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Abstract

Under certain natural conditions of a measurable radial functionΓ :Rn × R
m → R, Γ (y1, y2) =

Γ (|y1|, |y2|), we show that the maximal function along surface

MΓ f (x1, x2, x3)

= sup
r1,r2>0

{
1

rn
1 rm

2

∫
|y2|�r2

∫
|y1|�r1

∣∣f (
x1 − y1, x2 − y2, x3 − Γ

(|y1|, |y2|))∣∣dy1 dy2

}

is bounded inLp(Rn × R
m × R) for all p > 1 andn,m � 1.

 2005 Elsevier Inc. All rights reserved.
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Introduction

For a surfaceS in R
3 parametrized as(s, t, φ(s, t)), we define the Hilbert transform

and the maximal function along this surface respectively by

Hf (x1, x2, x3) = p.v.

∫
|t |<C2

∫
|s|<C1

f
(
x1 − s, x2 − t, x3 − φ(s, t)

)ds dt

st
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Mf (x1, x2, x3) = sup
0<ri�Ci(i=1,2)

{
1

r1r2

r2∫
0

r1∫
0

∣∣f (
x1 − s, x2 − t, x3 − φ(s, t)

)∣∣ds dt

}
.

When φ(s, t) = |s|α|t |β , α,β > 0, the Hilbert transformHf (with C1 = C2 = ∞) is
known to be bounded inLp(R3), |1/p − 1/2| < ε for someε > 0 (see [5,7,8]). On the
other hand, ifφ(s, t) = |s|α|t |β , α,β > 0, φ(0,0) = ∇φ(0,0) = 0 andφ has nonvanishing
second order derivatives at the origin, then the maximal functionMf (with C1 = C2 = ∞)
is bounded inLp(R3) for 1 < p < ∞ (see [1,2]). The author of [3] has obtained theLp

boundedness ofHf andMf (1< p < ∞) for the three types of surfaces considered be

Type A. φ(s, t) = |s|α|t |β , α,β > 0. HereC1 = C2 = ∞.

Type B. φ(s, t) is an even function (with respect to each one of the variables) of
C2 in a neighborhood of the origin withD2

1φ(0,0) andD2
2φ(0,0) �= 0, D12φ(s,0) � 0 if

D2
1φ(0,0) > 0 (respectivelyD12φ(s,0) � 0 if D2

1φ(0,0) < 0) and a similar condition ove
D12φ(0, t). HereDiφ(s, t) stands for the derivative ofφ with respect to theith variable
(i = 1,2); D2

i φ(s, t) = Di(Diφ(s, t)) andD12φ(s, t) = D1(D2φ(s, t)). C1 andC2 must
be chosen such thatD2

i φ(s, t) � A (i = 1,2) for someA > 0 in 0< s � C1, 0< t � C2.

Type C. φ(s, t) is an even function of classC2 such thatD2
1φ(s, t) andD12φ(s,0) (respec-

tively D2
2φ(s, t) andD12φ(0, t)) are nonnegative and nondecreasing ins > 0 (respectively

in t > 0). In this caseC1 and C2 must be chosen such that these conditions hol
0 < s � C1, 0 < t � C2. For this type, observe that surfaces with a contact of infi
order at the origin are allowed; for example,φ(s, t) = s2t2(e−1/|s| + e−1/|t |) for which
C1 = C2 = ∞.

Inspiring of the work in [3], we would like to study theLp boundedness of the maxim
functionMΓ f (as defined in the abstract) in higher dimension,n,m � 1, based on theLp

boundedness of the partial maximal functions (see Theorem 1 below) in lower dimen
We now describe some definitions and notations. Then we will state the results.

Definitions and notations. Let R
+ stand for[0,∞). A function φ :R+ → R is called a

type I function ifφ is strictly increasing on[0,∞) andφ′ is increasing on(0,∞).
A functionφ :R+ → R or φ : (0,∞) → R is a type II function ifφ is strictly decreasing

on its domain andφ′ is increasing on(0,∞).
A functionφ :R+ → R is a type III function if

(i) φ(0) = 0 andφ is strictly increasing on[0,∞),
(ii) φ′ is decreasing on(0,∞) and
(iii) tφ′(t) � α φ(t) for all t ∈ (0,∞) and for some fixedα > 0.

