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Abstract

We show that there exists at least one positive solution for Lidstone boundary value proble

(−1)nu(2n)(t) = f
(
t, u(t), u′′(t), . . . , u(2(n−1))(t)

)
, 0< t < 1,

u(2i)(0) = u(2i)(1) = 0, i = 0,1, . . . , n − 1,

under some suitable conditions. Our proof is based upon global bifurcation techniques.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we consider the existence of positive solutions of Lidstone boundary
problem

(−1)nu(2n)(t) = f
(
t, u(t), u′′(t), . . . , u(2(n−1))(t)

)
, 0< t < 1, (1)

u(2i)(0) = u(2i)(1) = 0, i = 0,1, . . . , n − 1, (2)

wheref is continuous,n � 1.

E-mail address:mayh@nwnu.edu.cn.
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The Lidstone boundary value problem arises in many different areas of applied
ematics and physics. In particular, ifn = 2, the problem (1) and (2) describes the def
mation of an elastic beam whose both ends are simply supported. Recently many
have studied the existence and multiplicity of positive solutions of this problem, se
5–11,13]. But all of these results are based upon the upper and lower solution met
Leray–Schauder continuation theorem and topological degree, and many results
that the nonlinearityf do not depend on any derivatives ofu, see [13]. In this paper, w
establish an existence result of positive solution for the problem (1) and (2) by using
bifurcation techniques. This is a novel approach, which is different from the appro
employed in previous papers. By discussing the behavior of positive solution branc
the equations with parameters, we can determine the exact number of positive solu

In this paper we will use the following notations. Let

R+ = [0,∞), R− = (−∞,0],
U = (u0, u1, . . . , un−1) ∈ R

n, |U | =
√

u2
0 + u2

1 + · · · + u2
n−1,

R
n
i =

n−1∏
i=0

(−1)iR+,

where

(−1)iR+ =
{

R+, i is even,
R−, i is odd.

We make the following assumptions:

(H1) f : [0,1] × R
n
i → R+ is continuous and there existA = (a0, a1, . . . , an−1), B =

(b0, b1, . . . , bn−1) ∈ R
n+ \ {(0,0, . . . ,0)} such that

f (t,U) =
n−1∑
i=0

(−1)iaiu
(2i)(t) + o

(|U |), |U | → 0, (3)

f (t,U) =
n−1∑
i=0

(−1)ibiu
(2i)(t) + o

(|U |), |U | → ∞, (4)

uniformly in t ∈ [0,1].
(H2) f (t,U) > 0 for anyt ∈ [0,1] andU �≡ 0.
(H3) There existsC = (c0, c1, . . . , cn−1) ∈ R

n+ \ {(0,0, . . . ,0)} such that

f (t,U) �
n−1∑
i=0

(−1)iciu
(2i)(t), (t,U) ∈ [0,1] × R

n
i .

In this paper, we give some conditions onA,B, which ensure that (1) and (2) has
least one positive solution.
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2. Preliminaries

Firstly we state the Dancer’s results on the global bifurcation branches for positive
ping (see [4]), which play a very important role in the proof of our main results.

Suppose thatE is a real Banach space with norm‖·‖. LetK be a cone inE. A nonlinear
mappingT : [0,∞) × K → E is said to be positive ifT ([0,∞) × K) ⊆ K . It is said to be
K-completely continuous ifT is continuous and maps bounded subsets of[0,∞) × K to
precompact subset ofE. Finally, we say that a positive linear operatorV on E is a linear
minorant forT if T (λ,u) � λV (u) for (λ,u) ∈ [0,∞) × K . If N is a continuous linea
operator onE, we denoter(N) the spectrum radius ofN . Define

CK(N) = {
λ ∈ [0,∞): there existsx ∈ K with ‖x‖ = 1 andx = λNx

}
.

Lemma 1. Assume that

(i) K has nonempty interior andE = K − K.

