→+∞

g�t�
t

< γ < λ2 − λ1� (10)

Moreover, it follows from (4) that for every ε > 0 there exists M > 0
such that

−ε ≤ g�t�
t

≤ γ

for all 	t	 ≥ M . choose η ∈ C�R	R� such that 0 ≤ η ≤ 1, η�t� = 1 for all
	t	 ≤ M , and η�t� = 0 for 	t	 ≥ 2M . Set

fn�x� =
{ �1 − η�un��g�un�/un un �= 0,

0 un = 0.
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Then one has

−ε ≤ fn�x� ≤ γ

for a.e. x ∈ �. Thus without loss of generality we may also assume that

fn ⇁ f weakly∗ in L∞���
as n → ∞, which implies that fn ⇀ f weakly in L2��� as n → ∞. Now the
fact that

− ε ≤ f �x� ≤ γ (11)

for a.e. x ∈ � follows from the weak closedness of the convex subset K of
L2��� given by

K = �s ∈ L2��� 	 −ε ≤ s�x� ≤ γ for a.e. x ∈ �
�
By Mazur’s Theorem (see e.g. Theorem V.1.2 in [19]), we only need to
prove that the convex set K is closed, which follows from Theorem 3.1.2 in
[18]. Moreover, we have

g�un�
�un�

⇀ fv weakly in L2��� (12)

as n → ∞. In fact, (12) follows from

�1 − η�un��g�un�
�un�

= fnvn ⇀ fv weakly in L2���

and

η�un�g�un�
�un�

→ 0 in L2���	

which can be proved by some simple calculations. From (12), the assump-
tion that ϕ′�un� → 0 as n → ∞, and the fact that

〈
ϕ′�un�	

w

�un�
〉
=

∫
�
∇vn∇wdx− λ1

∫
�
vnw dx

−
∫
�

g�un�
�un�

wdx+
∫
�

h

�un�
wdx

for all n and every w ∈ H1
0���, we obtain

∫
�
∇v∇wdx− λ1

∫
�
vw dx =

∫
�
fvw dx
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for all w ∈ H1
0���. Write v = aψ�x� + v0, where a ∈ R and v0 ∈

�span�ψ�x�
�⊥. It is obvious that �v0� ≥ √
λ2�v0�L2

for v0 as above.
Then we have

a
∫
�
fvψdx = 0	

∫
�
	∇v0	2 dx− λ1

∫
�
	v0	2 dx =

∫
�
fvv0 dx� (13)

Thus it follows from (11) and (13) that

γ
∫
�
	v0	2 dx ≥

∫
�
f 	v0	2 dx

=
∫
�
	∇v0	2 dx− λ1

∫
�
	v0	2 dx− a

∫
�
fv0ψdx

=
∫
�
	∇v0	2 dx− λ1

∫
�
	v0	2 dx+ a2

∫
�
f 	ψ	2 dx

≥ �λ2 − λ1�
∫
�
	v0	2 dx− a2ε

∫
�
	ψ	2 dx	

which implies that

�λ2 − λ1 − γ�
∫
�
	v0	2 dx ≤ a2ε

∫
�
	ψ	2 dx�

By (10) and the arbitrariness of ε, we have that

v0 = 0� (14)

Hence one has

v = aψ�x��
From (9), (12)–(14), and that〈

ϕ′�un�	
vn

�un�
〉
=

∫
�
	∇vn	2 dx− λ1

∫
�
	vn	2 dx

−
∫
�

g�un�
�un�

vn dx+
∫
�

h

�un�
vn dx

for all n we obtain∫
�
	∇vn	2 dx → λ1

∫
�
	v	2 dx+

∫
�
f 	v	2 dx =

∫
�
	∇v	2 dx

as n → ∞, which implies that vn → v ∈ H1
0��� by the uniform convexity

of H1
0���. Noting that �vn� = 1 we have v �= 0. Hence a �= 0. Without loss

of generality we may assume that a > 0. Hence we have∣∣∣
∫
�
v+n dx−

∫
�
aψdx

∣∣∣ =
∣∣∣
∫
�
v+n dx−

∫
�
aψ+ dx

∣∣∣ ≤ �v+n − aψ+�L1���

≤ �vn − aψ�L1��� ≤ C�vn − aψ� → 0
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as n → ∞ and∣∣∣
∫
�
v−n dx