Forf ∈ S(Rn × R
m × R), n,m � 1, consider the following maximal functions:
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(1)
Γ f (x1, x2, x3)

= sup
r1,r2>0

{
1

rn
1 rm

2

∫
|y2|�r2

∫
|y1|�r1

∣∣f (
x1 − y1, x2, x3 − Γ

(|y1|, |y2|
))∣∣dy1 dy2

}
,

M
(2)
Γ f (x1, x2, x3)

= sup
r1,r2>0

{
1

rn
1 rm

2

∫
|y2|�r2

∫
|y1|�r1

∣∣f (
x1, x2 − y2, x3 − Γ

(|y1|, |y2|
))∣∣dy1 dy2

}
,

M
(1,2)
Γ f (x1, x2, x3)

= sup
r1,r2>0

{
1

rn
1 rm

2

∫
|y2|�r2

∫
|y1|�r1

∣∣f (
x1, x2, x3 − Γ

(|y1|, |y2|
))∣∣dy1 dy2

}

and

MΓ f (x1, x2, x3)

= sup
r1,r2>0

{
1

rn
1 rm

2

∫
|y2|�r2

∫
|y1|�r1

∣∣f (
x1 − y1, x2 − y2, x3 − Γ

(|y1|, |y2|
))∣∣dy1 dy2

}
,

wherex1, y1 ∈ R
n, x2, y2 ∈ R

m, x3 ∈ R and Γ :Rn × R
m → R is a measurable func

tion which is radial with respect to both variablesx1 ∈ R
n andx2 ∈ R

m, i.e. Γ (y1, y2) =
Γ (|y1|, |y2|) for all y1 ∈ R

n andy2 ∈ R
m.

Denoteht (s) = Γ (s, t) for every fixedt � 0. Similarly, denoteγs(t) = Γ (s, t) for every
fixed s � 0.

Throughout the rest of this paper, the letterC denotes a positive constant which m
vary at each occurrence it appears. However, it does not depend on any essential v

Theorem 1. Suppose the partial maximal functionsM(1)
Γ f , M

(2)
Γ f and M

(1,2)
Γ f are

bounded inLp for all p > 1. Then the maximal functionMΓ f is bounded inLp for all
p > 1 andn,m � 3. The conclusion holds for the casen = 1,2 provided that the function
ht (s) = Γ (s, t) satisfies one of the following conditions for every fixedt > 0:

(a) h′
t (s) > 0, h′′

t (s) > 0 andh′
t (s)/s is increasing on(0,∞),

(b) h′
t (s) < 0, h′′

t (s) > 0 ands h′
t (s) is increasing on(0,∞),

(c) h′
t (s) > 0, h′′

t (s) < 0 ands h′
t (s) is decreasing on(0,∞), or

(d) Γ (s, t) ∈ L∞(R+ × R
+), h′

t (s) > 0 andh′′
t (s) � 0 for all (s, t) in the support ofΓ .

Moreover, the conclusion also holds for the casem = 1,2 if the functionγs(t) = Γ (s, t)

satisfies one of the similar conditions above for every fixeds > 0.

Theorem 2. SupposeΓ (s, t) have continuous first order partial derivatives for alls, t > 0.
If ht (s) andγs(t) are either type I, II or III functions(with the constantα in the definition
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of type III function independent of both variabless andt) for each fixedt > 0 and for each
fixeds > 0, respectively, then the maximal functions

M1,2g(x3) = sup
r1,r2>0

{
1

r1r2

r2∫
0

r1∫
0

∣∣g(
x3 − Γ (s, t)

)∣∣ds dt

}
,

M1g1(x1, x3) = sup
r1,r2>0

{
1

r1r2

r2∫
0

r1∫
0

∣∣g1
(
x1 − s, x3 − Γ (s, t)

)∣∣ds dt

}

and

M2g2(x2, x3) = sup
r1,r2>0

{
1

r1r2

r2∫
0

r1∫
0

∣∣g2
(
x2 − t, x3 − Γ (s, t)

)∣∣ds dt

}

(x1, x2, x3 ∈ R, g ∈ Lp(R), andg1, g2 ∈ Lp(R2)) are bounded inLp for all p > 1.