(ii) T : [0,∞) × K → E is K-completely continuous and positive,T (λ,0) = 0 for λ ∈ R,
T (0, u) = 0 for u ∈ K and

T (λ,u) = λNu + F(λ,u),

whereN : E → E is a strongly positive linear compact operator onE with r(N) > 0,
F : [0,∞)×K → E satisfies‖F(λ,u)‖ = o(‖u‖) as‖u‖ → 0 locally uniformly inλ.

Then there exists an unbounded connected subsetL of

DK(T ) = {
(λ,u) ∈ [0,∞) × K: u = T (λ,u), u �= 0

} ∩ {(
r(N)−1,0

)}
such that(r(N)−1,0) ∈ L. Moreover, ifT has a linear minorantV and there exists a

(µ,y) ∈ (0,∞) × K

such that‖y‖ = 1 andµVy � y, thenL can be chosen in

DK(T ) ∩ ([0,µ] × K
)
.

Proof. See Dancer [4]. �
Let Gn(t, s) is the Green’s function of homogeneous boundary value problem

u(2n)(t) = 0, 0� t � 1,

u(2i)(0) = u(2i)(1) = 0, i = 0,1, . . . , n − 1.

By [2], the Green’s functionGn(t, s) can be expressed as

Gi(t, s) =
1∫
G(t, τ )Gi−1(τ, s) dτ, i = 2,3, . . . , n,
0
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if
where

G1(t, s) = G(t, s) =
{

t (1− s), 0� t � s � 1,

s(1− t), 0� s � t � 1.
(5)

It is clear that

t (1− t)G(s, s) � G(t, s) � t (1− t) (6)

for any 0� s � 1, and

Gn(t, s) > 0, (t, s) ∈ (0,1) × (0,1).

Define the operatorS : C[0,1] → C[0,1] as follows:

(Su)(t) =
1∫

0

Gn(t, s)f
(
s,U(s)

)
ds, t ∈ [0,1].

It is well known that the solutions of BVP (1) and (2) are equivalent to the fixed po
of S.

Let

(H4) D = (d0, d1, . . . , dn−1) ∈ R
n+ \ {(0,0, . . . ,0)}.

Definition 1. We sayλ is a generalized eigenvalue of linear problem

(−1)nu(2n)(t) = λ

n−1∑
i=0

(−1)idiu
(2i)(t), 0< t < 1, (7)

u(2i)(0) = u(2i)(1) = 0, i = 0,1, . . . , n − 1, (8)

if (7) and (8) has a nontrivial solution.

Lemma 2. Assume that(H4) holds. Then the generalized eigenvalues of(7) and (8) are
given by

0< λ1(D) < λ2(D) < · · · < λn(D) < · · · , (9)

where

λk(D) = (kπ)2n∑n−1
i=0 di(kπ)2i

, k ∈ N. (10)

The generalized eigenfunction corresponding toλk(D) is

ϕk(t) = sinkπt. (11)

Proof. First of all we note thatλ is a generalized eigenvalue of (7) and (8) if and only

λ
∑n−1

i=0 di(kπ)2i

(kπ)2n
= 1

for k ∈ N, so (10) is true.
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Now we define a function

R(x) = x2n∑n−1
i=0 dix2i

, x ∈ [π,∞).

Since

R′(x) = x2n−1 ∑n−1
i=0 2(n − i)dix

2i

[∑n−1
i=0 dix2i]2 > 0,

and

λk = R(kπ),

then{λk(D)} is strictly increasing.
Nextly letu be a nontrivial solution of

(−1)nu(2n)(t) = λk(D)

n−1∑
i=0

(−1)idiu
(2i)(t), 0< t < 1, (12)

u(2i)(0) = u(2i)(1) = 0, i = 0,1, . . . , n − 1, (13)

and we denoteL0u = −u′′ with D(L0) = {u ∈ C2[0,1]: u(0) = u(1) = 0}; then there exis
n complex numbersri such that

(−1)nu(2n)(t) − λk(D)

n−1∑
i=0

(−1)idiu
(2i)(t)

= (L0 + r0I )(L0 + r1I ) · · · (L0 + rn−1I )u(t) = 0.

