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Abstract
We show that there exists at least one positive solution for Lidstone boundary value problem
DM@y = f(t,u@),u” @), ..., u?" "D @), 0<r<1,
W@ =u®@)=0, i=01....n—1,

under some suitable conditions. Our proof is based upon global bifurcation techniques.
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1. Introduction

In this paper we consider the existence of positive solutions of Lidstone boundary value
problem

D"u® () = (e u@).u"@). ... u?* V@), 0<r<1, @)
u(Zi)(O)=u<2i)(l)=0, i=01....,n-1, 2)

where f is continuousp > 1.
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The Lidstone boundary value problem arises in many different areas of applied math-
ematics and physics. In particularsf= 2, the problem (1) and (2) describes the defor-
mation of an elastic beam whose both ends are simply supported. Recently many authors
have studied the existence and multiplicity of positive solutions of this problem, see [3,
5-11,13]. But all of these results are based upon the upper and lower solution method or
Leray—Schauder continuation theorem and topological degree, and many results require
that the nonlinearityf do not depend on any derivativespfsee [13]. In this paper, we
establish an existence result of positive solution for the problem (1) and (2) by using global
bifurcation techniques. This is a novel approach, which is different from the approaches
employed in previous papers. By discussing the behavior of positive solution branches of
the equations with parameters, we can determine the exact number of positive solutions.

In this paper we will use the following notations. Let

R4+ =10, 00), R_ = (—o00,0],

U= (ug,u1,...,u—1) €R", |U|=\/ug+u%+~~+u5_1,
n—1
R! =[[-D'Ry.
i=0
where

i _|R4, iiseven
(‘1)R+—{R_, i is odd

We make the following assumptions:

(H1) f:[0,1] x R — R, is continuous and there exigt = (ap, a1, ...,a,-1), B =
(bo, b1, ...,by—1) € R} \ {(0,0,...,0)} such that

n—1

£, 0) =) " (=Diau® @) +o(1U]), |U|—0, 3
i=0
nil . .

£ U0) =) (=D () +o(|U]), |U|— oo, 4)
i=0

uniformly inr € [0, 1].
(H2) f(@,U) > 0foranyr €[0,1] andU #0.
(H3) There exist€ = (co, c1,...,cp—1) € R\ {(0,0,...,0)} such that

n—1
f@t,U) > Z(—l)iciu(Zi)(t), (t,U)€[0,1] x R
i=0

In this paper, we give some conditions dn B, which ensure that (1) and (2) has at
least one positive solution.
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2. Preliminaries

Firstly we state the Dancer’s results on the global bifurcation branches for positive map-
ping (see [4]), which play a very important role in the proof of our main results.

Suppose thak is a real Banach space with nofim||. Let K be a cone irE. A nonlinear
mapping? : [0, o) x K — E is said to be positive if ([0, c0) x K) C K. Itis said to be
K-completely continuous if" is continuous and maps bounded subsef®gofo) x K to
precompact subset @&. Finally, we say that a positive linear operatoron E is a linear
minorant forT if T(A,u) > AV (u) for (A, u) € [0,00) x K. If N is a continuous linear
operator onk, we denote(N) the spectrum radius d¥. Define

Ck(N) = {1 €0, 00): there existsx € K with |x|| =1 andx =ANx}.
Lemma 1. Assume that

() K has nonempty interioranfi = K — K.
(i) T:[0,00) x K — E is K-completely continuous and positive(i, 0) = 0 for A € R,
T(O,u)=0foru € K and

T, u)=ANu+ F(A,u),

whereN : E — E is a strongly positive linear compact operator éhwith r(N) > 0,
F :[0,00) x K — E satisfied| F(x, u)| = o(|lu||) as|lu|| — 0 locally uniformly inx.