Corollary 1. Let Γ :R+ × R
+ → R be aC1 function such thatht (s) andγs(t) are func-

tions of type I, II or III for each fixedt > 0 and for each fixeds > 0, respectively. Then th
maximal functionMΓ f (x1, x2, x3) (in Theorem1) is bounded inLp(Rn ×R

m ×R) for all
p > 1 andn,m � 3. If ht (s) (respectivelyγs(t)) is either a type I function which satisfie
hypothesis(a)of Theorem1 or a type II function satisfying hypothesis(b) of Theorem1 for
each fixedt > 0 (respectivelys > 0), then the above result also holds forn (respectivelym)
= 1 or 2.

Corollary 2. SupposeΓ : [0, c] × R
+ → R or Γ : [0, c] × (0,∞) → R is a bounded func

tion such that∂Γ (s,t)
∂s

> 0, ∂2Γ (s,t)

∂s2 � 0, ∂Γ (s,t)
∂t

< 0 and ∂2Γ (s,t)

∂t2 � 0 for all (s, t) ∈ (0, c)×
(0,∞). Then the maximal functionMΓ f (x1, x2, x3) is bounded inLp(Rn × R

m × R) for
all p > 1, n � 1 andm � 3.

Corollary 3. SupposeΓ : [0, c] × [0, d] → R is a C1 function such that∂Γ (s,t)
∂s

,
∂Γ (s,t)

∂t

> 0 and ∂2Γ (s,t)

∂s2 ,
∂2Γ (s,t)

∂t2 � 0 for all (s, t) ∈ (0, c) × (0, d). Then the maximal functio
MΓ f (x1, x2, x3) is bounded inLp(Rn × R

m × R) for all p > 1 andn,m � 1.

Examples. (1) ConsiderΓ (s, t) = sαtβ , α,β �= 0 ands, t � 0 (s > 0 if α < 0 and similarly
t > 0 if β < 0). For each fixedt > 0, the functionht (s) = Γ (s, t) is a type I function if
α � 1, a type III function if 0< α < 1 and a type II function ifα < 0. Similar conclu-
sion holds for the functionγs(t) = Γ (s, t). Thus the maximal functionMΓ f (x1, x2, x3) is
bounded inLp(Rn × R

m × R) for all p > 1 andn,m � 3 if α,β �= 0. The result also hold
for the casen (respectivelym) = 1 or 2 if α � 2 (respectivelyβ � 2) orα < 0 (respectively
β < 0).

Remark 1. The example above also holds for the casen (respectivelym) = 1 or 2 when
0 < α < 2 (respectively 0< β < 2). To see this we only need to verify the decay estim



426 H.V. Le / J. Math. Anal. Appl. 316 (2006) 422–432

ase

al

at
f
al

alogues

new

s

d

of I1(ζ1) (respectivelyI2(ζ2)) (see Eqs. (5)–(6) in the proof of Theorem 1) in the c
n = 1 (respectivelym = 1). A proof for this decay estimate is given in [3,6].

(2) Let φ1(r) = rα1eα2r , r � 0, α1 � 2 andα2 � 0. Thenφ′
1(r) > 0, φ′′

1(r) � 0 and
d
dr

(
φ′

1(r)

r
) � 0. Let φ2(r) = r−β1e−β2r , r > 0, β1 � 1 and β2 � 0. Note thatφ2(r) is

strictly decreasing on(0,∞), and bothφ′
2(r) andrφ′

2(r) are increasing on(0,∞). Now let
Γ (s, t) = φ(s)ψ(t), whereφ andψ are eitherφ1 or φ2 as defined above. Then the maxim
functionMΓ f (x1, x2, x3) is bounded inLp(Rn × R

m × R) for all p > 1 andn,m � 1.
(3) LetΓ (s, t) = s2t2(e−1/s +e−1/t ), s, t > 0 (surface with a contact of infinite order

the origin). The functionshs(t) = Γ (s, t) andγt (s) = Γ (s, t) both satisfy hypothesis (a) o
Theorem 1 for each fixeds > 0 and each fixedt > 0, respectively. Therefore, the maxim
function MΓ f (x1, x2, x3) is bounded inLp(Rn × R

m × R) for all p > 1 andn,m � 1.
Note that these problems on surfaces appear as a natural generalization of their an
on curves (see [6]).