Hence there must existi, 0� i � n − 1, such that(L0 + ri)u = 0, which implies that

ri = (jπ)2

for somej ∈ N, and consequently

u(t) = sinjπt (14)

is a nontrivial solution.
By substituting (14) into (12), we have

λk(D) = (jπ)2n∑n−1
i=0 di(jπ)2i

,

which impliesj = k and accordingly (11) holds.�
Corollary 1. Assume that(H4) holds. If either∑n−1

i=0 diπ
2i

π2n
< 1 or

∑n−1
i=0 diπ

2i

π2n
> 1,

then

λ1(D) > 1 or λ1(D) < 1.
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Proof. From (10) we easily see that

λ1(D)

∑n−1
i=0 diπ

2i

π2n
= 1,

then Corollary 1 naturally holds.�

3. Main results

Theorem 1. Assume(H1)–(H3)hold. If either

λ1(B) < 1< λ1(A) (15)

or

λ1(A) < 1< λ1(B), (16)

then(1) and (2) have at least one positive solution.

Corollary 2. Assume that(H1)–(H3)hold. If either∑n−1
i=0 bi(π)2i

(π)2n
> 1 and

∑n−1
i=0 ai(π)2i

(π)2n
< 1 (17)

or ∑n−1
i=0 ai(π)2i

(π)2n
> 1 and

∑n−1
i=0 bi(π)2i

(π)2n
< 1, (18)

then(1) and (2) have at least one positive solution.

It is easy to know that ifλ1(A) = 1 = λ1(B), then the existence of positive solution
the problem (1) and (2) cannot be guaranteed.

Now let

e(t) := sinπt, t ∈ [0,1],
and we denoteE is such a Banach space that its every elementu ∈ C2n−2[0,1] satisfying

u(2i)(0) = u(2i)(1) = 0, i = 0,1, . . . , n − 1,

and there exists a constantγ ∈ (0,∞) such that

−γ e(t) � (−1)n−1u(2(n−1))(t) � γ e(t), t ∈ [0,1]. (19)

Now for anyu ∈ E, we have that

(−1)iu(2i)(t) =
1∫

0

G(t, s)(−1)i+1u(2(i+1))(s) ds, (20)

and

1

π2
e(t) =

1∫
G(t, s)e(s) ds, (21)
0
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whereG(t, s) is given in (5). Using (20), we have that

− γ

π2(n−1−i)
e(t) � (−1)iu(2i)(t) � γ

π2(n−1−i)
e(t) (22)

for any t ∈ [0,1], i = 0,1, . . . , n − 1.
Since γ

π2i � γ for any 0� i � n − 1, then we can define the norm inE by

‖u‖E := inf
{
γ : −γ e(t) � (−1)n−1u(2(n−1))(t) � γ e(t), t ∈ [0,1]}.

It is easy to check that(E,‖ · ‖E) is a Banach space. Let

K := {
u ∈ E: (−1)iu(2i)(t) � 0, t ∈ [0,1], i = 0,1, . . . , n − 1

}
,

thenK is normal and has a nonempty interior, moreoverE = K − K.

Let Y = C[0,1] with the norm

‖u‖∞ = max
t∈[0,1]

∣∣u(t)
∣∣.

Define the operatorL :D(L) → Y by setting

Lu := (−1)nu(2n)(t), u ∈ D(L), (23)

where

D(L) = {
u ∈ C2n[0,1]: u(2i)(0) = u(2i)(1) = 0, i = 0,1, . . . , n − 1

}
.

We can verify thatL−1 : Y → E is compact.

Lemma 3. Leth ∈ Y with h � 0 andh(t0) > 0 for somet0 ∈ [0,1], and

Lu − h = 0,

thenu ∈ intK .

