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Abstract

Under certain natural conditions of a measurable radial fundfioR” x R™ — R, I'(y1, y2) =
I (Iy1], |y2]), we show that the maximal function along surface

M f(x1, x2, x3)

1
= sup { = / / | f(x1 = y1.x2 = y2.x3 = T'(Iy1l. 1y21)) | dy1dy2
r,ro>0| 17
[y2l<r2 y1l<r1

is bounded inL? (R" x R™ x R) forall p > 1 andn,m > 1.
0 2005 Elsevier Inc. All rights reserved.
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Introduction

For a surfaceS in R parametrized ass, ¢, ¢ (s, 1)), we define the Hilbert transform
and the maximal function along this surface respectively by

ds dt
St

Hf (x1, x2,x3) =p.V. / / f(xl—s,xz—t,X3—¢(s,t))

lr]<C2Is|<C1
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and

r2 ri
Mf(x1,x2,x3) = SUp {i f|f(x1—s,x2—t,x3—¢(s,t))|dsdt}.
0<ri<Ci(j=1,2) rirz -

When ¢ (s, 1) = |s|%|t|?, «, B > 0, the Hilbert transformH f (with C1 = C2 = o) is
known to be bounded ii?(R3), |1/p — 1/2| < € for somee > 0 (see [5,7,8]). On the
other hand, it (s, 1) = |s|%|t|?, a, B > 0, ¢ (0, 0) = V¢ (0, 0) = 0 and¢ has nonvanishing
second order derivatives at the origin, then the maximal funddgn(with C1 = C2 = 00)

is bounded inL?(R3) for 1 < p < oo (see [1,2]). The author of [3] has obtained thé
boundedness df f andMf (1 < p < oo) for the three types of surfaces considered below.

TypeA. ¢(s, 1) = |s||t|?, «, B > 0. HereCy = Co = 0o.

Type B. ¢(s,t) is an even function (with respect to each one of the variables) of class
€2 in a neighborhood of the origin witk2¢ (0, 0) and D3¢ (0, 0) # 0, D1 2¢ (s, 0) > O if
D2¢(0, 0) > 0 (respectivelyD1 2¢ (s, 0) < 0if D2¢ (0, 0) < 0) and a similar condition over
D12¢(0,t). Here D; ¢ (s, t) stands for the derivative @f with respect to theéth variable
i=12); Dl.2¢(s, 1) = D;(D;j¢(s, 1)) andDy2¢ (s, t) = D1(D2¢ (s, t)). C1 andC» must

be chosen such thanl?(p(s, H>A@G=12)forsomeAd >0in0<s<Cy,0<t<Co.

TypeC. ¢ (s, 1) is an even function of clags? such thath¢>(s, t) andD12¢ (s, O) (respec-
tively D%qb (s, ) andD12¢ (0, t)) are nonnegative and nondecreasing in0 (respectively

in ¢+ > 0). In this caseC1 and Co must be chosen such that these conditions hold in
0 <s < Cy, 0<1t < Co. For this type, observe that surfaces with a contact of infinite
order at the origin are allowed; for examplg(s, r) = s%2(e~ /15! + ¢=1/I'ly for which
C1=Cor=00.

Inspiring of the work in [3], we would like to study the” boundedness of the maximal
function M- f (as defined in the abstract) in higher dimensionz > 1, based on thé&”
boundedness of the partial maximal functions (see Theorem 1 below) in lower dimensions.
We now describe some definitions and notations. Then we will state the results.

Definitions and notations. Let Rt stand for[0, oo). A function¢:RT — R is called a
type | function if¢ is strictly increasing ofi0, co) and¢’ is increasing orf0, co).
Afunctiong :RT — R or¢: (0, o) — R is a type Il function ifg is strictly decreasing
on its domain an@’ is increasing or{0, co).
A function¢ :R* — R is a type Ill function if

(i) ¢(0) =0 andg¢ is strictly increasing ofi0, co),
(ii) ¢’ is decreasing o0, co) and
(iii) 7¢'(t) > a¢(r) forall t € (0, 00) and for some fixed > 0.

