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Abstract

By investigating n-dimensional complete maximal spacelike hypersurfaces with two distinct principal
curvatures in an (n + 1)-dimensional anti-de Sitter space Hn+1

1 (−1), we give a new characterization of

hyperbolic cylinder Hm(− n
m) × Hn−m(− n

n−m) in Hn+1
1 (−1).
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1. Introduction

Let Mn+1
1 (c) be an (n + 1)-dimensional Lorentzian manifold of constant curvature c, we

also call it a Lorentzian space form. When c > 0, Mn+1
1 (c) = Sn+1

1 (c) (i.e., (n + 1)-dimensional
de Sitter space); when c = 0, Mn+1

1 (c) = Ln+1 (i.e., (n + 1)-dimensional Lorentz–Minkowski
space); when c < 0, Mn+1

1 (c) = Hn+1
1 (c) (i.e., (n + 1)-dimensional anti-de Sitter space). A hy-

persurface M of Mn+1
1 (c) is said to be spacelike if the induced metric on M from that of the

ambient space is positive definite.
E. Calabi [1] first studied the Bernstein problem for a maximal spacelike entire graph in Ln+1

and proved that it has to be hyperplane, when n � 4. S.Y. Cheng and S.T. Yau [2] proved that
the conclusion remains true for all n. As a generalization of the Bernstein type problem, Cheng
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and Yau [2] and T. Ishihara [3] proved that a complete maximal spacelike submanifold M of
Mn+1

1 (c) (c � 0) is totally geodesic. T. Ishihara [3] also proved the following well-known result:

Theorem 1.1. [3] Let M be an n-dimensional (n � 2) complete maximal spacelike hypersurface
in anti-de Sitter space Hn+1

1 (−1), then the norm square of the second fundamental form of M

satisfies

S � n, (1.1)

and S = n if and only if Mn = Hm(− n
m

) × Hn−m(− n
n−m

) (1 � m � n − 1).

In this paper, we prove the following result, which gives a new characterization of hyperbolic
cylinder in anti-de Sitter space Hn+1

1 (−1).

Theorem 1.2. Let M be an n-dimensional (n � 3) complete maximal spacelike hypersurface with
two distinct principal curvatures λ and μ in anti-de Sitter space Hn+1

1 (−1). If inf(λ − μ)2 > 0,
then M = Hm(− n

m
) × Hn−m(− n

n−m
) (1 � m � n − 1).

2. Preliminaries

Let M be an n-dimensional complete spacelike hypersurface of anti-de Sitter space Hn+1
1 (−1).

For any p ∈ M , we choose a local orthonormal frame e1, . . . , en, en+1 in Hn+1
1 (−1) around p

such that e1, . . . , en are tangent to M . Take the corresponding dual coframe ω1, . . . ,ωn,ωn+1
with the matrix of connection one forms being ωij . The metric of Hn+1

1 (−1) is given by

ds2 = ∑
i ω

2
i − ω2

n+1. We make the convention on the range of indices that 1 � i, j, k � n.
A well-known argument [2] shows that the forms ωin+1 may be expressed as ωin+1 =∑
j hijωj , hij = hji . The second fundamental form is B = ∑

i,j hijωi ⊗ ωj . The mean cur-

vature of M is given by H = 1
n

∑
i hii . If H = 0, then M is said to be maximal. The Gauss

equations are

Rijkl = −(δikδjl − δilδjk) − (hikhjl − hilhjk), (2.1)

Rij = −(n − 1)δij − nHhij +
∑

k

hikhkj , (2.2)

n(n − 1)(R + 1) = −n2H 2 + S, (2.3)

where R is the normalized scalar curvature of M and the norm square of the second fundamental
form is

S =
∑
i,j

(hij )
2. (2.4)

The Codazzi equations are

hijk = hikj , (2.5)

where the covariant derivative of hij is defined by∑
hijkωk = dhij +

∑
hkjωki +

∑
hikωkj . (2.6)
k k k
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The second covariant derivative of hij is defined by∑
l

hijklωl = dhijk +
∑

l

hljkωli +
∑

l

hilkωlj +
∑

l

hij lωlk. (2.7)

By exterior differentiation of (2.6), we have the following Ricci identities:

hijkl − hijlk =
∑
m

hmjRmikl +
∑
m

himRmjkl. (2.8)

We may choose a frame field {e1, . . . , en+1} such that

ωin+1 = λiωi, that is hij = λiδij , i = 1,2, . . . , n, (2.9)

where λi are principal curvatures. If we assume that M is a maximal spacelike hypersurface with
two distinct principal curvatures, then we may put

λ1 = λ2 = · · · = λm = λ, λm+1 = · · · = λn = μ, λ �= μ,

and we obtain

mλ + (n − m)μ = 0. (2.10)

Example. Hyperbolic cylinder:

Mm,n−m = Hm

(
− n

m

)
× Hn−m

(
− n

n − m

)
(1 � m � n − 1).