∣∣∣ =
∣∣∣
∫
�
v−n dx−

∫
�
aψ− dx

∣∣∣ ≤ �v−n − aψ−�L1���

≤ �vn − aψ�L1��� ≤ C�vn − aψ� → 0

as n → ∞ by Sobolev’s inequality (8), which implies that

lim
n→∞

∫
�
v+n dx =

∫
�
aψdx	 lim

n→∞

∫
�
v−n dx = 0� (15)

It follows from (5) that F�+∞� > −∞ and �F�−∞� < +∞. Set

Cε =
{
F�+∞� − ε F�+∞� < +∞,
1/ε F�+∞� = +∞,

and

Dε =
{ �F�−∞� + ε �F�−∞� > −∞,
−1/ε �F�−∞� = −∞.

Then there exists M > 0 such that F�t� ≥ Cε for t ≥ M and F�t� ≤ Dε for
t ≤ −M . Thus one has

F�t�t ≥
{
Cεt − C1 t ≥ 0
Dεt − C1 t ≤ 0,

where C1 = �	Cε	 + 	Dε	�M + max	t	≤M 	F�t�t	. Hence we have∫
�
F�un�vn dx =

∫
�
F�u+

n �v+n dx+
∫
�
F�−u−

n ��−v−n �dx

≥ Cε

∫
�
v+n dx+Dε

∫
�
�−v−n �dx− 2C1

�un�
for all n. Letting n → ∞, one has

lim inf
n→∞

∫
�
F�un�vn dx ≥ Cε

∫
�
aψdx

by (15). It follows from the arbitrariness of ε that

lim inf
n→∞

∫
�
F�un�vn dx ≥ aF�+∞�

∫
�
ψdx� (16)

But from (5) and the fact that

�ϕ′�un�	 vn� −
2ϕ�un�
�un�

=
∫
�
F�un�vn dx−

∫
�
hvn dx

for all n, we obtain

lim
n→∞

∫
�
F�un�vn dx =

∫
�
hv dx = a

∫
�
hψdx < aF�+∞�

∫
�
ψdx	

which contradicts (16). Hence �un� is bounded, which implies that the (PS)
condition is satisfied by the subcritical growth of g.
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Lemma 2. Suppose that g ∈ C�R	R� such that (4) holds. Then one has

lim inf
t→+∞

G�t�
t

≥ F�+∞�	 lim sup
t→−∞

G�t�
t

≤ �F�−∞��

Proof. We consider the first inequality. Without loss of generality we
may assume that F�+∞� > −∞. For ε > 0, let

Cε =
{
F�+∞� − ε F�+∞� < +∞
1/ε F�+∞� = +∞.

Then there exists M > 0 such that

F�t� ≥ Cε

for all t ≥ M; that is,

d

dt

(
−G�t�

t2

)
= F�t�

t2
≥ Cε

t2
= d

dt

(
−Cε

t

)

for all t ≥ M . Integrating two sides over �t	 s� and noting that

lim inf
s→+∞

G�s�
s2 ≥ 0

by (4), one obtains

G�t�
t2

≥ Cε

t

for all t ≥ M . Hence one has

lim inf
t→+∞

G�t�
t

≥ Cε�

By the arbitrariness of ε we complete our proof for the first inequality. The
second one is similar, so we omit its proof.

Lemma 3. Assume that (2) and (7) hold. Then the function ϕ, where
k > 1, satisfies the (PS) condition.