For f € $(R" x R™ x R), n,m > 1, consider the following maximal functions:
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1
M(p)f(xl, X2, X3)

1
= sup { —— f / | f (¥1 = y1, x2,x3 = I (Iy1l, 1y2l))| dyrdy2

ri,r2>0| 172
[y2I<r2 Iy1l<r1

2
M(p)f(xl, X2, X3)

1
= sup | —— / / | f(x1,x2 = y2,x3 = [ (Iyal, |y2l)) | dy1dy2

ri,r2>0| 172
[y2I<r2 [y1l<r1

1.2
M2 f(x1, x2, x3)

1
= sup { nm / / |f(x1,x2,x3—1—'(|y1|,|YZ|))‘ledYZ}
rir2>0| 7172
ly2l<r2 Iy1l<r1

and

Mr f (x1, x2, x3)

1
= SUP{ — / / If(xl—yl,xz—yz,xs—F(Iyll,Iyzl))|dy1dyz},
r1,r2>0| 172

[y2l<r2 ly1l<r1

wherexy, y1 € R", x2,y2 e R", x3€ R and ' :R" x R" — R is a measurable func-
tion which is radial with respect to both variablese R” andx, € R™, i.e. I'(y1, y2) =
I (|y1], |y2]) forall y; € R® andy, € R™.
Denoteh, (s) = I' (s, t) for every fixedr > 0. Similarly, denotey (+) = I" (s, t) for every
fixeds > 0.
Throughout the rest of this paper, the lett@denotes a positive constant which may
vary at each occurrence it appears. However, it does not depend on any essential variable.

Theorem 1. Suppose the partial maximal functiorzla{(rl)f, M(Fz)f and M(Fl’z)f are
bounded inL? for all p > 1. Then the maximal functioM f is bounded inL? for all
p > landn,m > 3. The conclusion holds for the cage= 1, 2 provided that the function
h:(s) = I' (s, t) satisfies one of the following conditions for every fixedO:

(@) h,(s) >0, h/(s) >0andh)(s)/s is increasing on0, o),

(b) k) (s) <0, h}(s) > 0ands i, (s) is increasing on(0, co),

(c) h;(s) >0, h/(s) <0ands h,(s) is decreasing o0, co), or

(d) I'(s,1) € L°@®R" x RT), h)(s) > 0andh] (s) > 0for all (s, r) in the support of".

Moreover, the conclusion also holds for the case-= 1, 2 if the functiony; (r) = ' (s, t)
satisfies one of the similar conditions above for every fixed.

Theorem 2. Supposd (s, ) have continuous first order partial derivatives for gl > 0.
If h,(s) andy;(¢) are either type I, Il or Il functiongwith the constani in the definition
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of type Il function independent of both variabkeandr) for each fixed > 0 and for each
fixeds > 0, respectively, then the maximal functions

rg r
Mi 28(x3) = Sup {rlrsz\g x3—I'(s, t))\dsdt}

r1,r2>0

ra 1
Mig1(x1,x3) = Sup {rlrsz|g1 x1—s,x3— (s, t))|dsdt}

r1,r2>0

and

r2 r1
1
M>ga(x2, x3) = sup {E//ng(xz—l,m—F(S,t))|dsdl}
00

r1,r2>0
(x1, x2, x3€ R, g € LP(R), andg1, g2 € L?(R?)) are bounded ir.? for all p > 1.

Corollary 1. Let ' : Rt x Rt — R be aC? function such that, (s) and y,(r) are func-
tions of type I, Il or Ill for each fixed > 0 and for each fixed > 0, respectively. Then the
maximal functionM - f (x1, x2, x3) (in Theorenl) is bounded in.” (R" x R™ x R) for all

p > landn,m > 3. If h(s) (respectivelyy,(¢)) is either a type | function which satisfies
hypothesiga) of Theorend or a type Il function satisfying hypothegts) of Theoremi for
each fixed > 0 (respectively > 0), then the above result also holds fofrespectivelyn)
=1lor2

Corollary 2. Supposd™: [O c] xRt = Ror I':[0, c] x (0, 00) = R is a bounded func-
2

tion such that-&- > 0, 2 TG0 >0, 2500 < 0and 2250 > 0forall (s, 1) € (0.¢) x

(0, 00). Then the maximal funcqupf(xl,xg,xg) is bounded inL?(R" x R™ x R) for

all p>1,n>1andm > 3.