Proof of Theorem 1. We apply Theorem 1 [3] to prove this theorem. Consider the
maximal function

Nf (x1, x2, x3)

= sup
j,k∈Z

{
1

2nk+mj

∫
|y2|∼=2j

∫
|y1|∼=2k

f
(
x1 − y1, x2 − y2, x3 − Γ

(|y1|, |y2|
))

dy1 dy2

}

= sup
j,k∈Z

µj,k ∗ f (x1, x2, x3).

Since Mf (x1, x2, x3) � C1N(|f |)(x1, x2, x3) � C2Mf (x1, x2, x3) for some constant
C1,C2 > 0, it suffices to prove the results for the maximal functionN(|f |)(x1, x2, x3)

instead ofMf (x1, x2, x3). We may assumef � 0. Observe thatµj,k are finite positive
Borel measures which are uniformly bounded for allj, k ∈ Z. By Theorem 1 [3], we nee
to show that the following inequalities hold for allj, k ∈ Z and for some fixedα,β > 0:∣∣µ̂j,k(ζ1, ζ2, ζ3)

∣∣ � C|2kζ1|−α|2j ζ2|−β, (1)∣∣∆1
ζ1

µ̂j,k(0, ζ2, ζ3)
∣∣ � C|2kζ1|α|2j ζ2|−β, (2)∣∣∆2

ζ2
µ̂j,k(ζ1,0, ζ3)

∣∣ � C|2kζ1|−α|2j ζ2|β, (3)∣∣∆1,2
ζ1,ζ2

µ̂j,k(0,0, ζ3)
∣∣ � C|2kζ1|α|2j ζ2|β, (4)

where

∆1
h1

f (x1, x2, x3) := f (x1 + h1, x2, x3) − f (x1, x2, x3),

∆2
h2

f (x1, x2, x3) := f (x1, x2 + h2, x3) − f (x1, x2, x3)

and

∆
1,2

f (x1, x2, x3) := ∆1 (
∆2 f (x1, x2, x3)

)
.
h1,h2 h1 h2
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The Fourier transform ofµj,k is

µ̂j,k(ζ1, ζ2, ζ3) = 1

2nk+mj

∫
|y2|∼=2j

∫
|y1|∼=2k

ei(ζ1·y1+ζ2·y2+ζ3Γ (|y1|,|y2|)) dy1 dy2.

The estimates near zero are trivial, because the factors(eiζ1·y1 − 1) and(eiζ2·y2 − 1) are
present in the integrand. Therefore, we only prove inequality (1). Denote

I1(ζ1) = 1

2nk

∫
|y1|∼=2k

ei(ζ1·y1+ζ3Γ (|y1|,|y2|)) dy1

and

I2(ζ2) = 1

2mj

∫
|y2|∼=2j

ei(ζ2·y2+ζ3Γ (|y1|,|y2|)) dy2.

Then

µ̂j,k(ζ1, ζ2, ζ3) = 1

2mj

∫
|y2|∼=2j

eiζ2·y2I1(ζ1) dy2 (5)

= 1

2nk

∫
|y1|∼=2k

eiζ1·y1I2(ζ2) dy1. (6)

We first obtain the estimates ofI1(ζ1) by considering three separate cases:n = 1, n = 2
andn � 3.

Case 1. n = 1. We write

I1(ζ1) = 1

2k

2k+1∫
2k

eiζ1s+iζ3h|y2|(s) ds + 1

2k

2k+1∫
2k

e−iζ1s+iζ3h|y2|(s) ds

≡ J1(ζ1) + J2(ζ1),

whereh|y2|(s) = Γ (s, |y2|). To obtain the estimates ofJ1(ζ1) and J2(ζ1), we need the
following lemma.