We know (see [3]) that Mm,n−m is a complete maximal spacelike hypersurface in Hn+1
1 (−1)

with two distinct principal curvatures λ and μ, where

λ1 = · · · = λm = λ =
√

n − m

m
, λm+1 = · · · = λn = μ = −

√
m

n − m
.

By direct computation, we get that the square norm of the second fundamental form
of Mm,n−m satisfy S = n.

Now we have to consider two cases.

Case 1. 2 � m � n − 2. In this case, we make the convention on range of indices that

1 � a, b, c � m, m + 1 � α,β, γ � n, 1 � i, j, k � n.

Proposition 2.1. Let M be an n-dimensional maximal spacelike hypersurface with two distinct
principal curvature in anti-de Sitter Hn+1

1 (−1). If the multiplicities of these two distinct principal
curvatures are greater than 1, then hijk = 0 and M = Hm(− n

m
) × Hn−m(− n

n−m
) (2 � m �

n − 2).

Proof. Choosing i = a, j = b in (2.6) and noting hab = λaδab, λa = λb, we have
n∑

k=1

habkωk = dhab = dλa · δab. (2.11)

Because m � 2, we can choose a �= b, then habk = 0, in particular we obtain

haba = 0, 1 � a �= b � m. (2.12)
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Choosing a = b in (2.11), we get
∑n

k=1 haakωk = dλ = ∑
k λ,kωk , then it follows that

haac = λ,c, 1 � a, c � m. (2.13)

From (2.5), we have haab = haba , then (2.12) and (2.13) imply

λ,b = 0, 1 � b � m. (2.14)

Since n − m � 2, we also can get that

μ,α = 0, m + 1 � α � n. (2.15)

Combining (2.10), (2.14) with (2.15), we see that λ = constant and μ = constant, also
hijk = 0. From Ishihara’s works [3], we conclude M = Hm(− n

m
) × Hn−m(− n

n−m
) (2 � m �

n − 2). We complete the proof of Proposition 2.1. �
Case 2. m = n − 1.
From (2.10), we assume that

λ1 = · · · = λn−1 = λ, λn = μ,

then it follows that

λ − μ = nλ, λμ = −(n − 1)λ2. (2.16)

Because n � 3, we have m = n − 1 � 2. By similar discussion as Case 1, we obtain

λ,1 = · · · = λ,n−1 = 0. (2.17)

Combining (2.16) with (2.17), we get

μ,1 = · · · = μ,n−1 = 0. (2.18)

Noting hij = λiδij and (2.6), we have
∑

k

hijkωk = δij dλi + (λi − λj )ωij . (2.19)

From (2.19), (2.17) and (2.18), we obtain

hijk = 0, if i �= j, λi = λj , (2.20)

haab = 0, haan = λ,n, (2.21)

hnna = 0, hnnn = μ,n. (2.22)

We introduce the following generalized maximum principle (see Omori [5] and Yau [10]) in
order to prove our Theorem 1.2.

Lemma 2.1. (Omori [5], Yau [10]) Let M be a complete Riemannian manifold with Ricci curva-
ture bounded from below. Let f be a C2 function which bounded from below on M . Then there
is a sequence of points pk in M such that

lim
k→∞f (pk) = inf(f ), lim

k→∞
∣∣∇f (pk)

∣∣ = 0, lim
k→∞ inf�f (pk) � 0.
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3. Proof of Theorem 1.2

At first, we prove the following key lemma.

Lemma 3.1. Let M be an n-dimensional (n � 3) maximal spacelike hypersurface with two dis-
tinct principal curvatures in Hn+1

1 (−1), then we have

|∇S|2 =
n∑

k=1

(S,k)
2 = 4nS

n + 2

∑
i,j,k

h2
ijk. (3.1)

Proof. We have to consider two cases.
Case 1. m � 2, n − m � 2, that is, the multiplicity of two distinct principal curvature are

great than 1. From Proposition 2.1, we know that λ = constant, μ = constant and hijk = 0. Thus
S = constant and hijk = 0, (3.1) holds in this case.