Corollary 3. Supposel™:[0, ¢] x [0,d] — R is a C* function such thaf &0 6.0

> 0 and L0 9I6.0 5 g for all (s,1) € (0, ¢) x (0,d). Then the maximal funct|on

Mrf(xl,xz,xg) |s bct)unded inL?(R" x R™ x R) forall p >1andn,m > 1.

Examples. (1) Consider (s, 1) = s%t#,a, B 0 ands,r > 0 (s > 0 if « < 0 and similarly
t > 0if B < 0). For each fixed > 0, the functioni,(s) = I' (s, t) is a type | function if
a > 1, a type Il function if 0< « < 1 and a type Il function itx < 0. Similar conclu-
sion holds for the functiom () = I' (s, t). Thus the maximal functioM - f (x1, x2, x3) iS
bounded inL? (R" x R™ x R) forall p > 1 andn, m > 3if «, 8 # 0. The result also holds
for the case: (respectivelyn) =1 or 2 ifa > 2 (respectively8 > 2) ora < 0 (respectively

p <0).

Remark 1. The example above also holds for the caggespectivelyn) = 1 or 2 when
0 <« < 2 (respectively < 8 < 2). To see this we only need to verify the decay estimate
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of I1(¢1) (respectivelyl>(¢2)) (see Egs. (5)—(6) in the proof of Theorem 1) in the case
n =1 (respectivelyn = 1). A proof for this decay estimate is given in [3,6].

(2) Let p1(r) =r*2e*?", r > 0, @1 > 2 andaz > 0. Theng)(r) > 0, ¢7(r) > 0 and

4ny > 0. Let go(r) = r ﬁle Br >0, B > 1 and B > 0. Note thatgy(r) is
strictly decreasing o0, oo), and bothp, (r) andr¢,(r) are increasing of0, oo). Now let
I'(s,t) = ¢(s)¥(¢), wherep andyr are eithekps or ¢, as defined above. Then the maximal
function M f (x1, x2, x3) is bounded inL? (R" x R™ x R) forall p > 1 andn,m > 1.

(3) LetI'(s, 1) = s%t2(e~ Y5 + ¢/, 5, t > 0 (surface with a contact of infinite order at
the origin). The functions (¢) = I' (s, t) andy,(s) = I' (s, t) both satisfy hypothesis (a) of
Theorem 1 for each fixed> 0 and each fixed > 0, respectively. Therefore, the maximal
function M f (x1, x2, x3) is bounded inL?(R" x R™ x R) for all p > 1 andn,m > 1.
Note that these problems on surfaces appear as a natural generalization of their analogues
on curves (see [6]).

Proof of Theorem 1. We apply Theorem 1 [3] to prove this theorem. Consider the new
maximal function

Nf(x1,x2,x3)

= sup!2nk+m] / / F(x1—y1,x2 — y2,x3— T (Iy1l, [y2l)) dy1dy2
[y2|=27 |yg|=2k

= SUP g * f(x1, X2, x3).
j.keZ
Since Mf(x1,x2,x3) < C1N(|f])(x1,x2,x3) < CaMf(x1,x2,x3) for some constants
C1,C2 > 0, it suffices to prove the results for the maximal functivi f])(x1, x2, x3)
instead ofM f (x1, x2, x3). We may assumg > 0. Observe thal ; , are finite positive
Borel measures which are uniformly bounded forjak € Z. By Theorem 1 [3], we need
to show that the following inequalities hold for gllk € Z and for some fixed:, g8 > O:

|k (g1, S2. £3)| < 1256 ™27 2ol P, 1)
| AL 27,40, &2, 3)| < C12cal*12 ol 7, )
|AZ 174 (21,0, ¢3)| < €12 60 ™12 ¢, 3)
|42, .6(0,0,83)| < C12°01 1127 2ol @)

where

A f (1, x2,x3) = f(x1+ h1, x2, x3) — f(x1, X2, X3),
A2 f(x1,x2,x3) == f(x1, X2+ h2,x3) — f(x1, %2, X3)
and