Lemma 1 [4]. Let φk(t) = 2kζ1t + ζ3h(2kt), whereζ1, ζ3 ∈ R, and k ∈ Z. Let JR =∫ R

1 eiφk(t) dt for 1 � R � 2. Suppose the functionh(t) defined on(0,∞) satisfies one o
the following conditions:

(e) h′(t) > 0, h′′(t) > 0 andh′(t)/t is increasing for allt > 0,
(f ) h′(t) < 0, h′′(t) > 0 and t h′(t) is increasing for allt > 0, or
(g) h′(t) > 0, h′′(t) < 0 and t h′(t) is decreasing for allt > 0.

ThenJR � C|2kζ1|−1/2, whereC is independent of the particular functionh(t).
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Proof of Lemma 1. The proof of case (e) is given in [4]. The idea for the proof of
remaining cases is similar to the proof of case (e). For convenience, we present th
of case (f ) in detail. It is enough to prove the lemma whenk = 0. For k = 0, φ0(t) =
ζ1t + ζ3h(t), and thusφ′

0(t) = ζ1 + ζ3h
′(t). We first consider the caseζ3 > 0.

If ζ1 � 0, thenφ′
0(t) � ζ1. Thus |φ′

0(t)| � |ζ1|, and the result follows from van de
Corput’s lemma. Ifζ1 > 0, then there is a uniquet0 such thatφ′

0(t0) = ζ1 + ζ3h
′(t0) = 0.

Let t1 = min{t0,2}, δ = |ζ1|−1/2, and decomposeJR = ∫
A1

· · ·+ ∫
A2

· · ·+ ∫
A3

· · · ≡ JR,1 +
JR,2 +JR,3, whereA1 = [1,R]∩ [t1 − δ, t1 + δ], A2 = [1, t1 − δ] andA3 = [t1 + δ,R]. It is
clear that|JR,1| � 2δ = 2|ζ1|−1/2. Because of the van der Corput’s lemma, it is enoug
show that|φ′

0(t)| � 1
2|ζ1|1/2 if t ∈ A2 or t ∈ A3. Now if t ∈ A2, thent � t1−δ � t0−δ < t0,

and

φ′
0(t) = ζ1 + ζ3h

′(t) t
t

� ζ1 + ζ3h
′(t1)

t1

t
� ζ1 + ζ3h

′(t0)
t1

t

= ζ1

(
1− t1

t

)
� ζ1

(−δ)

t
� ζ1

(−δ)

2
,

whence|φ′
0(t)| � 1

2|ζ1|1/2. On the other hand,A3 = φ unlesst1 = t0 � 2. Thus if t ∈ A3,
thent > t1 = t0, and

φ′
0(t) = ζ1 + ζ3h

′(t) t
t

� ζ1 + ζ3h
′(t0)

t0

t
= ζ1

(
1− t0

t

)

� ζ1
δ

t
� |ζ1| δ

2
� 1

2
|ζ1|1/2.

The proof for the caseζ3 < 0 is essentially similar to the above proof. We omit the det
here. Lemma 1 is proved.�
Remark 2. Note that the constantC in Lemma 1 is independent of the functionh(t). In
particular, ifh(s) = h|y2|(s) = Γ (s, |y2|), thenC is independent of|y2|.

We now obtain the estimates ofJ1(ζ1). If h|y2|(s) satisfies hypothesis (a), (b) or (c)
Theorem 1, then by Lemma 1,J1(ζ1) � C|2kζ1|−1/2, whereC is independent of|y2|. If
h|y2|(s) satisfies hypothesis (d), then integratingJ1(ζ1) by parts yields

J1(ζ1) � C|2kζ1|−1

{
1+

2k+1∫
2k

|ζ3|
∣∣h′|y2|(s)

∣∣ds

}
.