Proof. Using (22), we only need to show that there exist constantsr1, r2 > 0 such that

r1e(t) � (−1)n−1u(2(n−1))(t) � r2e(t), t ∈ [0,1]. (24)

In fact, from (6) and (20) we have that

(−1)n−1u(2(n−1))(t) =
1∫

0

G(t, s)(−1)nu(2n)(s) ds =
1∫

0

G(t, s)h(s) ds

� t (1− t)

1∫
0

h(s) ds � t (1− t)‖h‖∞,

(−1)n−1u(2(n−1))(t) =
1∫
G(t, s)h(s) ds � t (1− t)

1∫
G(s, s)h(s) ds.
0 0
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Since there exist constantsc1, c2 > 0 such that

c1 sinπt � t (1− t) � c2 sinπt, 0� t � 1,

then (24) naturally holds. �
Proof of Theorem 1. Let g,h ∈ C([0,1] × R

n
i ,R) be such that

f (t,U) =
n−1∑
i=0

(−1)iaiu
(2i)(t) + g(t,U), (25)

f (t,U) =
n−1∑
i=0

(−1)ibiu
(2i)(t) + h(t,U), (26)

which implies by (H1) that

lim|U |→0

g(t,U)

|U | = 0 and lim|U |→∞
h(t,U)

|U | = 0 (27)

uniformly in t ∈ [0,1].
Define a function

h̃(r) = max
{∣∣h(t,U)

∣∣: 0� |U | � r, t ∈ [0,1]},
thenh̃ is nondecreasing and

lim
r→∞

h̃(r)

r
= 0. (28)

Let us consider

Lu = λ

n−1∑
i=0

(−1)iaiu
(2i)(t) + λg(t,U) (29)

as a bifurcation problem from the trivial solutionu ≡ 0.
It is easy to check that (29) is equivalent to the following integral equation:

u(t) = λ

1∫
0

Gn(t, s)

n−1∑
i=0

(−1)iaiu
(2i)(s) ds + λ

1∫
0

Gn(t, s)g
(
s,U(s)

)
ds

=: T (λ,u)(t).

Now we defineN : E → E by

Nu(t) :=
1∫

0

Gn(t, s)

n−1∑
i=0

(−1)iaiu
(2i)(s) ds.

It is easy to check thatN is a strongly positive linear operator onE, and is completely
continuous. From Lemma 2 and [1, Theorem 3.2], we have

r(N) = [
λ1(A)

]−1
.
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Nextly we defineF : [0,∞) × E → E by

F(λ,u) := λ

1∫
0

Gn(t, s)g
(
s,U(s)

)
ds.

From the definition of the norm of Banach spaceE, we can see that

‖u‖∞ � ‖u′′‖∞ � · · · � ‖u(2(n−1))‖∞ � ‖u‖E. (30)

Combining with (28), we have∥∥F(λ,u)
∥∥

E
= o

(‖u‖E

)
locally uniformly inλ.

From (H2) and Lemma 3, we know that if(λ,u) with λ > 0 is a nontrivial solution o
(29), then

u ∈ intK.

Combining with Lemma 1, there exists an unbounded connected subsetL of the set{
(λ,u) ∈ (0,∞) × K: u = T (λ,u), u ∈ intK

} ∪ {(
λ1(A),0

)}
such that(λ1(A),0) ∈ L.

It is clear that any solution of (29) of the form(1, u) yields a solutionu of the problem
(1) and (2). We show thatL crosses the hyperplane{1} × E in R × E. Using (15) or (16),
it is enough to show thatL joins (λ1(A),0) to (λ1(B),∞).

Let (µm,ym) ∈ L satisfy

µm + ‖ym‖E → ∞. (31)

We note thatµm > 0 for all m ∈ N since(0,0) is the only solution of (29) forλ = 0 and
L∩ ({0} × E) = ∅.

Case 1. λ1(B) < 1 < λ1(A). In this case, we show that(
λ1(B),λ1(A)

) ⊆ {
λ ∈ R: ∃(λ,u) ∈ L

}
.

Step1. We show that there exists a constantM > 0 such thatµm ∈ (0,M] for all m. In
fact, by Lemma 1 we only need to show thatT has a linear minorantV and there exists
(µ,y) ∈ (0,∞) × K such that‖y‖E = 1 andµVy � y.