1,2
Al np S (X1, X2, x3) 1= Ail(ﬂﬁz.f(xl, x2, x3)).
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The Fourier transform of ; « is
. 1 (E1-v1 Lo yottal” ,
Mj,k(CL £2,03) = 2nk—+m] / / el Cry1t+e2-y2+83l (Iyal1y21) dy1rdy».
[y2|=27 |y | =2k

The estimates near zero are trivial, because the fact#s'’s — 1) and (¢/¢22 — 1) are
present in the integrand. Therefore, we only prove inequality (1). Denote

1 )
() = =— / e Cyitgal (yally2h) gy

onk
[yp|=2*
and
12((2)=271j / et G2 vzl (yahly2D) gy,
|y2|=27
Then
. 1 .
(G182, 88) = oo / 23211 (¢1) dy2 5)
|y2|=2]
= 1 if1-y1
= onk / et (82) dy. ©6)
|y1|=2*

We first obtain the estimates &f(¢1) by considering three separate cases: 1,n =2
andn > 3.

Casel. n =1. We write

2k+l 2k+l
Il(é‘l) — 2_:]]; / ei{]_&-i—[{gh‘yz‘(s) ds + 2_]]'( / e—i{]_&-i—i{gh‘yz‘(s) ds
2k 2k
= J1(51) + J2(50),

wherehyy,(s) = I'(s, |y2]). To obtain the estimates of (1) and J2(¢1), we need the
following lemma.

Lemma 1 [4]. Let ¢ (r) = 2¢1r + ¢3h(2k1), wheresy, c3 € R, andk € Z. Let Jg =
flR e dr for 1 < R < 2. Suppose the functioi(r) defined on(0, co) satisfies one of
the following conditions

(e) A'(r) >0, h"(r) > 0andh’(r)/t is increasing for alls > O,
(f) W) <0, h"(r) > 0andz h'(¢) is increasing for allr > 0, or
(9) W) >0,h"(r) <0andz h'(¢) is decreasing for all > 0.

ThenJg < C|2%¢1|~Y2, whereC is independent of the particular functidrir).
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Proof of Lemma 1. The proof of case (e) is given in [4]. The idea for the proof of the
remaining cases is similar to the proof of case (e). For convenience, we present the proof
of case (f) in detail. It is enough to prove the lemma wilter 0. Fork = 0, ¢o(t) =

1t + ¢3h(1), and thuspy(r) = &1 + ¢3h'(¢). We first consider the cagg > 0.

If ¢1 <0, theng(r) < ¢1. Thus|gg(n)| > [¢1], and the result follows from van der
Corput’s lemma. Ity > 0, then there is a uniqug such thatp(to) = ¢1 + ¢3h'(to) = 0.
Letry = min{ro, 2}, 8 = |¢1/~Y?, and decomposér = Jay ot Say +ng co=Jpat
Jr2+ Jr 3, WhereA1 =[1, RIN[t1—38,11+38], A2 =[1, 11 —S§landAz =[r1+§, R]. Itis
clear thatl Jz 1| < 28 = 2|¢1|~Y/2. Because of the van der Corput’s lemma, it is enough to
show thatgy(1)| > %|§1|1/2 if t € Aporr e Az. Nowifr € Ap, thent <11—68 <1o—38 < tg,
and

¢an=cy+gwm;<¢y+@wan%<;y+ewaw%
(1) D D)
—§1<1 t)<§1 ; <4 >

whencelg)(1)] > 11¢1/Y/2. On the other handds = ¢ unless, = 10 < 2. Thus ift € As,
thent > 11 = 1g, and

$o(t) = &1+ zsh’(t); >0+ §3h/(zo)t70 = 41(1 - ’7")

8 5 1. 4
>0~ > lals > Slalt?
& |§1|2 2|§1|

The proof for the cases < 0 is essentially similar to the above proof. We omit the details
here. Lemma 1 is proved.O

Remark 2. Note that the constar® in Lemma 1 is independent of the functiaii). In
particular, ifz(s) = hy,|(s) = I'(s, |y2|), thenC is independent offy,|.