If |ζ3| � 1, then the above integral is no greater than 2‖Γ ‖∞. If |ζ3| > 1, then by a chang
of variable s → |ζ3|s and by hypothesis (d), the integral above is again dominate
2‖Γ ‖∞. In either case,J1(ζ1) � C|2kζ1|−1 � C|2kζ1|−1/2. The last inequality follows if
|2kζ1| > 1. By the same argument, we haveJ2(ζ1) � C|2kζ1|−1/2, and consequently

I1(ζ1) � C|2kζ1|−1/2. (7)

Case 2. n = 2. Note that
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n of

,

I1(ζ1) = 1

22k

∫
|y1|∼=2k

ei(ζ1·y1+ζ3Γ (|y1|,|y2|)) dy1

= ωn

22k

π∫
0

2k+1∫
2k

ei(r|ζ1|cosθ+ζ3h|y2|(r))r dr dθ

= ωn

π∫
0

2∫
1

ei(2kr|ζ1|cosθ+ζ3h|y2|(2kr))r dr dθ

= ωn

{ π/2−δ∫
0

2∫
1

· · · +
π/2+δ∫

π/2−δ

2∫
1

· · · +
π∫

π/2+δ

2∫
1

· · ·
}

≡ ωn{J1 + J2 + J3},
whereωn is a constant depending onn, and 0< δ < 1. Thisδ will be chosen later. Denot

K =
2∫

1

ei(2kr|ζ1|cosθ+ζ3h|y2|(2kr))r dr =
2∫

1

G′(r)r dr,

where

G(r) =
r∫

1

eiφ(t) dt and φ(t) = 2k|ζ1|(cosθ)t + ζ3h|y2|(2kt).

If h|y2|(2kt) satisfies hypothesis (a), (b), or (c) of Theorem 1, then by an applicatio
Lemma 1 (withζ1 being replaced by|ζ1|cosθ ), we obtain|G(r)| � C|2kζ1 cosθ |−1/2.
IntegratingK by parts yields|K| � C|G(r)| � C|2kζ1 cosθ |−1/2. If h|y2|(2kt) satisfies
hypothesis (d), then by integrating by parts we have

|K| � C|2kζ1 cosθ |−1

{
1+

2k+1∫
2k

|ζ3|h′|y2|(r) dr

}
� C|2kζ1 cosθ |−1.

The last inequality follows since the above integral is dominated by 2‖Γ ‖∞. In all cases
|K| � C|2kζ1 cosθ |−α , whereα = 1 or 1/2. Thus

|J1| � C

π/2−δ∫
0

|2kζ1 cosθ |−α dθ � C(π/2− δ)
∣∣2kζ1 cos(π/2− δ)

∣∣−α

� C|2kζ1|−α(sinδ)−α � C|2kζ1|−α(δ)−α.

The last inequality follows because sinδ � 2δ
π

for 0< δ < 1. By the same argument,|J3| �
C|2kζ1|−α(δ)−α . On the other hand, it is obvious that|J2| � Cδ. We chooseδ = |2kζ1|−1/2

if |2kζ1| > 1. Then (recall thatα = 1 or 1/2)

I1(ζ1) � ωn{J1 + J2 + J3} � C|2kζ1|−1/4 if |2kζ1| > 1. (8)
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Case 3. n � 3. Note that

I1(ζ1) = 1

2nk

∫
Sn−1

( 2k+1∫
2k

ei{|ζ1|r(ζ ′
1·y′

1)+ζ3h|y2|(r)}rn−1 dr

)
dσ(y′

1)

= ωn

2nk

2k+1∫
2k

eiζ3h|y2|(r)rn−1

( 1∫
−1

(1− s2)(n−3)/2eir|ζ1|s ds

)
dr

≡ ωn

2nk

2k+1∫
2k

eiζ3h|y2|(r)rn−1K1
(|ζ1|

)
dr.

If n = 3, thenK1
(|ζ1|

) = 2 sin(r|ζ1|)
r|ζ1| , and thus

∣∣I1(ζ1)
∣∣ � C|2kζ1|−1. (9)

If n � 4, then integrating by parts yields
∣∣K1

(|ζ1|
)∣∣ � C

r|ζ1|
so that

∣∣I1(ζ1)
∣∣ � C|2kζ1|−1. (10)

Combining inequalities (7)–(10), we obtain∣∣I1(ζ1)
∣∣ � C|2kζ1|−1/4 if |2kζ1| > 1 andn � 1. (11)

By symmetry∣∣I2(ζ2)
∣∣ � C|2j ζ2|−1/4 if |2j ζ2| > 1 andm � 1. (12)