Then there exists an unbounded connected subsét
D (T) = {(r,u) €[0,00) x K: u=T(xu), u0}n{(r(N)7*,0)}

such that(r(N)~1, 0) € £. Moreover, ifT has a linear minoran¥ and there exists a
(w,y) €(0,00) x K

such that|y|| =1anduVy > y, thenL can be chosen in

Dk (T)N ([0, ul x K).
Proof. See Dancer [4]. O

Let G,(z, s) is the Green's function of homogeneous boundary value problem

uP)y=0, 0<r<1,
@0 =u®1)=0, i=01,....,n—1
By [2], the Green’s functiorG, (¢, s) can be expressed as
1
Gi(t,s)= / G(t,1)Gi_1(t,8)dTr, =23, ...,n,
0
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where

Gt =G = {10 0SITIET

s(1—1), 0<s<r <l ®)
Itis clear that

t(l—0)G(s,s) <G@E,5)<t(1—1) (6)
forany 0<s <1, and

Gu(t,s)>0, (t,5)€(0,1) x (0,1).
Define the operata$ : C[0, 1] — C[0, 1] as follows:

1
(Su)(r) = / Gu(t,5)f(s,U(s))ds, tel0,1].
0

It is well known that the solutions of BVP (1) and (2) are equivalent to the fixed points

of S.
Let
(H4) D = (do.d1.....dy-1) €R%\{(0,0,....0)}.

Definition 1. We saya is a generalized eigenvalue of linear problem

n—1

“D"u® () =2 (~D'du® (@), 0<t<1, (7)
i=0

u@O)=u?1)=0, i=01,...,n—1, (8)

if (7) and (8) has a nontrivial solution.

Lemma 2. Assume thafH4) holds. Then the generalized eigenvalueg®fand (8) are
given by

O<t(D)<Ai(D)<---<Aip(D)<---, (9)
where
2n
(D) = — &) keN. (10)

Yo di(km)E’
The generalized eigenfunction correspondingtéD) is
i (t) = sinkmt. (11)

Proof. First of all we note that is a generalized eigenvalue of (7) and (8) if and only if
WYy dikm)E
(k)2 B
for k e N, so (10) is true.
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Now we define a function

2
R(x) = W’ x € [, 00).
i=0 %i
Since
-1y -1 . 2i
X " q2n—1i)dix
R'(x) = Z’n—_"l ———— >0,
[Zi:o dix]
and
Mg = R(km),

then{i; (D)} is strictly increasing.
Nextly letu be a nontrivial solution of

n—1
i=0
u(2i)(0) _ M(Zi)(l) =0, i=01,....n—-1, (13)

and we denoté.ou = —u” with D(Lg) = {u € C?[0, 1]: u(0) = u(1) = 0}; then there exist
n complex numbers; such that

n—1
(=1"u® (1) = a(D) Y (=1 dju® (1)
i=0
= (Lo+rol)(Lo+ril)---(Lo+ra—1Du(r) =0.

Hence there must exist0 < i <n — 1, such thatLg + r;)u = 0, which implies that
ri = (jm)?
for somej € N, and consequently
u(t) =sinjmrt (14)

is a nontrivial solution.
By substituting (14) into (12), we have

(jm)*
Yo di(jm)?
which impliesj = k and accordingly (11) holds.O

Ak(D) =

Coroallary 1. Assume thaH4) holds. If either

n—1 2 n—1 2i
Yiodim Yi—odim
- = 1 or - o 1
T T

then
A(D)>1 or r(D) <1l
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Proof. From (10) we easily see that
Z,;(:)L di7T2i
TN
then Corollary 1 naturally holds.O

A1(D) =1,

3. Main results

Theorem 1. AssumdH1)—(H3)hold. If either

A(B) <1< A1(A) (15)
or

A(A) <1< A1(B), (16)
then(1) and (2) have at least one positive solution.

Corollary 2. Assume thafH1)—(H3)hold. If either

Z::(} bi (7T)2i ?;01 a; (n)Zi
(71’)2" >1 and (7-[)211 <1 (17)
or
n—1 2i n—1 2i
i=0 @i (71) > iz bi(m)
Tz P T <t as)

then(1) and (2) have at least one positive solution.