We now obtain the estimates éf(¢1). If hyy,(s) satisfies hypothesis (a), (b) or (c) of
Theorem 1, then by Lemma ¥3(¢1) < C|2%¢1)~Y/2, whereC is independent ofy,|. If
hiy,) (s) satisfies hypothesis (d), then integratingz1) by parts yields

2k+1

h@o<aﬁarﬂ1+/ﬁmMM@ﬂw}
2k

If |£3] < 1, then the above integral is no greater th@i' 2. If |¢3] > 1, then by a change

of variables — |¢3|s and by hypothesis (d), the integral above is again dominated by
2| [l In either caseJ1(21) < C|12¢¢1|~1 < C|12¥¢1|~Y2. The last inequality follows if
|2¢z1| > 1. By the same argument, we hawg 1) < C|2%¢1|~1/2, and consequently

I1(¢1) < C 12| 7Y2, @)

Case 2. n = 2. Note that
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1 , ,
n(g) = o / e Gyl (yallyzD) gy,

ly=2¢
7 2k+1
_ ;"_2’2 / / £ 111 COS9+23h1y1 () . 71 1
0 ok
T 2
:wn//ei(zk”{llCOSQJ'_C?’hU’Z\(Zkr))rdr do
01
w/2=8 2 m/248 2 T 2
:wn{ [ s | [+ /}
0 1 w/2-8 1 n/2+8 1

= wp{J1+ J2+ J3},
wherew, is a constant depending anand O< § < 1. This§ will be chosen later. Denote
2 2
K= /ei(zkr‘gl‘°059“3h‘«"2|(2k’))r dr = / G'(r)rdr,
1 1
where

G(r):/ei‘P(’)dt and ¢ (1) = 2"|¢1|(cosO)1 + Cahyyy  (2X1).
1

If h|y2‘(2kt) satisfies hypothesis (a), (b), or (c) of Theorem 1, then by an application of
Lemma 1 (with¢; being replaced byzi| cosd), we obtain|G (r)| < C|2¢¢, cosd| /2.
IntegratingK by parts yields|K | < C|G(r)| < C|2¥¢1cosd| Y2, If hyy, (2F1) satisfies
hypothesis (d), then by integrating by parts we have

2k+1

K| <C|2k;1cos9|1{1+ / |;3|h1y2<r)dr} < Cl2%¢icos|
2k

The last inequality follows since the above integral is dominated|liy|2,. In all cases,
|K| < C|2¢¢1cos9|~*, wherea = 1 or 1/2. Thus

7/2=8
|1 < C / 128¢1 008017 dO < C(m/2 - 8)|2°¢rcosm/2— 8)|
0
< C12 | (sing) " < CI2 |~ (9) .
The last inequality follows because i % for 0 < § < 1. By the same argumentiz| <

C|2kz1|7%(8)~®. On the other hand, it is obvious thab| < C8. We choose = |2¢¢1|~1/2
if 2¥¢1] > 1. Then (recall thai = 1 or 1/2)

11(21) S wplJ1 4 J2 + J3} < C126 Y4 if 126 > 1. (8)
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Case 3. n > 3. Note that

2k+1
1 o !’ !
Il(él)zﬁ/ /e’{'“"@l'yl)’%h'yzl(’)}r”1dr) do(yy)

sn—1 2k
ok+1 1
— % eitshlyz(r)rn—l( /(1 — §2)(1=3)/2,irlgals ds) dr
2 -1
ok+1

wp

= o | €2 K (jaal) dr

2k
2sin(r|gal)