Inequalities (5) and (11) imply that∣∣µ̂j,k(ζ1, ζ2, ζ3)
∣∣ � C|2kζ1|−1/4, n,m � 1. (13)

Similarly, combining inequalities (6) and (12) yields∣∣µ̂j,k(ζ1, ζ2, ζ3)
∣∣ � C|2j ζ2|−1/4, n,m � 1, (14)

which together with inequality (13) implies that∣∣µ̂j,k(ζ1, ζ2, ζ3)
∣∣ � C|2kζ1|−1/8|2j ζ2|−1/8, n,m � 1. (15)

The proof of Theorem 1 is complete.�
Proof of Theorem 2. It suffices to show that these maximal functions are controlled by
Hardy–Littlewood maximal functions. We first consider the maximal functionM1,2g(x3).
Supposeht (s) is a type I function for every fixedt > 0. We may assumeg � 0. Sinceht (s)

is strictly increasing on[0,∞) for each fixedt > 0, h′
t (s) > 0 on (0,∞). By the inverse

function theorem,h−1
t exists and is aC1 function for each fixedt > 0. By a change o

variablewt = ht (s), we have
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ar
–
t

1

r1

r1∫
0

g
(
x3 − Γ (s, t)

)
ds = 1

r1

r1∫
0

g
(
x3 − ht (s)

)
ds

= 1

r1

ht (r1)∫
ht (0)

g(x3 − wt)
1

h′
t (h

−1
t (wt ))

dwt

= 1

r1

ht (r1)∫
ht (0)

g(x3 − wt)
(
h−1

t

)′
(wt ) dwt

= g ∗ ψr1(x3),

where

ψr1(wt ) = χ[ht (0),ht (r1)](wt )
(h−1

t )′(wt )

r1

is decreasing on[ht (0), ht (r1)]. Note also that
∫

R
ψr1(wt ) dwt = 1 for all r1 > 0 and for

each fixedt > 0. Therefore,g ∗ ψr1(x3) � MH g(x3) for all r1 > 0 and for each fixed
t > 0. HereMH g(x3) stands for the Hardy–Littlewood maximal function. It follows th
M1,2g(x3) � MH g(x3).

The proof for the case thatht (s) is a type II function is essentially the same. N
supposeht (s) is a type III function (withsh′

t (s) � αht (s) for all s > 0 and some fixed
α > 0 independent ofs andt). We have

1

r1

r1∫
0

g
(
x3 − Γ (s, t)

)
ds = 1

r1

ht (r1)∫
ht (0)

g(x3 − wt)
1

h′
t (h

−1
t (wt ))

dwt

� 1

r1

ht (r1)∫
0

g(x3 − wt)
1

h′
t (r1)

dwt

� C

ht(r1)

ht (r1)∫
0

g(x3 − wt)dwt

� CMH g(x3),

whereC is independent ofr1 andt . It follows thatM1,2g(x3) � MH g(x3).
We now consider the maximal functionM1g1(x1, x3). Using the above result, it is cle

that M1g1(x1, x3) � CMH
1 ◦ MH

2 g1(x1, x3), whereMH
i (i = 1,2) denotes the Hardy

Littlewood maximal function acting on theith variable. By symmetry, it follows tha
M2g2(x2, x3) � CMH

1 ◦ MH
2 g2(x2, x3). Theorem 2 is proved. �

Proof of the corollaries. By an application of Theorem 1, we only need to prove theLp

boundedness of the partial maximal functionsM
(1)
Γ f (x1, x2, x3), M

(2)
Γ f (x1, x2, x3) and

M
(1,2)

f (x1, x2, x3). If n = m = 1, then by Theorem 2, we haveM(1,2)
f (x1, x2, x3) �
Γ Γ
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n of

14.
hyper-

. Inst.

nsform

rators

(1978)

1983)
CMH
3 f (x1, x2, x3), M

(1)
Γ f (x1, x2, x3) � CMH

1 ◦ MH
3 f (x1, x2, x3) andM

(2)
Γ f (x1, x2, x3)

� CMH
2 ◦ MH

3 f (x1, x2, x3). Therefore these maximal functions are bounded inLp. If
n � 2 or m � 2, the result follows from the method of rotations and an applicatio
Theorem 2. �
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