It is easy to know that ik1(A) = 1 = 11(B), then the existence of positive solution of
the problem (1) and (2) cannot be guaranteed.
Now let

e(t) :=sinmt, rel0,1],
and we denoté is such a Banach space that its every elementC?'~2[0, 1] satisfying
u@ ) =u®@1)=0, i=01,...,n—1,
and there exists a constgnk (0, oco) such that
—ye®) < (D" WPV @) <ye), 1€(0,1]. (19)
Now for anyu € E, we have that
1
(=D'u@ () = / G(t,s)(—1) 1 @D 6y g, (20)
0

and
1

n—lze(t)sz(t,s)e(s)ds, (22)
0
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whereG(t, s) is given in (5). Using (20), we have that

14 i (20 14
¢ < —D'u® (1) < ™ 22)

foranyt €[0,1], i =0,1,...,n — 1.
Since% < y forany 0<i <n — 1, then we can define the norm by

lullg :=inf{y: —ye@®) < (=" @D (1) <ye), 1 €[0, 1]}
Itis easy to check thatE, | - || ) is a Banach space. Let
K:={ueE: (-1)'u® ) >0, 1e[0,1], i=0,1,...,n—1},

thenK is normal and has a nonempty interior, moreokes K — K.
LetY = CJO0, 1] with the norm

llulloo = tg?gﬁ|u(t)|-
Define the operatok : D(L) — Y by setting

Lu:=(-1"u® (), ueDL), (23)
where

D(L)={ueC®0,1]: u®(0)=u?(1)=0,i=0,1,...,n—1}.

We can verify that. 1 : ¥ — E is compact.

Lemma3. Leth € Y with h > 0 andh(r) > O for somerg € [0, 1], and
Lu—h=0,

thenu €intK.

Proof. Using (22), we only need to show that there exist constanis > 0 such that
rie(d) < (=" PV @) <rpe),  1€[0,1]. (24)
In fact, from (6) and (20) we have that

1 1
(—1)”*1u<2<"*1>)(t)=/G(z,s)(—1)"u<2")(s)ds=/G(r,s)h(s)ds
0 0

1
<r<1—r>/h<s>ds<r<1—r>||h||oo,
0

1

1
(—1)”_lu(2("_l))(t)=/G(t,s)h(s)ds >t(1—t)/G(s,s)h(s)ds.
0 0
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Since there exist constantg, co > 0 such that
cisingr <t(1—1) <cepsinmr, 0<r<1],

then (24) naturally holds. O

Proof of Theorem 1. Letg,h € C([0, 1] x R?, R) be such that

n—1
f@U) =) (—Diau® 1)+ g, U), (25)
i=0
n—1
[0 =) (=D b @0)+ht, U), (26)
i=0
which implies by (H1) that
8. U) =0 and lim h(t, U) =0
uj—~0 |U]| [Ul=>oco  |U]

(27)

uniformly in ¢ € [0, 1].
Define a function

h(r)y=max{|h(t, U)|: 0< U<, t [0, 1]},
then’ is nondecreasing and

jim " _o, (28)
r—o0 r
Let us consider
n—1 ) .
Lu=2) (-1'aqiu®(t) + 2g(t.U) (29)
i=0
as a bifurcation problem from the trivial solutian= 0.
It is easy to check that (29) is equivalent to the following integral equation:

1 n—1 1

() = 1 / Gult,5) Y (=D aiu® (s)ds +x f Gu(t,5)8(s, U (s)) ds
0 i=0 0
=T, u)).

Now we defineN : E — E by
1

n—1
Nu(r) :=/Gn(t,s)Z(—l)"a,-u@")(s)ds.

0 i=0

It is easy to check thaV is a strongly positive linear operator di, and is completely
continuous. From Lemma 2 and [1, Theorem 3.2], we have

r(N) = [a@] ™
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Nextly we defineF : [0, c0) x E — E by
1
F(h,u):= A/ G, (t, s)g(s, U(s)) ds.
0

From the definition of the norm of Banach spdtewe can see that

oo < e floo < -+ < P lg < Jull e (30)
Combining with (28), we have

|FGw | g =o(llullg)

locally uniformly in A.
From (H2) and Lemma 3, we know that(if, ) with » > 0 is a nontrivial solution of
(29), then

ueintk.
Combining with Lemma 1, there exists an unbounded connected sfilod¢he set
{(h,u) € (0,00) x K: u=T(xu), ueintkK}uU{(r1(A),0)}

such that(r1(A),0) € L.