Case 2. m = n − 1, that is, λ1 = · · · = λn−1 = λ, λn = μ, then we have

S = n(n − 1)λ2, (3.2)

S,i = 2n(n − 1)λλ,i . (3.3)

By use of (2.14), (3.2) and (3.3), we obtain

n∑
k=1

(S,k)
2 = (S,n)

2 = 4n(n − 1)S(λ,n)
2. (3.4)

On the other hand, by use of (2.20)–(2.22), we know

∑
i,j,k

h2
ijk =

n−1∑
a,b,c=1

h2
abc + 3

n−1∑
a,b=1

h2
abn + 3

n−1∑
a=1

h2
ann + h2

nnn

= 3
n−1∑
a=1

h2
naa + h2

nnn = 3(n − 1)(λ,n)
2 + (μ,n)

2

= (n − 1)(n + 2)(λ,n)
2. (3.5)

Combining (3.4) with (3.5), we complete the proof of Lemma 3.1. �
Lemma 3.2. Let M be an n-dimensional (n � 3) complete maximal hypersurface of anti-de Sitter
space Hn+1

1 (−1) with two distinct principal curvatures one of which is simple (i.e., λ1 = · · · =
λn−1 = λ �= λn = μ). If inf(λ − μ)2 > 0, then

S � n, (3.6)

where S is the norm square of the second fundamental form of M .

Proof. Making use of the (2.8), (2.5), (2.4), we can compute the Laplacian �S of S as follows
(also see [3,4]):

1

2
�S =

∑
h2

ijk +
∑

hijhijkk
i,j,k i,j,k
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=
∑
i,j,k

h2
ijk +

∑
i,j,k

hijhikjk

=
∑
i,j,k

h2
ijk +

∑
i,j,k

hij

(
hikkj +

∑
m

hkmRmijk +
∑
m

hmjRmkjk

)

=
∑
i,j,k

h2
ijk + 1

2

∑
i,j

Rijij (λi − λj )
2. (3.7)

By use of Gauss equation (2.1), we obtain Ranan = −1 − λμ = −1 + (n − 1)λ2 for 1 � a �
n − 1. Then we have by use of (3.2)

1

2
�S =

∑
i,j,k

h2
ijk + (n − 1)(λ − μ)2[(n − 1)λ2 − 1

]

=
∑
i,j,k

h2
ijk + (n − 1)n2λ2[(n − 1)λ2 − 1

]

=
∑
i,j,k

h2
ijk + S(S − n). (3.8)

Since we assume inf(λ − μ)2 = b2 > 0, from (n − 1)λ + μ = 0 and (3.2), we have

S � n − 1

n
b2 > 0. (3.9)

Combining (3.9), Lemma 3.1 with (3.8) we have

1

2
�S = n + 2

4nS
|∇S|2 + S(S − n). (3.10)

Noting Rii = −(n − 1) + λ2
i � −(n − 1) and S � n−1

n
b2 > 0, we know that Omori and Yau’s

generalized maximum principle (Lemma 2.1) can be applied to the function S on M . Then there
is a sequence of points pk in M such that

lim
k→∞S(pk) = infS, lim

k→∞
∣∣∇S(pk)

∣∣ = 0, lim
k→∞ inf�S(pk) � 0.

Approaching limit of the both side of equality (3.10), we obtain

0 � infS · (infS − n). (3.11)

From (3.9) we have infS > 0, then we obtain

infS � n. (3.12)

We complete the proof of Lemma 3.2. �
Proof of Theorem 1.2. We assume that M has two distinct principal curvature λ (multiplicity m)
and μ (multiplicity n − m).

Case 1. 2 � m � n − 2. By Proposition 2.1 we know M = Hm(− n
m

) × Hn−m(− n
n−m

),
2 � m � n − 2.

Case 2. m = n − 1. From Theorem 1.1 of T. Ishihara [3], we know that S � n. From
Lemma 3.2, we get S � n. Hence, S = n on M . Since S = n(n − 1)λ2, we have λ2 = 1

n−1 ,

μ2 = n − 1. Then M is isometric to H 1(−n) × Hn−1(− n
n−1 ). We complete the proof of Theo-

rem 1.2. �
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Remark 3.1. In [6–9], the authors studied n-dimensional complete hypersurfaces with two dis-
tinct principal curvatures in an (n + 1)-dimensional unit sphere Sn+1(1).

Remark 3.2. The referee proposed the following:

Conjecture. The only complete spacelike hypersurfaces in Mn+1
1 (c) (c � 0) with constant mean

curvature and two distinct principal curvatures λ and μ satisfying inf(λ − μ)2 > 0 are the hy-
perbolic cylinders.

This conjecture is interesting, but our method in this paper is not effective to the conjecture.
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