Proof. Suppose that �un� is a (PS) sequence for ϕ in H1
0���. Then �un�

is bounded. In fact, if not, then �un� has a subsequence, say �un�, such that

�un� → ∞
as n → ∞. Set

W1 = Ker�λ1 + �� ⊕ · · · ⊕ Ker�λk−1 + ��	
W = Ker�λk + ��, and W2 = �W1 +W �⊥. Write un in the form

un = wn1 +wn +wn2	



elliptic resonant problems 141

where wn1 ∈ W1, wn ∈ W , and wn2 ∈ W2. It follows from (2) that for every
ε > 0 there exists M > 0 such that

	g�t�	 < ε	t	
for all 	t	 ≥ M , which implies that

	g�t�	 < ε	t	 + CM (17)

for all t ∈ R, where CM = max	t	≤M 	g�t�	. By (17), the Hölder inequality,
and Sobolev’s inequality (8) we have

−�wn1� ≤ �ϕ′�un�	 wn1�
≤

∫
�
	∇wn1	2 dx− λk

∫
�
	wn1	2 dx+ ε

∫
�
	unwn1	dx

+CM

∫
�
	wn1	dx+

∫
�
hwn1 dx

≤
(

1 − λk
λk−1

)
�wn1�2 + ε�un�L2����wn1�L2���

+ �CM + 	h	�L2����wn1�L2���

≤
(

1 − λk
λk−1

)
�wn1�2 + C2ε�un��wn1�

+C�CM + 	h	�L2����wn1�
for large n. Thus we obtain

lim sup
n→∞

�wn1�
�un�

≤ C2λk−1ε

λk − λk−1
�

By the arbitrariness of ε, one has that wn1/�un� → 0 as n → ∞. In a similar
way one obtains that wn2/�un� → 0 as n → ∞. By the finite dimensionality
of W , �wn/�un�� has a convergent subsequence, say �wn/�un��, such that
wn/�un� → v ∈ W as n → ∞. It follows that

vn�
un
�un�

→ v in H1
0��� (18)

as n → ∞, which implies that v �= 0. In a way similar to that used in proving
(16) we have

lim inf
n→∞

∫
�
F�un�vn dx ≥ F�+∞�

∫
�
v+ dx− �F�−∞�

∫
�
v− dx� (19)

But from (7) and

�ϕ′�un�	 un� − 2ϕ�un� =
∫
�
F�un�un dx−

∫
�
hun dx
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for all n, we obtain

lim
n→∞

∫
�
F�un�vn dx =

∫
�
hv dx < F�+∞�

∫
�
v+ dx− �F�−∞�

∫
�
v− dx	

which contradicts (19). Hence �un� is bounded. Therefore ϕ satisfies the
(PS) condition.

Proof of Theorem 1� By Lemma 1 and the Saddle Point Theorem (see
[20]) we only need to prove that

ϕ�aψ� → −∞ (20)

as 	a	 → ∞ in R and

ϕ�u� → +∞ (21)

as �u� → ∞ in H⊥
1 , where

H1 = �aψ 	 a ∈ R
�
If (20) does not hold, there exist a real sequence �an� and a real constant

C0 such that 	an	 → ∞ as n → ∞ and ϕ�anψ� ≥ C0 for all n. Without loss
of generality we may assume that an → +∞ as n → ∞. It follows that

lim inf
n→∞

1
an
ϕ�anψ� ≥ 0� (22)

From the proof of Lemma 2 we obtain that

G�anψ�x��
an

≥ Cεψ�x�

for all n and a.e. x ∈ �. Hence by the Lebesgue–Fatou Lemma, Lemma 2,
and (5), we have

lim sup
n→∞

1
an
ϕ�anψ� = − lim inf

n→∞

∫
�

G�anψ�
an

dx+
∫
�
hψdx

≤ −F�+∞�
∫
�
ψdx+

∫
�
hψdx

< 0	

which contradicts (22).
Now we prove (21). By (3) there exists M > 0 such that 	g�t�	 ≤ γ	t	

for all 	t	 ≥ M , where γ is a constant satisfying lim sup	t	→+∞ g�t�/t < γ <
λ2 − λ1. Thus we have

	g�t�	 ≤ γ	t	 + CM
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for all t ∈ R, where CM = sup	t	≤M 	g�t�	. Hence we obtain

	G�t�	 ≤ 1
2
γ	t	2 + CM 	t	

for all t ∈ R. By Sobolev’s inequality (8) one has

ϕ�u� = 1
2

∫
�
	∇u	2 dx− 1

2
λ1

∫
�
	u	2 dx−

∫
�
G�u�dx+

∫
�
hudx

≥ λ2 − λ1 − γ

2λ2

∫
�
	∇u	2 dx− �CM + 	h	�L2����u�L2���

≥ λ2 − λ1 − γ

2λ2
�u�2 − C�CM + 	h	�L2����u�

for all u ∈ H⊥
1 , which implies (21). Now by (20), (21), and the Saddle Point

Theorem we complete our proof.