It is clear that any solution of (29) of the forfd, u) yields a solution: of the problem
(1) and (2). We show thaf crosses the hyperplafg} x E in R x E. Using (15) or (16),
it is enough to show thaf joins (11(A), 0) to (A1(B), 00).

Let (um, ym) € L satisfy

Mm + lymllE — 00. (31)

We note thaiu,, > 0 for all m € N since(0, 0) is the only solution of (29) fok = 0 and
LN {0} x E)=0.

Casel. A1(B) < 1 < A1(A). In this case, we show that
(A1(B). 21(A)) S {r e R: 3, u) € L}.

Stepl. We show that there exists a constait> 0 such thafu,, € (0, M] for all m. In
fact, by Lemma 1 we only need to show tifahas a linear minorarit and there exists a
(mn,y) € (0,00) x K such that|y||g =1anduVy > y.

By (H3), there exist€ = (co, c1, ..., cn—1) € R\ {(0,0,...,0)} such that

n—1
fEU) 2 (=Dicu® @), (,U)€[0,1] x R}, (32)
i=0
Foru e E, let
1

n—1
Vu(t) ::/Gn(t,s) Z(—l)iciu(Zi)(s)ds,

0 i=0
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thenV is a linear minorant of . Now we choose (1) = —5i2y;, theny € K and|y| z = 1.
Moreover,

n=1__2i9-1
[in”} Vy(t) =y(@). (33)
T

From Lemma 1 we have that

| < imoen® ]
7 == .

Step2. We show that joins (A1(A), 0) to (A1(B), 0o). From (31) and the result of Step 1
we have thatly,, | — oo. We divide the equation
n—1 ' '
Lyn = tim Yy (=D biy\e” + pumh (. Y (1)) (34)
i=0
by |y, |l g and sety,, = Hl Sincey,, is bounded in Banach spaég then there exists a

m

subsequence, which we still dengig such thaty,, — y for somey € E with || y]lg = 1.
Sinceh is nondecreasing, then we easily obtain from (30) that

|h (ym (1)) gh(l)’m(t”)gh(”)’m”oo)gh(”ym”E).
”))m”E ”ym”E ”))m”E ”ym”E
Using (28), we have

h
im 2O _
m=00 | yn
Hence
1 n—1 ' .
Y =i f Gu(t.5) Y (=1 b;u®(s)ds,
0 i=0

where & := lim,,_, o i, again choosing a subsequence and relabelling it if necessary.
Obviouslyj # 0. In fact, if 1 = 0, they =0, it is contrary to the facty| g = 1. Therefore

n—1
Ly=p) (~1'biy®.
i=0
which implies thatic = 11(B) by Lemma 2. Henc€ joins (A1(A), 0) to (A1(B), 00).
Case2. A1(A) <1< A1(B). Let (um, ym) € L such that
im (m + llymllE) = 0.
m—0Q
Now if there exists a consta > 0 such that

Mme(oaM]a mENa
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then applying the similar argument used in Step 2 of Case 1, after taking a subsequence
and relabelling it if necessary, we have that

(Mm» Ym) = ()&1(3), 00), m — 00.
Hencel joins (A1(A), 0) to (A1(B), co) and the result follows.
If

lim p, = oo,
m—00

then we must have that

(A1(A), 11(B)) S {1 € (0, 00): (A,u) € L},
and moreover,

({1} X E)ﬂﬁ;ﬁ@,

which implies that there existsiac E such that(1, u) € £ is a solution of (29), naturally
u is a positive solution of (1) and (2).
The proof of Theorem 1 is completedn

Remark. Schaaf and Schmitt [12] in 1992 considered the asymptotic behavior of positive
solution branches of elliptic problems. Similarly, under some suitable conditions, we can
prove the following eigenvalue problem:

D" () =af (tou@), u" @), ..., u?" V@), 0<r<1,
u@0)=u®1)=0, i=01,...,n—1,

has a connected! component in solution set. By discussed the perturbation of branching
curve ath = 1, we can determine the exact number of positive solutions for problem (1)
and (2), or obtain the existence results of infinitely many positive solutions after adding
certain conditions.
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