By (H3), there existsC = (c0, c1, . . . , cn−1) ∈ R
n+ \ {(0,0, . . . ,0)} such that

f (t,U) �
n−1∑
i=0

(−1)iciu
(2i)(t), (t,U) ∈ [0,1] × R

n
i . (32)

Foru ∈ E, let

V u(t) :=
1∫
Gn(t, s)

n−1∑
i=0

(−1)iciu
(2i)(s) ds,
0
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1

a

sary.
thenV is a linear minorant ofT . Now we choosey(t) = e(t)

π2(n−1) , theny ∈ K and‖y‖E = 1.
Moreover,

[∑n−1
i=0 ciπ

2i

π2n

]−1

Vy(t) = y(t). (33)

From Lemma 1 we have that

|µm| �
[∑n−1

i=0 ciπ
2i

π2n

]−1

.

Step2. We show thatL joins(λ1(A),0) to (λ1(B),∞). From (31) and the result of Step
we have that‖ym‖E → ∞. We divide the equation

Lym = µm

n−1∑
i=0

(−1)ibiy
(2i)
m + µmh

(
t, Ym(t)

)
(34)

by ‖ym‖E and set̄ym = ym

‖ym‖E
. Sinceȳm is bounded in Banach spaceE, then there exists

subsequence, which we still denoteȳm such thatȳm → ȳ for someȳ ∈ E with ‖ȳ‖E = 1.
Sinceh̃ is nondecreasing, then we easily obtain from (30) that

|h(ym(t))|
‖ym‖E

� h̃(|ym(t)|)
‖ym‖E

� h̃(‖ym‖∞)

‖ym‖E

� h̃(‖ym‖E)

‖ym‖E

.

Using (28), we have

lim
m→∞

|h(ym)|
‖ym‖E

= 0.

Hence

ȳ(t) := µ̄

1∫
0

Gn(t, s)

n−1∑
i=0

(−1)ibiu
(2i)(s) ds,

whereµ̄ := limm→∞ µm, again choosing a subsequence and relabelling it if neces
Obviouslyµ̄ �= 0. In fact, if µ̄ = 0, theȳ ≡ 0, it is contrary to the fact‖ȳ‖E = 1. Therefore

Lȳ = µ̄

n−1∑
i=0

(−1)ibi ȳ
(2i),

which implies thatµ̄ = λ1(B) by Lemma 2. HenceL joins (λ1(A),0) to (λ1(B),∞).

Case 2. λ1(A) < 1< λ1(B). Let (µm,ym) ∈ L such that

lim
m→∞

(
µm + ‖ym‖E

) = ∞.

Now if there exists a constantM > 0 such that

µm ∈ (0,M], m ∈ N,
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then applying the similar argument used in Step 2 of Case 1, after taking a subse
and relabelling it if necessary, we have that

(µm,ym) → (
λ1(B),∞)

, m → ∞.

HenceL joins (λ1(A),0) to (λ1(B),∞) and the result follows.
If

lim
m→∞µm = ∞,

then we must have that(
λ1(A),λ1(B)

) ⊆ {
λ ∈ (0,∞): (λ,u) ∈ L

}
,

and moreover,({1} × E
) ∩L �= ∅,

which implies that there exists au ∈ E such that(1, u) ∈ L is a solution of (29), naturally
u is a positive solution of (1) and (2).

The proof of Theorem 1 is completed.�
Remark. Schaaf and Schmitt [12] in 1992 considered the asymptotic behavior of po
solution branches of elliptic problems. Similarly, under some suitable conditions, w
prove the following eigenvalue problem:

(−1)nu(2n)(t) = λf
(
t, u(t), u′′(t), . . . , u(2(n−1))(t)

)
, 0< t < 1,

u(2i)(0) = u(2i)(1) = 0, i = 0,1, . . . , n − 1,

has a connectedC1 component in solution set. By discussed the perturbation of branc
curve atλ = 1, we can determine the exact number of positive solutions for problem
and (2), or obtain the existence results of infinitely many positive solutions after a
certain conditions.
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