Proof of Theorem 2� By Lemma 3 and the Saddle Point Theorem one
only needs to prove that

ϕ�u� → +∞ (23)

as �u� → ∞ in W2 and

ϕ�u� → −∞ (24)

as �u� → ∞ in W1 +W , where

W1 = Ker�λ1 + �� ⊕ · · · ⊕ Ker�λk−1 + ��	

W = Ker�λk + ��, and W2 = �W1 +W �⊥. It follows from (17) that

	G�t�	 ≤ 1
2
ε	t	2 + CM 	t	 (25)

for all t ∈ R. In a manner similar to the proof of (21) one can prove (23).
Now we prove (24). If (24) does not hold, there exist a sequence �un�

in W1 + W and a real constant C0 such that �un� → ∞ as n → ∞ and
ϕ�un� ≥ C0 for all n. It follows that

lim inf
n→∞

1
�un�

ϕ�un� ≥ 0	 lim inf
n→∞

1
�un�2ϕ�un� ≥ 0� (26)
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Write un = wn1 + wn, where wn1 ∈ W1, wn ∈ W . In the case that
lim infn→∞ �wn�/�un� > 0, by (25) we have

ϕ�un� ≤
1
2

∫
�
	∇un	2 dx− 1

2
λk

∫
�
	un	2 dx+ 1

2
ε
∫
�
	un	2 dx

+CM

∫
�
	un	dx+

∫
�
hun dx

≤ 1
2

∫
�
	∇wn1	2 dx− 1

2
λk

∫
�
	wn1	2 dx+ 1

2
ε
∫
�
	un	2 dx

+�CM + 	h	�L2����un�L2���

≤ 1
2

(
1 − λk

λk−1

)
�wn1�2 + 1

2
C2ε�un�2 + C�CM + 	h	�L2����un�

for all n, which implies that

lim sup
n→∞

1
�un�2ϕ�un� ≤ −λk − λk−1

2λk−1

(
lim inf
n→∞

�wn1�
�un�

)2

+ 1
2
C2ε�

It follows from the arbitrariness of ε that

lim sup
n→∞

1
�un�2ϕ�un� < 0	

which contradicts (26). Now we consider the case that �un� has a subse-
quence, say �un�, such that wn1/�un� → 0 as n → ∞. Because W is finite-
dimensional, without loss of generality we may assume that wn/�un� → v
in W as n → ∞. Hence one has

vn�
un
�un�

→ v in H1
0���

as n → ∞. From Lemma 2 we obtain

lim inf
n→∞

1
�un�

∫
�
G�un�dx ≥ F�+∞�

∫
�
v+ dx− �F�−∞�

∫
�
v− dx

in a manner similar to the proof of (19). Noting that

ϕ�un� ≤ −
∫
�
G�un�dx+

∫
�
hun dx

for all n, we have

lim sup
n→∞

1
�un�

ϕ�un� ≤ − lim inf
n→∞

1
�un�

∫
�
G�un�dx+

∫
�
hv dx

≤ −F�+∞�
∫
�
v+ dx+ �F�−∞�

∫
�
v− dx+

∫
�
hv dx

< 0	

which contradicts (26), too. Hence (24) holds. The proof is completed.
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Proof of Theorem 3� In a manner similar to the proof of Lemma 3 we
can prove that the functional ϕ, where k > 1, satisfies the (PS) condition.
As in the proof of Theorem 2 one has

ϕ�u� → +∞
as �u� → ∞ in W +W2 and

ϕ�u� → −∞
as �u� → ∞ in W1. By the Saddle Point Theorem, ϕ has at least one critical
point. Therefore Theorem 3 holds.

REFERENCES

1. E. Landesman and A. Lazer, Nonlinear perturbation of linear elliptic boundary value
problems at resonance, J. Math. Mech. 19 (1970), 609–623.

2. S. Ahmad, A resonance problem in which the nonlinearity may grow linearly, Proc. Amer.
Math. Soc. 92 (1984), 381–384.
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