If n=3, thenK1(|§1|) = el

. and thug11(¢0)| < C12°¢a ™ 9

If n > 4, then integrating by parts yield%1 (]¢1])| < %
rlc

so that|I1(¢1)| < €125~ (10)

Combining inequalities (7)—(10), we obtain

@] < Cl2%™* if 12°6] > 1andn > 1. (11)
By symmetry

|12(62)| < €12/ 52| ™Y* i 2/ ¢2] > L andm > 1. (12)
Inequalities (5) and (11) imply that

k(e g2, 09| <C12%a ™4, nom>1. (13)
Similarly, combining inequalities (6) and (12) yields

|71, 02, 89| S CI2Z ol ™4 nom > 1, (14)
which together with inequality (13) implies that

|2k (C1 b2, 63)] < CI2°0a o127 078, nom > 1, (15)
The proof of Theorem 1 is complete
Proof of Theorem 2. It suffices to show that these maximal functions are controlled by the
Hardy-Littlewood maximal functions. We first consider the maximal funciirpg (x3).
Supposé, (s) is a type | function for every fixed> 0. We may assumg > 0. Sinceh, (s)
is strictly increasing o0, co) for each fixedr > 0, A/ (s) > 0 on (0, c0). By the inverse

function theoremht‘l exists and is aC! function for each fixed > 0. By a change of
variablew; = h,(s), we have
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—/ x3—F(s t) ——/ X3 — t(S)

h1 (r1)

1 / ( ) 1
=— 8X3 — Wp) —————— AW
r R (hyt(wp))
h: (0)
he(r1)

= [ sbe- wo) (L) (wy) dw
h (0)
=g* wrl(XS),

where

—1y/
Yy (wy) = X[h,(O),h,(rl)](wt)(]/l[r)il(uw
is decreasing ofvi;(0), ,(r1)]. Note also tha‘tf]R Yy (w;) dw, =1 for all ry > 0 and for
each fixedsr > 0. Therefore,g * ¥, (x3) < MH g(x3) for all 11 > 0 and for each fixed
t > 0. HereM " g(x3) stands for the Hardy-Littlewood maximal function. It follows that
M1 28(x3) < M g(x3).

The proof for the case that; (s) is a type Il function is essentially the same. Now
supposei, (s) is a type Il function (withsh;(s) > ah,(s) for all s > 0 and some fixed
« > 0 independent of andr). We have

r1 he(r1)
s [sta-renas=2 [ gs-u G
— | 8§\}¥3— s, §=— X3 —Wt) ———— ——_4adwy
r r n(ht
10 1hr(0) z(z (wt))
he(r1)
< — (x —w)idw
\1’1 8(X3 th;(f']_) t
0
he(r1)
— d
I (D) g(xz — wy)dwy

<CMPg(xg),

whereC is independent of; andt. It follows that M1 2g(x3) < M g(x3).

We now consider the maximal functiddig1(x1, x3). Using the above result, it is clear
that M1g1(x1, x3) < CMJ o MY g1(x1, x3), where M (i = 1,2) denotes the Hardy-
Littlewood maximal function acting on thigh variable. By symmetry, it follows that
M2go(x2, x3) < CMI o M1 g5(x2, x3). Theorem 2 is proved. O

Proof of the corollaries. By an application of Theorem 1, we only need to prove ke
boundedness of the partial maximal functidb!s(fl)f(xl,xz,xg), M(Fz)f(xl,xz,xg) and
M}l’z)f(xl,xg,xg). If n =m =1, then by Theorem 2, we ham}l’z)f(xl,xz,xg) <
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CME f(x1, x2,x3), M\ £ (x1, X2, x3) < CME o MY f(x1, x2, x3) and M2 £ (x1, x2, x3)

< CMf o M3Hf(x1,x2,x3). Therefore these maximal functions are bounded.fn If

n > 2 orm > 2, the result follows from the method of rotations and an application of
Theorem 2. O
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